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Generalized orthogonality-condition model for theNN interaction
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A complete version of the MoscowNN potential model is presented. The excellent description for all
essential partial waves has been found in the energy range 0–350 MeV. The one-channel version of the model
includes the orthogonality condition to most symmetric six-quark states in all lowest partial waves and thus,
from this point of view, the model generalizes the well-known Saito’s orthogonality condition model for the
baryon-baryon interaction case. The specific features of the presented model which distinguish it from many
conventional force models are discussed in detail. One of them is a specific tensor mixing between nodal and
nodeless wave functions which results in very reasonable values of the one-pion exchange cutoff parameter
L50.78 GeV and thepNN-coupling constant valuef 250.075 in nice agreement with modern trends. The
model, in case of its confirmation in precise few-nucleon calculations, can lead to noticeable revisions for
many nuclear properties given by conventional force models.@S0556-2813~99!03806-6#

PACS number~s!: 21.30.2x, 13.75.Cs, 13.75.Gx, 24.85.1p
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I. INTRODUCTION

In spite of the great progress attained recently in the c
struction of the modern realisticNN potentials of second
generation, based on the concept of improved one- and
meson exchange@1–4#, a large number of unsolved problem
are still left in the field. The majority of the problems he
are related to the description of the short-range part of
NN interaction and to the quantitative description of fe
nucleon systems@5–9#. In particular, one of the basic prob
lems is connected with the consistent incorporation of glu
and quark-exchange degrees of freedom and their ‘‘ma
ing’’ with the meson-exchange concept.

One of the most fundamental difficulties here is how
avoid double counting of the same effects in the gluon- a
meson-exchange sectors of the unified interaction. Ano
basic problem is the fact the true six-quark microsco
Hamiltonian is presently unknown. While some effecti
three-quark Hamiltonians which include chiral symme
breaking and confinement@10–12# have been developed t
describe the baryon spectra, there is no guarantee tha
same Hamiltonians can also be applied for six-~and multi!
quark systems.

Recently @5–9# some fundamental problems have al
been found in the consistent description of few-nucleon
meson-few-nucleon systems. On the one hand, the nume
calculations made in recent years for quark-effects in vari
few-nucleon observables@13,14# have shown, in genera
quite moderate contributions of such effects at low energ
and momentum transfers@13–16#. On the other hand, how
ever, quite remarkable disagreements between the data
the most accurate three- and four-nucleon calculations h
been found@5–8#. They probably can be ascribed to an im
proper treatment of the quark degrees of freedom. This
lows from the fact that the above-mentioned few-nucle
calculations do include 3N-force andD-isobar effects to-
gether with the most realisticNN interactions, i.e., they in-
clude, to our current knowledge, all essential contribution
PRC 590556-2813/99/59~6!/3021~14!/$15.00
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Thus, developing a quantitativeNN interaction which in-
cludes properly both quark- and meson-exchange effects
is, on the other hand, not so difficult to handle and comp
cated as thoseNN models derived from multiquark Hamil
tonians, is still very topical. In addition, in view of our in
sufficient knowledge of the accurate six-quark Hamiltonia
the theory must be constructed in a manner to avoid feat
of QCD which presently cannot be handled with confiden
e.g., the choice for theqq interaction, the form of confine-
ment ~e.g., linear or quadratic!, etc. At the same time, how
ever, it is highly desirable to incorporate into the interacti
model some general reasoning about the preferred symm
of the six-quark system in variousNN channels, about the
characteristic size of six-quark states, etc. In such a case
conclusions derived from the model will result mainly fro
general symmetry requirements and general structure of
model etc. rather than some particular choice of parame
for the qq interaction, or for the particular law of confine
ment, etc.

We will demonstrate in the present work that only a fe
basic assumptions are quite sufficient for the derivation
such a hybrid model. On this basis quark effects in the fe
nucleon physics can be described more reliably. Our con
eration is based on the assumption~which is common for all
hybrid models! that both nucleons merge somehow th
quark contents at short ranges into different six-quark sta
dependent on the partial wave, the energy and the total s
While at intermediate and large distances where the nucle
do not overlap noticeably with each other the interact
mechanism is governed by one-meson exchange~which was
just the original Yukawa idea about the origin of strong i
teraction@17,18#!. This is a common basis of all hybrid mod
els and one model is distinguished from other one by the w
of matching of inner quark- and external meson-excha
channels. For example, in hybrid models due to Kisslin
@19# and Simonov@20#, the matching of both channels i
done at some arbitrarily chosen hypersphere with radiusR,
although the matching conditions in both models@19,20# are
quite different.
3021 ©1999 The American Physical Society
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In a sharp contrast to such hybrid models we prefer to
this matching in the Hilbert space of the six-quark states w
different symmetries, where every such a state is constru
from single-particle harmonic oscillator~HO! quark orbits
@21–23#. Thus, in accordance to this idea we subdivide
total Hilbert spaceH of the six-quark states on two mutual
orthogonal subspacesHP andHQ :

H5HQ1HP .

In the first subspaceHQ we include six-quark states wit
highest possible spatial symmetry, where one has a max
overlap of the single-quark orbitals. Whereas the six-qu
states with a lower spatial symmetry are placed in its
thogonal complementary subspace. The most symmet
states can be shown to have the structure which is ra
similar to compound states in a spherical or weakly
formed bag. On the other hand the states of lower symm
include a fewp-quark orbitals such ass4p2, s3p3, etc., and
these mixed symmetry states, being projected out onto
NN channel~of unexcited nucleons!, result into the nodal
NN-radial wave functions@21#. Accordingly, their structure
is analogous to clusterized peripheral states.

