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Modeling pionic fusion
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Recently observed rare heavy ion fusion processes, where the entire available energy is carried away by a
single pion, is an example of extreme collectivity in nuclear reactions. We calculate the cross section in the
approximation of sudden overlap, modeling the initial and final nuclei by moving harmonic oscillator poten-
tials. This allows for a fully quantum-mechanical treatment, exact conservation of linear and angular momenta
and fulfillment of the Pauli principle. The results are in satisfactory agreement with data. Mass number
dependence and general trends of the process are discussed.@S0556-2813~99!03301-4#

PACS number~s!: 25.70.Jj, 24.10.2i, 13.60.Le
te
ob
ld

io
o
te
A

n
e
ar
s

t

.
o
d

th
d.
th
io
i
o
lo

th
io
A
si
ig
f t
io

d
n
io

i
in
ry
o

ular
ion
le-
o
m

de-
is

x-
ood
c. V

ary
n to
on

the
by
-

l-
as

se a

xi-
I. INTRODUCTION

Nuclear fusion reactions which produce a pion are of
referred to as pionic fusion. Pion production has been
served @1–3# at energies approaching absolute thresho
where the entire available energy is converted into the p
demonstrating an amazing collective behavior of nucle
systems. However, it remains quite difficult to incorpora
the observed collectivity into existing theoretical models.
variety of studies@4–7# have dealt with subthreshold pio
production in heavy ion collisions, where the energy p
nucleon is below the energy threshold of the element
single-particle reactionNN→NN1p. Most models, such a
those featuring pion bremsstrahlung mechanisms@8,9#, quan-
tum molecular dynamics approaches@10#, perturbative cal-
culations using Boltzmann-Nordheim-Vlasov equations@11#,
or nuclear structure functions@12#, provide a good picture a
energies starting fromE/A'30 MeV up to the single-
particle thresholdE/A5280 MeV in the laboratory frame
In the present work motivated by the experimental results
@1–3# our aim is to consider even lower energies and stu
the behavior of the cross section of fusion reaction in
region down to'10 MeV above the absolute threshol
This necessitates a careful consideration of limitations on
reaction given by conservation laws and the Pauli exclus
principle which govern the behavior of the cross section
this extreme situation. The statistical approach used in m
existing models at higher energy has to be substituted by
energy many-body structure physics.

Our model, which is described in Sec. II, considers
cross section in the Born approximation, assuming that p
production occurs through coupling to a single nucleon.
possible further rescatterings of the pion are expected to
nificantly reduce the probability of the reaction, and are
nored as higher order processes. A schematic picture o
reaction is shown in Fig. 1 demonstrating the pionic fus
of two nucleiA andA8.

Many-body nuclear mean field parameters are assume
be constant and suddenly change from the initial to the fi
values. This will be referred to as the sudden approximat
The three-dimensional harmonic oscillator shell model
used to describe the structure of the incoming and outgo
nuclei. This allows analytical calculation of all necessa
overlap amplitudes. The stationary wave functions are c
PRC 590556-2813/99/59~1!/305~12!/$15.00
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structed as Slater determinants projected onto good ang
momentum. Taking into account the center-of-mass mot
we preserve linear momentum. Section III shows the imp
mentation of the model for the case of pionic fusion of tw
identical nuclei. In Sec. IV we present a low pion momentu
approximation, for which more general results could be
rived. The parallel discussion of mathematical details
given in the Appendix. The application of this model to e
perimentally observed pionic fusion reactions shows a g
agreement with data. The comparison is presented in Se
along with some predictions for heavy nuclei.

II. DESCRIPTION OF THE MODEL

A. The transition amplitude

We approach the problem of pionic fusion as a station
scattering problem. We consider the reaction cross sectio
be given by the Fermi golden rule in terms of the transiti
amplitude ^FuHuI &, where I and F refer to the initial and
final states, respectively, of the whole system including
emitted pion. The density of final pion states is given
Vk2dkdV/(2p)3 with k as a momentum of the pion pro
duced;V is a solid angle in the center of mass~c.m.! frame,
andV stands for the quantization volume. In all further ca
culations the pion is assumed to be fully relativistic where
nucleons obey nonrelativistic quantum mechanics. We u
set of natural units with\5c51. In this framework the dif-
ferential cross section can be written as

FIG. 1. The pionic fusion of two nuclei in the sudden appro
mation is illustrated.
305 ©1999 The American Physical Society
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306 PRC 59VOLYA, PRATT, AND ZELEVINSKY
ds5
vkm

2pn~2p!2 u^FuHuI &u2V2dV, ~1!

wherem is a nucleon mass,pn is the c.m. momentum pe
nucleon in the initial state andv5Ak21mp

2 is pion energy.
On the single-nucleon level one can use a phenome

logical Hamiltonian density for the pion-nucleon interacti
@13#,

H5gc̄g5tWcpW 14p
l1

mp
c̄pW •pW c14p

l2

mp
2 c̄r•pW 3pẆ c.

~2!

A number of studies have been performed analyzing
form of the interaction within the context of chiral perturb
tion theory@14#. The first term, often called in the literatur
the impulse or Born term, is responsible for single-pion p
duction in ap-wave. We neglect the second and the th
s-wave terms which require an additional interaction to a
sorb the extra pion created in the four-point vertex. We
lieve that due to the difficulty of recombining the nucleo
into an appropriate final state the second and third te
become increasingly unimportant for larger nuclei. It h
also been experimentally observed that in the pionic fus
reactions the pion is predominantly produced in thep-wave
@1,2#. Reduction of the first term in the Hamiltonian to
non-relativistic case gives an interaction of the form

G5g
sW •k

2m
, ~3!

with the couplingg appropriately defined according to iso
pin. Separation of the quantized pion field,
tw
ic
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p~x!5(
k

1

A2vV
~ak

1e2 ik•x1ake
1 ik•x!, ~4!

in the matrix element of Eq.~1! reduces the transition am
plitude to the following form:

^FuHuI &5
1

A2vV

1

2m
^ f u (

nucleons
gk•sW e2 ik•xu i &, ~5!

where u f & and u i & are final and initial states of the nucleo
system.

