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Extension of the chiral low-density theorem
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We show how the linear “low-density theorem” of Drukarev and Levin can be extended to arbitrary
positive integer power of the baryon densityThe nth coefficient in the McLaurin expansion of the fermion
condensate’y dependence is the connectachucleons term matrix element. We calculate tf@(p?)
coefficient in lowest-order perturbative approximation to the lineartodel and then show how this and other
terms can be iterated to arbitrarily high order. Convergence radius of the result is discussed.
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PACS numbe(s): 21.65+f, 11.30.Rd, 24.85tp

I. INTRODUCTION w pj

<P|E|P>=z T(jN|E|jN>connected 2
Earlier this decade a “low-density theorem{LDT) for j=oJ:
the linear term in the baryon density dependence of the quarvl§/
condensate was formulatgti—4]. This first term in the den-
sity power series expansion of the quark condensate is pr
portional to the nucleon, or the constituent quarkterm,
which leads one to believe that, perhaps, it is only the chira
symmetry breaking of théstrong hadronic interactions by tially conserved axial Nier current, and(iii) the axial

the current quark masses that controls the baryon qens'té{nomaly does not invalidate the relevant axial Ward identi-
dependence of the quark condensate and thus makes it ess Bs

tially unique. _Soon the;regfter it became clear, however, Fhat The proof is based on the current-algebraic relation or
the extrapolation of this linear formula from the low-density identity
region upwards, to the neutron star densities, would be
highly contentious. 13

In this paper(1) we present an extension of the Drukarev-  (3),=(«a|2|a)= 3 > (a|[QF.[QF.H,ss(0)]]|a)
Levin low-density theorem to terms of arbitrarily high order a=1

here the sum ovgrinvolvesconnected matrix element&s
(?reconditions we assume th@} the color symmetry of the
heory is neither spontaneously nor explicitly brokén,the
heory can be described by a Lorentz invariant, local, ap-
roximately chiral-invariant Lagrangian density with a par-

in the McLaurin expansion of the fermion condensate’s de- 1 3
pendence on the baryon densjty The nth McLaurin coef- =——f2 lim X, (7K |9 7(k)a) 3)
ficient is just the connecteatnucleons, term (elastic matrix 3 Ty oa-1

element, which is a function of the explicit chiral symmetry ) ) ) .
breaking (SB) terms in the Hamiltonian of the theor§) ~ between the exact elastic soft-piar scattering(S) matrix

We show how the “theorem” works in an explicit example: and the corresponding Heisenberg representaipion) =

We calculate th@©(p?) coefficient in the lowest perturbative term matrix element. Hera is the flavor index of the exter-
approximation to the lineas model and then iterate these nal pions, which is averaged over the three varieties of pions,
diagrams to infinite order. The result can be resummed anti€.,@=1,2,3. This result can be adapted to the kaoterm

we obtain a closed-form solution—we use this result to esby specifyinga=4, 5, 6, or 7, or by averaging over some

tablish the range of validity of such a diagrammatic calcula-Subset thereof. Formuleg) is derived from a chiral Ward
tional scheme. identity and the LSZ reduction formula for the case of a

nucleon @=N) on pp. 131-137 of Ref5]. (This is equiva-
lent to applying Sakurai’'s “master formula,” pp. 111-112
Il. BARYON DENSITY DEPENDENCE OF THE X TERM in Ref. [5], twice, once to the initial and once to the final
A. Proposition state) Note that theX, term is only sensitive to the chiral

. . mmetry breaking terms in the Hamiltonian den
We propose an extension of the low-density theorem ofi yH +Hy < ¢ Shy
X X

Drukarev and Leviri1] to arbitrary(positive integer powers

of the baryon-number—quark densjty The nth coefficients [Q2.[Q2, H]1=[Q&.[Q2, H,sel]. (4)

in the McLaurin expansion gf%) , is then-fermion (nucleon

or quark matrix element of thé€pion) 3 double commutator the chiral charges being constants of the motion in the chiral

5 limit
1
$=3 2 [Q5.[Q5,H,se(0]], (1) [Q2.7,]=0. ®)
Now apply this equation to the nuclear matter state ket
is |a)=|p)=|nN). We shall work in a large but finite box of
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volume () in order to avoid momentum-conserving Dirdc  (nN|X|nN)
functions, which are replaced by Kronecker ones. This also 5
means that we can have a finite baryon densityn/{) with- 1

out taking the number of baryons to infinity;—, which 3 > f
we leave for the very last step. Therefore

(m?(K)|S|m*(k)){nN[nN)