On the basis of above considerations and also of o
arguments of symmetry character we have suggested in
previous works@24–28# a two-component model for baryon
baryon interaction with two mutually orthogonal channe
Then, by subsequent exclusion of six-quark compound st
one comes to an effective one-channel potential mode
Moscow type, in which a deepNN-potential well includes as
its eigenstates the most symmetrical six-quark states~to be
more precise, their projections onto theNN channel!. As a
result of combining two different components into one cha
nel for the effective interaction, the orthogonality conditio
betweenNN scattering states and localized six-quark sta
in such a model is satisfied automatically due to the her
ticity of the Hamiltonian. In a consistent realization of such
program the wave functions of theNN-relative motion in the
‘‘external,’’ i.e., clusterized channel are generally not to
related to the six-quark wave functions in the ‘‘inner’’ cha
nel. Moreover, it is very likely they should be wave fun
tions belonging to quite different Hamiltonians. The und
lying dynamics of the most symmetric six-quark states m
be very tightly interrelated to specific chromodynamic
fects such as quark and gluon condensates, instantons, b
ing chiral invariance, etc., whereas the external chan
should be describable in terms of meson exchange.

Thus, these two different channels can hardly be
scribed consistently by a unified Hamiltonian~at least, on the
up-to-date level of our knowledge for low-energy QCD!. The
price to perform technically this description is a differe
dynamics in the multiquark- and meson-exchange chann1

1It should be emphasized that in currently developed model
baryons in which theqq interaction is described via one-meso
exchange@10,21# these one-meson degrees of freedom are noth
else but effective degrees of freedom. Thus, these degrees of
dom in multiquark system will be somehow different from those
three-quark systems.
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And hence it is highly desirable to employ for these tw
components a two-channel model with mutually orthogo
channels.

This reasoning justifies our model from the physical po
of view. Moreover, its real success in description ofNN
partial amplitudes demonstrated in the present paper all
us to justify the modela posteriori.

The structure of the work is as follows. In Sec. II w
present our approach for the construction of the tw
component hybrid model ofNN interaction and its interrela
tion to possible dibaryons. In Sec. III we present a realizat
of the generalized orthogonality condition model~GOCM!.
In Sec. IV the above GOCM is constructed and the struct
of the one-channel potential is discussed. Section V is
voted to a quantitative description ofNN-phase shifts in the
energy range 0–350 MeV. We also give here the effecti
range parameters and a detailed discussion of the structu
the deuteron. In Sec. VI we discuss specific nonconventio
interference and tensor mixing between nodal and node
wave functions and the cutoff parameters for the mes
exchange potentials at short range. And finally, the m
results of the work are summarized in Sec. VII. In the a
pendix we give the formulas for our interaction model in t
momentum representation.

II. A HYBRID MODEL WITH ORTHOGONAL
COMPONENTS

The nucleon-nucleon interaction at large and intermed
distances is well known and can be described by mes
exchange potentials@2,4#. The internal nucleon degrees o
freedom~quark and gluon ones, if we start from the qua
model for nucleon! do not show up in this approach. How
ever, when the nucleons come closer than;1 fm, a transi-
tion of the NN system into other channels arises, i.e., t
internal nucleon degrees of freedom begin to be of cru
importance. As a dynamic model, e.g., a six-quark b
model can be used.

However, we still have no full dynamic model describin
all possible states of the two-nucleon system. Therefore
divide the full Hilbert spaceH ~including both nucleonic and
non-nucleonic degrees of freedom! into two orthogonal sub-
spaces@24–28#

H5HNN%H6q . ~1!

These subspaces must be orthogonal because the dyna
in them is essentially different: one of them,HNN , includes
only nucleonic degrees of freedom and meson-exchange
namics, whereas the other,H6q , includes 6q-model dynam-
ics ~or QCD-inspired dynamics!. Accordingly to Eq.~1! we
introduce two mutually orthogonal projection operatorsPNN
andP6q . It is important that the~unknown! full Hamiltonian
of the system does not commutate withPNN and P6q and
contains transitions between theNN and the 6q channels.

If we suppose the existence of a full HamiltonianH obey-
ing the 6q Schrödinger equation

Hc5Ec

one can easily obtain, following Feshbach@29#, the effective
Hamiltonian for theNN component

of
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cNN[PNNc, ~2!

PNNHPNNcNN1PNNHP6q@P6q~E2H !P6q#21

3P6qHPNNcNN5EcNN , ~3a!

P6qcNN50. ~3b!

In accordance with these ideas the effective nucleon-nuc
Hamiltonian hNN[PNNHPNN includes only meson-
exchange potentials

hNN5PNNHPNN5t1vME. ~4!

The second term in Eq.~3a! is an effective potential which
couplesNN and 6q channels and will be designated furth
as vNqN . With these notations, the effective equation w
orthogonality condition~3b! takes the form

~hNN1vNqN!cNN5EcNN , ~5a!

P6qcNN50. ~5b!

As an effective wave function inNN channelcNN one can
naturally use the resonating group ansatz~RGA!

cNN5A~w
N
w

N
x̃

NN
!,

in which wN is the nucleon wave function andx̃
NN

is the

wave function for theNN-relative motion obeying the or
thogonality constraint~3b!.

The approach formulated above can be considered
general formal framework for the hybrid model of theNN
interaction. The parameters ofvNqN can be determined from
the underlying six-quark Hamiltonian@21,22#, if one as-
sumes that the effectiveqq interaction is the same in 3q and
6q systems, or by fitting theNN-scattering phase shifts.~A
quite similar procedure has been used, e.g., in the qu
compound bag model due to Simonov@20#.!

There are two essential differences in our approach fr
other hybrid models. These are the orthogonality condition
Eqs.~5! and the structure of total Hamiltonian. It should b
emphasized that Eqs.~3! and~5! are fundamentally different
Equation~3! is formally derived from the full Schro¨dinger
equation by means of the identity transformations. The
thogonality condition does not play a role in Eq.~3a! except
at E50. On the contrary, Eqs.~5! are model equations
which do not involve the full HamiltonianH. Therefore the
presence of the orthogonality condition~5b! is absolutely
necessary.