B. Nuclear wave functions

We will approximate a state of a nuclear system with
antisymmetric combination built upon single-particle~s.p.!
states. We take these states from the harmonic oscillator s
model, which allows for the analytic calculation of corr
sponding overlaps. The approach however can be exten
to any single-particle basis. Each of the single-particle sta
can be characterized by the number of excitation quant
three Cartesian directions, the nucleon spin and isospin
jections. The locations of the centers of the harmonic os
lator potentials for all separate nuclei have to be introdu
as additional parameters to the wave function. The imp
tance of these parameters in projecting a nucleon wave fu
tion onto a state with correct total momentum for eve
nucleus participating in the process is discussed below.
lowing these assumptions we will write the wave function
a nucleon system as follows:
~6!
ten-
n

as
is

ve
cor-

,

In this example we assume that the system consists of
nucleiA andA8 with the centers of their respective harmon
oscillator potentials atr and r 8. The single-particle orbitals
are numbered from 1 toA for the first nucleus and fromA
11 up to the total number of nucleonsAf5A1A8 for the
second one. LabelsaW 5(ax ,ay ,az) are Cartesian quantum
numbers of single-particle states, whiles and t are the spin
and isospin projections. Protons and neutrons can be con
ered separately as well as different spin projections of
nucleons, reducing the wave function of the state to a pr
uct of four components. If the described separation is p
formed and the resulting part of the wave function conta
only single-particle states with the same values of eithers or
t then the corresponding index is omitted in writing. We u
a standard form for the one-dimensional harmonic oscilla
wave functions centered atr in the coordinate representatio
o

id-
e

d-
r-
s

e
r

^xu~a;r !v&5A v

Ap2aa!
Ha„v~x2r !…e2v2~x2r !2/2.

~7!

The parameterv is defined for a single oscillator asv
5Amv. These parameters characterize the mean field po
tials for every incoming or outgoing nucleus. The functio
Hn(x) is thenth order Hermite polynomial of the variablex.
The discussion of the overlap integrals such
^(a8,r 8)v8u(a,r )v&, and the general form of the results
presented in Appendix A 1.

A simple projecting technique was used to construct wa
functions as eigenstates of the momentum operators that
respond to the total momenta of each individual nucleus
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PRC 59 307MODELING PIONIC FUSION
u~aW 1 ,s1 ,t1 ; . . . ;p!,

~aW A11 ,sA11 ,tA11 ; . . . ;p8!&

5N21E E
2`

1`

d3rd3r 8u~aW 1 ,s1 ,t1 ; . . . ;r !,

~aW A11 ,sA11 ,tA11 ; . . . ;r 8!&ei ~p•r1p8•r8!. ~8!

It is easy to check that

2 i (
j 51

A

“ j u~aW 1 , . . . ;p!,~aW A11 , . . . ;p8!&

5pu~aW 1 , . . . ;p!,~aW A11 , . . . ;p8!& ~9!

and

2 i (
j 5A11

A1A8

“ j u~aW 1 , . . . ;p!,~aW A11 , . . . ;p8!&

5p8u~aW 1 , . . . ;p!,~aW A11 , . . . ;p8!&. ~10!

In the above example the situation with two-nuclei state
shown, which is appropriate for describing the initial state
pionic fusion. The final state containing just one fus
nucleus is constructed analogously.

Due to the finite range of the interaction, the overall n
malizationN of the state~8! that contains several movin
nuclei, is just a product of normalizations for each of t
constituent nuclei individually. It is useful to write the c.m
coordinates separately from the relative coordinates of
nucleons

u~aW 1 ;aW 2 ; . . . aW A ;r !v&5u„aW CM5~0,0,0!;r …vAA&uc rel&.
~11!

The relative coordinate wave functionuc rel& can be compli-
cated but the c.m. part for the ground state nucleus is sim
represented by the unphysical ground state oscillation of
center of mass in the effective harmonic potential with
parametervAA. This is removed by a projection~8! onto the
correct momentum state. The normalization integral can
expressed as

N 25E E d3rd3r 8^~aW c.m.;r 8!vAAu~aW c.m.;r !vAA&

3^c reluc rel&e
ip~r2r8!

5E d3r E d3r 8e2A~r2r8!2v2/4eip~r2r8!

5S 4p

v2AD 3/2

Ve2p2/Av2
. ~12!
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A different method of calculating the normalization alon
with further justification of this form for the c.m. part of th
wave function is discussed in Appendix A 2. We also no
here that with a slight modification of Eq.~12! the orthogo-
nality of the nucleon wave functions can be shown

^~aW 1 ;aW 2 ; . . . aW A ;p8!vu~aW 1 ;aW 2 ; . . . aW A ;p!v&5N 2dp,p8 .

