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Pauli exclusion operator and binding energy of nuclear matter
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Brueckner-Hartree-Fock calculations are performed for nuclear matter with an exact treatment of the Pauli
exclusion operator in the Bethe-Goldstone equation. The differences in the calculated binding energy, com-
pared to the angle-average approximation, which is commonly used, are non-negligible. These differences
exhibit a specific density dependence, which shifts the calculated saturation point towards smaller densities.
This effect is observed for various versions of modern models for the nucleon-nucleon interaction.
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It is one of the very central and very old projects
nuclear structure theory to evaluate the saturation prope
of nuclear matter from a realistic nucleon-nucleon (NN) in-
teraction without any adjustment of a free parameter. T
so-called hole-line expansion or Brueckner-Bethe-Goldst
theory has been one of the tools for solving this many-bo
problem, which has already been used for many years@1–4#.
These early investigations were successful to some ex
The inclusion ofNN correlations in the lowest order of th
hole-line expansion, the Brueckner-Hartree-Fock~BHF! ap-
proach, turned out to be very important. Realistic models
the NN interaction like the Reid soft-core potential@5# yield
an energy of nuclear matter around 150 MeV per nucleo
the effects of correlations are ignored in a mean-field
Hartree-Fock calculation. The BHF approach provides
drastic improvement leading to an energy per nucleon
211 MeV, which was only by 5 MeV off from the empiri
cal value of216 MeV per nucleon. Attempts have bee
made to improve the description of the saturation point f
ther by exploring differentNN interactions. It turned out
however, that BHF calculations using these variousNN in-
teractions yield results for the saturation point, which fall
the so-called Coester band@6#. They either predict too smal
binding energy at the empirical value for the density,
about the correct energy at a density, which is too large b
factor of 2, or results in between. Comparison of BHF w
variational calculations furthermore demonstrated that the
clusion of three-hole line contributions seems to be nec
sary to obtain a reliable estimate for the binding energy
nuclear matter@7,8#.

During the last years some progress has been made in
field. It has been shown that a continuous choice for
particle spectrum@9,10# ~see, also, the discussion below! ac-
counts for the main part of the effects of three-body corre
tions. The discrepancy between the calculated satura
points of nuclear matter and the empirical one has sign
cantly been reduced by considering relativistic effects wit
the Dirac-Brueckner-Hartree-Fock~DBHF! approach@11–
13#. Finally, it should be mentioned that a new generation
realistic NN potentials has been developed@14–16#, which
yield very accurate fits of proton-neutron and proton-pro
PRC 590556-2813/99/59~5!/2934~3!/$15.00
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scattering. These new potentials, which are essentially ph
shift equivalent remove a large part of the discrepancies
served between older models of theNN interaction@17#.

Because of these improvements, the time seems to be
propriate to test the reliability of approximations which a
generally employed in the BHF calculations of nuclear m
ter. One of the central equations to be solved in the B
approximation is the Bethe-Goldstone equation, which
may write in the momentum representation

GS,T~kW ,kW8,K,v!5VS,T~kW ,kW8!1E d3pVS,T~kW ,pW !

3
Q~pW ,K !

v2H0
GS,T~pW ,kW8,K,v!. ~1!

In this equationK represents the center-of-mass moment
of the interacting pair of nucleons whilekW , kW8, andpW stand
for relative momenta, which are related to the single-parti
momenta according to

KW 5
1

2
~kW11kW2! and kW5

1

2
~kW22kW1!, ~2!

v denotes the starting energy, whileVS,T andGS,T refer to
the matrix elements of the bare interaction andG matrix,
respectively, for two nucleons with total spinS and isospin
T. The operatorH0 is used to define the energy spectrum
the intermediate two-particle state (K,pW ). The conventional
choice for these energies of particle states above the F
surface has been to replaceH0 by the kinetic energy of these
states. In the so-called continuous choice, one assumes
the single-particle energies for these particle states as we
for the hole states are calculated from the kinetic energy p
a mean-field contribution, which is calculated in a se
consistent way from theG matrix by

eq5
q2

2m
1E

p<kF

d3p^qW pW uG~v5eq1ep!uqW pW &'
q2

2m*
1U.

~3!
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The term on the right-hand side exhibits a parametrization
these single-particle energies in terms of an effective m
and a constant potential, which is often used. The Pauli
erator in the Bethe-Goldstone equation~1! prevents scatter
ing into intermediate states with momentapW 15KW 2pW and
pW 25KW 1pW , which are smaller than the Fermi momentumkF .
Therefore, the value ofQ(pW ,K) depends on the angleV
between the center-of-mass momentumK and the relative
momentump. Employing a partial wave expansion of th
two-particle states, the matrix elements for this Pauli ope
tor can be written@18#

^~ l 8S!J8M uQ~p,K !u~ lS!JM&

5 (
ml ,mS

~ l 8mlSMsuJ8M !~JMu lmlSMs!

3^ l 8ml uQ~p,K !u lml&

with

^ l 8ml uQ~p,K !u lml&

5E dVYl 8ml
* ~V!Ylml

~V!Q~ uKW 1pW u2kF!