III. TWO-COMPONENT MODEL IN FRAME OF
CONSTITUENT QUARK MODEL AND MOSCOW

POTENTIAL

To fill the general scheme~5! with a microscopic conten
it is necessary to use some approximation for the full Ham
tonian H. This can be done in the frame of the constitue
quark model~see, e.g., our previous paper@27#!. Symmetry
considerations allowed to identify the subspaceH6q . It con-
sists out of square integrable functionsc6q describing the
lowest 6q-bag states with maximal spatial symmetr
on

a

rk

m
n

r-

l-
t

us6@6#& for S waves andus5p@51#& for P waves.
This choice ofH6q can be justified by several independe

reasons@23–28#. For example, recent chiral model calcul
tions @30# have shown that the structure of fully symmetr
6q statesus6@6#&, in contrast to the mixed symmetry state
as us4p2@42#&, cannot be described by the cluster RGM a
satz and that they are quite similar to the shell-model gro
states of magic nuclei. However, the most conclusive ar
ment in favor of the separation of 6q states with high and
low symmetry arises from our general understanding
quantum chromodynamics, where the effective interacti
must essentially depend on number and type of qua
Moreover, if we assume, that some effective bosonization
initial QCD degrees of freedom occurs in the peripheral a
of nucleon and thus this bosonic mode is an important co
ponent of interquark interaction@10# one can conclude, tak
ing into account a highly nonlinear character of su
bosonization, chiral meson fields must play a crucial role
the dynamics of the six-quark configurations. Such ch
fields should stabilize strongly these six-quark compone
of interaction. Thus, by approximating theQ-space Green
function @P6q(E2H)P6q# with one pole atE5E6q one gets
a separable form for the potentialvNqN

vNqN5PNNuHuc6q&~E2E6q!21^c6quHuPNN , ~6!

where

E6q5^c6quHuc6q&.

As a projection operator onto theNN channel one can
employ a respective operator taken from the resona
group method~RGM!

PNN5AucNcN&N21^cNcNuA, ~7!

wherecN is the three-quark function of the nucleon,A is the
antisymmetrizer, andN is the overlap kernel:

N5^cNcNuAucNcN&. ~8!

With this choice of the projection operatorPNN , the model
equation ~5! becomes a two-body effective Schro¨dinger
equation for the orthogonalized relative motion wave fun
tion x̃(R)

S TR1VME110
u f &^ f u

E2E6q
D x̃5Ex̃, ~9a!

^gux̃&50, ~9b!

in which

^Ru f &[ f ~R!5^c6quHucNcN&, ~10!

^Rug&[g~R!5^c6qucNcN&. ~11!

In a good approximation one can take a delta function for
overlap kernelN(R,R8) @21,22#:

N~R,R8!.
1

10
d~R2R8!. ~12!
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We emphasize once again that Eq.~9a! with the orthogo-
nality condition ~9b! is not equivalent to the full six-quark
Schrödinger equationHc5Ec. Actually we suppose we
know only individual parts of the full Hamiltonian.

~i! Sub-HamiltonianhNN5tR1vME, acting in the sub-
spaceHNN and describing the meson-exchange interact
between unexcitable nucleons;

~ii ! Other sub-HamiltonianH6q , describing the lowes
states in the 6q bag ~in given caseH6q5(E6quc6q&^c6qu).
Thus the full six-quark Hamiltonian is needed only for d
termination of coupling between the subspaces in Eq.~6!. In
this model the 6q-bag functionsc6q are not eigenfunctions
of the full Hamiltonian ~otherwise@P6q ,H#50 and vNqN
[0). Moreover, it is obvious that the sum of the projecto
PNN ~7! and P6q5(uc6q&^c6qu is not unity in the full six-
quark spaceH. Therefore, Eqs.~9! cannot be formally de-
duced from the full Schro¨dinger equation and the orthogo
nality condition~9b! proves to be necessary.

The effective two-nucleon equation~9a! provides the ba-
sis for developing the local and nonlocal parts
NN-interaction models of Moscow type. The main point he
is just the orthogonality condition~in SandP waves!, which
results in appearance of nodes inNN-scattering wave func-
tions, the positions of the nodes not depending on energy~at
least up to laboratory energiesENN;1 GeV). The term
vNqN provides an additional attractive interaction atE
,E6q . It has been shown in previous papers@24–28#, that
the phase shifts and nodal behavior of wave functions typ
for Eqs. ~9! are well reproduced by a deep local attracti
potential with an extra bound state and the respective
thogonality condition constraint. So, from this point of view
the NN-interaction model, known today as the Moscow p
tential, is the simplest local model which ensures the
thogonality between the scattering wave functions and
most symmetric 6q statesus6@6#& projected onto theNN
channel. However, the situation forP waves turns out to be
different. Attempts to achieve a satisfactory description
the phase shifts by using a local attractive potential failed
these partial waves@25#. Therefore, one needs to use t
general orthogonality condition model~GOCM! presented
here.

IV. STRUCTURE OF THE POTENTIAL

Here we give the full version of theNN potentialmodel
with the additional orthogonality condition inSandP waves.
The potential isan effective one-component approximati
to the two-component model, described in the previous s
tion. Actually we have replaced the nonlocal termVNqN ~at-
tractive at low energies! in Eq. ~9! by an additional local
attractive well.

The total interaction is, however, highly nonlocal due
the presence of theS- andP-wave projection operators whic
are employed in order to take into account the orthogona
condition ~9b!. As a result we do not require locality, th
means we have a weaker interrelation between the orth
nality condition and the form of the attractive well. Th
decoupling of the attractive potential from the orthogona
condition improves essentially the approach. In particu
the quality of the fits forP waves gets more accurate than
the old-fashioned Moscow model with eigenprojecti
n
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@24–26#. Besides the matrix eigenstate projector in coup
3S1- 3D1 channels, as was demonstrated in our previous
per @27#, can be replaced quite accurately by a scalar o
channel projector. In order to use a potential with the
thogonality conditions in few-body calculations, one has
add the projection operator with a very large positive co
pling constant to the local part of the potential, in allS- and
P-partial waves@27#.

