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A complete version of the MoscoWN potential model is presented. The excellent description for all
essential partial waves has been found in the energy range 0—350 MeV. The one-channel version of the model
includes the orthogonality condition to most symmetric six-quark states in all lowest partial waves and thus,
from this point of view, the model generalizes the well-known Saito’s orthogonality condition model for the
baryon-baryon interaction case. The specific features of the presented model which distinguish it from many
conventional force models are discussed in detail. One of them is a specific tensor mixing between nodal and
nodeless wave functions which results in very reasonable values of the one-pion exchange cutoff parameter
A=0.78 GeV and therNN-coupling constant valué?=0.075 in nice agreement with modern trends. The
model, in case of its confirmation in precise few-nucleon calculations, can lead to noticeable revisions for
many nuclear properties given by conventional force mod&8556-281®39)03806-9

PACS numbdss): 21.30~x, 13.75.Cs, 13.75.Gx, 24.86p

[. INTRODUCTION Thus, developing a quantitatiéN interaction which in-
cludes properly both quark- and meson-exchange effects and
In spite of the great progress attained recently in the coniS, on the other hand, not so difficult to handle and compli-
struction of the modern realistibiN potentials of second cated as thosdIN models derived from multiquark Hamil-
generation, based on the concept of improved one- and twdonians, is still very topical. In addition, in view of our in-

meson exchangd—4], a large number of unsolved problems sufficient knowledge of the accurate six-quark Hamiltonian,
. ) - L the theory must be constructed in a manner to avoid features
are still left in the field. The majority of the problems here

are related to the description of the short-range part of th Of QCD which presently cannot be handled with confidence,

®.g., the choice for theq interaction, the form of confine-
NN interaction and to the quantitative description of few- g- a9 '

X X ment(e.g., linear or quadraticetc. At the same time, how-
nucleon systemg5-9]. In particular, one of the basic prob- gy it is highly desirable to incorporate into the interaction

lems is connected with the consistent incorporation. of gluony,odel some general reasoning about the preferred symmetry
and quark-exchange degrees of freedom and their “matchyst the six-quark system in variou$N channels, about the
ing” with the meson-exchange concept. characteristic size of six-quark states, etc. In such a case the
One of the most fundamental difficulties here is how toconclusions derived from the model will result mainly from
avoid double counting of the same effects in the gluon- andyeneral symmetry requirements and general structure of the
meson-exchange sectors of the unified interaction. Anothemodel etc. rather than some particular choice of parameters
basic problem is the fact the true six-quark microscopicfor the qq interaction, or for the particular law of confine-
Hamiltonian is presently unknown. While some effective ment, etc.
three-quark Hamiltonians which include chiral symmetry We will demonstrate in the present work that only a few
breaking and confinemefif0—12 have been developed to basic assumptions are quite sufficient for the derivation of
describe the baryon spectra, there is no guarantee that tisech a hybrid model. On this basis quark effects in the few-
same Hamiltonians can also be applied for $exd mult) nucleon physics can be described more reliably. Our consid-
guark systems. eration is based on the assumpti@rhich is common for all
Recently[5—-9] some fundamental problems have alsohybrid model$ that both nucleons merge somehow their
been found in the consistent description of few-nucleon andjuark contents at short ranges into different six-quark states
meson-few-nucleon systems. On the one hand, the numerodgpendent on the partial wave, the energy and the total spin.
calculations made in recent years for quark-effects in variousVhile at intermediate and large distances where the nucleons
few-nucleon observablegl3,14 have shown, in general, do not overlap noticeably with each other the interaction
quite moderate contributions of such effects at low energiemechanism is governed by one-meson exchdndgch was
and momentum transfef43—-16. On the other hand, how- just the original Yukawa idea about the origin of strong in-
ever, quite remarkable disagreements between the data atetaction[17,18]). This is a common basis of all hybrid mod-
the most accurate three- and four-nucleon calculations hawels and one model is distinguished from other one by the way
been found5-8]. They probably can be ascribed to an im- of matching of inner quark- and external meson-exchange
proper treatment of the quark degrees of freedom. This folehannels. For example, in hybrid models due to Kisslinger
lows from the fact that the above-mentioned few-nucleor{19] and Simonov[20], the matching of both channels is
calculations do include 8-force andA-isobar effects to- done at some arbitrarily chosen hypersphere with raBius
gether with the most realistidN interactions, i.e., they in- although the matching conditions in both models,2Q are
clude, to our current knowledge, all essential contributions.quite different.
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In a sharp contrast to such hybrid models we prefer to d&And hence it is highly desirable to employ for these two
this matching in the Hilbert space of the six-quark states wittcomponents a two-channel model with mutually orthogonal
different symmetries, where every such a state is constructethannels.
from single-particle harmonic oscillatdiHO) quark orbits This reasoning justifies our model from the physical point
[21-23. Thus, in accordance to this idea we subdivide aof view. Moreover, its real success in description MN
total Hilbert spacé of the six-quark states on two mutually partial amplitudes demonstrated in the present paper allows
orthogonal subspacégp andH: us to justify the mode& posteriori

The structure of the work is as follows. In Sec. Il we
present our approach for the construction of the two-
component hybrid model dfiN interaction and its interrela-
tion to possible dibaryons. In Sec. Il we present a realization

