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Modeling pionic fusion
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Recently observed rare heavy ion fusion processes, where the entire available energy is carried away by a
single pion, is an example of extreme collectivity in nuclear reactions. We calculate the cross section in the
approximation of sudden overlap, modeling the initial and final nuclei by moving harmonic oscillator poten-
tials. This allows for a fully guantum-mechanical treatment, exact conservation of linear and angular momenta
and fulfillment of the Pauli principle. The results are in satisfactory agreement with data. Mass number
dependence and general trends of the process are discL88686-28139)03301-4

PACS numbes): 25.70.Jj, 24.10-i, 13.60.Le

[. INTRODUCTION structed as Slater determinants projected onto good angular
momentum. Taking into account the center-of-mass motion
Nuclear fusion reactions which produce a pion are ofterwe preserve linear momentum. Section Ill shows the imple-
referred to as pionic fusion. Pion production has been obmentation of the model for the case of pionic fusion of two
served [1-3] at energies approaching absolute thresholdidentical nuclei. In Sec. IV we present a low pion momentum
where the entire available energy is converted into the piorapproximation, for which more general results could be de-
demonstrating an amazing collective behavior of nucleortived. The parallel discussion of mathematical details is
systems. However, it remains quite difficult to incorporategiven in the Appendix. The application of this model to ex-
the observed CO”eCtiVity into eXiSting theoretical models. Aperimenta”y observed pionic fusion reactions ShOWS a good
variety of studied4—7] have dealt with subthreshold pion agreement with data. The comparison is presented in Sec. V

productio'n in heavy ion collisions, where the energy Peralong with some predictions for heavy nuclei.
nucleon is below the energy threshold of the elementary

single-particle reactiolN— NN+ 7. Most models, such as
those featuring pion bremsstrahlung mechanig®@, quan-
tum molecular dynamics approachigd], perturbative cal-
culations using Boltzmann-Nordheim-Vlasov equatifh, A. The transition amplitude
or nuclear structure functiojd 2], provide a good picture at
energies starting fronE/A~30 MeV up to the single-

Il. DESCRIPTION OF THE MODEL

We approach the problem of pionic fusion as a stationary
scattering problem. We consider the reaction cross section to

Fna:::gle rz]srgfl?t/)\liliAm:ofisgte'\gebv 't?]eﬂ;ex lz?i%zﬁg :(reasTlfé OPe given by the Fermi golden rule in terms of the transition
P y P amplitude(F|H|I), wherel and F refer to the initial and

[1-3] our aim is to consider even lower energies and StUdXfinal states, respectively, of the whole system including the
the behavior of the cross section of fusion reaction in the ’ P Y, y 9

region down to~10 MeV above the absolute threshold. emitted pion. The density of final pion states is given by

: \ : . N vk2dkdQ/(27)3 with k as a momentum of the pion pro-
This necessitates a careful consideration of limitations on th%uced'ﬂ is a solid angle in the center of ma@sm) frame

reaction given by conservation laws and the Pauli exCILIS'O%mdv stands for the quantization volume. In all further cal-

principle which govern the behavior of the cross section in ulations the pion is assumed to be fully relativistic whereas

this extreme situation. The statistical approach used in mos oo )

o . . nucleons obey nonrelativistic quantum mechanics. We use a
existing models at higher energy has to be substituted by IOV\S/et of natural units with = c=1. In this framework the dif-
energy many-body structure physics. '

Our model, which is described in Sec. Il, considers theferentlal cross section can be written as

cross section in the Born approximation, assuming that pion

production occurs through coupling to a single nucleon. All A
possible further rescatterings of the pion are expected to sig-
nificantly reduce the probability of the reaction, and are ig-
nored as higher order processes. A schematic picture of the
reaction is shown in Fig. 1 demonstrating the pionic fusion
of two nucleiA andA’.

Many-body nuclear mean field parameters are assumed to
be constant and suddenly change from the initial to the final
values. This will be referred to as the sudden approximation.
The three-dimensional harmonic oscillator shell model is
used to describe the structure of the incoming and outgoing
nuclei. This allows analytical calculation of all necessary FIG. 1. The pionic fusion of two nuclei in the sudden approxi-
overlap amplitudes. The stationary wave functions are conmation is illustrated.

A+A

0556-2813/99/5@)/305(12)/$15.00 PRC 59 305 ©1999 The American Physical Society



306 VOLYA, PRATT, AND ZELEVINSKY PRC 59

wkm 1 —ik-x ik-x
dO‘Zan(—ZT’_)zKF|H||>|2V2dQ, (1) W(X):Ek \/Z(L)_V(a;—e k -’-ake-*—k )r (4)

wherem is a nucleon mass, is the c.m. momentum per

nucleon in the initial state ang=\kZ+m2 is pion energy. in the matrix element of Eql) reduces the transition am-
On the single-nucleon level one can use a phenomend?litude to the following form:

logical Hamiltonian density for the pion-nucleon interaction

[13],

(F[H[)= <f|n2 gk-oe i), (5

V2wV 2Mm ucleons

— - - Ni—o - No— -
H:glﬂ’y5Tlﬁ7T+47Tm—llﬂ7T-7Tlﬂ+477m—§lﬂr~77><77¢.