For the sake of uniformity and convenience we inclu
similar separable terms, but with finite coupling constan
also in some other partial waves (D and F). These terms
replace the standard spin-orbital part of the interaction~for
even-parity waves! and partially reduce the strong attractio
due to the central part of the local potential. In fact, the
separable terms imitate a short-range repulsion generate
v-meson exchange.2 We also include the tensor interactio
which couples partial waves with angular momental and l
62. It can be quite accurately described by a truncated o
pion-exchange~OPE! potential in all partial waves with the
channel coupling being determined by a truncation para
eter.

In the present version of the Moscow potential we ha
replaced the Gaussian form of the central potential which
been used in all previous versions of the model@24–26,31#
by an exponential one. We have found the exponential fo
gives a more satisfactory description of the phase shifts
particularly for the3S1- 3D1 channel~see also Refs.@32#!.

Thus, the model potential consists of three parts

vNN5vM
loc1vOPE1vsep, ~13!

where the local exponent wellvM
loc depends on the channe

spin and parity

vM
loc~r !5V0 exp~2br !1~sl!V0

ls exp~2b1r !. ~14!

In the state-dependent separable part

vsep5luw&^wu ~15!

a Gaussian form factor̂r uw&5w(r ) is used

w~r !5Nrl 11 expF2
1

2 S r

r 0
D 2G ~16!

2It should be emphasized here that thev-exchange terms in tra
ditional meson-exchange models are highly nonlocal due to fo
factors and energy and momentum dependence.

TABLE I. Parameters of local part of the potential.

spin singlet singlet triplet triplet
parity even odd even odd

a 6.08671 6.08671 6.08671 4.3160
V0 24346.19 21767.26 24567.12 2223.63
b 3.49366 2.84152 3.81272 2.4959
V0

ls 2591.1
b1 3.4688
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with normalization condition*w2dr51. The integerl labels
the partial waves.

For the one-pion-exchange part of the potential the s
dard form with adipole form factor is chosen:

vOPE~k!5
f p

2

m

1

k21m2 S L22m2

L21k2 D 2

~s1k!~s2k!
~t1t2!

3
.

~17!

With such a form factor choice the OPE tensor poten
vanishes at the origin as it should. In the coordinate rep
sentation the OPE potential has the form

vOPE~r !5
~t1t2!

3

f p
2

4p
m@ f C~r !~s1s2!1 f T~r !Ŝ12#,

~18!

where the tensor operator

Ŝ125
~s1r !~s2r !

r 2
2

~s1s2!

3
~19!

and

f C~r !5@exp~2x!2exp~2ax!#/x2~a221!a/2

3exp~2ax!, ~20!

f T~r !5exp~2x!/x~113/x13/x2!

2a3exp~2ax!/~ax!@113/~ax!13/~ax!2#

TABLE II. Parameters of projectors and separable parts of
potential.

State l, MeV r 0, fm

1S0 ` 0.3943
1P1 ` 0.5550
1D2 107.2 0.4527
1F3 182.6 0.5191

3S1 ` 0.3737
3D2 161.2 0.4695
3D3 588.2 0.3572
3G4 2.74 0.8077
3P0 ` 0.3209
3P1 ` 0.3226
3P2 ` 0.1632
3F4 5.447 0.6221
n-

l
e-

2~a221!a/2 exp~2ax!@111/~ax!#,
~21!

x5mr, a5L/m. ~22!

We use here the averaged pion massm5(mp0
12mp6

)/3
and the averaged value of pion-nucleon coupling cons
f p

2 /(4p)50.075 as we do not wish to deal with the diffe
ence betweennp andpp isovector phase shifts in the prese
work.

Thus only three free parametersV0 , b, anda are left for
the local part of interaction for each combination of spin a
parity in addition to two parametersr 0 andl of the separable
term in each channel. It should be noted that only some
the valuesr 0 andl are independent free parameters~for D
and F waves!. Values ofl for S and P waves must go to
infinity ~in real calculations the value ofl;1052
106 MeV is quite enough!. Values forr 0 for these channels
are related to the local attractive well@for the local potential,
the requirement of the best approximation for eigen bou
state by Gaussian~16! definesr 0 uniquely#. Thus, we have
totally 32 parameters of the potential~and the value ofpNN
coupling constant! giving a very good description of allN-N
partial waves~except some highl channels! in the wide en-
ergy range 0 – 400 MeV. The number of parameters alm
coincides with that for most recent version of the Nijmeg
N-N potential@2#. The parameters for the present version
our NN potential are given in Tables I and II.

V. DESCRIPTION OF PHASE SHIFTS AND DEUTERON
STRUCTURE

The potential parameters as given in Tables I and II w
determined by fitting the Nijmegen phase shifts~PWA93!
@1#. In Figs. 1–3 the recentSAID phase shifts~SP97! @33# are
also presented for comparison. As can be seen from the
ures, some discrepancy between the results of both p
shift analyses~PSA! exist, especially for some partial phas
shifts. With applications to few-nucleon problems in min
we tried to reproduce with maximal accuracy the1S0 and
3S1- 3D1 phase shifts and the values of the scattering len
and the effective range.