2 |im
a=1 k—0

+ n<7Ta(k)N|S| Wa(k)N>connecte971<nN| n N>

= n
<2>p <P|E|P> + 2 <7Ta(k)(2N)|S|Wa(k)(ZN»connected
= lim (nN|Z|nN)
n=p—x
.13 XQ73(nN|nNy+ - - -
= lim 2 X (ANI[QS.[QS. H,sa(O)]]INN) .
n=pQ—ow 2 a=1 1 " In
=—2 > f2lim ()
1 3 3a:1 k—0 =1 J
:—gff, lim lim >, (73k)nN|S|72(k)nN), ,
n=pQ— k-0 a=1 XQ?J<7Ta(k)(jN)|S| 71'a(k)(jN)>connecteénN|nN>'
(6) (7

Now turn this back into a statement about theerms
where we used the fact that the finite densitgro tempera-
ture) ground state wave function is just the wave function of (NN|Z|nN) n
n nucleons at rest enclosed in a box of volufde Formula W: ZO
(6) relates the finite densit}, term matrix element to the )
exact(forward) scattering amplitude of soft, i.e., vanishing
four-momentum K= 0) pion fromn nucleons at rest.

Here we have merely used the definition of théerm to
rewrite the object of interest in terms of &matrix element.
To be sure, no new information was gained in this step and
no loss of generality. The result is that we may now use th
general results o6matrix theory. That, in turn, allows a
Feynman-diagrammatic organization of our problem. The (

n\(1\l _
])(6) <]N|E|JN>connected (8)

We are now ready to take the thermodynamic lifdit- o at
(finite) constant density. Since we assumed a large box to
begin with, the baryon numbem=p() contained therein
Jpay be taken to be far larger than any given order in the
Hower expansiom>j and in the thermodynamic limin
o0 one may write

most important property of th8 matrix in this regard is its
decomposability into disconnected and connected parts. The
latter part falls further into reducible and one-, two-, three-
particle, etc., irreducible classes. Specifically, in our case ofvhich leads to the announced result
pions and nucleons we may separate the edetsenberg _
representationS matrix into the following distinct catego- i 1/n\ )

ries: (i) the completely disconnected grafdne pion anch (pZ]py="lim EO F(ﬁ) (INIZ[iN) connected

9

n) n! ni
i) itn=projr

n

baryons all propagating without interactjor(ii) n simply n=pQ—= 1=
connectedwN scattering amplitudes multiplied byn¢ 1) =)
disconnected baryon lines, afid) and => F(jNIEIjN)Connected Q.E.D. (10
j=oJ!
_ when the nuclear ground state is normaliZetp)=1. It is
n\ n(n—-1) . . h
=% manifest that this result does not hold finite systems at

ordersj comparable to the total baryon numbrer

A reminder seems in place that this series nesd
] ] . o uniquely determingX.) , for arbitrary values op because its
simply connectedrNN scattering amplitudes multiplied by radius of convergence may be small, or even zero. One pos-
(n—2) disconnected baryon line, e{6]. Each of the dis-  gjple reason for such a behavior of a power series is that it
connected subdiagrams has its own momentum-conse&vingreally is a Laurent one, i.e., the function may have poles
each disconnected baryon Iir]. Therefore Explicit calculations will show this to be the case.

B. Consequences

This, of course, means that the dimension of the varbusrm
matrix elements varies with the number of nucledbaryons and
quarks more generallythe vacuun® term has dimensioM?#, the

3
(singlednucleons, term has dimensioM?, etc., i.e. M4~ 3" for the s hZE S (0% [ Q8 Hoeef 0)T1=Humea0),  (11)
n-nucleonX term. mech™ 3 &4 L5515, "tmec mecitY),

Note that the “mechanical” sigma operator
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equals the “mechanical’ySB Hamiltonian - .

Himecr= ¥ MoW = mouu+midd, N

due to the current quark masses, or the bare nucleon mass
term (a)

Humeci= NMIN=MSpp+M2nn.