In the first subspace(, we include six-quark states with of the generalized orthogonality condition mod€OCM).
highest possible spatial symmetry, where one has a maximéh Sec. IV the above GOCM is constructed and the structure
overlap of the single-quark orbitals. Whereas the six-quarlef the one-channel potential is discussed. Section V is de-
states with a lower spatial symmetry are placed in its orvoted to a quantitative description bfN-phase shifts in the
thogonal complementary subspace. The most symmetric&nergy range 0—350 MeV. We also give here the effective-
states can be shown to have the structure which is rathéange parameters and a detailed discussion of the structure of
similar to compound states in a spherical or weakly dethe deuteron. In Sec. VI we discuss specific nonconventional
formed bag. On the other hand the states of lower symmetrinterference and tensor mixing between nodal and nodeless
include a fewp-quark orbitals such as*p?, s°p®, etc., and Wwave functions and the cutoff parameters for the meson-
these mixed symmetry states, being projected out onto thexchange potentials at short range. And finally, the main
NN channel(of unexcited nucleons result into the nodal results of the work are summarized in Sec. VII. In the ap-
NN-radial wave functiong21]. Accordingly, their structure pendix we give the formulas for our interaction model in the

is analogous to clusterized peripheral states. momentum representation.

On the basis of above considerations and also of other
arguments of symmetry character we have suggested in the Il. A HYBRID MODEL WITH ORTHOGONAL
previous workg24—28§ a two-component model for baryon- COMPONENTS

baryon interaction with two mutually orthogonal channels. . . . .
Then, by subsequent exclusion of six-quark compound states The nucleon-nucleon interaction at large and intermediate

one comes to an effective one-channel potential model ofiStances is well known and can be described by meson-
Moscow type, in which a deeliN-potential well includes as exchange potentialg2,4]. The internal nucleon degrees of

its eigenstates the most symmetrical six-quark stémde reedom(quark and gluon ones, if we start from the quark
more precise, their projections onto theN channe). As a  Medel for nucleondo not show up in this approach. How-

result of combining two different components into one chan-EVer, When the nucleons come closer thah fm, a transi-
nel for the effective interaction, the orthogonality conditionf‘Ion of the NN system into other channells arises, 1.e., the
betweenNN scattering states and localized six-quark stated1t€mnal nucleon degrees of freedom begin to be of crucial
in such a model is satisfied automatically due to the hermilMPortance. As a dynamic model, e.g., a six-quark bag
ticity of the Hamiltonian. In a consistent realization of such aM°del can be used.

program the wave functions of tieN-relative motion in the Howeyer, we still have no full dynamic model describing
“external,” i.e., clusterized channel are generally not to bea” possible states of the two-nucleon system. Therefore we

related to the six-quark wave functions in the “inner” chan- divide the fuI.I Hilbert spacé{ (inclgding both nucleonic and
nel. Moreover, it is very likely they should be wave func- non-nucleonic degrees of freedpmto two orthogonal sub-

tions belonging to quite different Hamiltonians. The under-Sp""Ces{M_223
lying dynamics of the most symmetric six-quark states must He Han®H )
be very tightly interrelated to specific chromodynamic ef- NN 726q -

fects such as quark and gluon condensates, instantons, breégiese subspaces must be orthogonal because the dynamics
ing chiral invariance, etc., whereas the external channgh, ihem is essentially different: one of thefiy, includes
should be describable in terms of meson exchange. only nucleonic degrees of freedom and meson-exchange dy-
Thus, these two different channels can hardly be depymics whereas the othety,, includes &-model dynam-
scribed consistently by a unified Hamiltoniéat least, on the ics (or QCD-inspired dynam?c)sAccordineg to Eq.(1) we
up-to-date level of our knowledge for low-energy QCDhe  yq4,ce two mutually orthogonal projection operatBrg,

price to perform technically this description is a different andPgq. It is important that théunknow full Hamiltonian

dynamics in the multiquark- and meson-exchange chaﬁnelsof the system does not commutate withyy and Pg, and

contains transitions between theN and the @ channels.
If we suppose the existence of a full Hamiltonidrobey-
Yt should be emphasized that in currently developed models oing the 6y Schralinger equation
baryons in which theqq interaction is described via one-meson
exchangd 10,21 these one-meson degrees of freedom are nothing Hy=Ey
else but effective degrees of freedom. Thus, these degrees of free-
dom in multiquark system will be somehow different from those in one can easily obtain, following Feshbd&@$], the effective
three-quark systems. Hamiltonian for theNN component
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|s?[6]) for Swaves ands®p[51]) for P waves.

This choice ofHs, can be justified by several independent
reasong23-28. For example, recent chiral model calcula-
tions [30] have shown that the structure of fully symmetric
6q states|s%[6]), in contrast to the mixed symmetry states
as|s*p?42]), cannot be described by the cluster RGM an-
satz and that they are quite similar to the shell-model ground

In accordance with these ideas the effective nucleon-nucleostates of magic nuclei. However, the most conclusive argu-

Hamiltonian hyn=PnnHPNN
exchange potentials

includes only meson-

hNN: PNNH PNN:t+UME.

(4)

The second term in Eq3a) is an effective potential which
couplesNN and & channels and will be designated further
asvngn- With these notations, the effective equation with
orthogonality condition3b) takes the form

(5a)
(5b)

(hnuntUngn) = Ednn,

Peqtynn=0.