III. FUSION REACTIONS A1A˜2A1p

For the remainder of the paper we will assumeA to be the
mass number of each of the initial nuclei with proton-neutr
composition (Z,N) and w the oscillator parameter. The en
tire initial state is characterized by a set of the single-part
quantum numbers$aW i%. The fusion product has 2A5Af
nucleons, the oscillator parameterv, and the final state quan
tum numbers$bW i%. The collision is considered in the c.m
reference frame; therefore we usep and 2p to denote the
momenta of the incoming nuclei andk for a final pion mo-
mentum with correspondingpf52k as the total momentum
of the recoil nucleus. The integration of the wave functio
leading to correct momenta, Eq.~8!, is performed at a final
stage so initially overlaps are calculated as functions
r , r 8, andR, the locations of the centers of the two initia
nuclei and the final nucleus, respectively.

A. Charged pion production

We begin with the case ofp1 production where one o
the initial protons interacts with the pion field producing
neutron and a real on-shell pion. With the assumption t
the pion was produced in a single-particle interaction,
total amplitude of the process becomes a sum over all p
sible amplitudes shown in Fig. 2, with the pion vertex co
necting any of the initial protons to any of the final sta
neutrons with the correct relative sign to preserve antisy
metry.

Suppose the interacting proton in the single-particle s
n produced a neutron in the statel of the final nucleus. In the
initial state we sum over the occupied orbitals of the first a
the second colliding nucleus, forn<Z and for Z,n<2Z,
respectively. We use the notationsGl(r ,r 8,R) for the neu-
tron overlap

FIG. 2. One of the amplitudes of the total fusion process:
initial proton from thenth orbit produces ap1 and ends at thel th
final neutron single-particle orbit.Fn is the remaining overlap of a
proton system with thenth initial single-particle state missing.Gl is
the neutron overlap with nol th state in the final system.
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~13!

Fn(r ,r 8,R) for the proton overlap

~14!
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andHnl for a single-particle matrix element

Hnl5H ^~bW l ,s̃l ;R!ugsW •ke2 ik•xu~aW n ,sn ;r !&, n<Z

^~bW l ,s̃l ;R!ugsW •ke2 ik•xu~aW n ,sn ;r 8!&, n.Z.
~15!

Finally, following Eq. ~5!, the total amplitude can be ex
pressed in terms of the following sum:

^FuHuI &5
1

NiNf

1

A2vV

1

2m
E E d3rd3r 8d3R

3(
nl

~21!n1 lFnGlHnle
ip~r2r8!2 ipf•R. ~16!

The determinants of the matrices are constructed fro
product of the single-particle overlaps of size (2N)3(2N)
for the neutrons (Gl) and (2Z21)3(2Z21) for the protons
(Fn). The Gaussian nature of the single-particle overla
allows one to separate all exponential factors that govern
general trend of the cross section leaving only some poly
mials of a general form that carry spin, isospin, and Pa
blocking information. These mathematical manipulations
discussed in some detail in Appendix A 2. Here we prese
final expression for the square of the transition amplitude

u^FuHuI &u25
2g2

V2 S 2p

v2AD 3/2uku2j

vm2
h6~A21!uM 1u2, ~17!

in which the exponential factorj, effective oscillator param-
eterh, and reduced amplitudeM 1 are introduced as follows

j[expS 2
2p2

Av2 2
k2

v21w2 2
k2~w22v2!

2Av2~v21w2! D , ~18!

h[
2vw

v21w2 , ~19!

and

M 1[P~k,p!ep•k/Av2
1Q~k,p!e2p•k/Av2

. ~20!

Here,P andQ are dimensionless polynomials ofp andk, the
total c.m. momentum of the initial nuclei and the final pio
momentum. The polynomials are to be determined using
ticular configurations of the initial and final nuclei. They a
also functions ofv and w which determine the appropriat
a

s
he
o-
li
e
a

r-

momentum scale. If the two colliding nuclei have the sa
initial shell model state thenP(k,p)56Q(k,2p) ~the
phase difference given by6 sign for even or oddZ, respec-
tively, is due to imposed Pauli antisymmetry, see Appen
A 2!. The procedure of analytically calculatingP and Q in-
volves finding the determinants of the matrices construc
from polynomials that result from integrating a product
Hermite polynomials of the form̂(b,R)u(a,r )&; and per-
forming the integrational Fourier-type conversion, Eqs.~8!.
This process is discussed in Appendix A 2. The size of
matrices is determined by the number of nucleons of
same spin-isospin type.

B. Neutral pion production

The case ofp0 production can be considered in a simil
fashion. A neutral pion can be produced either by one of
protons or by one of the neutrons, which couple with a ne
tive relative sign. Compared to charged pions the couplin
larger by a factorA2. The final amplitude can then be ex
pressed, similarly to Eq.~17!, as

u^FuHuI &u25
g2

V2S 2p

Av2D 3/2uku2j

vm2
h6~A21!uM0u2. ~21!

Here the reduced amplitude can be split into a proton an
neutron part:

M05Pp~k,p!ep–k/Av2
1Qp~k,p!e2p–k/Av2

2Pn~k,p!ep–k/Av2

2Qn~k,p!e2p–k/Av2
. ~22!

IV. LOW PION MOMENTUM APPROXIMATION

Due to the specific form of the polynomials discuss
above, further simplifications can be made for the case ofp0

production. Near the absolute threshold, the pion momen
uku is small compared to all other momentum paramet
upu, v, andw, and can be ignored in polynomials. Then

Hnl5^~bW l ,sl ;R!vusW •ke2 ik•xu~aW n ,sn ;r !w&

'^sl usW •kusn&^~bW l ;R!vu~aW n ;r !w&

3expS 2k2

2~v21w2!
2

ik•~Rv21rw2!