Our result(10) holds either for quarks, or for baryons as the

fermions. Since the chiral symmetry breaking is defined in ™ T " T
terms of quark degrees of freedom, but we do not know the . + o
solution to the quark dynamics in baryons, we must first . % ~A7

——N < N N ——<»>—a>— N

establish, or rather postulate a relation between the quarks’
and the observable hadrons’ properties. One assumption
common in the literature is thay=33 .2 Assuming, by (b) ©
the same token, effective proportionality of the nucleon and
guark condensates, our EQ.0) leads to a statement about
the quark condensate at finite baryon density

FIG. 1. Feynman diagrams contributing to the “elementary”
7N elastic scattering amplitudéa) the o-pole graph, andb), (c)
the nucleon-pole graphs. The zig-zag line denotesraeson, the

— — dashed one a pion and the solid one a nucleon.
(NN), _(qq), _

(NN)o (aa)o

i
- —{(jN|X|jN
(f=mz) 121 j! (INJZ[IN)comeceed culations having been done befdi2—4]. This calculation

(12)  will be with (free) nucleon degrees of freedoms, new meth-

_ . _ . ~ods for calculation ofr terms in interacting nucleon systems
The j=1 term together with the unity on the right-hand side having been developed only recentij.

form the Drukarev-Levin LDT. The rest of this formula ap-
pears to be new.

This form of the LDT has been used to argue about the
behavior of the pseudoscalé?S meson masses at nonzero  The one-nucleon connectédterm can be extracted from
baryon density. We remind the reader that the quark conderihe elasticN scattering amplitude, which in the linear
sate is not the only density-dependent variable influencingnodel is given by the sum of the three diagrams in Fig. 1:
the PS meson mass—one must take into accounfntioelel  two nucleon-pole diagramgh) and(c), and ones-exchange
dependentPS meson decay constant’s density dependencgraph(a). These have been calculated many tirfiel and
as well, which is not commonly done. Lest this result leadswill not be repeated here.
one to believe that the problem of the density dependence of The pion-two-nucleon connected matrix element is sub-
PS meson masses is solved, we remind the reader that neittatantially more complex: there are more than 50 connected
the radius of convergence of the series is known, nor do weiagrams in the lowest-order perturbatii®orn) approxima-
have, as yet, an efficient algorithm for calculating the highertion. All of them are, by definition, reducible diagrams. We
order coefficients in the expansion. We next present an exseparate these graphs into three distinct subggjspion
ample of a perturbative calculation in tifehiral) linear o  “rescattering,” (2) pion scattering on ar-meson-in-flight,

A. One- and two-nucleoneo terms in the linear o model

model and its iteration to arbitrarily high order. (3) initial-, final-, and intermediate-state interaction dia-
grams.
IIl. AN EXAMPLE (1) Eighteen (23 3) of these graphs form the simplest

connected, reducible “pion-rescattering” amplitude that is
Before we proceed we remind the reader of the assumpuilt up from two pion-one-nucleon effective vertices, Fig. 1.
tions of the LDT: the matrix elements must be either theTheir contribution equals
exact Heisenberg representation ones, or approximate matrix
elements that satisfy the underlying chiral Ward identity . w2
(master formula The former is beyond our powers, the lat- (Z)on=-2 f.m_)
ter are available, mostly in the form of perturbative solutions,
though solutions to several models have been found that suffpe currently accepted value of the nucleon sigma term
certain infinite classes of Feynman diagrame shall not )y lies between 45 and 65 MeV.
consider those approximations heré/e shall calculate the (2) Only the S terms of scalar states, discrete or con-
terms ofO(p?) in the chiral linears model, theO(p) cal-  tinyum, exchanged between the two nucleons contribute to
the two-nucleor®, term.[This follows from the fact that the
3, term is a Lorentz scaldrln the first Born approximation
It is clear that this amounts to the “impulse approximation,” but to the linears- model the only such object is themeson, so
it was recently shown that the two-quark operator correctionst ~ we end up having to calculate & term and its contribution
exist[7] if chiral symmetry is to be preserved. to the two-nucleor, term. Four Feynman diagrams, see Fig.
%The idea that the elastie-nN scattering amplitude is related to 2, contribute to the elastic piom-meson scattering ampli-
the p dependence o(faq)p is implicit in Refs.[8—10. tude and hence also to itsterm. The result is

(13
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(2)
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FIG. 3. The pion-two-nucleon scattering amplitud@ the
o-meson, term effective graph(b) intermediate-state interaction
graphs/(c) initial- and final-state interaction graphs. Graghsand

" . , 4 " T (c) may be termed\N correlation effects. The square box with four
. ’ + AN e external nucleon lines denotes N potential due to the exchange
AN £ ~ ¥ . . “ -
N ’ S of a single pion andr meson. The hatched “blob” ifia) represents
T NN+ ANAN O T AN \NE2NAN, O

the “elementary” =N elastic scattering amplitude, such as the one
shown in Fig. 1 in the lineak model.
() (@)

S)on=(Z) i+ (3)5

FIG. 2. Feynman diagrams contributing to the “elementary” (R)an=(2)at (2o
wo elastic scattering amplitudé) and(b), i.e., to theo-meson’sS, 2( —(E)N) 2 3( gomw) 2
=— 1,

term. m (16)

' o

for the total. With the currently accepted value of the
mass, the second term exceeds the first one.