A. Singlet partial wave channels

The description of singletn-p phase shifts for both even
and odd parities is illustrated in Fig. 1. It is evident from t
figure that the quality of fit to the data of recent phase s
analysis is quite good, especially for the Nijmegen PSA
sults. For example, the fits in1S0 and 1P1 channels are
almost perfect. The quality of fits can be estimated quant

e

TABLE III. Effective-range parameters for the potential variant given in Tables I and II.

a, fm r 0, fm
theory experiment theory experiment

triplet 3S1 5.422 5.419~7! a 1.754 1.754~8! a

singlet 1S0 23.74 223.748~10! b 2.66 2.75~5! b

aReference@42#.
bReference@43#.
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FIG. 1. The comparison of spin-singlet pha
shifts for the present version of the MoscowNN
potential with the data of the recent energ
dependent phase-shift analyses: PWA93@1#
~circles! andSAID97 @33# ~triangles!.
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tions for all singlet channels are only 0.120.2 % excepting
the 1G4 channel where the discrepancy with PSA data
largest and around 1%.

Also there is a problem in precise description of the s
glet effective ranger 0 ~see Table III!. We used as ‘‘experi-
mental’’ the valuer 0 presented in compilation of Dumbra
et al. of 1983 ~see footnote to Table III!. However, in view
of the very good agreement of our phase shifts with
Nijmegen PSA for the1S0-channel one could conclude th
the disagreement forr 0 should be really much reduced.

B. The even-parity waves

The S-wave potential turns out, as is in the previous v
sions of Moscow potential@27#, to be strongly attractive. The
Gaussian~15! with the range parameterr 0, included in the
orthogonality condition~9b!, is close to the eigenfunction o
the ground ‘‘forbidden’’ state in the potential. In othe
words, we obtain forSwaves almost a local potential. How
ever, for the 3S1- 3D1 channel ~and also for all triplet
coupled channels! we use, strictly speaking, noneigensta
s

-

e

-

one-channel projector, as in Ref.@27#, in order to avoid a
more complicated two-channel eigenprojector.

We do not introduce here a spin-orbital potential for ev
partial waves in an explicit form because it cannot be de
mined by PSA data for the3S1- 3D1 channel, and the role o
spin-orbital potential for higher even-parity partial waves
played by the termvsep.

It should be kept in mind here that the complete tw
channel version of our model includes in the properNN
channel one-meson exchange interaction terms~in a sub-
space orthogonal to symmetric six-quark compound stat!.
Thus, in the two-channel model, the spin-orbit terms sho
be described by a conventional meson-exchange mo
However, in the effectiveone-channelmodel presented her
the separable state-dependent spin-orbit interaction in e
parity channels is inavoidable to compensate partially
strong attractive potential in theS wave.

The effective range parameters for singlet and trip
S-wave channels are given in Table III. Among all the ca
culated phase shifts the maximal disagreement with PWA
~though not large! is observed for the tensor mixing param
eter«1.
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FIG. 2. The spin-triplet even-parity phas
shifts for the present version of the MoscowNN
potential. The data of the energy-depende
phase-shift analyses are PWA93@1# ~circles! and
SAID97 @33# ~triangles!.
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C. The triplet odd-parity waves

In the accordance to the microscopic quark picture,
orthogonality to the baglike functionsus5p@51#& must be in-
cluded for allP waves. However, if we look at the behavio
of ‘‘experimental’’ P-wave phase shifts at energies up to 5
MeV we will not find any repulsion in the3P2 channel,
because the corresponding phase shifts are purely pos
until the energies;1 GeV. There is no repulsive core fo
this channel in the majority of the conventional realisticNN
potentials either. But if we look to the phase shifts at hi
energies~see Fig. 4! we can observe a repulsion appearing
all three triplet P waves, while 3P2-phase shifts becom
negative only at energies higher than 1 GeV. From the p
of view of the constraints imposed by the orthogonality co
dition, this means the function to which the3P2 scattering
function is orthogonal is much more narrow than that for
otherP-wave channels,3P0 and 3P1.
e

ive

nt
-

e

It is interesting that fitting the3P2 wave at energies up to
350 MeV enables us to determine the range parameterr 0 of
the projector~see Table II!. The inclusion of the projector
improves appreciably the description of the phase shifts u
350 MeV. An attempt to reproduce the3P2-phase shift using
a purely attractive potential with an ‘‘extra’’ bound state r
sults in a very deep (;15 GeV) potential and an unsatisfa
tory quality of the description. In addition, such a deep p
tential is not suitable for a description of the3P0 and 3P1
phase shifts. That is why we have strayed from the conc
of a local Moscow model forP waves in the present version

So, for odd partial waves we have a rather small attrac
well (;220 MeV) and orthogonality to the noneigenbou
states for the local part of potential. This might mean that
size of six-quark bag inP waves should be smaller than i
3S1 and 1S0 waves. One notices here that the range para
eters of the projectors for the3P0 and 3P1 channels (r 0
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FIG. 3. The spin-triplet odd-parity phas
shifts for the present version of MoscowNN po-
tential. The data of the energy-dependent pha
shift analyses are PWA93@1# ~circles! andSAID97

@33# ~triangles!.
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'0.32 fm! almost coincide with each other. As seen fro
Fig. 4, the attraction for some odd higher partial waves w
L5J(3F3 and 3H5) is noticeably deficient in the given ver
sion of the model. Unlike the even partial waves, we use
more conventional local spin-orbit potential for odd part
waves@see Eq.~14!# because the usage of the separable s
orbital form is not convenient to describe the splitting
P-phase shifts.

It would be rather instructive to estimate the averag
relative difference of phase shifts predicted by the Mosc
model and the recent phase shift analysis@1# using the crite-
rion of relative difference or the respective absolute diffe
ence measured in radians:

« rel5
1

N (
i 51

N UdJSl,i
pot 2dJSl,i

PSA

dJSl,i
PSA U2

~23!

xJSl
2 5

1

N (
i 51

N

udJSl,i
pot 2dJSl,i

PSA u2, ~24!

wheredJSl,i
pot anddJSl,i

PSA are partial phase shifts in the channe
JSl at the energyEi for the Moscow model and Nijmege
h

a
l
-

d

phase shift analysis, respectively. Table IV presents the
ues of « rel and xJSl

2 for all consideredJSl channels. It is
evident from the table the average deviation of phase sh
predicted by the Moscow model and recent PSA is v
small and around 0.220.4 %. This means that the descri
tion of NN observables with the presented force mod
should be very good.