As an effective wave function iDNN channeliyy one can
naturally use the resonating group ans@®%A)

U= AR 0 X))

in which ¢y is the nucleon wave function an}iNN is the

wave function for theNN-relative motion obeying the or-
thogonality constrain¢3b).

ment in favor of the separation ofg6states with high and
low symmetry arises from our general understanding of
guantum chromodynamics, where the effective interactions
must essentially depend on number and type of quarks.
Moreover, if we assume, that some effective bosonization of
initial QCD degrees of freedom occurs in the peripheral area
of nucleon and thus this bosonic mode is an important com-
ponent of interquark interactigiO] one can conclude, tak-
ing into account a highly nonlinear character of such
bosonization, chiral meson fields must play a crucial role in
the dynamics of the six-quark configurations. Such chiral
fields should stabilize strongly these six-quark components
of interaction. Thus, by approximating th@-space Green
function[ Pgy(E—H)Pgq] with one pole aE= Eg, One gets

a separable form for the potentiay;qn

Ungn= PrnlH| ¥6q) (E—Egq) ™ #eql HIPnn, (6)

where

Eeq=(¥eqlH| ¥eq)-

The approach formulated above can be considered as a AS & projection operator onto theN channel one can

general formal framework for the hybrid model of theN
interaction. The parameters of,,y can be determined from
the underlying six-quark Hamiltoniaf21,22), if one as-
sumes that the effectivgg interaction is the same ing3and
69 systems, or by fitting thé& N-scattering phase shiftéA
quite similar procedure has been used, e.g., in the qua
compound bag model due to Simonj®0].)

There are two essential differences in our approach from

employ a respective operator taken from the resonating
group methodRGM)

Paun= Al )N~ K il A, (7)

r\Q/herewN is the three-quark function of the nucleos,is the

antisymmetrizer, andV is the overlap kernel:

N= (Nl Al i) - )

other hybrid models. These are the orthogonality condition in

Egs.(5) and the structure of total Hamiltonian. It should be
emphasized that Eq&3) and(5) are fundamentally different.
Equation(3) is formally derived from the full Schiinger

equation by means of the identity transformations. The or

thogonality condition does not play a role in E§a) except

at E=0. On the contrary, Eqs(5) are model equations,
which do not involve the full Hamiltoniatd. Therefore the
presence of the orthogonality conditigbb) is absolutely

necessary.

IIl. TWO-COMPONENT MODEL IN FRAME OF
CONSTITUENT QUARK MODEL AND MOSCOW
POTENTIAL

To fill the general schemé) with a microscopic content

With this choice of the projection operaté%, the model
equation (5) becomes a two-body effective Schinger
equation for the orthogonalized relative motion wave func-

tion (R)

LSIRES

T+ VMEL 10E_—E6q x=Ex, (93
{gx)=0, (9b)

in which
(RIF)=1(R)=(¢eq/H|nthn), (10)
(Rg)=0(R)=(Weq| nin)- (11)

it is necessary to use some approximation for the full Hamil-
tonian H. This can be done in the frame of the constituentln a good approximation one can take a delta function for the

quark model(see, e.g., our previous papg&7]). Symmetry
considerations allowed to identify the subspacg, . It con-
sists out of square integrable functiong, describing the
lowest €g-bag states with maximal spatial symmetry:

overlap kerneM(R,R") [21,22:

1
/\/(R,R’)zl—oﬁ(R—R’). (12



3024 KUKULIN, POMERANTSEV, AND FAESSLER PRC 59

We emphasize once again that Egg) with the orthogo- TABLE |. Parameters of local part of the potential.
nality condition(9b) is not equivalent to the full six-quark = _ : : _
Schralinger equationH ¢=Ey. Actually we suppose we SPin singlet singlet triplet triplet
know only individual parts of the full Hamiltonian. parity even odd even odd

. _ . . — ME . . _
oy v g e S e Gt eme s s
bgtweenNEnexcitabIe nuclgeonS' 9 Vo ~4346.19 —1767.26 —4567.12 —223.63

(i) Other sub-HamiltoniarHg,, describing the lowest €|S 3.49366 2.84152 3.81272 _529'5'9159

states in the § bag (in given caseHgq=XEgq|V6q){¥eql)- 0 3.468'8

Thus the full six-quark Hamiltonian is needed only for de- B
termination of coupling between the subspaces in(Eqg.In
this model the §-bag functionsyy are not eigenfunctions
of the full Hamiltonian (otherwise[Pgq,H]=0 andvyqn
=0). Moreover, it is obvious that the sum of the projectors
Pun (7) and Pgq=X|tgq){ theq| is not unity in the full six-
quark spaceH. Therefore, Eqs(9) cannot be formally de-
duced from the full Schidinger equation and the orthogo-
nality condition(9b) proves to be necessary.

The effective two-nucleon equatid@a) provides the ba-
sis for developing the local and nonlocal parts of
NN-interaction models of Moscow type. The main point here
is just the orthogonality conditiofin SandP waveg, which

[24-24. Besides the matrix eigenstate projector in coupled
3S,- 3D, channels, as was demonstrated in our previous pa-
per [27], can be replaced quite accurately by a scalar one-
channel projector. In order to use a potential with the or-
thogonality conditions in few-body calculations, one has to
add the projection operator with a very large positive cou-
pling constant to the local part of the potential, in &lland
P-partial waved27].

For the sake of uniformity and convenience we include
similar separable terms, but with finite coupling constants,
: . also in some other partial wave® (and F). These terms
r_esults In appearance of nodesNrN-scattermg wave func- replace the standard spin-orbital part of the interactfon
tions, the positions of the nodc_as not depending on enfay even-parity wavesand partially reduce the strong attraction
least up to laboratory energiéSyy~1 GeV). The term g0 1 the central part of the local potential. In fact, these
Ungn Provides an additional attractive interaction Bt gonaraple terms imitate a short-range repulsion generated by