@ where|f) and|i) are final and initial states of the nucleon
A number of studies have been performed analyzing thisystem.
form of the interaction within the context of chiral perturba-
tion theory[14]. The first term, often called in the literature
the impulse or Born term, is responsible for single-pion pro-
duction in ap-wave. We neglect the second and the third We will approximate a state of a nuclear system with an
swave terms which require an additional interaction to ab-antisymmetric combination built upon single-parti¢kep)
sorb the extra pion created in the four-point vertex. We bestates. We take these states from the harmonic oscillator shell
lieve that due to the difficulty of recombining the nucleonsmodel, which allows for the analytic calculation of corre-
into an appropriate final state the second and third termsponding overlaps. The approach however can be extended
become increasingly unimportant for larger nuclei. It hasto any single-particle basis. Each of the single-particle states
also been experimentally observed that in the pionic fusiortan be characterized by the number of excitation quanta in
reactions the pion is predominantly produced in fhwave three Cartesian directions, the nucleon spin and isospin pro-
[1,2]. Reduction of the first term in the Hamiltonian to a jections. The locations of the centers of the harmonic oscil-

B. Nuclear wave functions

non-relativistic case gives an interaction of the form lator potentials for all separate nuclei have to be introduced
. as additional parameters to the wave function. The impor-
o-k tance of these parameters in projecting a nucleon wave func-

F:gﬁ’ (3 tion onto a state with correct total momentum for every

nucleus participating in the process is discussed below. Fol-
with the couplingg appropriately defined according to isos- lowing these assumptions we will write the wave function of
pin. Separation of the quantized pion field, a nucleon system as follows:

(A+1)th s.p. state

bt . = . . =~ ‘l = . . ,
l(alaslatl’a%s%t?v"';r ,\(OlA+1,3A+1,tA+1,aA+2,SA+2,tA+2,...,I‘ )J) . (6)

)

~

~
nucleus A nucleus A’

In this example we assume that the system consists of two v
nucleiA andA’” with the centers of their respective harmonic  (x|(a;r), )= \/ —=—— H, (v(x— r))efvz(xfr)zml
oscillator potentials at andr’. The single-particle orbitals \/;2%«!

are numbered from 1 té for the first nucleus and from (7
+1 up to the total number of nucleos=A+A’ for the

second one. Labeléz(ax,ay,az) are Cartesian quantum _ i ) _
numbers of single-particle states, whi@ndt are the spin "€ _parameten is defined for a single oscillator as

and isospin projections. Protons and neutrons can be consid VM. These parameters characterize the mean field poten-
ered separately as well as different spin projections of théials for every incoming or outgoing nucleus. The function
nucleons, reducing the wave function of the state to a prodH,(x) is thenth order Hermite polynomial of the variable

uct of four components. If the described separation is perThe discussion of the overlap integrals such as
formed and the resulting part of the wave function containg(a’,r’),|(a,r),), and the general form of the results is
only single-particle states with the same values of eith@r  presented in Appendix A 1.

t then the corresponding index is omitted in writing. We use A simple projecting technique was used to construct wave
a standard form for the one-dimensional harmonic oscillatofunctions as eigenstates of the momentum operators that cor-
wave functions centered ain the coordinate representation: respond to the total momenta of each individual nucleus,
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. FIG. 2. One of the amplitudes of the total fusion process: an
It is easy to check that initial proton from thenth orbit produces ar* and ends at thith
final neutron single-particle orbik, is the remaining overlap of a
A proton system with thath initial single-particle state missing; is
_ij21 Vil(ay, ...p).(ans1, ---3p")) the neutron overlap with nith state in the final system.

A different method of calculating the normalization along
=pl(as,...;p)(apst, ... p")) (9)  with further justification of this form for the c.m. part of the

wave function is discussed in Appendix A2. We also note

here that with a slight modification of E¢12) the orthogo-

and nality of the nucleon wave functions can be shown
A+A’
_ij=;+l Vj|((1’l, . ;p),(aA+1, . ,p,)> <(C_}.’)1,C_;2, . &Avp,)v|(&li&2! .. 'C_;A;p)v>:N25p,p’ .

=p'|(ay, ...;p)(api1, ... P")). (10) Ill. FUSION REACTIONS A+A—2A+

o _ . ~ For the remainder of the paper we will assuft® be the

In the above example the situation with two-nuclei state ismass number of each of the initial nuclei with proton-neutron
shown, which is appropriate for describing the initial state iNncomposition Z,N) andw the oscillator parameter. The en-
pionic fusion. The final state containing just one fusedtjre initial state is characterized by a set of the single-particle

nucleus is constructed analogously. guantum numberga;}. The fusion product has A=A,

Due_to the finite range of the mteraquon, the Overa".nor'nucleons, the oscillator parameterand the final state quan-
malization \V of the state(8) that contains several moving > L . ]
tum numbers{3;}. The collision is considered in the c.m.