D. Deuteron structure

The accurate description of the deuteron structure of
an additional strong test for any nuclear force model. Ma
deuteron properties, even in the static limit, depend se
tively on the behavior of theNN force at intermediate and
short ranges@15#, especially on theD-wave contribution. For
example, with the first version of the present force mo
@31#, we found an impressive agreement with experimen
data for all crucialD-wave deuteron observables such asQd ,
AS , AD /AS . But this early model included a node not on
in theS wave but also in theD wave. This extra node in the
D wave was a consequence of a very short-range trunca
of the OPE tensor force@31# which contradicts somehow th
microscopic picture of the underlying interactions~e.g., ac-
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FIG. 3. ~Continued!.
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cording to wide-spread opinion@34# the OPE tensor force
cannot penetrate deeply inside the two-nucleon overlap
gion!.

Hence, in subsequent versions of the model@26–28#, a
more soft cutoff factor has been employed which resulted
the disappearance of theD-wave node. As an immediate con
sequence of the softer truncation in the OPE tensor force
D-wave deuteron observables have become close to the
ues predicted by conventional force models, i.e., the va
of h and Qd are a little bit underestimated~see Table V!.
Nevertheless the node in theSwave and the strong attractiv
S-wave potential, tightly related to this, results in a ve
specific interference betweenS- and D-wave components
and a specific character of tensor mixing~see Sec. VI!.

The values of deuteron observables for three version
our force model are presented in Table V while the pattern
the deuteron wave functions is displayed in Fig. 5. One
see in the figure the short-range maximum in theD wave
almost disappears for the current version of the force mo
while this maximum in theS wave gets rather reduced. It
interesting to note theD-wave amplitude in the current ver
sion of the model~solid line! is a little bit lower than in the
previous versions~dashed and dot-dashed lines! due to a
smaller value of the derivative of theD-wave component
near theS-wave node (;0.53 fm). While the asymptotic
behavior of theS wave looks almost perfect~see values of
AS in Table V!.

Thus we can conclude from the deuteron results prese
in this section that the short-range part of the tensor fo
needs to be a bit improved. Careful inspection of Table
shows unambiguously the general good agreement for
deuteron parameters found with the sharply different fo
models such as Nijmegen and Moscow potentials. The
ues for the deuteron observables are a result of some ge
e-
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properties~such as the OPE tail! and of theNN phase shifts
used for fitting only and essentially do not depend on
details of the force at short ranges.3

VI. SPECIFIC INTERFERENCE BETWEEN TENSOR AND
CENTRAL FORCES AND THE pNN COUPLING
CONSTANT IN THE MOSCOW FORCE MODEL

We included this specialized section to the present w
in order to emphasize a specific character of interfere
between tensor and central forces in the Moscow fo
model. This interference will be shown below to be ve
advantageous in some aspects as compared to the tradit
force models. The main difference between our and tra
tional models as concerned to wave function form is
nodal character of theS-wave deuteron and scattering wav
functions and the practically nodeless character of
D-wave functions.4 We will show here that the specific ten
sor mixing between theS-wave state with a node and th
almost nodelessD-wave state results in a remarkably diffe
ent «1 behavior. We compare theD-wave observables with
the results of traditional models.

First of all we emphasize here that the best fit forNN
phase shifts is attained in our case with a very reason
value for the OPE cutoff parameterLdip50.78 GeV ~we
used here the dipole form factor!, see Eq.~17! and Fig. 6.

3Certainly this conclusion may be invalid for nonstatic, e.
energy-dependent or multicomponent force models.

4The very small inner maximum in theD-state wave function in
the present version@see the solid lines in Figs. 6~a!–6~b!# can be
ignored in any calculation if we do not consider the very hi
momentum transfer.
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TABLE IV. Accuracy of fitting of phase shifts.

channel 1S0
1P1

1D2
1F3

1G4
1H5

3S1
3D1

« rel
a 0.007504 0.000527 0.002113 0.000197 0.012030 0.001802 0.004524 0.00

x2 per pointb 0.005282 0.001731 0.000627 0.000008 0.000200 0.000055 0.005595 0.00

channel «1
3D2

3D3
3G3 «3

3G4
3P0

3P1

« rel 0.006816 0.000022 0.034310 0.027256 0.023088 0.001451 0.000184 0.00
x2 per point 0.000843 0.000007 0.000856 0.004545 0.013887 0.000029 0.000186 0.0

channel 3P2
3F2 «2

3F3
3F4

3H4 «4
3H5

« rel 0.003874 0.010679 0.007830 0.017762 0.007590 0.021424 0.010617 0.02
x2 per point 0.018245 0.000123 0.000693 0.001413 0.000279 0.000004 0.000042 0.0

a« rel51/N(k51
N (dJSl,k

pot 2dJSl,k
PSA /dJSl,k

PSA )
2
.

b(1/N)(k51
N (dJSl,k

pot 2dJSl,k
PSA )

2
~in radians!.
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This soft cutoff parameter is in nice agreement with bo
experimental results and with all theoretical estimatio
made inp-N dynamics@33–37#. It should be contrasted with
a statement formulated in Ref.@38#, p. 232 for traditional
OBE-force model: ‘‘ . . . a value of 1.3 GeV isa lower limit
for Lp . ’’ The conventional OBEP model withL
50.78 GeV gives the extremely low values forQd
50.238 fm2, the ratio D/S50.0233, andPD52.4% @38#
which should be compared to the respective values for
force model~see Table V!.

In despite of the ‘‘soft’’ value ofL, theD-wave deuteron
properties in our model~see Table V in Sec. V! are in a
rather good agreement with the experimental data, being
markably better than the respective predictions of the tra
tional force models with the sameL value. We note, in
passing, that the harder truncation withL.1.3–1.7 GeV is
usually taken in the traditional force model just in order to
reasonably the deuteron properties and the tensor mixing
rameter~see below!.