One feature of this result stands out: the appearance of the
second power of the single-nucleotterm coming from the
repetition of the one-pion reducible diagrams involving the
“primitive” (elementary single-nucleono term contribu-
tions. It has been pointed out by Erics8] that this sort of

(o|2|o)y=3m2. (14)

Inserting this result into the two-nucleanterm we find

2
(3)4 :3gg(m_z>’ (15) behavior generalizes to higher orders of perturbation theory,
N m, Fig. 4, and that the graphs can be resummed into a geometric

progression. We shall address that question next.

wherego=(gaM/f;)=12.6 is theo-nucleon coupling con- B. Iteration of primitive contributions
stant. The currently accepted value of themass lies be- in the N-nucleon o term

tween 400 and 1200 MeY12]. . : .
(3) These araot all of the reducible graphs at this order, In the foregone analysis one may have no_t|ced that certain
- . lower-order graphs are repeated in the higher ones with
however, all of the remaining graphs can be described as

either initial-, intermediate-, or final-state interactions, see P >

Fig. 3. They are formed either by having a complete pion- . .
nucleon scattering amplitude attached to one external . P .
nucleon line, or by having a pion-nucleon vertex attached to . / .
two external nucleons in the sum of one meson exchanges {

between the two nucleon@he NN potentia). This one- P3 - ®_ﬁ_
meson exchange potential ought to be summed into an infi- /7

nite ladder by iteration of the Bethe-Salpeter equation and P, - @ Lo
thus made to form a proper interactidgN (scattering or ' 7

bound state. In the end, this summation is equivalent to the \ - @ >
introduction of NN correlations into the nuclear matter. /

These diagrams diverge vacuq although they are Born //

diagrams, because the intermediate nucleons are on their

mass shells, due to the external soft-pion condition. FIG. 4. An example of orden=3 reducible single-nucleon

Points(1) and(2) put together lead to pion-rescattering graph.
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simple regularity. The multiplicities of these graphs can be n\/n-2 2
figured out and the infinit¢subseries resummed. We shall (nN|E|nN)|“‘e"e“:—(2>( ) )(2)
show that several classes of such diagrams sum into geomet-

ric series. That result is particularly useful because its prop- — (30| "2

erties, such as the radius of convergence and the analytic X(—mrfr) (f,m,)?

structure are well known. Yet, as we shall show, uncritical
application may sometimes lead to erroneous conclusions. ( (2)on
=-—n!

Single-nucleon pion rescatteringhe connected but re- 2mf2
ducible diagrams, Fig. 4, consisting of individuaN elastic

scattering amplitudes connected by a single pion line carry-
ing zero four-momentum can be written as The iteration of such two-nucleon pion rescattering dia-

grams, together with the vacuum term, leads once again to a

) (f.mn)2 (19

<nN|2|nN>rescatt:n!<2>&(_miffr)(lin)' (17) geometric progression:
where the factor #m? comes from the propagation of a (WN>p n'even_ (aq)p reven
soft 7, the (2 )\f-? comes from a single irreducible elastic (NN) - (qq)
7N scattering amplitudévertex for softpions, anch! is the O lirr Ol
number of identical graphs. Hence the infinite series of such * o 1 n
connected one-pion-reducible graphs is readily summed up =1+ 2 \/ —5(3)n
as n=>2a,... \f.m, 2
— _ * _ 2 s n
@0, @ (e “1e 3 [
=1.2,... al
<N >O rescatt <qq>0 rescatt n= (f m ) ’ 2<2>
p 2N
_ p{X)n =1 5> m 2} (20
= 1+W (18) ( T 11-)

(i) For n-odd the amplitude is in the form of a product of
exN (or wmN graph, withm-odd) and (h—1)/2 [or (n
—m)/2] two-nucleon irreducible graphs connected hy (
(f.m, )2 +1)/2 pion propagators. Since one can select the sintle
graph to be any of the nucleon lines, and the first pair in
2’1) many ways, the second pair i@’(?’) many ways, etc.,

one finds
n—1\/n-3 2
) o |l

)(n—l)/Z

Since this is a geometric progression, the series has a fmﬂgn
radius of convergencén p) given by

p=lpel =53 7

which equals roughly twic¢l.8), or three times the normal
nuclear density fo(3 )y =65, 45 MeV, respectively.