nuclei, is just a product of normalizations for each of the _
constituent nuclei individually. It is useful to write the c.m. eference frame; therefore we upeand —p to denote the

coordinates separately from the relative coordinates of th§0menta of the incoming nuclei aridfor a final pion mo-
nucleons mentum with corresponding; = —k as the total momentum

of the recoil nucleus. The integration of the wave functions
. . R leading to correct momenta, E(B), is performed at a final
|(ay;az; .. aair),)=|(acy=(0,0,0;r), &) Hre)- stage so initially overlaps are calculated as functions of
1 r, r', andR, the locations of the centers of the two initial
nuclei and the final nucleus, respectively.
The relative coordinate wave functidm,.) can be compli-
cated but the c.m. part for the ground state nucleus is simply _ _
represented by the unphysical ground state oscillation of the A. Charged pion production
center of mass in the effective harmonic potential with the We begin with the case of* production where one of
parametep \/A. This is removed by a projectia) onto the  the initial protons interacts with the pion field producing a
correct momentum state. The normalization integral can beeutron and a real on-shell pion. With the assumption that
expressed as the pion was produced in a single-particle interaction, the
total amplitude of the process becomes a sum over all pos-
sible amplitudes shown in Fig. 2, with the pion vertex con-
N2=J f d3rd3r’((&C_m_;r’)wﬂ(&cm_;r)vm necting any of the initial protons to any of the final state
neutrons with the correct relative sign to preserve antisym-
ip(r—r’) metry.
(Yrel ren® Sgppose the interacting proton in the single-particle state
:f d3rf §3r e AlT—r") 2o 2lagip(r—r') n produced a neutron in the stdtef the final nucleus. In the
initial state we sum over the occupied orbitals of the first and
3 the second colliding nucleus, for<Z and forZ<n=2Z,
:(4_77) Ve PPlAv? (12) respectively. We use the notatio(r,r’,R) for the neu-
5 .
v°A tron overlap
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Gl = <(/81,§1; . °/Bl—17§l—l;ﬁl+17§l+l; .o 7R)J|(&1331, . .;r)(&A+1,8A+1; .o .;r')), (13)

nolths.p.state

F,(r,r',R) for the proton overlap

Fo = ((B1,315.. s R)|[ (01, 815 . -5 @nty St} Gty Snt1}---)) s (14)

[

nonths.p.state

andH,, for a single-particle matrix element momentum scale. If the two colliding nuclei have the same
. . _ . initial shell model state therP(k,p)==Q(k,—p) (the
((B1,51;R)|go-ke ™M X|(ay,s0:1)), N<Z phase difference given by sign for even or odd&, respec-

- 3o~ > aikex|( 2 - - tively, is due to imposed Pauli antisymmetry, see Appendix
((Br.siiR)Igo-ke ™ (aq,spir")), N Z'(15) A2). The procedure of analytically calculatifgyand Q in-
volves finding the determinants of the matrices constructed
Finally, following Eq. (5), the total amplitude can be ex- from polynomials that result from integrating a product of

pressed in terms of the following sum: Hermite polynomials of the forn§(3,R)|(«,r)); and per-
forming the integrational Fourier-type conversion, E(®.

1 1 1 3 33 This process is discussed in Appendix A 2. The size of the
<F|H|I>:NN \/—ﬁf fd rd*r’'d°R matrices is determined by the number of nucleons of the
WV V20V same spin-isospin type.

nl

_ 1 \n+l ip(r—r’)—ips-R
X% (=D"F.GHpe " (16 B. Neutral pion production

. , The case ofr® production can be considered in a similar
The determinants of the matrices are constructed from gyshion. A neutral pion can be produced either by one of the
product of the single-particle overlaps of sizeN)2<(2N)  nrotons or by one of the neutrons, which couple with a nega-
for the neutrons@,) and (2Z—1)x(2Z—1) for the protons  tjye relative sign. Compared to charged pions the coupling is

(Fn). The Gaussian nature of the single-particle overlapqarger by a factor/2. The final amplitude can then be ex-
allows one to separate all exponential factors that govern thﬁressed similarly to E¢17), as

general trend of the cross section leaving only some polyno-
mials of a general form that carry spin, isospin, and Pauli 92( 2\ 32|k|%¢
blocking information. These mathematical manipulations are |<F|H||>|2:W(F) — A VIMg% (2D
discussed in some detail in Appendix A 2. Here we present a v m

final expression for the square of the transition amplitude
Here the reduced amplitude can be split into a proton and a
29%( 27 \%2|k|%¢ neutron part:
(FIHIDPP=z| 2x| —S 7 7VIML% (1)
V v°A m2 2 2 2
Mo=Pp(k,p)e” A"+ Qp(k,p)e P4~ Py(k,p)e” /A
in which the exponential facta, effective oscillator param- A2
etery, and reduced amplitudd , are introduced as follows: —Qu(k,p)e PHA", (22

- op2 K2 K2(w2—p2)
§SOXN 7T Zrw? 2020 wd))”

(18 IV. LOW PION MOMENTUM APPROXIMATION

Due to the specific form of the polynomials discussed
_ 2vw (19 above, further simplifications can be made for the case’of
T vHw? production. Near the absolute threshold, the pion momentum
|k| is small compared to all other momentum parameters
and Ip|, v, andw, and can be ignored in polynomials. Then

n

M. =P(k,p)eP KA’ L Q(k,p)e P A% (20 - s ks
i (k.p) Q) 0 HnI:<(IBI-SI;R)v|U’ke Ik'x|(an-5n;r)w>

Here,P andQ are dimensionless polynomials pfandk, the

total c.m. momentum of the initial nuclei and the final pion ~(si|a-k[sn){(B1;:R)u|(@n:r)w)

momentum. The polynomials are to be determined using par- 2 ik- (Rv2+rw?)

ticular configurations of the initial and final nuclei. They are X ex - v . (23
also functions ofy andw which determine the appropriate 2(v2+w?) (v2+w?)
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With this approximation, the interaction part is factorizedthe corresponding minor which is related to a determinant of
into exponents as shown in the expression above. Therefoge full matrix. It is shown in Appendix A3 that the polyno-
the total pionic fusion amplitude is a product of a pure fusionmials can be expressed in an analytical form if all inner

amplitude and the expression that arises from the operatdfarmonic oscillator shells are completely filled without any
> K acti th | F . f the initi Igaps in all participating nuclei. This restriction allows any
oK acting on the nucieons. -or a glven_type ot Iné initial pe of particle-hole excitations within the outer unfilled
and final nucleon, the sum of a single-particle matrix elemengp,g||.

multiplied by the corresponding overlap of the remaining The total differential cross section for a neutral pion pro-
particles reduces to a sum of matrix elements multiplied byjuction close to absolute threshold is given in the form

) 2
2‘*1’2qu( ip \/m) (A= 1)1 (gy—1)1!