~v21w2!
D . ~23!
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With this approximation, the interaction part is factoriz
into exponents as shown in the expression above. There
the total pionic fusion amplitude is a product of a pure fus
amplitude and the expression that arises from the oper

sW •k acting on the nucleons. For a given type of the init
and final nucleon, the sum of a single-particle matrix elem
multiplied by the corresponding overlap of the remaini
particles reduces to a sum of matrix elements multiplied
s
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the corresponding minor which is related to a determinan
a full matrix. It is shown in Appendix A 3 that the polyno
mials can be expressed in an analytical form if all inn
harmonic oscillator shells are completely filled without a
gaps in all participating nuclei. This restriction allows an
type of particle-hole excitations within the outer unfille
shell.

The total differential cross section for a neutral pion pr
duction close to absolute threshold is given in the form
ds

dV
5

g2Ak3

~2p!22pmS 2p

Av2D 3/2

h6~A21!1Qf1QiS 4w

Av DQf2Qi

e22p2/Av2U2qz /2Tqz
S ipA 2

AhvwD ~qx21!!! ~qy21!!! U2 1

g2uM̃ u2.

~24!
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Here the integersqj , j 5x,y,z are introduced as difference
between numbers of quanta in final and initial systems
three Cartesian directions;Qi andQf are total numbers o
quanta in initial and final systems. These values are defi
as

qj5 (
nucleons

b j2 (
nucleons

a j ,

Qi5 (
nucleons

~ax1ay1az!,

Qf5 (
nucleons

~bx1by1bz!. ~25!

The spin and radial parts of the wave function are comple
decoupled in our nonrelativistic description of the nucle
system. This allows us to introduce the matrix element u
in Eq. ~24!

M̃5
1

uku ^ f̃ u (
nucleons

tzsW •ku ĩ &, ~26!

where ĩ and f̃ are the spin-isospin parts of nucleon wa
function of initial and final systems, respectively. This m
trix element could be directly computed for every particu
nuclear configuration, but for a large number of states deg
erate within harmonic oscillator model it is useful to use
approximation for the average

M̃̄5~Z↑2Z↓2N↑1N↓!. ~27!

The Cartesian directions of the harmonic oscillator quant
tion axes are chosen in such a way that thez axis coincides
with the beam direction, though the spin is quantized alo
the k axis that simplifies the action ofsW •k which is used to
obtain Eq. ~27!. IntegersZ↑ , Z↓ , N↑, and N↓ are mean
numbers of particles for each spin-isospin combination w
respect to our axis of spin quantization. The polynomi
Tn(x), defined in Eq.~A2! of Appendix A 1, can be approxi
mated as
r

ed

ly

d

-
r
n-

-

g

h
s

2qz /2Tqz
S ipA 2

AhvwD'S ipA 2

AhvwD qz

. ~28!

This approximation is valid in the limit that the argumen
become large and allows for a better quantitative understa
ing of the behavior of the cross section. The value of
argument is almost independent of the mass numberA at
threshold energy:

pA 2

Ahvw
'6.

In Eq. ~24! only the lowest order term in the pion mome
tum is retained resulting in ap-wave cross section~expo-
nents withk are also ignored!. The equation has only on
numerical parameterg, the origin of which is discussed in
Appendix A 3. This parameter is a product of four facto
one for every spin/isospin nucleon species. Each factor
pends on the number of particles of corresponding type
on their distribution within the highest harmonic oscillat
shell for both initial and final nuclei. Numerically,g range
from 1 to 10 for light nuclei. The cross section can be zero
some symmetries are not preserved~spin, isospin, oscillator
symmetry! as well as by virtue of Eq.~A5! in Appendix A 1
if creation of the final system requires an odd number
quanta relative to the initial system in any of the transve
directions.

V. APPLICATION OF THE MODEL AND RESULTS

A. The reaction p1p˜d1p1

The first and the simplest example to calculate is the tw
nucleon fusion reactionp1p→d1p1. This example serves
here only for illustrative purpose as we do not include pi
rescattering due to the full interaction given by Hamiltoni
density of Eq.~2! which is important for this elementar
process. Moreover, the deuteron hardly can be approxim
with the harmonic oscillator shell model. The polynomia
P and Q, Eq. ~20!, in this case do not depend onp being
equal to the matrix element ofsW •k/uku evaluated between
the spinors of initial interacting proton and final neutro
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Here,P andQ correspond to the choice of the first or seco
initial proton to produce a pion, respectively.

Dominant partial wave channels are summarized in
following table along with our results for their reduced am
plitudes. The table was constructed by separation of in
singlet and triplet states of theNN system. Partial waves o
the p2d system printed in the left column that yield th
dominant contributions to the amplitudes which are shown
the right column

pion NN state amplitude

s-wave 3P1 2A2 sinhSkpcosu

Av2 D
p-wave 1S0

1D0
J 2 coshSkpcosu

Av2 D .
p-wave

~29!

As can be seen from the table above, this cross sectio
predominantlyp-wave in nature at low pion energies. Th
s-wave contribution that comes@13# from rescattering of the
pion due to the interaction~2! was not included. The tota
cross section averaged over spin projections in the in
state and summed over final states is

ds

dV
5

g2k3

2mpA2pv3
expS 2

4p21k2

2v2 D
3F3 coshS 2kp cosu

v2 D 21G . ~30!

The obtainedp-wave cross section behaves at low energ
as

s~pp→dp1!5s̃~k/mp!3, ~31!

where

s̃5
2A2pg2mp

5/2

m3/2v3
e22mmp /v2

. ~32!

