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Extension of the chiral low-density theorem

V. Dmitrašinović
Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208

~Received 7 January 1999!

We show how the linear ‘‘low-density theorem’’ of Drukarev and Levin can be extended to arbitrary
positive integer power of the baryon densityr. Thenth coefficient in the McLaurin expansion of the fermion
condensate’sr dependence is the connectedn-nucleon S term matrix element. We calculate theO(r2)
coefficient in lowest-order perturbative approximation to the linears model and then show how this and other
terms can be iterated to arbitrarily high order. Convergence radius of the result is discussed.
@S0556-2813~99!06905-8#

PACS number~s!: 21.65.1f, 11.30.Rd, 24.85.1p
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I. INTRODUCTION

Earlier this decade a ‘‘low-density theorem’’~LDT! for
the linear term in the baryon density dependence of the qu
condensate was formulated@1–4#. This first term in the den-
sity power series expansion of the quark condensate is
portional to the nucleon, or the constituent quarkS term,
which leads one to believe that, perhaps, it is only the ch
symmetry breaking of the~strong! hadronic interactions by
the current quark masses that controls the baryon den
dependence of the quark condensate and thus makes it e
tially unique. Soon thereafter it became clear, however,
the extrapolation of this linear formula from the low-dens
region upwards, to the neutron star densities, would
highly contentious.

In this paper~1! we present an extension of the Drukare
Levin low-density theorem to terms of arbitrarily high ord
in the McLaurin expansion of the fermion condensate’s
pendence on the baryon densityr. The nth McLaurin coef-
ficient is just the connectedn-nucleonS term ~elastic matrix
element!, which is a function of the explicit chiral symmetr
breaking (xSB) terms in the Hamiltonian of the theory.~2!
We show how the ‘‘theorem’’ works in an explicit exampl
We calculate theO(r2) coefficient in the lowest perturbativ
approximation to the linears model and then iterate thes
diagrams to infinite order. The result can be resummed
we obtain a closed-form solution—we use this result to
tablish the range of validity of such a diagrammatic calcu
tional scheme.

II. BARYON DENSITY DEPENDENCE OF THE S TERM

A. Proposition

We propose an extension of the low-density theorem
Drukarev and Levin@1# to arbitrary~positive integer! powers
of the baryon-number–quark densityr. Thenth coefficients
in the McLaurin expansion of̂S&r is then-fermion~nucleon
or quark! matrix element of the~pion! S double commutator

S5
1

3 (
a51

3

@Q5
a ,@Q5

a ,HxSB~0!##, ~1!
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r j

j !
^ jNuSu jN&connected, ~2!

where the sum overj involvesconnected matrix elements. As
preconditions we assume that~i! the color symmetry of the
theory is neither spontaneously nor explicitly broken,~ii ! the
theory can be described by a Lorentz invariant, local,
proximately chiral-invariant Lagrangian density with a pa
tially conserved axial No¨ther current, and~iii ! the axial
anomaly does not invalidate the relevant axial Ward ide
ties.

The proof is based on the current-algebraic relation
identity

^S&a5^auSua&5
1

3 (
a51

3

^au@Q5
a ,@Q5

a ,HxSB~0!##ua&

52
1

3
f p

2 lim
k→0

(
a51

3

^pa~k!auSupa~k!a& ~3!

between the exact elastic soft-pionpa scattering~S! matrix
and the corresponding Heisenberg representation~pion! S
term matrix element. Herea is the flavor index of the exter
nal pions, which is averaged over the three varieties of pio
i.e., a51,2,3. This result can be adapted to the kaonS term
by specifyinga54, 5, 6, or 7, or by averaging over som
subset thereof. Formula~3! is derived from a chiral Ward
identity and the LSZ reduction formula for the case of
nucleon (a5N) on pp. 131–137 of Ref.@5#. ~This is equiva-
lent to applying Sakurai’s ‘‘master formula,’’ pp. 111–11
in Ref. @5#, twice, once to the initial and once to the fin
state.! Note that theS term is only sensitive to the chira
symmetry breaking terms in the Hamiltonian densityH
5Hx 1HxSB

@Q5
a ,@Q5

a ,H##5@Q5
a ,@Q5

a ,HxSB##, ~4!

the chiral charges being constants of the motion in the ch
limit

@Q5
a ,Hx #50. ~5!