32 Q- Q; 2
) 6(A—1)+0r+ Qi( A'_W) o 2p2A0?
g A

do gAk® ( 27
v

dQ ~ (2m)22pm| Av2

1
—|M|2.
yzl |

(24)
Here the integers);, j =X,y,z are introduced as differences
between numbers of quanta in final and initial systems for 2“2’2qu
three Cartesian directiong); and Q; are total numbers of

]2 2 \*® 28
'P Anqow/ ' Anpow/ 28)
guanta in initial and final systems. These values are defined

as This approximation is valid in the limit that the arguments
become large and allows for a better quantitative understand-
ing of the behavior of the cross section. The value of the
q;= > B~ > a, argument is almost independent of the mass nunfbert
nucleons nucleons threshold energy:

Q= 2 (axtaytay), [ 2
nucleons p ~6
Angow

Q= 2 (Bxt Byt B). (25 In Eq. (24) only the lowest order term in the pion momen-
nucleons tum is retained resulting in p-wave cross sectiofexpo-
: : ) nents withk are also ignored The equation has only one
The spin and radial parts of the wave function are completely, , nerica| parametey, the origin of which is discussed in
decoupled in our nonrelaqwsnc description .of the n“CIeonAppendix A3. This parameter is a product of four factors,
;ystem. This allows us to introduce the matrix element usegne for every spin/isospin nucleon species. Each factor de-
in Eq. (24) pends on the number of particles of corresponding type and
on their distribution within the highest harmonic oscillator
M= i(ﬂ > no-k[DY, (26)  shell for both initial and final nuclei. Numericallyy range
[k| " niSons from 1 to 10 for light nuclei. The cross section can be zero if
some symmetries are not preservsgin, isospin, oscillator
where andT are the spin-isospin parts of nucleon wave Symmetry as well as by virtue of EA5) in Appendix A1
function of initial and final systems, respectively. This ma-if creation of the final system requires an odd number of
trix element could be directly computed for every particularquanta relative to the initial system in any of the transverse
nuclear configuration, but for a large number of states degerglirections.
erate within harmonic oscillator model it is useful to use an

approximation for the average V. APPLICATION OF THE MODEL AND RESULTS

ﬁ:(ZT_Zi_NT"‘Nl)' 27) A. The reaction p+p—d+ a7t

The first and the simplest example to calculate is the two-
The Cartesian directions of the harmonic oscillator quantizanucleon fusion reactiop+ p—d-+ a7 *. This example serves
tion axes are chosen in such a way that 2f&is coincides here only for illustrative purpose as we do not include pion
with the beam direction, though the spin is quantized alongescattering due to the full interaction given by Hamiltonian
the k axis that simplifies the action af -k which is used to ~ density of Eq.(2) which is important for this elementary
obtain Eq.(27). IntegersZ;, Z;, N;, and N, are mean Process. Moreover, the deuteron hardly can be approximated
numbers of particles for each spin-isospin combination withwith the harmonic oscillator shell model. The polynomials
respect to our axis of spin quantization. The polynomials® and Q, Eq. (20), in this case do not depend gnbeing
T.(x), defined in Eq(A2) of Appendix A1, can be approxi- equal to the matrix element af - k/|k| evaluated between
mated as the spinors of initial interacting proton and final neutron.
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Here,P andQ correspond to the choice of the first or second 120.0
initial proton to produce a pion, respectively.

Dominant partial wave channels are summarized in the
following table along with our results for their reduced am- 80.0
plitudes. The table was constructed by separation of initial
singlet and triplet states of tHéN system. Partial waves of
the 7—d system printed in the left column that yield the 400
dominant contributions to the amplitudes which are shown in

100.0 -

°
g 600
©

the right column 200
Y
pion NN state amplitude '
k, (MeV)
3 ; kpcosg i i 3 6| i +
swave P, 242 sin > FIG. 3. Reaction cross sections foHe+ 3He—®Li+ 7*. The
Av left panel shows the transition to the ground state and the right

A2 ) represent the total cross section; dashed and dotted lings arel

p-wave 15, ] ) }{kpcoﬁ) panel to the first excited state 6Ei at 2.18 MeV. The solid lines
cos
swaves, respectively.