<Eeq. It has been shown in previous papgP-28, that  , meson exchangeWe also include the tensor interaction
the phase shifts and nodal behavior of wave functions typic hich couples partial waves with angular momehtnd |

for Eq_s. (9)_are well reproduced by a deep local attrqctiveiz_ It can be quite accurately described by a truncated one-
potential with an extra bound state and the respective o

h i giti int. So. f hi T of Vi 'pion-exchangéOPE potential in all partial waves with the
thogonality condition constraint. S0, from this point of VIEW, oo coupling being determined by a truncation param-

the NN-interaction model, known today as the Moscow PO- qter

tential, is the simplest local model which ensures the or- Iﬁ the present version of the Moscow potential we have
thogonality bet_vveen the ch"“e””g wave functions and th?eplaced the Gaussian form of the central potential which has
most symmetric § states|s’[6]) projected onto theNN oo ised in all previous versions of the mo@d—26,31
channel. However, the situation f&rwaves turns out to be y an exponential one. We have found the exponential form

different. Attempts to achieve a satisfactory description o gives a more satisfactory description of the phase shifts, in
the phase shifts by using a local attractive potential failed fo harticularly for the®S,- 3D, channel(see also Refd32]).

these partial wave§25]. Therefore, one needs to use the Thus. the model potential consists of three parts
general orthogonality condition mod¢GOCM) presented ' P P

here. UNN= U 19S+ 0 OPEL pSeR (13

IV. STRUCTURE OF THE POTENTIAL where the local exponent Walzl',\‘,’lC depends on the channel
) ) _ spin and parity

Here we give the full version of theN potentialmodel
with the ad@uc_mal orthoglonallty condition aandP waves. v'{f(r):vo exp(— Br)+ (S|)V'os exp(—Bir). (14
The potential isan effective one-component approximation
t_o the two-component model, described in the previous seqy, the state-dependent separable part
tion. Actually we have replaced the nonlocal tevf,y (at-
tractive at low energigsin Eq. (9) by an additional local v5P=\ | @) (gl (15)
attractive well.

The total interaction is, however, highly nonlocal due t04 Gaussian form factdir | @)= ¢(r) is used
the presence of th& andP-wave projection operators which
are employed in order to take into account the orthogonality 1/r\2
condition (9b). As a result we do not require locality, this @(r)er'*lexp{— E(r_) } (16)
means we have a weaker interrelation between the orthogo- 0
nality condition and the form of the attractive well. This
decoupling of the attractive potential from the orthogonality
condition improves essentially the approach. In particular, %t should be emphasized here that theexchange terms in tra-
the quality of the fits folP waves gets more accurate than in ditional meson-exchange models are highly nonlocal due to form
the old-fashioned Moscow model with eigenprojectionfactors and energy and momentum dependence.
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TABLE Il. Parameters of projectors and separable parts of the —(a®—1)al2exfd — ax)[1+ L(ax)],
potential. (21
State A, MeV ro, fm x=mr, a=A/m. (22
'Sy * 0.3943 We use here the averaged pion mass (m, +2m, )/3
p, o 0.5550 ? -

and the averaged value of pion-nucleon coupling constant

1?2 12;'2 g'gigz fi/(4w)=0.075 as we do not wish to deal with the differ-
8 ' : ence betweenp andpp isovector phase shifts in the present

33 % 0.3737 work.

e : Thus only three free parameterg, B, anda are left for

D2 161.2 0.4695 the local part of interaction for each combination of spin and

3D3 588.2 0.3572 parity in addition to two parameterg and\ of the separable

Gy 2.74 0.8077 term in each channel. It should be noted that only some of

*Py o 0.3209 the valuesry and\ are independent free parametéier D

°Py » 0.3226 and F waves. Values of\ for S and P waves must go to

°p, © 0.1632 infinity (in real calculations the value of\~10°—

°F4 5.447 0.6221 10° MeV is quite enough Values forr, for these channels

are related to the local attractive wilbr the local potential,
. o N 5 ) the requirement of the best approximation for eigen bound

the partial waves. _ totally 32 parameters of the potentiaind the value ofrNN
For the one—ppn—exchange part of the potential the StanCoupIing constantgiving a very good description of a-N
dard form with adipole form factor is chosen: partial wavegexcept some high channelsin the wide en-
) s o\ 2 ergy range 0—400 MeV. The number of parameters almost
op fz 1 [A°—m (7172) coincides with that for most recent version of the Nijmegen
% E(k):_ ——— | (k) (oK) . ; i
m k2+m2\ A2+Kk2 3 N-N potential[2]. The parameters for the present version of

(17) our NN potential are given in Tables | and II.

With such a form factor choice the OPE tensor potential V. DESCRIPTION OF PHASE SHIFTS AND DEUTERON
vanishes at the origin as it should. In the coordinate repre- STRUCTURE

sentation the OPE potential has the form The potential parameters as given in Tables | and Il were

(175 T2 determined by fitting the Nijmegen phase shifBWA93
vOPEr) = 192 _wm[fc(r)(o'lgz)"'fT(r)Aslﬂy [1]. In Figs. 1-3 the recersaID phase shift§SP97 [33] are
3 4w also presented for comparison. As can be seen from the fig-
(18) ures, some discrepancy between the results of both phase
shift analysegPSA) exist, especially for some partial phase

where the tensor operator shifts. With applications to few-nucleon problems in mind
we tried to reproduce with maximal accuracy thg, and
“312:("'1”("2” _(on0y) (19) 35,-3D; phase shifts and the values of the scattering length
r2 3 and the effective range.
and A. Singlet partial wave channels

The description of singlet-p phase shifts for both even

— —y)— _ —(2—
fe(r)=[exp(—x) —exp(—ax)}/x=(a"~1)al2 and odd parities is illustrated in Fig. 1. It is evident from the