The second important point in the story is related to
mixing parameter«1. In fact, in order to reach a reasonab
agreement with the recent phase shift analysis data for

FIG. 4. The spin-tripletP-wave phase shifts in a wider energ
region: the data of energy-dependent phase-shift analysisSAID97

@33# ~solid lines! and predictions for the present version of the Mo
cow NN potential ~dashed lines! and for the BonnNN potential
~dotted lines!.
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«1-mixing parameter@1,33# the L value must be taken als
around 1.5–1.7 GeV@38# ~see Fig. 6! while the same agree
ment with the experimental«1 is reached in our model usin
a much more softL50.78 GeV. This sharp difference from
the traditional force models can be ascribed to a differ

-

FIG. 5. ~a! The deuteronS-wave andD-wave functions for
present~solid lines! and previous versions~ @25#, dashed lines and
@27#, variant B, dot-dashed lines! of theNN Moscow-type potential.
The deuteron wave functions calculated with the RSC poten
~dotted lines! are shown for comparison.~b! Short-distance zoom o
~a!.
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TABLE V. Deuteron parameters for conventional and MoscowNN potentials.

model Ed ~MeV! PD ~%! r m ~fm! Qd (fm2) md (mN) AS (fm21/2) D/S Dloop
a

RSCb 2.22461 6.47 1.957 0.2796 0.8429 0.8773 0.0262
Nijm 93 2.224575 5.754 1.966 0.2706 0.8429 0.8844 0.02524
Moscow 86b 2.22444 6.57 1.966 0.2862 0.8422 0.8838 0.0268 0.
Moscow 98b,d 2.22440 5.75 1.954 0.2708 0.8470 0.8746 0.0259 0.
presentc 2.22456 5.65 1.967 0.2731 0.8476 0.8845 0.0255 0.
experiment 2.224575~9! 1.9660~68! 0.2859~3! 0.857406~1! 0.8846~16! 0.0256~1! e

aD loop is the relative amplitude of theD-wave maxima, i.e., the absolute value of the ratio of the first and second maximum of the de
D component.
bThe value\2/2m541.47 MeV fm2 has been used (m5938.978 MeV).
cThe value\2/2m541.47107 MeV fm2 is used (m5938.918 MeV).
dUnfortunately, in our previous work@27# only rounded values for potential parameters are given in Table III. The deuteron parameter
in Ref. @27# ~for variant B! do not correspond to the rounded potential parameters cited in Table III of Ref.@27#. We thank Dr. S. B.
Dubovichenko, who has attracted our attention to this disagreement, and give here the exact values for variant~B! of Ref. @27#: VO5

21329.18 MeV,h52.2959 fm22, a51.8835 fm21.
eThe present value is taken from Ref.@41#.
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character of mixing betweenS andD waves in our model.
Some additional confirmation comes from the value

pNN-coupling constant obtained in our model. We choo
here the Nijmegen force model as a good representativ
the traditionalNN potentials~see Table V!. The two models
above include practically the same values for thepNN
~charged! coupling constants (f pNN

2 50.075 in our case5 and
f p6NN

2
50.0748 for Nijmegen potential!. The latter fact is

very important because theD-wave characteristics are d
rectly related to thepNN coupling constant. In this respec
our model appears to corroborate the smaller value ofgpNN

2

.13.60 advocated by the Nijmegen group@1,2#. The two
nice features of our model discussed above, i.e., the
cutoff parameterL and low value ofpNN coupling con-
stant, are in agreement with modern trends and lend str
support to our model.

VII. CONCLUSION

The force model presented in this paper differs in a f
important aspects from traditionalNN interaction models
currently in use. First of all the Moscow two-compone
model includes two mutually orthogonal quark- and mes
exchange channels. This channel orthogonality leads
many differences from the traditional force models. In p
ticular it requires a node in low partial waves with the no
position almost independent on the relative energy in a w
energy range (<1 GeV). The nodal behavior of wave func
tions is also preserved for the one-channel model prese
here. The node in theNN wave functions results in an en
hancement of high momentum components and a strong
crease of the average kinetic energy in the deuteron and i
few-nucleon systems. This increase of the inner kinetic
ergy leads to significant enhancement of higher angular
mentum components in nuclei and nuclear matter and
for many particular nuclear processes@27,28# such as

5The value corresponds to the charged coupling constant bec
we considered first of all thepn scattering phase shifts.
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p-meson absorption and scattering in theD-resonance re-
gion, etc. This strong enhancement of high-momentum co
ponents in theN-N system as compared to any tradition
N-N force model may be seen, e.g., in hard bremsstrahl
processpp→ppg @39# at Ep5300 MeV and higher at smal
forward and backward anglesug of g emission. To make the
comparison with traditional repulsive core models most u
ambiguously the authors of Ref.@39# did their bremsstrah-
lung calculations with both the Moscow model~in its previ-
ous version @26#! and its exact phase-shift equivale
supersymmetrical partner. Thus, such a comparison rem
any questions on the possible on-shell origin of disagr
ments observed.

Redistribution of higher partial waves along Jacoby co
dinates leads, e.g., to a noticeable enhancement of
P-wave attraction forN1d andN12a systems@27,40#. The
long-standing puzzle of the analyzing powerAy in low en-
ergyN1d scattering is explained by insufficient attraction
just the N2d relative motionP wave @5,6#. The apparent
discrepancies forn13H elastic andn13He→d1d rear-
rangement low-energy scattering observed recently@8# also
appear to have to be explained by insufficient attraction
then13H(3He) P wave@7,8#. Such enhancement of highe
partial wave contributions to near-threshold and low-ene
processes in few-nucleon and few-cluster physics when
placing the deep Moscow-type potential~including extra
bound states! with its SUSY partner potential—which is ex
actly phase-shift equivalent—is a sequence of some v
general algebraic properties of kinetic energy operator in
ferent coordinate systems and is disconnected at all to
small variations in the on-shell properties of variousN-N
potential models of current use.