It seems obvious that the complete series including all (NN|S [nNY|m-odd=p
diagrams, at best can have the convergence properties of the
worst-behaved subseries. In other words, our resummation of
the one-nucleon pion rescattering diagrams seems to tell us (3) (—<2>2N
the maximum reliable density calculable with such diagram- miffT
matic methods. An important practical consequence of the

above reasoning and of the empirical value of the kaon- :n!<E>N(_<E>2N)(n b (21)

nucleon sigma tern{3,)xny=200 MeV is that the radius of Zmezﬂ

convergence of the series relevant to kheondensation is at

best a fraction of one normal nuclear density. SurprisinglyHence we conclude

this conclusion turns out to be only qualitatively correct, due

to cancellations from other two-nucledh term contribu- (NNy, n-odd (qa), n-odd

tions. We shall explicitly show that in the linearmodel the —_ =

inclusion of another two-nucleod term into the infinite (NN)o (aa)o

series leads to an increase in the number of poles, change of (3) % ()

their positions and to an increase in the radius of conver- - p—Nz_ p—'\‘z

gence of the series. (f-m)* n=33,... (f.m;)
Two-nucleon pion rescatteringThe connected two- n—1

nucleon “pion-rescattering” graphs fall into one of the two % L, [ E@)zm)

categories{i) evenn and (ii) oddn, and will be dealt with f.m, 2

accordingly. o
(i) In the former case, one part of the amplitude is in the __ PN ( _pz<2>2N) "

form of a product ofh/2 pion-two-nucleon graphs connected (f Mm% n=dT2... \ 2(f,m,)?

by n/2 pion propagators. Since one can select the first pair in ) 1

(5) many ways, the second pair i§ ¢) many ways, etc., __ PN 1P (Z)an 22)

one finds (f,m)?| ™ (f,m,)?
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Putting these two together we find conjecture In the linearac model the three-nucleon critical
_ — neven — . Inodd densitypc3 is larger than the two-nucleon ong,, the 4N
(ifﬂp _ (ifﬂp N <iq>p pc, higher than the 3N one, etc.
(dg)o  (da)o (ad)o
IV. SUMMARY AND CONCLUSIONS
—l1- p{X)n 14 pHZ)an | 7F 23) o o o
(f.m_)? 2(f.m.)? In summary, in this paper we hay@ given an explicit

formula for thenth-order term in the powers-of-density")
This result has two conjugate poles in the complex densitgxpansion of the nuclear matter sigma tef#), and of the

plane at a distance nuclear matter fermion condensatgg), in particular, (ii)
2 calculated theD(p?) coefficient in the Born approximation
pl<p? = M to the linearo model, (iii) iterated these primitived(p?)
2 | =(Z)an terms to infinite order(iv) found poles and radii of conver-
gence associated with two such resummations. Thus we
found that the “larger” of the two sums actually has the

from the origin. It is clear that the model- and
approximation-dependent sign @f ), determines the posi- larger radius of convergence.

tion of the poles in the c_omplepx plane, and in particular if Perhaps the most important conceptual contribution of
they are on the real axis, or not. For instance in the Bory,ig naner is that of putting the older “intuitive” calculations
approximation to the lineas model onto formally sounder grounds of quantum field theory. In
2 particular, we have shown that the fundamental elements of a
) , calculation of(X), are the connected-nucleon term ma-

m’ﬂ
<2>N:90f7r(m— -1
trix elements. All calculations ofqq), can be reduced to

(o8

therefore these elements. Moreover, this result gives a clear definition
of the “NN correlations” in this context.
Jom,;|? gom,;\ 2 Some of the ideas introduced in this paper may have been
<2>2N:_2( mi +3 2 ) tacitly assumed in earlier work, most notably that by the

Manchestef9] and the Lyon groupg,10]. Ericson[8] cor-
(gomw) 2 rectly concluded that the resummation of the single-nucleon

3, term leads to a geometric progression in the baryon den-
sity. Similarly, Birse and McGoverf9] came close to for-
1 ... mulating the correcO(p?) prediction of the LDT in the
= §<2>2N' (24 linear o model. Finally, some of the diagrammatic methods
used here were developed in the 1960’s and 19/8)%3,14
Thus in the linear model(X.),y, is positive, as given in Eq. for the description of pion propagation in nuclear matter.
(14), and the poles are at imaginary densit:'!na*'soC2 a factor

J2 larger in absolute value tham1 predicted by the one-

nucleon rescattering series. The author would like to thank K. Kubodera and F. My-
This sort of analysis can and ought to be extended to 3hrer for valuable discussions and comments on the manu-
4-, and highemN-pion rescattering graphs. We close with a script.
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