Choosing the oscillator parameterv5216 MeV/c repro-
duces the experimental value@15#, 4s̃'0.42 fm2. For this
case the fusion is sensitive to the tail of the wave function
momentum space. Since the wave function of a deutero
extremely non-Gaussian with a long tail in coordinate spa
choosingv to reproduce the deuteron’s r.m.s. charge rad
would result in a grossly underpredicted cross section.
the fusion of heavier ions, the incoming nuclei are moving
a slower velocity and their momenta per nucleon are sim
to characteristic momentum scales of the wave functions

The oscillator parameterv can be best obtained by matc
ing used here harmonic oscillator type deuteron wave fu
tion to its experimentally known behavior@15#. The choice
of this parameter between 180 and 220 fm would lead to
values of 4s̃ in the range of 0.06 to 0.48 fm2.
e

l

n

is

l

s

n
is

e,
s
or
t
r

c-

e

B. The reaction 3He1 3He˜ 6Li 1p1

As a next step, we apply the model to the experimenta
studied pionic fusion reaction3He13He→6Li1p1, where
even first excited states of the6Li nucleus have been re
solved@2#. This reaction involves heavier nuclei so that t
process of pion rescattering becomes less important as
cussed above. The polynomialsP andQ for Eq. ~20! can be
constructed in a direct way considering the shell model str
ture of all nuclei involved in the reaction. The ground 11 and
first excited 31 states of6Li were constructed within thep3/2

j-subshell. In Fig. 3, the total cross section for this reaction
calculated for the fusion into the ground state~left panel! and
the first excited state~right panel!. The contributions of the
s-wave andp-wave to the cross section are plotted togeth
We choose a valuev5118.91 MeV/c for 6Li as it corre-
sponds to the oscillator frequency of 15.06 MeV, the para
eter of MK3W model @16#. The initial parameterw
5112.7 MeV/c was chosen by assuming the r.m.s. size 2
fm of 3He. In Fig. 4 we show the differential cross sectio
for this fusion reaction going into the ground state of6Li
~solid line! and the first excited state~dashed line!. The beam
energy is assumed to be fixed so that the corresponding
solute values of the pion momentum are 96 and 90 MeVc,
respectively.

Comparison with the experiment@2# in which pionic fu-
sion resolves the few lowest levels of6Li shows that we
obtain a reasonable ratio of the cross sections. However
underpredict the magnitude by approximately 40%, co
pared to the estimated experimental value of 111611 nb for
the ground state transition. We note that the result is se
tive to parameters of the shell model, and their choice in
harmonic oscillator approximation is quite uncertain for lig
nuclei. For example, a variation of the final oscillator fr
quency within 10% range of the used value would lead to
values of the cross section between about 20 and 140
Using more realistic non-Gaussian wave functions might s
nificantly improve the model. We might also be underes
mating the cross section due to inherent limitations of
approach. For instance, we do not consider a gradual cha
of the nuclear mean field in the process of fusion substitut
it with the sudden approximation.

FIG. 3. Reaction cross sections for3He13He→6Li1p1. The
left panel shows the transition to the ground state and the r
panel to the first excited state of6Li at 2.18 MeV. The solid lines
represent the total cross section; dashed and dotted lines arep- and
s-waves, respectively.
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C. The reaction 12C112 C˜

24Mg1p0

Here we apply our approach to the cross section of
12C112C→24Mg1p0 reaction. This process, along with i
isospin analog12C112C→24Na1p1, represents those few
heavy ion pionic fusion reactions for which experimen
data exist@1#. The application of the developed theory do
not present a great difficulty except the fact that the cr
section is quite dependent on the structure of initial and fi
states of interacting nuclei. Within the harmonic oscilla
picture we have approximately 33108 different combina-
tions of interacting states that correspond to the same ene
Angular momentum and isospin conservation constraints
duce this number by several orders of magnitude. Additio
shell model interactions have to be introduced to build u
realistic nuclear state for each of the nuclei and reduce
large number of states, that are degenerate in our mode
the ones of interest. Based on this argument we will pres
here the Monte Carlo averaged cross section, where we
erage over random Cartesian states. In the following Fig
we display the total reaction cross section as a function
pion momentum. We use here the oscillator parameterv
5104 MeV/c andw5119 MeV/c which are estimated by
various theoretical models@17,18#.

The experimentally estimated cross section for this re
tion is 208638 pb which was observed for pion momentu
41 MeV/c @1#. In this example we again underestimate t
cross section. To see the sensitivity of our results we pre
in Fig. 6 the dependence of the cross section on oscill
parameters for pion energy at about 6 MeV~momentum 41
MeV/c).

This figure indicates that a reasonable variation of para
eters could cause a change in the answer by an orde
magnitude. We emphasize again that in our calculations
did not project the participating nuclei onto appropria
shell-model states. Such a projection would require ad

FIG. 4. Differential cross section of the reaction3He13He
→6Li1p1. On the left panel the solid line represents the transit
to the ground state of6Li and the dashed line to the first excite
state; the corresponding absolute values of pion momentum ar
and 96 MeV/c, respectively. The right panel displays the expe
mentally observed values@2# of the differential cross section of th
transition to the ground state~squares! and to the first excited stat
~circles! of 6Li.
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tional nuclear structure input. Given that the existing expe
mental data do not clearly resolve the structure of the fi
state this seems sufficient. As a conclusion, within all
limitations discussed above, the agreement between the
troduced theory and the experimental results of this rare p
cess seems to be remarkable.

D. Calculations for heavy nuclei

In this section we apply the low-momentum approxim
tion for the cross section described by Eq.~24! to several
reactions, with the goal of understanding the general dep
dence with respect to the mass of the incoming nuclei.
order to calculate the cross section, one needs the harm
oscillator parameterv which can be estimated from the ex
perimentally determined r.m.s. radii of the nuclei@20#,

r r.m.s.
2 5

1

A(
i

^r i
2&5

1

A(
i

1

v2 S a i1
3

2D . ~33!