Xexp(— ax), (20)  figure that the quality of fit to the data of recent phase shift
analysis is quite good, especially for the Nijmegen PSA re-
F2(r) = exp —X)/x(1+ 3+ 352) sults. For example, the fits ilS, and 'P; channels are
almost perfect. The quality of fits can be estimated quantita-
—a®exp( — ax)/(ax)[ 1+ 3/ ax) + 3/ ax)?] tively from Table IV for these channels. The average devia-

TABLE lll. Effective-range parameters for the potential variant given in Tables | and II.

a, fm ro, fm
theory experiment theory experiment
triplet 3S; 5.422 5.4197) @ 1.754 1.7548) 2
singlet 1S, 23.74 —23.74810)° 2.66 2.7%5) P

aReferencd42).
bReferencd 43].
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tions for all singlet channels are only 6:0.2% excepting one-channel projector, as in RéR7], in order to avoid a

the G, channel where the discrepancy with PSA data ismore complicated two-channel eigenprojector.

largest and around 1%. We do not introduce here a spin-orbital potential for even
Also there is a problem in precise description of the sin_pa}rtlal waves in an explicit for3m because it cannot be deter-

lt fcive ange, (s Table I, W used as “exper TS DY ESL Joa 5o B Chennel e ol

mental” the valuer, presented in compilation of Dumbrajs P P 9 panty p

S played by the terny 3¢
et al. of 1983 (see footnote to Table )l However, in view it should be kept in mind here that the complete two-

of the very good agreement of our phase shifts with thé&:pannel version of our model includes in the propé
Nijmegen PSA for the'Sy-channel one could conclude that channel one-meson exchange interaction tefinsa sub-

the disagreement far should be really much reduced. space orthogonal to symmetric six-quark compound states
Thus, in the two-channel model, the spin-orbit terms should
B. The even-parity waves be described by a conventional meson-exchange model.

. . i However, in the effectiv@ne-channemodel presented here

~ The Swave potential turns out, as is in the previous ver-yhe separable state-dependent spin-orbit interaction in even-
sions of Moscow potentidP7], to be strongly attractive. The parity channels is inavoidable to compensate partially the
Gaussian(15) with the range parametep, included in the  strong attractive potential in th®wave.

orthogonality condition(9b), is close to the eigenfunction of  The effective range parameters for singlet and triplet
the ground “forbidden” state in the potential. In other Swave channels are given in Table Ill. Among all the cal-
words, we obtain foSwaves almost a local potential. How- culated phase shifts the maximal disagreement with PWA93
ever, for the 3S;-°D; channel (and also for all triplet (though not largeis observed for the tensor mixing param-
coupled channelswe use, strictly speaking, noneigenstateetere;.
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C. The triplet odd-parity waves It is interesting that fitting thé P, wave at energies up to

In the accordance to the microscopic quark picture, the3®0 MeV enables us to determine the range paramgtef
orthogonality to the baglike functioris®p[51]) must be in- the projector(see Table . The inclusion of the projector
cluded for allP waves. However, if we look at the behavior improves appreciably the description of the phase shifts up to
of “experimental”’ P-wave phase shifts at energies up to 500350 MeV. An attempt to reproduce tH®,-phase shift using
MeV we will not find any repulsion in the’P, channel, a purely attractive potential with an “extra” bound state re-
because the corresponding phase shifts are purely positillts in a very deep{15 GeV) potential and an unsatisfac-
until the energies~1 GeV. There is no repulsive core for tory quality of the description. In addition, such a deep po-
this channel in the majority of the conventional realidtibl  tential is not suitable for a description of tH®, and 3P,
potentials either. But if we look to the phase shifts at highphase shifts. That is why we have strayed from the concept
energiegsee Fig. 4we can observe a repulsion appearing inof a local Moscow model foP waves in the present version.
all three tripletP waves, while 3P,-phase shifts become So, for odd partial waves we have a rather small attractive
negative only at energies higher than 1 GeV. From the pointvell (~220 MeV) and orthogonality to the noneigenbound
of view of the constraints imposed by the orthogonality con-states for the local part of potential. This might mean that the
dition, this means the function to which th#, scattering size of six-quark bag if® waves should be smaller than in
function is orthogonal is much more narrow than that for the3S; and 'S, waves. One notices here that the range param-
other P-wave channels®P, and °P;. eters of the projectors for théP, and 3P, channels (o
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~0.32 fm) almost coincide with each other. As seen from phase shift analysis, respectively. Table IV presents the val-
Fig. 4, the attraction for some odd higher partial waves withues of e, and x3g, for all consideredJSI channels. It is
L=J(F3 and ®H5) is noticeably deficient in the given ver- evident from the table the average deviation of phase shifts
sion of the model. Unlike the even partial waves, we used @redicted by the Moscow model and recent PSA is very
more conventional local spin-orbit potential for odd partial small and around 0:20.4 %. This means that the descrip-
waves[see Eq(14)] because the usage of the separable spintion of NN observables with the presented force model
orbital form is not convenient to describe the splitting of should be very good.

P-phase shifts.