p-wave Dy

(29
. L B. The reaction *He+ ®He— °Li+ =+
As can be seen from the table above, this cross section is
predominantlyp-wave in nature at low pion energies. The As a next step, we apply the model to the experimentally
s-wave contribution that comd43] from rescattering of the studied pionic fusion reactioAHe+3He—°Li+ «*, where
pion due to the interactiof2) was not included. The total even first excited states of th&Li nucleus have been re-
cross section averaged over spin projections in the initiabolved[2]. This reaction involves heavier nuclei so that the
state and summed over final states is process of pion rescattering becomes less important as dis-
cussed above. The polynomidsand Q for Eq. (20) can be
constructed in a direct way considering the shell model struc-
ture of all nuclei involved in the reaction. The ground and
first excited 3 states ofSLi were constructed within thpg),
j-subshell. In Fig. 3, the total cross section for this reaction is
(30) calculated for the fusion into the ground stétft pane) and
the first excited statéright panel]. The contributions of the
s-wave andp-wave to the cross section are plotted together.
The obtainedp-wave cross section behaves at low energiedVe choose a value=118.91 MeVk for SLi as it corre-
as sponds to the oscillator frequency of 15.06 MeV, the param-
eter of MK3W model [16]. The initial parameterw
o(pp—dmt)=o(kim_)3, (31) = 112.37 MeVk was chosen by assuming the r.m.s. size 2.14
fm of “He. In Fig. 4 we show the differential cross section
for this fusion reaction going into the ground state %f
(solid line) and the first excited statdashed ling The beam
energy is assumed to be fixed so that the corresponding ab-

do 92k3 p( 4p?+ K2
dQ  2mp2m3 202

2kpcoséd
3cosh ———| -1

X
UZ

where

- 2\2mwg’m>? o2 solute values of the pion momentum are 96 and 90 MeV/
O T Ryt e - (82 respectively.

Comparison with the experimefi] in which pionic fu-

, ) sion resolves the few lowest levels 8ti shows that we
Choosing the oscillator parameter=216 MeVic repro-  gpain 4 reasonable ratio of the cross sections. However, we
duces the experimental val(ig5], 40~0.42 fif. For this  underpredict the magnitude by approximately 40%, com-
case the fusion is sensitive to the tail of the wave function inpared to the estimated experimental value of-£11 nb for
momentum space. Since the wave function of a deuteron ighe ground state transition. We note that the result is sensi-
extremely non-Gaussian with a long tail in coordinate spacegve to parameters of the shell model, and their choice in the
choosingv to reproduce the deuteron’s r.m.s. charge radiuharmonic oscillator approximation is quite uncertain for light
would result in a grossly underpredicted cross section. Fopyclei. For example, a variation of the final oscillator fre-
the fusion of heavier ions, the incoming nuclei are moving afquency within 10% range of the used value would lead to the
a slower velocity and their momenta per nucleon are similagajues of the cross section between about 20 and 140 nb.
to characteristic momentum scales of the wave functions. Using more realistic non-Gaussian wave functions m|ght Sig-

The oscillator parameter can be best obtained by match- nificantly improve the model. We might also be underesti-
ing used here harmonic oscillator type deuteron wave funcmating the cross section due to inherent limitations of the
tion to its experimentally known behavipt5]. The choice  approach. For instance, we do not consider a gradual change
of this parameter between 180 and 220 fm would lead to thef the nuclear mean field in the process of fusion substituting
values of 4 in the range of 0.06 to 0.48 fm it with the sudden approximation.
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FIG. 4. Differential cross section of the reactioile+3He FIG. 5. The reaction cross section féfC+°C—2*Mg+

—®Li+a*. On the left panel the solid line represents the transitionwith oscillator parameters=104 MeV/c andw=119 MeV/c as

to the ground state ofLi and the dashed line to the first excited a function of pion momentum.

state; the corresponding absolute values of pion momentum are 90

and 96 MeVt, respectively. The right panel displays the experi- tional nuclear structure input. Given that the existing experi-

mentally observed valugg] of the differential cross section of the ental data do not clearly resolve the structure of the final

transition to the ground statsquaresand to the first excited state state this seems sufficient. As a conclusion. within all the
. 6y : . 1 X

(circles of °Li. limitations discussed above, the agreement between the in-

troduced theory and the experimental results of this rare pro-
C. The reaction *>C+'? C—?Mg+ #=° cess seems to be remarkable.

Here we apply our approach to the cross section of the
2c+12Cc—2*Mg+ 70 reaction. This process, along with its
isospin analog'?C+%C—2*Na+ 7", represents those few In this section we apply the low-momentum approxima-
heavy ion pionic fusion reactions for which experimentaltion for the cross section described by Eg4) to several
data exis{1]. The application of the developed theory doesreactions, with the goal of understanding the general depen-
not present a great difficulty except the fact that the crosslence with respect to the mass of the incoming nuclei. In
section is quite dependent on the structure of initial and finabrder to calculate the cross section, one needs the harmonic
states of interacting nuclei. Within the harmonic oscillatoroscillator parametes which can be estimated from the ex-
picture we have approximately>310° different combina- perimentally determined r.m.s. radii of the nudl20],
tions of interacting states that correspond to the same energy.
Angular momentum and isospin conservation constraints re- ) 1 a1 1 3
duce this number by several orders of magnitude. Additional rr.m.s.:,Z\Ei (ri >:K2i Slats)
shell model interactions have to be introduced to build up a v
realistic nuclear state for each of the nuclei and reduce this
large number of states, that are degenerate in our model,
the ones of interest. Based on this argument we will prese
here the Monte Carlo averaged cross section, where we av-
erage over random Cartesian states. In the following Fig. 5
we display the total reaction cross section as a function of
pion momentum. We use here the oscillator parameters
=104 MeVic andw=119 MeV/c which are estimated by
various theoretical mode([4.7,1§.