In order to calculate the cross section, one needs to kn
the incoming energy of the nuclei as well as the energy

n

90

FIG. 5. The reaction cross section for12C112C→24Mg1p0

with oscillator parametersv5104 MeV/c andw5119 MeV/c as
a function of pion momentum.

FIG. 6. The total cross section of12C112C→24Mg1p0 as a
function of the model parametersv andw. The calculation is done
for a pion momentum 41 MeV/c which corresponds to the tota
energy of about 6 MeV above threshold.
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312 PRC 59VOLYA, PRATT, AND ZELEVINSKY
the outgoing pion. Calculations of the cross sections w
performed for incoming nuclei9Be, 12C, 16O, and 20Ne
with corresponding fusion products18O, 24Mg, 32S, and
40Ca in the limit of low pion momentum. In this limit the
cross section is proportional to the cube of the pion mom
tum,

s5s̃~k3/mp
3 !. ~34!

Values ofs̃ are displayed as a function of the mass num
of the incoming nuclei in Fig. 7. The shell model configur
tions are again randomly chosen from the available se
Cartesian states that conserve isospin and parity. Ave
values are represented by filled diamonds while the st
with the highest and lowest cross sections are represente
the boundaries of the error bars. The large error bars dem
strate the wide fluctuation in strengths for individual stat
However, despite the fluctuations, it is clear that the ove
trend is of a decreasing cross section with increasing ma

Also shown in Fig. 7 are experimental measurements r
resented by open circles for thepp, 3He3He, and 12C12C
cases discussed previously. The corresponding calculat
which were performed for the experimentally measured p
momenta rather than in the low-momentum limit are a
displayed with closed circles. One sees that the cross sec
fall by several orders of magnitude, but the measureme
are still feasible throughout the wide range of masses. C
culations could be performed for heavier nuclei, but
larger masses the Coulomb barrier becomes important,
shuts off the possibility of fusion for masses larger than

FIG. 7. The general behavior of the pionic fusion cross sec
A1A→2A1p versus the mass number of initial nucleusA. The

plotted value s̃ is related to a total cross section ass

5s̃(k/mp)3. Calculations in the low-momentum limit~filled dia-
monds! show that cross sections fall by several orders of magnit
in this mass range, but remain in the picobarn region for nucle
large as oxygen. The highest and the lowest cross section fo
within the shell model configurations are represented by error b
Experimental measurements are displayed~open circles! and com-
pared to calculations~filled circles! which were performed for the
finite pion momenta corresponding to the experiments.
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VI. CONCLUSIONS

Near threshold meson production represents a unique
of heavy ion reactions. In this area the reactions under
the pronounced features of quantum many-body phys
Most theoretical approaches to understanding and predic
these phenomena lose their validity in such an extreme
gime. In this paper we have proposed a simple mode
study the processes of deep subthreshold pion produc
The pionic fusion cross section was obtained in a Born
proximation with respect to pion production and in the su
den approximation for the nuclear rearrangement. The p
ticipating nuclei were described by the harmonic oscilla
shell model in moving oscillator potentials. The advantage
the method is that it allows one to incorporate energy, m
mentum, spin, and isospin conservation laws precisely
respect the Pauli principle at all steps of the calculation. F
ther aspects of nuclear structure could be additionally ta
into account. At threshold energies these constraints pose
most powerful restriction on the reaction and cannot be
nored as is done in statistical and kinetic models which
reasonable at higher energy. The obvious disadvantage o
model is that the sudden approximation does not consider
slow changes of the nuclear mean field in the process
interaction. For the future developments it seems feasibl
incorporate the time dependence and solve the equation
the evolution of the nuclear mean field.

The nearly analytical form of overlaps greatly simplifie
the calculations for this study. We used a spherically sy
metric nuclear mean field but in some cases this symm
prohibits the transition and this would require a consid
ation of deformations, i.e., different oscillator parameters
different directions. The above mentioned limitations are
flected by the difficulty in determining the parameters of t
model, and lead to about an order of magnitude ambiguity
the results fors-d shell nuclei. More realistic single-particl
wave functions could be incorporated into the model. So
of the exponential factors in Eq.~18! arise directly from the
Fourier transformation of the Gaussian tails in harmonic
cillator wave functions and could be substituted with mo
fied factors that would reflect a more realistic behavior.

We would like to stress here again that pionic fusion is
very rare process presenting a tiny fraction of the total cr
section. The agreement that was observed between cal
tions and experimental data for the cross sections rang
from 1024 to 1029 barns is remarkable. Within the limits o
the low pion momentum approximation in the class of t
reactionsA1A→2A1p, we were able to obtain a gener
formula, Eq.~24!, for the cross sections. The proposed tec
niques can certainly be applied in the same manner to o
pion production reactions. The processes of electrofiss
@21# present another interesting avenue to exercise this t
nique.
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APPENDIX A

1. Harmonic oscillator wave functions and overlaps

Work with harmonic oscillator wave functions often in
volves integrations of the expressions constructed of poly
mials and Gaussian weights. Thus the following integra
useful (a.0):

È1`

xne2ax21 ibxdx5Ap

a
e2b2/4aa2n/2TnS ib

2AaD ,

~A1!

whereTn(x) is a sum arising from the binomial expansion

Tn~x!5 (
j 50,2,4 . . .

n
n! ~ j 21!!!

j ! ~n2 j !!2 j /2
xn2 j . ~A2!

This expression can be used for the evaluation of any i
gral encountered in this work. There are two important li
iting cases for the sumTn(x), x→0 andx@1:

lim
x→0

Tn~x!5H ~n21!!!