It would be rather instructive to estimate the averaged
relative difference of phase shifts predicted by the Moscow The accurate description of the deuteron structure offers
model and the recent phase shift analydisusing the crite-  an additional strong test for any nuclear force model. Many
rion of relative difference or the respective absolute differ- deuteron properties, even in the static limit, depend sensi-
ence measured in radians: tively on the behavior of th&N force at intermediate and
short range$§15], especially on th®-wave contribution. For

D. Deuteron structure

1 % 5§gt|,i_ Jpgf\i ? 23 example, with the first version of the present force model
ErelT N & SPSA (23 [31], we found an impressive agreement with experimental
ISk data for all cruciaD-wave deuteron observables suchitas
1 N As, Ap/As. But this early model included a node not only
X3 > |85, - 85snl?, (24)  in the Swave but also in th® wave. This extra node in the
=1 D wave was a consequence of a very short-range truncation

whered3,; and 875, are partial phase shifts in the channels of the OPE tensor forcg81] which contradicts somehow the
JSI at the energyE; for the Moscow model and Nijmegen microscopic picture of the underlying interactiofesg., ac-
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FIG. 3. (Continued.

cording to wide-spread opiniof84] the OPE tensor force properties(such as the OPE taiand of theNN phase shifts

cannot penetrate deeply inside the two-nucleon overlap raised for fitting only and essentially do not depend on the

gion). details of the force at short rangés.

Hence, in subsequent versions of the mo@8-28, a

more soft cutoff factor has been employed which resulted inV!- SPECIFIC INTERFERENCE BETWEEN TENSOR AND

the disappearance of tilewave node. As an immediate con- CENTRAL FORCES AND THE 7NN COUPLING

sequence of the softer truncation in the OPE tensor force the ~ CONSTANT IN THE MOSCOW FORCE MODEL

D-wave deuteron observables have become close to the val- . . . .
. X . We included this specialized section to the present work

ues predicted by conventional force models, i.e., the values der t hasi ific ch ¢ ¢ interf

of » and Qq are a little bit underestimatetsee Table V. In order 1o emphasize a Specilic character ot Interierence

Nevertheless the node in tiSavave and the strong attractive between tensor and central forces in the Moscow force

Swave potential, tightly related to this, results in a very model. This mperference will be shown below to be very
specific interference betwee® and D-wave components advantageous in some aspects as compared to the traditional

and a specific character of tensor mixifege Sec. VI force models. The main difference between our and tradi-

The values of deuteron observables for three versions ()qonal models as concerned to wave function form is the

our force model are presented in Table V while the pattern o oda_l character of ths-wa_v e deuteron and scattering wave
unctions and the practically nodeless character of the

the deuteron wave functions is displayed in Fig. 5. One ca X ; e
see in the figure the short-range maximum in Diavave -wave functioné. We will show here that the specific ten-
afor mixing between th&wave state with a node and the

almost disappears for the current version of the force mod . .
while this maximum in thes wave gets rather reduced. It is almost nodelesB-wave state results in a remarkably differ-
' ent e, behavior. We compare the-wave observables with

interesting to note th®-wave amplitude in the current ver- h Its of traditional model

sion of the model(solid line) is a little bit lower than in the the resu ts of traditiona MOCE'S. .

previous versiongdashed and dot-dashed linedue to a First of all we emphasize here that the best fit KN
phase shifts is attained in our case with a very reasonable

smaller value of the derivative of thB-wave component N
near theSwave node €0.53 fm). While the asymptotic Valué for the OPE cutoff parameterq,=0.78 GeV (we
used here the dipole form facjoisee Eq.(17) and Fig. 6.

behavior of theS wave looks almost perfedsee values of
As in Table V).

Thus we can conclude from the deuteron results presented
in this section that the short-range part of the tensor force 3Certainly this conclusion may be invalid for nonstatic, e.g.,
needs to be a bit improved. Careful inspection of Table Venergy-dependent or multicomponent force models.
shows unambiguously the general good agreement for the*The very small inner maximum in thB-state wave function in
deuteron parameters found with the sharply different forcehe present versiofsee the solid lines in Figs.(&-6(b)] can be
models such as Nijmegen and Moscow potentials. The valignored in any calculation if we do not consider the very high
ues for the deuteron observables are a result of some generabmentum transfer.
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TABLE IV. Accuracy of fitting of phase shifts.

channel

lSO lpl 1D2 1F3 lG4 lH5 381 SDl

a
Erel

0.007504
x? per poinf  0.005282

0.000527 0.002113 0.000197 0.012030 0.001802 0.004524 0.000867
0.001731 0.000627 0.000008 0.000200 0.000055 0.005595 0.003922

channel £, D, 3D, 3G, £3 %G, 3P, °p,
Erel 0.006816 0.000022 0.034310 0.027256 0.023088 0.001451 0.000184 0.000455
x° per point  0.000843 0.000007 0.000856 0.004545 0.013887 0.000029 0.000186 0.003596
channel p, °F, &y 3F, 3k, H, g4 3Hs
Erel 0.003874 0.010679 0.007830 0.017762 0.007590 0.021424 0.010617 0.026970
)(2 per point  0.018245 0.000123 0.000693 0.001413 0.000279 0.000004 0.000042 0.000155

2
% o= UNS R (859, — 5§ss,zf\k/5§§f\k) :
P(LN) =R (858~ 85500 (in radians.

This soft cutoff parameter is in nice agreement with bothe;-mixing parametef1,33] the A value must be taken also
experimental results and with all theoretical estimationsaround 1.5-1.7 GeY38] (see Fig. & while the same agree-
made inm-N dynamicg33-37. It should be contrasted with ment with the experimental, is reached in our model using

a statement formulated in Ref38], p. 232 for traditional a much more sofA =0.78 GeV. This sharp difference from
OBE-force model:“. .. avalue of 1.3 GeV is lower limit  the traditional force models can be ascribed to a different
for A,..” The conventional OBEP model withA
=0.78 GeV gives the extremely low values fdDy
=0.238 fnt, the ratio D/S=0.0233, andPp=2.4% [38] 05}
which should be compared to the respective values for our
force model(see Table V.