The experimentally estimated cross section for this reac-
tion is 208+ 38 pb which was observed for pion momentum
41 MeVi/c [1]. In this example we again underestimate the
cross section. To see the sensitivity of our results we present
in Fig. 6 the dependence of the cross section on oscillator
parameters for pion energy at about 6 M&domentum 41
MeV/c).

This figure indicates that a reasonable variation of param-
eters could cause a change in the answer by an order of Fi|G. 6. The total cross section 3fC+2°C—2"Mg+=° as a
magnitude. We emphasize again that in our calculations Weinction of the model parametessandw. The calculation is done
did not project the participating nuclei onto appropriatefor a pion momentum 41 Me\/ which corresponds to the total
shell-model states. Such a projection would require addienergy of about 6 MeV above threshold.

D. Calculations for heavy nuclei

(33

In order to calculate the cross section, one needs to know
e incoming energy of the nuclei as well as the energy of
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10° . VI. CONCLUSIONS

Near threshold meson production represents a unique area
* of heavy ion reactions. In this area the reactions underline
107 ¢ U . the pronounced features of quantum many-body physics.
f Most theoretical approaches to understanding and predicting
these phenomena lose their validity in such an extreme re-

Eo™ | i gime. In this paper we have proposed a simple model to
z; study the processes of deep subthreshold pion production.
The pionic fusion cross section was obtained in a Born ap-

- proximation with respect to pion production and in the sud-

den approximation for the nuclear rearrangement. The par-
ticipating nuclei were described by the harmonic oscillator
shell model in moving oscillator potentials. The advantage of
. . - P 2 the method 'is that it. allows one to inc;orporate energy, mo-
A mentum, spin, and isospin conservation laws precisely and
respect the Pauli principle at all steps of the calculation. Fur-
FIG. 7. The general behavior of the pionic fusion cross sectionher aspects of nuclear structure could be additionally taken
A+A—2A+m versus the mass number of initial nucledsThe jnt5 account. At threshold energies these constraints pose the
plotted value o is related to a total cross section as  most powerful restriction on the reaction and cannot be ig-
=o(k/m,)%. Calculations in the low-momentum limifilled dia-  nored as is done in statistical and kinetic models which are
monds show that cross sections fall by several orders of magnitudgeasonable at higher energy. The obvious disadvantage of the
in this mass range, but remain in the picobarn region for nuclei ag,, e js that the sudden approximation does not consider the
large as oxygen. The highest and the lowest cross section foun&OW changes of the nuclear mean field in the process of

within the shell model configurations are represented by error bars, t fi For the fut d | ts it feasible t
Experimental measurements are displayegen circles and com- Interaction. For the future developments it seems feasibie 1o

pared to calculationgilled circles which were performed for the Incorporate the time dependence and solve the equations for

finite pion momenta corresponding to the experiments. the evolution of the nuclear mean field.
The nearly analytical form of overlaps greatly simplified

the outgoing pion. Calculations of the cross sections weré‘he calculations for this study. We used a spherically sym-

performed for incoming nuclePBe, 12C, 10, and 2Ne metr?c.nuclear mean field but _in some cases this sym|_”netry
with corresponding fusion product®0, 2Mg, %25, and prph|b|ts the traq5|tlon and.th|s WouId. require a consider-
40Ca in the limit of low pion momentum. In this limit the ation of deformations, i.e., different oscillator parameters for
cross section is proportional to the cube of the pion momendifferent d|rect|qn§. Thg above mehtloned limitations are re-
tum, flected by the difficulty in determining the parameters of the
model, and lead to about an order of magnitude ambiguity in
the results fors-d shell nuclei. More realistic single-particle
o=o(k¥md). (34)  wave functions could be incorporated into the model. Some
of the exponential factors in E18) arise directly from the
Fourier transformation of the Gaussian tails in harmonic os-
Values Of’(;' are d|Sp|ayed as a function Of the mass numbepi”ator wave fUnCtionS and COU|d be SubStituted W|th mOdi-
of the incoming nuclei in Fig. 7. The shell model configura- fied factors that would reflect a more realistic behavior.
tions are again randomly chosen from the available set of We would like to stress here again that pionic fusion is a
Cartesian states that conserve isospin and parity. Averagery rare process presenting a tiny fraction of the total cross
values are represented by filled diamonds while the statesection. The agreement that was observed between calcula-
with the highest and lowest cross sections are represented bigns and experimental data for the cross sections ranging
the boundaries of the error bars. The large error bars demoffrom 10 to 10 ° barns is remarkable. Within the limits of
strate the wide fluctuation in strengths for individual statesthe low pion momentum approximation in the class of the
However, despite the fluctuations, it is clear that the overalteactionsA+ A—2A+ 7, we were able to obtain a general
trend is of a decreasing cross section with increasing masstormula, Eq.(24), for the cross sections. The proposed tech-
Also shown in Fig. 7 are experimental measurements repnjques can certainly be applied in the same manner to other
resented by open circles for thep, *He’He, and *’C'*C pion production reactions. The processes of electrofission

cases discussed previously. The corresponding calculationg1] present another interesting avenue to exercise this tech-
which were performed for the experimentally measured piorjque.

