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Pauli exclusion operator and binding energy of nuclear matter
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Brueckner-Hartree-Fock calculations are performed for nuclear matter with an exact treatment of the Pauli
exclusion operator in the Bethe-Goldstone equation. The differences in the calculated binding energy, com-
pared to the angle-average approximation, which is commonly used, are non-negligible. These differences
exhibit a specific density dependence, which shifts the calculated saturation point towards smaller densities.
This effect is observed for various versions of modern models for the nucleon-nucleon interaction.
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It is one of the very central and very old projects of scattering. These new potentials, which are essentially phase-
nuclear structure theory to evaluate the saturation propertieghift equivalent remove a large part of the discrepancies ob-
of nuclear matter from a realistic nucleon-nuclediN) in-  served between older models of tNe\ interaction[17].
teraction without any adjustment of a free parameter. The Because of these improvements, the time seems to be ap-
so-called hole-line expansion or Brueckner-Bethe-Goldston@ropriate to test the reliability of approximations which are
theory has been one of the tools for solving this many-bodyenerally employed in the BHF calculations of nuclear mat-
problem, which has already been used for many ygarg]. ter. One of the central equations to be solved in the BHF
These early investigations were successful to some exter@pproximation is the Bethe-Goldstone equation, which we
The inclusion ofNN correlations in the lowest order of the may write in the momentum representation
hole-line expansion, the Brueckner-Hartree-FOBKIF) ap-
proach, turned out to be very important. Realistic models of o _ . 3 S
the NN interaction like the Reid soft-core potent[&l] yield stk K w)=Vgr(kk HJ dpVsr(k.p)
an energy of nuclear matter around 150 MeV per nucleon if -
the effects of correlations are ignored in a mean-field or XQ(D,K)G (P.K K, w) 0
Hartree-Fock calculation. The BHF approach provides a w—Hgy T KR, @),
drastic improvement leading to an energy per nucleon of
—11 MeV, which was only by 5 MeV off from the empiri- In this equatiorK represents the center-of-mass momentum
cal value of —16 MeV per nucleon. Attempts have been of the interacting pair of nucleons while k', andp stand
made to improve the description of the saturation point furfor relative momenta, which are related to the single-particle
ther by exploring differentNN interactions. It turned out, momenta according to
however, that BHF calculations using these varidlld in-
teractions yield results for the saturation point, which fall on I I
the so-called Coester bafiél]. They either predict too small K=3(kitky) and k=z(ka—ky), )
binding energy at the empirical value for the density, or

about the correct energy at a density, which is too large by g, denotes the starting energy, whilg 1 and G 1 refer to
factor of 2, or results in between. Comparison of BHF withthe matrix elements of the bare interaction a@Bdmatrix,
variational calculations furthermore demonstrated that the inrespectively, for two nucleons with total spBiand isospin

sary to obtain a reliable estimate for the binding energy Ofthe intermediate two-particle stat& (o). The conventional

nu%e?;m?géegs’ts]'ears some proaress has been made in thchoice for these energies of particle states above the Fermi
| odring y progress . N "3 rface has been to replaldg by the kinetic energy of these
field. It has been shown that a continuous choice for th

. . . %tates. In the so-called continuous choice, one assumes that
Egﬂtﬂ:fzf?ﬁg%ng?ﬁlgagfi?'t r?elzsg%fter::?sdésfiﬁf;ggob deybofgrrela_the single-particle energies for these particle states as well as
tions. The discrepancy between the calculated saturatiofor the ho!e states are c_alculate@ frqm the kinetic energy plus
poinfs of nuclear matter and the empirical one has signifi—g me_:an-ﬁeld contribution, WhICh Is calculated in a self-

o S > ._consistent way from th& matrix by
cantly been reduced by considering relativistic effects within

the Dirac-Brueckner-Hartree-FodlOBHF) approach[11- 9 9

13]. Finally, it should be mentioned that a new generation of . :q_+f d3p<ﬁﬁ|G(w= ete )|65>% +U.
realistic NN potentials has been developEt#—16, which 2m o=k, a P 2m*

yield very accurate fits of proton-neutron and proton-proton 3
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The term on the right-hand side exhibits a parametrization of 10
these single-particle energies in terms of an effective mass
and a constant potential, which is often used. The Pauli op-_
erator in the Bethe-Goldstone equatidn prevents scatter- E
ing into intermediate states with momerga=K—p and £ _j; Cont
p,=K+p, which are smaller than the Fermi momentkpm
Therefore, the value o€(p,K) depends on the angl®
between the center-of-mass momentiimand the relative
momentump. Employing a partial wave expansion of the
two-particle states, the matrix elements for this Pauli opera- - -1
tor can be writter] 18] 3 Conv
5
((1'S)3'M[Q(p,K)[(1S)IM)
-15 - : : : ! :
— E (|Im|SMS|JrM)(JM|ImISMS) 1.1 1.5 1.1 15 1.1 15
my,Ms Fermi Momentum [fm ']
><(I’m||Q(p,K)|Im|> FIG. 1. Calculated binding energies per nucleon for nuclear
) matter as a function of the Fermi momentlsn. Results are pre-
with sented for the angle-average approximation of the Pauli operator
(dashed lingsand the exact treatmefgolid lineg. The potentials
<| ’m||Q(p, K)||m|> Bonn B and C, defined ifl9], as well as the neutron-proton part of
the ArgonneV,g potential[15] were used for théNN interaction.
= J dQYI*,m ()Y (Q)@(||Z+ 5| —kg) The continuous choice for the particle state spectrum in_ the Beth_e-
| ! Goldstone Eq(1) has been used to obtain the results displayed in
- - the upper part, while the conventional choice has been used to
XO(|K=p[—kg), (4) calculate the results shown below.