2n/2
if n is even

0 if n is odd,

lim
x→`

Tn~x!522n/2xn. ~A3!

The Gaussian-Fourier integration of Eq.~A1! is a transfor-
mation on the space of polynomials defined on the basis

xn→@xn#~p!5Tn~p!. ~A4!

The following two-dimensional integrals often appear in o
calculations:

E E ~x2y!ne2a~x21y2!dxdy

5H pa212n/2~n21!!! if n is even

0 if n is odd,
~A5!

E E ~x2y!ne2a~x21y2!eip~x2y!dxdy

5
p

a S 2

aD n/2

e2p2/2aTnS ip

A2a
D . ~A6!

The basic block of the calculations is the overlap of tw
one-dimensional harmonic oscillator wave functions w
different oscillator parameters, shifted locations of the c
ters and possible additional factore2 ikx that enters the
single-particle interaction integral from Eq.~5!. This type of
integral, the generalized Debye-Waller factor, can be writ
in a factorized form:
o-
s

e-
-

r

-

n

^~b;r !vue2 ikxu~a;r 8!w&

5h1/2expS 2k2

2~v21w2!
2

~r 2r 8!2v2w2

2~v21w2!

2
ik~rv21r 8w2!

~v21w2!
D Pba„~r 82r !,k;v,w…, ~A7!

whereh is given by Eq.~19! andPnm(r ,k;v,w) is a dimen-
sionless polynomial ofr and k of the highest powern1m
with coefficients dependent onw and v. The following are
examples of these polynomials for the smallest values on
andm:

P00~r ,k;v,w!51,

P01~r ,k;v,w!5P10~2r ,k;w,v !52
A2~ ik1rv2!w

v21w2
,

P11~r ,k;v,w!5
2vw„v21w22~k2 ir v2!~k1 irw 2!…

~v21w2!2
.

The technique of obtaining these expressions is sim
though tedious. An important situationk50 would corre-
spond to the overlap of two wave functions without a pi
production, in this case we will not writek as an argument. It
can be shown that@19#

Pi j ~r ;v,w!5 (
k1 l 50,2,4 . . .

k5 i ,l 5 j Ai ! j !

k! l !

~21! j 2 lv j 2 lwi 2k

~ i 2k!! ~ j 2 l !!

3S rh

A2
D i 1 j 2k2 l

Pkl~0;v,w! ~A8!

and

Pkl~0;v,w!5Ak!

l !
P~k1 l !/2

~ l 2k!/2~h!, ~A9!

with P a
b being the associated Legendre polynomials. A

simpler case is

Pi j ~r ;v5w51!5A i ! j !

2i 1 j
~21! j (

k50

min~ i , j !

~21!kr i 1 j 22k

3
2k

k! ~ i 2k!! ~ j 2k!!
. ~A10!

Any three-dimensional overlap is reduced to the on
dimensional form of Eq.~A7! in a direct way

^~bW ;R!u~aW ;r !&5 )
x51,2,3

^~bx ;Rx!u~ax ;r x!&. ~A11!

Similarly we introduce
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^~bW ,r !ue2 ik•xu~aW ,r 8!&5h3/2expS 2k2

2~v21w2!
2

~r2r 8!2v2w2

2~v21w2!
2

2 ik~rv21r 8w2!

~v21w2!
D

3PbW aW „~r 82r !,k;v,w…, ~A12!

where

PbW aW „~r 82r !,k;v,w…5 )
x51,2,3

Pbxax
~r x82r x ,kx ;v,w!. ~A13!

2. Calculational details of theA1A˜2A1p1 reaction

Overlaps of many-body nucleon wave functions can be expressed in our approximation by a determinant of single
overlaps:

^~bW 1 , . . . ,bW n ;R!u~aW 1 , . . . ;r !~ . . . ;r 8!&5U ^~bW 1 ;R!u~aW 1 ;r !& ••• ^~bW 1 ;R!u~aW n ;r 8!&

A � A

^~bW n ;R!u~aW 1 ;r !& ••• ^~bW n ;R!u~aW n ;r 8!&
U . ~A14!

Equation~A12! allows one to take identical exponential multipliers in each row outside the determinant as a common
in all calculations leaving only the matrix of polynomialsPbW aW to be evaluated. A simple example of this is the calculation
the normalization:

^~aW 1 ,aW 2 . . . aW A ;r !vu~aW 1 ,aW 2 . . . aW A ;r 8!v&5uuP~r2r 8;v,v !uue2A~r2r8!2v2/4eip~r2r8!. ~A15!

In this expressionuuP(r2r 8;v,v)uu is a determinant of a matrix with the entriesPaW ia
W

j
. As discussed in Sec. II, this overlap

equal to that of the c.m. wave functions of two harmonic oscillators located atr and r 8. For a nucleon system in the lowe
state~in terms of harmonic oscillator shell excitations!, the c.m. wave function is the harmonic oscillator wave function of
ground stateu(0,r )§&. We obtain an interesting mathematical fact

uuP~r2r 8;v,v !uu5P00~r2r 8;§,§!51. ~A16!

Comparison of the exponents in Eq.~A15! and Eq.~A12! gives the value of the oscillator parameter for the center-of-m
oscillation as§5vAA.