3Q~ uKW 2pW u2kF!, ~4!

with Q(x) defining the step function. One finds that the Pa
operator is diagonal with respect to the modulus of the m
mentaK andp, the spinS and the projection quantum num
berm. It has nonvanishing matrix elements between state
different l and J with the restriction of parity conservatio
( l 1 l 8 must be even! and its value depends on the projecti
quantum numberM. This implies that also the solution of th
Bethe-Goldstone equation is not diagonal with respect to
angular momentum quantum numbersl and J and depends
on M,

^klJuGSTM~v,K !uk8l 8J8&. ~5!

In order to simplify the calculation this Pauli operator
usually replaced by the so-called angle-average approx
tion

^ l 8ml uQA~p,K !u lml&5d l ,l 85
0 for p<Akf

22K2,

1 for p>kF1K,

K21p22kF
2

2Kp
, otherwise.

~6!

The angle-average approximation yields matrix elements
the Pauli operator which are diagonal in thel and J and
independent onM. This means that the Bethe-Goldstone E
~1! can be solved separately for each partial wave and
resultingG matrix will be diagonal inJ and independent o
M.

The matrix elements ofG can then be used to evaluate t
total energy per nucleon. In the case of the exact Pauli
erator this energy is given as
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kF
2

2m
1

6

kF
3 (

T,S,M ,l 8,l ,
J8,J,ml ,ms

~2T11!

3E k2dkE K2dKE dV^klJuGSTM~v,K !ukl8J8&

3~ l 8mlSmSuJ8M !~ lmlSmSuJM!Yl 8ml
~V!

3Ylml
~V!Q~kF2uKW 1kW u!Q~kF2uKW 2kW u! ~7!

with V being the angle between the direction of the relat
momentumkW and the center-of-mass momentumKW . In the
calculations discussed below we consider the coupling
partial waves up toJ,J8<6. For angular momenta large
than 6, the Born approximation is used. If the matrix e
ments ofG are diagonal in the total angular momentumJ
5J8) and independent of the projection quantum numberM,
as it is the case in the angle-average approximation for
Pauli operator, this expression can be rewritten as

E

A
5

3

5

kF
2

2m
1

6

kF
3 (

T,S,l ,J
~2T11!~2J11!E

0

kF
dk k2

3F E
0

kF2k

dK K21E
kF2k

AkF
2

2k2

dK K2
kF

22K22k2

2Kk G
3^klJuGST~v,K !uklJ&, ~8!

which corresponds to the standard expression discussed,
in @4#.

FIG. 1. Calculated binding energies per nucleon for nucl
matter as a function of the Fermi momentumkF . Results are pre-
sented for the angle-average approximation of the Pauli oper
~dashed lines! and the exact treatment~solid lines!. The potentials
Bonn B and C, defined in@19#, as well as the neutron-proton part o
the ArgonneV18 potential @15# were used for theNN interaction.
The continuous choice for the particle state spectrum in the Be
Goldstone Eq.~1! has been used to obtain the results displayed
the upper part, while the conventional choice has been use
calculate the results shown below.
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Results for the calculated binding energy per nucleon a
function of the Fermi momentum are displayed in Fig.
considering variousNN potentials. The continuous choic
~figures in the upper half! as well as the conventional choic
were used for the single-particle spectrum. For each den
NN interaction, and particle state spectrum, a self-consis
single-particle spectrum has been determined using the e
tive mass parametrization defined in Eq.~3!. The total bind-
ing energy has then been calculated using the angle-ave
approximation for the Pauli operator~dashed lines! as well as
the exact treatment~solid lines!.

A general feature can be observed, which is independ
of the NN interaction and the choice for the single-partic
spectrum: The angle-average approximation tends to un
estimate the binding energy per nucleon at low densities
overestimates it at higher densities. The effects of the e
treatment of the Pauli operator is not very large around
below the empirical value for the saturation density. This
in agreement with older studies of the angle-averaged
proximation @18,20#, in which matrix elements ofG were
compared at those small densities. The characteristic de
dependence for the exact treatment of the Pauli opera
however, leads to a non-negligible shift in the calcula
saturation, i.e., the minimum in the energy versus den
curve. This correction moves the calculated saturation po
to smaller densities and smaller energies. It is worth not
that the saturation points calculated for the Bonn C poten
ys
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(E5214.97 MeV at kF51.42 fm21) and the neutron-
proton part of ArgonneV18 potential (E5213.89 MeV at
kF51.37 fm21) are rather close to the empirical value.

The effects of an exact treatment of the Pauli operator
larger for the continuous choice of the single-particle sp
trum than for the conventional one. This is quite plausible
the continuous choice yields a larger sensitivity to the pro
treatment of states around the Fermi momentum. A sim
argument can be used to explain the fact that the Pauli eff
are larger forNN potentials which have a slightly stronge
tensor force~Bonn C and ArgonneV18) than is observed for
the Bonn B potential, which contains a weaker tensor co
ponent.

In summary we would like to point out that the effects
an exact treatment of the Pauli operator in the Bet
Goldstone equation are not very dramatic in particular
nuclear matter at small densities. A characteristic density
pendence of these Pauli corrections, however, lead to a
negligible improvement in the calculated saturation poin
Therefore, many-body calculations going beyond the B
approximation should take these effects into account.
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