Now apply this equation to the nuclear matter state
ua&5ur&5unN&. We shall work in a large but finite box o
2801 ©1999 The American Physical Society
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2802 PRC 59V. DMITRAŠINOVIĆ
volumeV in order to avoid momentum-conserving Diracd
functions, which are replaced by Kronecker ones. This a
means that we can have a finite baryon densityr5n/V with-
out taking the number of baryons to infinity,n→`, which
we leave for the very last step. Therefore

^S&r5^ruSur&

5 lim
n5rV→`

^nNuSunN&

5 lim
n5rV→`

1

3 (
a51

3

^nNu@Q5
a ,@Q5

a ,HxSB~0!##unN&

52
1

3
f p

2 lim
n5rV→`

lim
k→0

(
a51

3

^pa~k!nNuSupa~k!nN&,

~6!

where we used the fact that the finite density~zero tempera-
ture! ground state wave function is just the wave function
n nucleons at rest enclosed in a box of volumeV. Formula
~6! relates the finite densityS term matrix element to the
exact~forward! scattering amplitude of asoft, i.e., vanishing
four-momentum (k50) pion fromn nucleons at rest.

Here we have merely used the definition of theS term to
rewrite the object of interest in terms of anS-matrix element.
To be sure, no new information was gained in this step an
no loss of generality. The result is that we may now use
general results ofS-matrix theory. That, in turn, allows a
Feynman-diagrammatic organization of our problem. T
most important property of theS matrix in this regard is its
decomposability into disconnected and connected parts.
latter part falls further into reducible and one-, two-, thre
particle, etc., irreducible classes. Specifically, in our case
pions and nucleons we may separate the exact~Heisenberg
representation! S matrix into the following distinct catego
ries: ~i! the completely disconnected graph~one pion andn
baryons all propagating without interaction!, ~ii ! n simply
connectedpN scattering amplitudes multiplied by (n21)
disconnected baryon lines, and~iii ! and

S n

2D 5
n~n21!

2

simply connectedpNN scattering amplitudes multiplied b
(n22) disconnected baryon line, etc.@6#. Each of the dis-
connected subdiagrams has its own momentum-conservid
function, which translates into one volume (V) factor for
each disconnected baryon line1 @6#. Therefore

1This, of course, means that the dimension of the variousS term
matrix elements varies with the number of nucleons~baryons and
quarks more generally!: the vacuumS term has dimensionM4, the
~single-!nucleonS term has dimensionM1, etc., i.e.,M423n for the
n-nucleonS term.
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21^nNunN&

1S n
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3 (
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3

f p
2 lim

k→0
(
j 51

n S n

j D
3V2 j^pa~k!~ jN !uSupa~k!~ jN !&connected̂nNunN&.

~7!

Now turn this back into a statement about theS terms

^nNuSunN&

^nNunN&
5(

j 50

n S n

j D S 1

V D j

^ jNuSu jN&connected. ~8!

We are now ready to take the thermodynamic limitV→` at
~finite! constant densityr. Since we assumed a large box
begin with, the baryon numbern5rV contained therein
may be taken to be far larger than any given order in
power expansionn@ j and in the thermodynamic limitn
→` one may write

S n

j D 5
n!

j ! ~n2 j !!
.

nj

j !
, ~9!

which leads to the announced result

^ruSur&5 lim
n5rV→`

(
j 50

n
1

j ! S n

V D j

^ jNuSu jN&connected

5(
j 50

`
r j

j !
^ jNuSu jN&connected, Q.E.D. ~10!

when the nuclear ground state is normalized^rur&51. It is
manifest that this result does not hold infinite systems at
ordersj comparable to the total baryon numbern.

