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Elliptic flow and Hanbury-Brown –Twiss correlations in noncentral nuclear collisions
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Elliptic flow and Hanbury-Brown–Twiss correlations~HBT! are studied for noncentral relativistic nuclear
collisions. Azimuthal asymmetries show up in both elliptic flow and HBT radii and are calculated in both
collisionless and hydrodynamic limits relevant for peripheral and central collisions, respectively. Determining
the reaction plane and measuring the HBT radii as a function of the angle between the reaction plane and the
particle momenta can determine the physical quantities as source sizes, deformations, emission times, duration
of emission, and opacities. Comparison to SPS data and predictions for RHIC and LHC energies are given. The
centrality dependence with and without a phase transition to a quark-gluon plasma is discussed—in particular,
how the physical quantities are expected to display a qualitative different behavior in the case of a phase
transition.@S0556-2813~99!06405-5#

PACS number~s!: 25.75.2q, 25.70.Pq
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I. INTRODUCTION

The azimuthal asymmetries in momentum spectra usu
referred to as directed and elliptic flow are large in nucl
collisions at intermediate energies@1# which allows experi-
mental reconstruction of the reaction plane. Also in relat
istic nuclear collisions at the AGS@2# and SPS@3# aniso-
tropic flow has been found in semicentral collision
Likewise, the Hanbury-Brown–Twiss~HBT! analyses have
successfully been made, however, so far without simu
neous reconstruction of the reaction plane. The statistics
permit this in the near future and the prospects look good
the RHIC and LHC colliders, where the multiplicities a
much higher and the number of pairs entering the H
analyses grow with the multiplicity squared. Particle interf
ometry ~HBT @4#! may also show source asymmetries@5,6#
spatially and complement the momentum space informa
of flow. Earlier studies of directed and elliptic flow by hy
drodynamics@7# as well as by the cascade codeRQMD @8,9#
has been compared to AGS and SPS data with some suc
The data shows interesting transverse momentum and ra
ity dependences for pions and protons that cannot be
plained by these models.

The aim of this work is to return to the basic physics th
leads to azimuthal anisotropies in semicentral collisions
both coordinate and momentum space which are relevan
the HBT radii and anisotropic flow, respectively. We sh
derive simple analytical formulas for elliptic flow and HB
radii in both the collisionless and hydrodynamic limits re
evant for peripheral and near-central collisions, respectiv
A combined analysis of HBT and anisotropic flow yield
detailed information on the particle source at freeze-out
well as the expansion from the initial collision and up
freeze-out. General properties as the initial geometry, sh
owing effects, expansion, and freeze-out can be determ
through detailed measurements on source sizes, defo
tions, lifetimes, duration of emission, opacities, transve
and elliptic flow. We discuss the effects of a phase transit
PRC 590556-2813/99/59~5!/2716~12!/$15.00
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occurring when the energy densities become high enoug
form a quark-gluon plasma at some semicentrality. The c
trality, ET or dN/dy dependence of a number of measura
quantities as the ratio of the elliptic flow to the deformatio
duration of emission, opacity, etc., may display an intere
ing behavior.

The paper is organized as follows. First we describe
geometry of semicentral relativistic nuclear collisions a
discuss the azimuthal asymmetries and deformations of
overlap zone in Sec. II. In Sec. III we calculate elliptic flo
in the collisionless and hydrodynamic limits relevant for p
ripheral and near central collisions, respectively, and co
pare to recent SPS data@3#. HBT radii are calculated for
deformed sources in Sec. IV. In Sec. V we discuss the qu
tative behavior of a number of physical quantities from
liptic flow to HBT radii—with and without a phase transitio
to a quark-gluon plasma. Finally a summary is given.

II. GEOMETRY OF SEMICENTRAL COLLISIONS

In noncentral nuclear collisions the reaction plane bre
azimuthal symmetry. The asymmetry decreases with cen
ity and vanish for the very central collisions~see Fig. 1!.

We will use the termcentrality as impact parameterb in
the collision. It is not a directly measurable quantity but
closely correlated to the transverse energy producedET , the
measured energy in the zero degree calorimeter, and the
particle rapidity densitydN/dy. The latter is again approxi
mately proportional to the number of participating nucleo

Npart5E
overlap

FrS r1
b

2D1rS r2
b

2D Gd3r . ~1!