with ®(x) defining the step function. One finds that the Pauli 5
operator is diagonal with respect to the modulus of the mo- E_ E ke 6 2 (2T+1)

. C =——+—
mentaK andp, the spinS and the projection quantum num- A 52m k,?; TSMI,

berm. It has nonvanishing matrix elements between states of J,3,my mg

different | and J with the restriction of parity conservation

(I+1" must be evehand its value depends on the projection XJ kzdkf szKf dO(KII|Gara( @, K)|KI'3")
guantum numbeM. This implies that also the solution of the STME

Bethe-Goldstone equation is not diagonal with respect to the
angular momentum quantum numbérand J and depends
on M,

X(I'm Sl " M) (Im Sy IM) Y1 ()

XYy, (Q)O (ke — [K+K[) O (ke — K~ K|) (7)
(kI Gstm(@,K)[K'1"J"). )
with Q being the angle between the direction of the relative

In order to simplify the calculation this Pauli operator iS momentumk and the center-of-mass momentua In the
usually replaced by the so-called angle-average approximasmjculations discussed below we consider the coupling of

tion partial waves up tal,J’<6. For angular momenta larger
than 6, the Born approximation is used. If the matrix ele-
0 for p=< kaZ—KZ: ments ofG are diagonal in the total angular momentud (
1 for p=ke+K, =J') and independent of the projection quantum nurm¥er

(I"'m|QA(p,K)|Im,) = o1 as it is the case in the angle-average approximation for the

K2+ 2_k2 ) 3 ) .
P F’ otherwise. Pauli operator, this expression can be rewritten as
2Kp
©®) E 3k 6 K
o _ —= =y (2T+1)(2J+1)fpdkk2
The angle-average approximation yields matrix elements for A 52 kg T.S1,3 0
the Pauli operator which are diagonal in thend J and 2 Lo 1o
independent oM. This means that the Bethe-Goldstone Eq. « koide ko [V g szF_ K =k
(1) can be solved separately for each partial wave and the 0 ke —k 2Kk

resultingG matrix will be diagonal inJ and independent of
M. X(kIJ|Gsr{w,K)[kIJ), ()
The matrix elements db can then be used to evaluate the
total energy per nucleon. In the case of the exact Pauli opahich corresponds to the standard expression discussed, e.g.,
erator this energy is given as in [4].
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Results for the calculated binding energy per nucleon as ge=—14.97 MeV atkg=1.42 fm ') and the neutron-
function of the Fermi momentum are displayed in Fig. 1,proton part of Argonne/,5 potential E=—13.89 MeV at
cqnsider_ing varioudNN potentials. The continqous choice ke=1.37 fi %) are rather close to the empirical value.
(figures in the upper halfas well as the conventional choice  The effects of an exact treatment of the Pauli operator are
were used for the single-particle spectrum. For each densitys ger for the continuous choice of the single-particle spec-

NN interaction, and particle state spectrum, a self-Consistenf, o than for the conventional one. This is quite plausible as

;s_mgle-pamcle spetc'grurtr_l hag l:;_eer:jqetermw%id Lt’S;nlgg_h%effeﬁie continuous choice yields a larger sensitivity to the proper
ilr:/e Q}Zis pr?;iTﬁerrI]Zségg cZIcI:rl]J(Iaatér:j E?m tﬁe %g Ie'_nav'eratrgatment of states around the Fermi momentum. A similar
ap?proxin?gtion for the Pauli operatoiashedglline)sas v?/ell as grgument can be used to explain the fact that the Pauli effects
the exact treatmertsolid lines. are larger forNN potentials which have a slightly stronger

A general feature can be observed, which is independeﬁ?nsor forcgBonn C and Argonne/%g) than is observed for
of the NN interaction and the choice for the single-particle € Bonn B potential, which contains a weaker tensor com-

spectrum: The angle-average approximation tends to undePonent. _ _

estimate the binding energy per nucleon at low densities but N Summary we would like to point out that the effects of
overestimates it at higher densities. The effects of the exa@n exact treatment of the Pauli operator in the Bethe-
treatment of the Pauli operator is not very large around anéoldstone equation are not very dramatic in particular for
below the empirical value for the saturation density. This ishuclear matter at small densities. A characteristic density de-
in agreement with older studies of the angle-averaged agpendence of these Pauli corrections, however, lead to a non-
proximation[18,20,, in which matrix elements ofs were  negligible improvement in the calculated saturation points.
compared at those small densities. The characteristic densifjherefore, many-body calculations going beyond the BHF
dependence for the exact treatment of the Pauli operatoapproximation should take these effects into account.

however, leads to a non-negligible shift in the calculated _ .
saturation, i.e., the minimum in the energy versus density. This work has been supported by the Graduiertenkolleg

curve. This correction moves the calculated saturation pointsStruktur und Wechselwirkung von Hadronen und Kernen”

to smaller densities and smaller energies. It is worth notingiDFG' GRK 132/3 and the scientific exchange program be-
that the saturation points calculated for the Bonn C potentiaiveen Germany and Polarf@OL-246-96.
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