A reminder seems in place that this series neednot
uniquely determinêS&r for arbitrary values ofr because its
radius of convergence may be small, or even zero. One
sible reason for such a behavior of a power series is tha
really is a Laurent one, i.e., the function may have po
and/or branch cuts in the complex baryon density (r) plane.
Explicit calculations will show this to be the case.

B. Consequences

Note that the ‘‘mechanical’’ sigma operator

Smech5
1

3 (
a51

3

@Q5
a ,@Q5

a ,Hmech~0!##5Hmech~0!, ~11!
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PRC 59 2803EXTENSION OF THE CHIRAL LOW-DENSITY THEOREM
equals the ‘‘mechanical’’xSB Hamiltonian

Hmech5C̄mq
0C5mu

0ūu1md
0d̄d,

due to the current quark masses, or the bare nucleon m
term

Hmech5N̄MN
0 N5M p

0p̄p1Mn
0n̄n.

Our result~10! holds either for quarks, or for baryons as t
fermions. Since the chiral symmetry breaking is defined
terms of quark degrees of freedom, but we do not know
solution to the quark dynamics in baryons, we must fi
establish, or rather postulate a relation between the qua
and the observable hadrons’ properties. One assump
common in the literature is thatSN53SQ.2 Assuming, by
the same token, effective proportionality of the nucleon a
quark condensates, our Eq.~10! leads to a statement abo
the quark condensate at finite baryon density

^N̄N&r

^N̄N&0

5
^q̄q&r

^q̄q&0

512
1

~ f pmp!2 (
j 51

`
r j

j !
^ jNuSu jN&connected.

~12!

The j 51 term together with the unity on the right-hand si
form the Drukarev-Levin LDT. The rest of this formula ap
pears to be new.3

This form of the LDT has been used to argue about
behavior of the pseudoscalar~PS! meson masses at nonze
baryon density. We remind the reader that the quark cond
sate is not the only density-dependent variable influenc
the PS meson mass—one must take into account the~model
dependent! PS meson decay constant’s density depende
as well, which is not commonly done. Lest this result lea
one to believe that the problem of the density dependenc
PS meson masses is solved, we remind the reader that ne
the radius of convergence of the series is known, nor do
have, as yet, an efficient algorithm for calculating the high
order coefficients in the expansion. We next present an
ample of a perturbative calculation in the~chiral! linear s
model and its iteration to arbitrarily high order.

III. AN EXAMPLE

Before we proceed we remind the reader of the assu
tions of the LDT: the matrix elements must be either t
exact Heisenberg representation ones, or approximate m
elements that satisfy the underlying chiral Ward ident
~master formula!. The former is beyond our powers, the la
ter are available, mostly in the form of perturbative solutio
though solutions to several models have been found that
certain infinite classes of Feynman diagrams~we shall not
consider those approximations here!. We shall calculate the
terms ofO(r2) in the chiral linears model, theO(r) cal-

2It is clear that this amounts to the ‘‘impulse approximation,’’ b
it was recently shown that the two-quark operator correctionsmust
exist @7# if chiral symmetry is to be preserved.

3The idea that the elasticp-nN scattering amplitude is related t

the r dependence of̂q̄q&r is implicit in Refs.@8–10#.
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culations having been done before@2–4#. This calculation
will be with ~free! nucleon degrees of freedoms, new me
ods for calculation ofs terms in interacting nucleon system
having been developed only recently@7#.

A. One- and two-nucleons terms in the linear s model

The one-nucleon connectedS term can be extracted from
the elasticpN scattering amplitude, which in the linears
model is given by the sum of the three diagrams in Fig.
two nucleon-pole diagrams,~b! and~c!, and ones-exchange
graph~a!. These have been calculated many times@11# and
will not be repeated here.