The second crucial point in the development of Mosc
NN force model is the important role of the six-quark com
ponents with maximal possible symmetry. We showed
cently that the coupling of the meson-exchangeNN channel
to the six-quark component can be strong enough to re
sent adequately the intermediate-rangeNN attraction. In
turn, this fact leads to quite remarkable contributions of su
six-quark configurations in nuclear bound and low-excit
se
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states. If so, it may require some strong revision for ma
nuclear properties as given by traditional force models~e.g.,
the meson-exchange current contributions!. Thus the stron-
gest test for the new model may offer few-nucleon calcu
tions for the analyzing powerAy in then1d andp1d low-
energy scattering, for the analyzing powerAy in p1d
radiative capture reaction and for thep1d intermediate en-
ergy elastic scattering cross sections~the so-called Sagar
puzzle @6,7#!. Hence the careful comparison of the pred
tions for few-nucleon systems using the Moscow force a
more traditionalNN interactions may be extremely interes
ing.
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APPENDIX: MOSCOW POTENTIAL IN MOMENTUM
SPACE

The K-matrix defined as

2iMqK̂5
11Ŝ

12Ŝ
~A1!

(M is the reduced mass whileq is a linear momentum! obeys
the partial-wave Lippmann-Schwinger equation

K̂~q8,q!5V̂~q8,q!1
2

p
PE k2dk

V̂~q8,k!K̂~k,q!

E2k2/2M
,

~A2!

FIG. 6. The energy dependence of the mixing parameter«1 for
different values of cutoff parameterL corresponding to conven
tional ~dashed lines! and present~solid lines! force models. The
data of the energy-dependent phase-shift analysis~PWA93 @1#! are
shown by circles.
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whereP means the principal value integral. The elements
matrix V̂ in Eq. ~2! are equal to the partial-wave momentum
space potential in thelSJ basis~up to factor 1/4p)

Vl 8 l~q8,q!5
1

4p
^~ l 8S!JuV~q2q8!u~ lS!J&, ~A3!

whereV(q) is related toV(r ) by a standard Fourier trans
formation

V~q!5E e2 i (qr )V~r !dr . ~A4!

Here we give explicit formulas for all terms of the prese
version of the Moscow potentialVl 8 l(q8,q) in momentum
space~in MeV22).

1. Local part of Moscow potential Vll 8
loc

Vll 8
loc

5d l l 8H V0b̃

2~qq8!2
FlS q21q821b̃2

2qq8
D

1
1

2
@J~J11!2 l ~ l 11!2S~S11!#

3
V0

lsb̃1

2~qq8!2
FlS q21q821b̃1

2

2qq8
D J , ~A5!

where the parametersb̃ and b̃1 are given in MeV:

b̃5b\c, b̃15b1\c.

Fl is the derivative of the second kind Legendre function

Fl~x!52
d

dx
Ql~x!, Ql~x!5

1

2E21

1 dz Pl~z!

x2z
. ~A6!

2. Separable terms of the potential

In momentum space the separable terms with Gaus
form factors~15!,~16! have the same form as in the coord
nate space:

Vll 8
sep

~q,q8!5d l l 8l
p

2
w l~q!w l~q8!, ~A7!

where

w l~q!5S 2l 12

~2l 11!!! Ap
r̃ 0

2l 13D 1/2

ql expS 2
q2r̃ 0

2

2
D .

~A8!

Here the normalization condition*w l
2(q)q2dq51 is as-

sumed and the factorp/2 is related to the integration mea
sure used in Eq.~A2!, and r̃ 0 is given in MeV21:

r̃ 05r 0 /~\c!.
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3. The OPE potential with dipole truncation

For the sake of the reader’s convenience we also give
known formulas for OPE matrix elements.

~a! The central part of OPE potential:

~Vc
OPE! l l 8~q,q8!5d l l 8

~t1t2!

3
~s1s2!

f p
2

4p

1

2qq8

3H Ql~x!2Ql~y!2
L2

mp
2 ~y2x!Fl~y!J .

~A9!

Here and below

x5
q21q821mp

2

2qq8
, y5

q21q821L2

2qq8
. ~A10!

~b! The tensor part of OPE potential for triplet uncoupl
channels withl 5J:

~Vten
OPE!JJ~q,q8!5

~t1t2!

3

f p
2

4p

1

mp
2 H q21q82

qq8
GJ

2
2J13

2J11
GJ212

2J21

2J11
GJ11J ,

~A11!

where the functionGl is introduced as

Gl~q,q8!5Ql~x!2Ql~y!2~y2x!Fl~y! ~A12!
J

. C

te
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m
C
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e

andx andy are defined by Eq.~A10!.
~c! The tensor part of OPE potential for coupled chann

with l 5J61:

~Vten
OPE!J21,J21~q,q8!

5
~t1t2!

3

f p
2

4p

1

mp
2

J21

2J11

3H q21q82

qq8
GJ212

2J11

2J21
GJ222

2J23

2J21
GJJ ,

~A13!

~Vten
OPE!J11,J11~q,q8!

5
~t1t2!

3

f p
2

4p

1

mp
2

J12

2J11 H q21q82

qq8
GJ112

2J15

2J13
GJ

2
2J11

2J13
GJ12J , ~A14!

~Vten
OPE!J21,J11~q,q8!5

~t1t2!

3

f p
2

4p

3

mp
2

AJ~J11!

2J11

3H 2GJ2
q8

q
GJ212

q

q8
GJ11J ,

~A15!

~Vten
OPE!J11,J21~q,q8!5~Vten

OPE!J21,J11~q8,q!. ~A16!
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