momenta rather than in the low-momentum limit are also
displayed with closed circles. One sees that the cross sections
fall by several orders of magnitude, but the measurements
are still feasible throughout the wide range of masses. Cal-
culations could be performed for heavier nuclei, but for We thank V. F. Dmitriev for constructive discussions.
larger masses the Coulomb barrier becomes important, arithis work was supported by the National Science Founda-
shuts off the possibility of fusion for masses larger than 20tion, Grants No. 95-12831 and No. 96-05207.
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APPENDIX A ((B;r)v|efikx|(a;r’)w)
1. Harmonic oscillator wave functions and overlaps

i i . i L _k2 (r_r/)ZUZWZ
Work with harmonic oscillator wave functions often in = y%%x _
volves integrations of the expressions constructed of polyno- 2w2+w?)  2(v?+w?)

mials and Gaussian weights. Thus the following integral is

useful @>0): ik(rv2+r'w?)
| Paa((r 1) kv, W), (A7)
; (vo+w9)
i n,—ax2+ibx m —b2/4a,—n/2 ib
x"e dx=\/—e a " T, 278
0 a 2ya where 7 is given by Eq.(19) andP,,(r,k;v,w) is a dimen-

(A1) sionless polynomial of andk of the highest powen+m
_ o _ _ _ with coefficients dependent omn andv. The following are
whereT,(x) is a sum arising from the binomial expansion, examples of these polynomials for the smallest values of

andm;
n

- niG-u L
Tn(X)_J‘:0§4_,_Wx ), (AZ) Poo(r,k,v,W)—l,

. . . . V2(ik+ro?)w
This expression can be used for the evaluation of any inte- Pgq(r,K;v,w)=Pqo(—r.k;w,v)=— — T
gral encountered in this work. There are two important lim- VoW
iting cases for the suri,(x), x—0 andx>1:

20W(v2+w?—(k—irv?)(k+irw?))

Pii(r k;v,w)=

n—1)!! 24 w?)2
; if n iseven (" +w?)
limT,(x)= 2n/2 . . . L
X0 ] ] The technique of obtaining these expressions is simple
0 if n isodd, though tedious. An important situatidk=0 would corre-
spond to the overlap of two wave functions without a pion
lim Tp(x)=2""2x", (A3) production, in this case we will not writeas an argument. It
X—00 can be shown thdtl9]
The Gaussian-Fourier integration of E@1) is a transfor- pRi i (=1l Tw Tk
mation on the s i i i Py(riow)= 2, KT G i
pace of polynomials defined on the basis ] kel=524. . VK (i—K)!(—D!
X" [X")(P)=To(P) (A4) rg)
— IR = Tnlp)- x| — Pu(0;0,W) (A8)
V2
The following two-dimensional integrals often appear in our
calculations: and
n 7a(x2+ 2) k! 1-k)/2
(x—y) e y dxdy PkI(O;U.W): WPEKH)/z(??)y (A9)
ma l""2(n—1)Il if n iseven with P# being the associated Legendre polynomials. A bit
= . . (A5)  simpler case is
0 if n isodd,

i'j' min(i,j)
A — — e j kyi+j—2k
Pij(l’,v—W—l)— 2i+j(_1)J E (—l) |’|+J

f f (x—y)"e~ a0 HyIglPx—Y)qx dy

n/2
a2 2
[ efp /2a-|—

a\a n

ip 2K
2l (40 =Rk A0

The basic block of the calculations is the overlap of two
one-dimensional harmonic oscillator wave functions with
different oscillator parameters, shifted locations of the cen-
ters and possible additional facta ** that enters the (BRI =TT ((BRII(ax;ry). (AlL)
single-particle interaction integral from E). This type of x=1,23
integral, the generalized Debye-Waller factor, can be written
in a factorized form: Similarly we introduce

Any three-dimensional overlap is reduced to the one-
dimensional form of Eq(A7) in a direct way
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R A . —K? (r—=r"H%2w?  —ik(rv2+r'w?)
—ik-x N\ — .3/ _ —
(Bnle ™ (arm)=7 26Xp< 22+ w?)  2(vtw?) (02 +wd)
XPaa(r'—r),kv,w), (A12)
where
Paa((r'—r),kv,w)= J:[ZSPﬁXaX(r)’(—rx,kx;v,w). (A13)

2. Calculational details of theA+A—2A+ =" reaction
Overlaps of many-body nucleon wave functions can be expressed in our approximation by a determinant of single-particle
overlaps:
(BiiRI(ar;n) =+ ((BuiR)|(an;r")
((Bry - BriR)(ag, ... )= : : (A14)
((BuiR(asin)y =+ ((BaiR)|(anir")
Equation(A12) allows one to take identical exponential multipliers in each row outside the determinant as a common factor

in all calculations leaving only the matrix of polynomidtg,, to be evaluated. A simple example of this is the calculation of
the normalization:

((ar,az...aniD),)(ar,ay...anir'),)=||P(r—r";0,0)||e AT~ %4gip(r=r"), (A15)

In this expression|P(r—r';v,v)|| is a determinant of a matrix with the entril?gic;j. As discussed in Sec. Il, this overlap is

equal to that of the c.m. wave functions of two harmonic oscillators locatechatir’. For a nucleon system in the lowest
state(in terms of harmonic oscillator shell excitationghe c.m. wave function is the harmonic oscillator wave function of the
ground state(0,r)). We obtain an interesting mathematical fact

[|P(r—=r";v,0)||=Pgo(r—r’;s,s)=1. (A16)

Comparison of the exponents in E§\15) and Eq.(A12) gives the value of the oscillator parameter for the center-of-mass
oscillation ass=uv \/A.