In despite of the “soft” value ofA, the D-wave deuteron 0.3
properties in our mode{see Table V in Sec. Vare in a
rather good agreement with the experimental data, being re- &
markably better than the respective predictions of the tradi- E 0.1f

¥

0.6

(a) |

tional force models with the sam& value. We note, in

passing, that the harder truncation with=1.3-1.7 GeV is 00 Y. I
usually taken in the traditional force model just in order to fit -0.1 1Y /
reasonably the deuteron properties and the tensor mixing pa- oz Wi
rameter(see below. RV

The second important point in the story is related to the -0.3
mixing parametee,. In fact, in order to reach a reasonable
agreement with the recent phase shift analysis data for the

~
.........

Phase shifts (deg)

—100} \ ] -0.3 . S . . . . . .
K 00 01 02 03 04 05 086 07 08 09 1.0
r (fm

~

-120 : .
1000 1500 2000 2500
E,, (MeV

0 500
FIG. 5. (a) The deuteronSwave andD-wave functions for
FIG. 4. The spin-tripleP-wave phase shifts in a wider energy present(solid lineg and previous version§[25], dashed lines and
region: the data of energy-dependent phase-shift anabsis7 [27], variant B, dot-dashed lingsf the NN Moscow-type potential.
[33] (solid lines and predictions for the present version of the Mos- The deuteron wave functions calculated with the RSC potential
cow NN potential (dashed linesand for the BonnNN potential ~ (dotted lineg are shown for comparisofh) Short-distance zoom of
(dotted lines. (a).
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TABLE V. Deuteron parameters for conventional and Mosdoi potentials.

model Eq (MeV) Pp (%) F'm (fm) Qg (fm?) g () As (fm~1? D/s Dioop?
RSCP 2.22461 6.47 1.957 0.2796 0.8429 0.8773 0.0262

Nijm 93 2.224575 5.754 1.966 0.2706 0.8429 0.8844 0.02524

Moscow 86° 2.22444 6.57 1.966 0.2862 0.8422 0.8838 0.0268 0.53
Moscow 98¢ 2.22440 5.75 1.954 0.2708 0.8470 0.8746 0.0259 0.30
presenf 2.22456 5.65 1.967 0.2731 0.8476 0.8845 0.0255 0.08
experiment 2.224578) 1.966068) 0.28593) 0.8574061) 0.884616) 0.02561) ©

®D00p is the relative amplitude of thB-wave maxima, i.e., the absolute value of the ratio of the first and second maximum of the deuteron
D component.

®The valuef2/2m=41.47 MeV fnf has been usedr(=938.978 MeV).

“The valuefi?/2m=41.47107 MeV frd is used (h=938.918 MeV).

dunfortunately, in our previous wori27] only rounded values for potential parameters are given in Table IIl. The deuteron parameters cited
in Ref. [27] (for variant B do not correspond to the rounded potential parameters cited in Table Il off ®&f.We thank Dr. S. B.
Dubovichenko, who has attracted our attention to this disagreement, and give here the exact values foByasfaRef. [27]: Vo=
—1329.18 MeV,»=2.2959 fm?2, «=1.8835 fm 1.

®The present value is taken from Rg41].

character of mixing betweef andD waves in our model.  7-meson absorption and scattering in theresonance re-
Some additional confirmation comes from the value ofgion, etc. This strong enhancement of high-momentum com-
mNN-coupling constant obtained in our model. We chooseponents in theN-N system as compared to any traditional
here the Nijmegen force model as a good representative @§-N force model may be seen, e.g., in hard bremsstrahlung
the traditionalNN potentials(see Table V. The two models  procespp— ppy [39] atE,=300 MeV and higher at small
above include' practically the same val'ues for th&IN forward and backward angles, of y emission. To make the
((;_harged coupling constantsf¢y=0.075 in our caseand  comparison with traditional repulsive core models most un-
f-nn=0.0748 for Nijmegen potentinl The latter fact is  ambiguously the authors of R€f39] did their bremsstrah-
very important because the-wave characteristics are di- lung calculations with both the Moscow modat its previ-
rectly related to therNN coupling constant. In this respect ous version[26]) and its exact phase-shift equivalent
our model appears to corroborate the smaller valug?,  supersymmetrical partner. Thus, such a comparison removes

=13.60 advocated by the Nijmegen grol32]. The two any questions on the possible on-shell origin of disagree-
nice features of our model discussed above, i.e., the sofhents observed.

cutoff parameterA and low value ofwNN coupling con- Redistribution of higher partial waves along Jacoby coor-
stant, are in agreement with modern trends and lend stronginates leads, e.g., to a noticeable enhancement of the
support to our model. P-wave attraction foN+d andN+ 2« systemg27,40. The
long-standing puzzle of the analyzing pow&y in low en-
VIl. CONCLUSION ergyN+d scattering is explained by insufficient attraction in

o ) _ just the N—d relative motionP wave [5,6]. The apparent

The force model presented in this paper differs in a feriscrepancies fom+3H elastic andn+3He—d+d rear-
important'aspects from traditiond N interaction models rangement low-energy scattering observed recdgiyalso
currently in use. First of all the Moscow two-component gnneqr to have to be explained by insufficient attraction in
model includes two mutually orthogonal quark- and MeSONthe n+3H(3He) P wave[7,8]. Such enhancement of higher
exchange channels. This channel orthogonality leads g, ia| wave contributions to near-threshold and low-energy
many differences from the traditional force models. In par-yocesses in few-nucleon and few-cluster physics when re-
ticular it requires a node in low partial waves with the nOdepIacing the deep Moscow-type potentiéhcluding extra
position almost independent on the relatlv_e energy in a widg)g ng stateswith its SUSY partner potential—which is ex-
energy range1 GeV). The nodal behavior of wave func- getly phase-shift equivalent—is a sequence of some very
tions is also preserved for the one-channel model presentedgnerm algebraic properties of kinetic energy operator in dif-

here. The node in theIN wave functions results in an en- ferent coordinate systems and is disconnected at all to any
hancement of high momentum components and a strong insmga|| variations in the on-shell properties of varioNsN
crease of the average kinetic energy in the deuteron and in 3llntential models of current use.