The pion-two-nucleon connected matrix element is s
stantially more complex: there are more than 50 connec
diagrams in the lowest-order perturbative~Born! approxima-
tion. All of them are, by definition, reducible diagrams. W
separate these graphs into three distinct subsets:~1! pion
‘‘rescattering,’’ ~2! pion scattering on as-meson-in-flight,
~3! initial-, final-, and intermediate-state interaction di
grams.

~1! Eighteen (23333) of these graphs form the simple
connected, reducible ‘‘pion-rescattering’’ amplitude that
built up from two pion-one-nucleon effective vertices, Fig.
Their contribution equals

^S&2N
p 522S ^S&N

f pmp
D 2

. ~13!

The currently accepted value of the nucleon sigma te
^S&N lies between 45 and 65 MeV.

~2! Only the S terms of scalar states, discrete or co
tinuum, exchanged between the two nucleons contribute
the two-nucleonS term. @This follows from the fact that the
S term is a Lorentz scalar.# In the first Born approximation
to the linears model the only such object is thes meson, so
we end up having to calculate itsS term and its contribution
to the two-nucleonS term. Four Feynman diagrams, see F
2, contribute to the elastic pion-s meson scattering ampli
tude and hence also to itss term. The result is

FIG. 1. Feynman diagrams contributing to the ‘‘elementar
pN elastic scattering amplitude:~a! the s-pole graph, and~b!, ~c!
the nucleon-pole graphs. The zig-zag line denotes as meson, the
dashed one a pion and the solid one a nucleon.
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2804 PRC 59V. DMITRAŠINOVIĆ
^suSus&53mp
2 . ~14!

Inserting this result into the two-nucleons term we find

^S&2N
s 53g0

2S mp
2

ms
4 D , ~15!

whereg05(gAM / f p)512.6 is thes-nucleon coupling con-
stant. The currently accepted value of thes mass lies be-
tween 400 and 1200 MeV@12#.

~3! These arenot all of the reducible graphs at this orde
however, all of the remaining graphs can be described
either initial-, intermediate-, or final-state interactions, s
Fig. 3. They are formed either by having a complete pio
nucleon scattering amplitude attached to one exte
nucleon line, or by having a pion-nucleon vertex attached
two external nucleons in the sum of one meson exchan
between the two nucleons~the NN potential!. This one-
meson exchange potential ought to be summed into an
nite ladder by iteration of the Bethe-Salpeter equation
thus made to form a proper interactingNN ~scattering or
bound! state. In the end, this summation is equivalent to
introduction of NN correlations into the nuclear matte
These diagrams divergein vacuo, although they are Born
diagrams, because the intermediate nucleons are on
mass shells, due to the external soft-pion condition.

Points~1! and ~2! put together lead to

FIG. 2. Feynman diagrams contributing to the ‘‘elementar
ps elastic scattering amplitude:~a! and~b!, i.e., to thes-meson’sS
term.
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^S&2N5^S&2N
p 1^S&2N

s

522S 2^S&N

f pmp
D 2

13S g0mp

ms
2 D 2

, ~16!

for the total. With the currently accepted value of thes
mass, the second term exceeds the first one.

One feature of this result stands out: the appearance o
second power of the single-nucleons term coming from the
repetition of the one-pion reducible diagrams involving t
‘‘primitive’’ ~elementary! single-nucleons term contribu-
tions. It has been pointed out by Ericson@8# that this sort of
behavior generalizes to higher orders of perturbation the
Fig. 4, and that the graphs can be resummed into a geom
progression. We shall address that question next.

B. Iteration of primitive contributions
in the N-nucleon s term

In the foregone analysis one may have noticed that cer
lower-order graphs are repeated in the higher ones w

FIG. 4. An example of ordern53 reducible single-nucleon
pion-rescattering graph.