With the same strategy, one can approach the calculation of the reactionA1A→2A1p1 extracting all exponential factors
Corresponding values of the overlapsFn , Gl , andHnl may be rewritten, defining new polynomialsf n , gl , andhnl :

Fn5h3~2Z21!/2H exp~2hvw@Z~R2r !21~Z21!~R2r 8!2#/4! f n n<Z,

exp~2hvw@~Z21!~R2r !21Z~R2r 8!2#/4! f n n.Z;

Gl5h3~2N!/2exp„2Nhvw@~R2r !21~R2r 8!2#/4…gl ,

Hnl5h3/2expS 2
~R2r !2v2w21k212ik•~Rv21rw2!

2~v21w2!
D hnl ~ if n.Z, r⇔r 8!. ~A17!

It is useful to notice here that all the polynomials are functions of distances between the nuclei (r2R) and (r 82R) that we
will denote asx andy, respectively. Considering integration in Eq.~16! over variablesx, y, andR we observe from Eq.~A17!
that the oscillating phase has the form

expS 2 ik•~Rv21rw2!

~v21w2!
1 ip~r2r 8!2 ipf•RD 5expS ip•~x2y!2

ik•xw2

v21w2
2 i ~k1pf !•RD ,

and integration overR gives a momentum preservingd-function that requiresk52pf . For convenience we split the sum i
Eq. ~16! over n<Z andZ,n<2Z and substituteF, G, andH from Eq. ~A17!
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^FuHuI &5
1

NiNf
E V

A2vV

1

2m
h3Ae2Avwh~x21y2!/4e2k2/2~v21w2!

5S e2 ik•xhw/2v (
i<Z, j

~21! i 1 j f igjhi j 1e2 ik•yhw/2v (
i .Z, j

~21! i 1 j f igjhi j D e2 ip•~x2y!d3xd3y. ~A18!

The terms( f igjhi j are again some polynomials ofx andy proportional touku and containing parametersv andw. The final
integration can be performed with the help of Eq.~A1! corresponding parametersa andb being

a5Ahvw/4, b56p2khw/2v. ~A19!

As a result, we arrive at the formula~17! with polynomials

P~k,p!5
1

uku F (
i<Z, j

~21! i 1 j f igjhi j G S 2 i
p1khw/2v

AAhvw
,

ip

AAhvw
D ,

Q~k,p!5
1

uku F (
i .Z, j

~21! i 1 j f igjhi j G S 2 ip

AAhvw
,i

p2khw/2v

AAhvw
D , ~A20!

where the first argument is the transformation of elements of vectorx and the second that of vectory. From here it is also seen
that if before transformation there existed a symmetry betweenx andy, i.e., the nuclei were in an identical state, thenP(k,
2p)56Q(k,p).

3. Toward a complete analytical answer, reactionA1A˜2A1p0

As it was pointed out in the main text, the amplitude of the pionic process is approximately proportional to the am
of the fusion reaction. One can study the properties of the determinants arising in a fusion reaction in a quite gene
separately considering the four types of particles distinguished by spin and isospin in the reaction of fusion of theA
1A→2A. This leads to the following form of a single-particle overlap matrix:

~A21!

Without loss of generality,R can be set to zero. A second important feature is that in nuclei under consideration al
shells are filled. Therefore, the resulting determinant is a function of a nucleon numberA and extra parameters arising fro
different ways to distribute the particles in the outer shells.

It is interesting to present the exact result for the one-dimensional case where the problem is uniquely defined. We
two oscillators with single-particle states from 0 tillA21 overlapping with one larger oscillator with occupied states from
up to 2A21, see Eqs.~A7! and ~A8!,

U P0 0~x;v,w! ••• P0A21~y;v,w!

A � A

P2A21 0~x;v,w! ••• P2A21 A21~y;v,w!
U5

~21!A
„w~x2y!…A

2A~2A!!

2~A21!A/2AA! S )
i 51

A
~2i !!

i ! D h~2A21!A5
1

g
„w~x2y!…qhQ, ~A22!

g~A!5
~21!AAA!

A~2A!!
2~A21!A/2S )

i 51

A
~2i !!

i !
D . ~A23!

The result is just a single term which depends only on the distance between the two initial oscillator locations raise
power equal to the difference in total number of quanta between initial and final systems,q5A2. The termh52vw/(v2

1w2) comes in the power of total number of quanta in the final nucleus,Q5(2A21)A. This remains true only for Ferm
systems in the ground state, i.e., if there are no gaps in the harmonic oscillator single-particle level occupation. The
for a three-dimensional oscillator is similar. The required polynomial is still given by one term that has a form of the p
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1

g
~xx2yx!

qx~xy2yy!qy~xz2yz!
qzwqx1qy1qzhQf , ~A24!

where integersqx , qy, andqz are differences of the number of quanta between the final and initial systems inx, y, and z
directions, respectively. A specific three-dimensional complication arises from the following aspect. The lowest energy
in general, degenerate as for non-magic nuclei one has the freedom of placing several particles into (n11)(n12)/2 degen-
erate levels of then-th shell. The numerical parameterg depends in this case also on the way the particles are placed i
outer shell of each nucleus. The harmonic oscillator symmetries in the problem often prohibit the transition.

The polynomials in Eq.~A18! acquire a form of a product of four components, each of the form of Eq.~A24! for each type
of nucleons, times the sum of terms (sW •k) acting on every pair of interacting nucleon species. Using the integrals from
~A5! and writing the action of (sW •k) between initial and final spin parts of the wave function as a matrix elementM̃ we arrive
at the expression for the polynomial in Eq.~22!

Pqx ,qy ,qz
~k50,p!5

1

g S 2~v21w2!

Av2 D ~qx1qy1qz!/2

hQfS ~qx21!!! ~qy21!!!2 qz /2Tqz
S ipA 2

AhvwD D M̃ . ~A25!

In the above expression we have redefinedg as a product ofg ’s for all four types of nucleons.
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