With the same strategy, one can approach the calculation of the reActidn-2A+ 7" extracting all exponential factors.
Corresponding values of the overlapg, G,;, andH, may be rewritten, defining new polynomidls, g;, andh,,:

e _ ez exp(— W[ Z(R—1)?+(Z—1)(R—r")2]/4)f, n<Z,
=7 exp — W[ (Z—1)(R—1)2+Z(R—r")2)/#)f, n>Z:
G, = 7°?NZexp(—=N7ow[ (R—1)?+(R—r")?]/4)g,

(R—1)%02W?+k?+2ik- (Rv?+rw?)
2(v2+w?)

Hn|:773’2exp<— )hm (if N>z, rer’). (A17)

It is useful to notice here that all the polynomials are functions of distances between the nud®i&nd (' —R) that we
will denote asx andy, respectively. Considering integration in Efj6) over variablex, y, andR we observe from EqA17)
that the oscillating phase has the form

+ip(r—r")—ips-R

p( —ik-(Ro2+rw?)
ex

(v2+w?)

_ ik-xw?
=exp ip-(x—y)— 5 —i(k+pg)-RY,
+w

02

and integration oveR gives a momentum preservirgyfunction that require&= —p; . For convenience we split the sum in
Eq. (16) overn<Z andZ<n<2Z and substitutd=, G, andH from Eq. (A17)
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SRS
=— —ne
NiN; \meZmn

—Avwa(xZ+ y2)/4ef k212(v2+w?)

:(eik-X’))W/ZU 2 (_1)i+jfigjhij+efik-y77w/2v Z (_1)i+jfigjhij efip-(xfy)dSXdSy. (A18)
= i>7,

The termsxf;g;h;; are again some polynomials ®fandy proportional tolk| and containing parametersandw. The final
integration can be performed with the help of E41) corresponding parameteasandb being

a=Anvw/4, b=xp—knpw/2v. (Al19)

As a result, we arrive at the formu(a7) with polynomials

1 L ptkypw/2v  ip
P(kiP)= i i;z,j( 1) f.g,h.,]( N v el €
1 i —ip . p—kpw/2v
QkP) =1 i;m( 1) fig;hy; Nyl (A20)

where the first argument is the transformation of elements of vaaod the second that of vectgr From here it is also seen
that if before transformation there existed a symmetry betweandy, i.e., the nuclei were in an identical state, tHegk,

—p)==Q(k,p).

3. Toward a complete analytical answer, reactiorA + A—2A+ 7°

As it was pointed out in the main text, the amplitude of the pionic process is approximately proportional to the amplitude
of the fusion reaction. One can study the properties of the determinants arising in a fusion reaction in a quite general way,
separately considering the four types of particles distinguished by spin and isospin in the reaction of fusion of ke type
+A—2A. This leads to the following form of a single-particle overlap matrix:

(BiB)@sr) - - ((BuR)l(Ear)
2A : : . (A21)
(BauR)(@sr)-- (B R)|(Easr))
first A nucleons second A nucleons

Without loss of generalityR can be set to zero. A second important feature is that in nuclei under consideration all inner
shells are filled. Therefore, the resulting determinant is a function of a nucleon nén#et extra parameters arising from
different ways to distribute the particles in the outer shells.

It is interesting to present the exact result for the one-dimensional case where the problem is uniquely defined. We consider
two oscillators with single-particle states from O #l~1 overlapping with one larger oscillator with occupied states from 0
up to 2A—1, see Eqs(A7) and (A8),

Po o(X;v,W) Poa-1(Yy;v,w) A A2
: : - Oy VR ansa wix-y)in®, (22
Poa—10(X0,W) -+ Poa_1a-1(Yiv,W) 2<A1)A’2\/N<. (f;')) 7
i=1 I

(—1)AVAL ( A <2i>!)
= 2(A- —. (A23)

I1
2)!

i=1 i!
The result is just a single term which depends only on the distance between the two initial oscillator locations raised to the
power equal to the difference in total number of quanta between initial and final sysiem€. The termz=2vw/(v?
+w?) comes in the power of total number of quanta in the final nucl@ss(2A—1)A. This remains true only for Fermi
systems in the ground state, i.e., if there are no gaps in the harmonic oscillator single-particle level occupation. The situation
for a three-dimensional oscillator is similar. The required polynomial is still given by one term that has a form of the product
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1 +0y+0;,,2
;(Xx_yx)qx(xy_yy)qy(xz_yz)qzwqx Y dap, (A24)

where integers),, d,, andq, are differences of the number of quanta between the final and initial systery imnd z
directions, respectively. A specific three-dimensional complication arises from the following aspect. The lowest energy state is,
in general, degenerate as for non-magic nuclei one has the freedom of placing several partickes it 2)/2 degen-
erate levels of the-th shell. The numerical parametgrdepends in this case also on the way the particles are placed in the
outer shell of each nucleus. The harmonic oscillator symmetries in the problem often prohibit the transition.

The polynomials in Eq(A18) acquire a form of a product of four components, each of the form of4&2¢) for each type
of nucleons, times the sum of termé-(k) acting on every pair of interacting nucleon species. Using the integrals from Eq.

(A5) and writing the action of & k) between initial and final spin parts of the wave function as a matrix eleMent arrive

at the expression for the polynomial in E&2)
(Gy+y+0)/2 >
79| (ax= 1)1 (ay=1)112%"2T, | ip M (A25)
X ' (ay " a Aow )

In the above expression we have redefineds a product ofy’s for all four types of nucleons.

1(2(v2+w?)
qu,qy,qz(kzovp): ; A—UZ
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