FIG. 3. The pion-two-nucleon scattering amplitude:~a! the
s-mesonS term effective graph,~b! intermediate-state interactio
graphs,~c! initial- and final-state interaction graphs. Graphs~b! and
~c! may be termedNN correlation effects. The square box with fou
external nucleon lines denotes anNN potential due to the exchang
of a single pion ands meson. The hatched ‘‘blob’’ in~a! represents
the ‘‘elementary’’pN elastic scattering amplitude, such as the o
shown in Fig. 1 in the linearS model.
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simple regularity. The multiplicities of these graphs can
figured out and the infinite~sub!series resummed. We sha
show that several classes of such diagrams sum into geo
ric series. That result is particularly useful because its pr
erties, such as the radius of convergence and the ana
structure are well known. Yet, as we shall show, uncriti
application may sometimes lead to erroneous conclusion

Single-nucleon pion rescattering. The connected but re
ducible diagrams, Fig. 4, consisting of individualpN elastic
scattering amplitudes connected by a single pion line ca
ing zero four-momentum can be written as

^nNuSunN& rescatt5n! ^S&N
n ~2mp

2 f p
2 !(12n), ~17!

where the factor 1/2mp
2 comes from the propagation of

soft p, the ^S&Nf p
22 comes from a single irreducible elast

pN scattering amplitude~vertex! for softpions, andn! is the
number of identical graphs. Hence the infinite series of s
connected one-pion-reducible graphs is readily summed
as

^N̄N&r

^N̄N&0
U

rescatt

5
^q̄q&r

^q̄q&0
U

rescatt

511 (
n51

` S 2r^S&N

~ f pmp!2D n

5F11
r^S&N

~ f pmp!2G21

. ~18!

Since this is a geometric progression, the series has a fi
radius of convergence~in r) given by

r<urc1
u5

~ f pmp!2

^S&N
,

which equals roughly twice~1.8!, or three times the norma
nuclear density for̂S&N565, 45 MeV, respectively.

It seems obvious that the complete series including
diagrams, at best can have the convergence properties o
worst-behaved subseries. In other words, our resummatio
the one-nucleon pion rescattering diagrams seems to te
the maximum reliable density calculable with such diagra
matic methods. An important practical consequence of
above reasoning and of the empirical value of the ka
nucleon sigma term̂S&KN5200 MeV is that the radius o
convergence of the series relevant to theK condensation is a
best a fraction of one normal nuclear density. Surprising
this conclusion turns out to be only qualitatively correct, d
to cancellations from other two-nucleonS term contribu-
tions. We shall explicitly show that in the linears model the
inclusion of another two-nucleonS term into the infinite
series leads to an increase in the number of poles, chang
their positions and to an increase in the radius of conv
gence of the series.

Two-nucleon pion rescattering. The connected two-
nucleon ‘‘pion-rescattering’’ graphs fall into one of the tw
categories:~i! even-n and ~ii ! odd-n, and will be dealt with
accordingly.

~i! In the former case, one part of the amplitude is in t
form of a product ofn/2 pion-two-nucleon graphs connecte
by n/2 pion propagators. Since one can select the first pa
(2

n) many ways, the second pair in (2
n22) many ways, etc.,

one finds
e
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-
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^nNuSunN&un-even52S n

2D S n22

2 D •••S 2

2D
3S 2^S&2N

mp
2 f p

2 D n/2

~ f pmp!2

52n! S 2^S&2N

2mp
2 f p

2 D n/2

~ f pmp!2. ~19!

The iteration of such two-nucleon pion rescattering d
grams, together with the vacuum term, leads once again
geometric progression:

^N̄N&r

^N̄N&0
U

irr

n-even

5
^q̄q&r

^q̄q&0
U

irr

n-even

511 (
n52,4, . . .

` S r

f pmp
A2

1

2
^S&2ND n

511 (
n51,2, . . .

` S 2r2^S&2N

2~ f pmp!2 D n

5F11
r2^S&2N

2~ f pmp!2G21

. ~20!