few-nucleon systems. This increase of the inner kinetic en- The second crucial point in the development of Moscow

ergy leads to significant enhancement of higher angular mog N force model is the important role of the six-quark com-
mentum components in nuclei and nuclear matter and aISBonents with maximal possible symmetry. We showed re-
for many particular nuclear process¢27,28 such as cenly that the coupling of the meson-exchamé channel
to the six-quark component can be strong enough to repre-
sent adequately the intermediate-rang®l attraction. In
5The value corresponds to the charged coupling constant becaugérn, this fact leads to quite remarkable contributions of such
we considered first of all thpn scattering phase shifts. six-quark configurations in nuclear bound and low-excited
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10 ‘ . . . . ; . ‘ whereP means the principal value integral. The elements of
A=3 GeV..- matrix V in Eq. (2) are equal to the partial-wave momentum-
8t IR space potential in thESJ basis(up to factor 1/4r)
8 ,/'/;\dip=o.7a GeY, , 1, ,
Vin(a' .= 7—(("'9IV(a-a)|(19)3),  (A3)
X e A=1.7 GeV
O - . . .
=z ._:.,.2;_,_._._.,-:» whereV(q) is related toV(r) by a standard Fourier trans-
K Vesnl 1 formation
T A=1.3GeV
N V(q):j e '@v(r)dr. (A4)
-2

0 50 100 150 200 250 300 350 400 450

E. (MeV) Here we give explicit formulas for all terms of the present
version of the Moscow potentidl,, (q’,q) in momentum
FIG. 6. The energy dependence of the mixing parametdor space(in MeV_z)-

different values of cutoff parametex corresponding to conven-

tional (dashed linesand presentsolid lineg force models. The 1. Local part of Moscow potentiaIV'°,°

data of the energy-dependent phase-shift analfai¢A93[1]) are X

shown by circles. q2+q,2+E2

2qq’

states. If so, it may require some strong revision for many
nuclear properties as given by traditional force modelg.,

the meson-exchange current contributjorEhus the stron- +1[J(J+1)_|(| +1)-S(S+1)]
gest test for the new model may offer few-nucleon calcula- 2

tions for the analyzing powek, in then+d andp+d low- s~
energy scattering, for the analyzing powgy in p+d % Voh1
radiative capture reaction and for tpe-d intermediate en- 2(qq’)?
ergy elastic scattering cross sectiofise so-called Sagara
puzzle[6,7]). Hence the careful comparison of the predic-
tions for few-nucleon systems using the Moscow force and"
more traditionalNN interactions may be extremely interest-

g*+q'2+ B
299’

] : (A5)

here the parameteys and 8, are given in MeV:

ing. B=pfic, Bi=pihc.
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APPENDIX: MOSCOW POTENTIAL IN MOMENTUM Vida.a)=di 5 e@ea’), (A7)
SPACE
The K-matrix defined as where
A 1/2
2iMgk= 12 Al o1(q)= SELAGE q exp(—q—ZF(Z))
Mar=1"3 (A1) ! 2+ 7 ° 2 )
(A8)
(M is the reduced mass whitgis a linear momentuiobeys
the partial-wave Lippmann-Schwinger equation Here the normalization conditiodgolz(q)qqu:l is as-
A A sumed and the factor/2 is related to the integration mea-
V(aq',kK(k,q) sure used in EqlA2), andr is given in MeV

. . 2

K(g',.9)=V(q’, +—Pfk2dk

(@ a)=V(q.a+— E12om ]
(A2) ro=ro/(fc).
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3. The OPE potential with dipole truncation

For the sake of the reader’s convenience we also give the

known formulas for OPE matrix elements.
(a) The central part of OPE potential:

) f2 1
(VE"H(a,9")= 5||'(71T72(0'10'2)—

4 2qq’

A2
X1 QX)) = Q(y) — F(V—X)H(y)] :

w

(A9)
Here and below
2+ /2+m2 2+ /2+A2

_9°*+q ™ y_q q _ (A10)

- 2qq’ - 2qq’

(b) The tensor part of OPE potential for triplet uncoupled

channels with =J:

(VeRB,5(a,9") = 3

(mm) 2 1 [q?+q'?
3 4mmZ{ qq
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andx andy are defined by EqA10).
(c) The tensor part of OPE potential for coupled channels
with [=J*+1:

(Va9 s-15-1(9,9")

_(m17) f2 1 J-1
3 4rm22+1

" q2+q’2G 2J+1G 2J—3G
qq’ 371 23-17972%2 23-179|”

(A13)

(V&H141042(a,9")

(mm) 21 42 {q2+q’2 2J+5

3 4rm22i+1| qq Co1” 5533%

GJ+2} '

V&5, 13:1(a,9)=

2J+1

2J+3 (A14)

(mm) f2 3 JIG+1)

3 Amm2 2J+1

2J+3 ZJ—lG
S 2341700 23+ 7 q’ q
x12G;—= —Gy-1——Gyu1 ¢,
(A11) q q
where the functiorG, is introduced as (A15)
GI(0.9)=Q(X) —QI(Y)—(y—=X)F|(y) (A12) (VienD3+13-1(0,0)=(Ven)s-15+1(a",@).  (AL6)
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