~ii ! For n-odd the amplitude is in the form of a product o
one pN ~or pmN graph, withm-odd! and (n21)/2 @or (n
2m)/2# two-nucleon irreducible graphs connected byn
11)/2 pion propagators. Since one can select the singlepN
graph to be any of then nucleon lines, and the first pair in
(2

n21) many ways, the second pair in (2
n23) many ways, etc.,

one finds

^nNuSunN&un-odd5nS n21

2 D S n23

2 D •••S 2

2D
3^S&NS 2^S&2N

mp
2 f p

2 D (n21)/2

5n! ^S&NS 2^S&2N

2 f p
2 mp

2 D (n21)/2

. ~21!

Hence we conclude

^N̄N&r

^N̄N&0
Un-odd

5
^q̄q&r

^q̄q&0
Un-odd

52
r^S&N

~ f pmp!2 2 (
n53,5, . . .

`
r^S&N

~ f pmp!2

3S r

f pmp
A2

1

2
^S&2ND n21

52
r^S&N

~ f pmp!2 (
n50,1,2, . . .

` S 2r2^S&2N

2~ f pmp!2 D n

52
r^S&N

~ f pmp!2 F11
r2^S&2N

~ f pmp!2G21

. ~22!
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Putting these two together we find

^q̄q&r

^q̄q&0

5
^q̄q&r

^q̄q&0
Un-even

1
^q̄q&r

^q̄q&0
Un-odd

5F12
r^S&N

~ f pmp!2GF11
r2^S&2N

2~ f pmp!2G21

. ~23!

This result has two conjugate poles in the complex den
plane at a distance

r2<rc2

2 5U~ f pmp!2

2^S&2N
U

from the origin. It is clear that the model- an
approximation-dependent sign of^S&2N determines the posi
tion of the poles in the complexr plane, and in particular if
they are on the real axis, or not. For instance in the B
approximation to the linears model

^S&N5g0f pS mp

ms
D 2

,

therefore

^S&2N522S g0mp

ms
2 D 2

13S g0mp

ms
2 D 2

5S g0mp

ms
2 D 2

52
1

2
^S&2N

p . ~24!

Thus in the linears model^S&2N is positive, as given in Eq
~14!, and the poles are at imaginary densities6 irc2

a factor

A2 larger in absolute value thanrc1
predicted by the one

nucleon rescattering series.
This sort of analysis can and ought to be extended to

4-, and higherN-pion rescattering graphs. We close with
. C
ty

n

-,

conjecture: In the linears model the three-nucleon critica
densityrc3

is larger than the two-nucleon onerc2
, the 4-N

rc4
higher than the 3-N one, etc.

IV. SUMMARY AND CONCLUSIONS

In summary, in this paper we have~i! given an explicit
formula for thenth-order term in the powers-of-density (rn)
expansion of the nuclear matter sigma term^S&r and of the
nuclear matter fermion condensate^q̄q&r in particular, ~ii !
calculated theO(r2) coefficient in the Born approximation
to the linears model, ~iii ! iterated these primitiveO(r2)
terms to infinite order,~iv! found poles and radii of conver
gence associated with two such resummations. Thus
found that the ‘‘larger’’ of the two sums actually has th
larger radius of convergence.

Perhaps the most important conceptual contribution
this paper is that of putting the older ‘‘intuitive’’ calculation
onto formally sounder grounds of quantum field theory.
particular, we have shown that the fundamental elements
calculation of^S&r are the connectedn-nucleonS term ma-
trix elements. All calculations of̂ q̄q&r can be reduced to
these elements. Moreover, this result gives a clear defini
of the ‘‘NN correlations’’ in this context.

Some of the ideas introduced in this paper may have b
tacitly assumed in earlier work, most notably that by t
Manchester@9# and the Lyon groups@8,10#. Ericson@8# cor-
rectly concluded that the resummation of the single-nucle
S term leads to a geometric progression in the baryon d
sity. Similarly, Birse and McGovern@9# came close to for-
mulating the correctO(r2) prediction of the LDT in the
linear s model. Finally, some of the diagrammatic metho
used here were developed in the 1960’s and 1970’s@6,13,14#
for the description of pion propagation in nuclear matter.
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