The number of participants for colliding two spherical nuc
of radiusR is shown in Fig. 2 as a function of impact param
eter.

The standard geometry has thez direction along the lon-
gitudinal or beam axis and thex direction along the impac
2716 ©1999 The American Physical Society
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PRC 59 2717ELLIPTIC FLOW AND HANBURY-BROWN–TWISS . . .
parameterb. Thus (x,z) constitutes thereaction planeand
(x,y) the transverse direction withy perpendicular to the
reaction plane. It is convenient—also for comparison to H
analyses—to employ Gaussian parametrizations for an
tropic sources in both transverse directions

S'~x,y!5
1

2pRxRy
expS 2

x2

2Rx
2

2
y2

2Ry
2D . ~2!

Here, the Gaussian transverse sizesRx andRy increase with
time as the source expands after the collision. The ini
transverse radii, i.e., the rms radii of the overlap zo
weighted with nuclear thickness functions, are shown in F
2. For HBT the relevant radii are, however, those at free
out which are larger due to expansion as discussed belo

FIG. 1. Reaction plane of semicentral Pb1Pb collision for im-
pact parameterb5RPb.7 fm. The overlap zone is deformed wit
Rx<Ry . The reaction plane (x,z) is rotated by the anglef with
respect to the transverse particle momentump' which defines the
outward direction in HBT analyses.

FIG. 2. Transverse radii of nuclear overlap, deformation, nu
ber of participants and elliptic flow parameter@see Eq.~9! and text#
versus impact parameter.
o-

l
e
.
-
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The azimuthal asymmetry or ‘‘deformation’’ of th
source can be defined as the relative difference between
Gaussian radii squared

d[
Ry

22Rx
2

Ry
21Rx

2
. ~3!

A simple estimate can be obtained from the full transve
extent of the initial overlap of two nuclei of mass numberA
and radiusRA.1.2A1/3 colliding with impact parameterb
~see Fig. 1!. They areRx5RA2b/2 and Ry5ARA

22b2/4,
and the corresponding deformation is

d5
b

2RA
. ~4!

The rms radii of the nuclear overlap zone weighted w
longitudinal thicknesses results in deformations~see Fig. 2!
that are slightly smaller than Eq.~4! at semicentral collisions
However, as the source expands the deformationd.(Ry
2Rx)/(Ry1Rx) decreases for two reasons.

First, the expansion increase (Rx1Ry) as is found in HBT
and Coulomb analyses@11#. Secondly, (Ry2Rx) decrease
because the average velocities are larger in thex thany di-
rection. The latter is a consequence of the experiment
measured positive elliptic flow@v2.0 in Eq. ~5!# in relativ-
istic nuclear collisions where shadowing is minor@2,3#. Mea-
suring the decrease of the deformation with centrality w
reveal important information on the expansion up to free
out. For very peripheral collisions, where only a sing
nucleon-nucleon collision occurs, the source must be
muthally symmetric, i.e., the deformation must vanish a
therefore Eq. ~4!, which assumes continuous densitie
breaks down.

III. ELLIPTIC FLOW

The reaction plane, which breaks azimuthal symme
has been successfully determined in noncentral heavy
collisions from intermediate up to ultrarelativistic energi
@3#. The particle spectra are expanded in harmonics of
azimuthal anglef event-by-event@7#

E
dN

d3p
5

dN

pt dpt dy df
5E d4x n~x,p!

5
dN

2ppt dpt dy
@112v1 cos~f2fR!

12v2 cos 2~f2fR!1•••#, ~5!

where n(x,p) is the particle distribution function in spac
and timex5r ,t andfR is the azimuthal angle of the reactio
plane. Assuming that the experimental uncertainties in ev
plane reconstruction can be corrected for, each event ca
rotated such thatfR50. The asymmetry decreases with ce
trality @see Figs. 1 and 2 and Eq.~4!# and vanish for the very
central collisions which are cylindrical symmetric. The e
pansion parameters arev1 for directedflow andv2 for ellip-
tic flow.
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2718 PRC 59HENNING HEISELBERG AND ANNE-MARIE LEVY
At Bevalac energies where the directed flow in semic
tral collisions of heavy nuclei is up to 20°@1# with respect to
the beam line. The directed flow decrease with energy an
only ;1/20° at SPS energies@3#. At AGS and SPS energie
there are now very accurate measurements for protons, p
tive and negatively charged pions as a function of rapid
and transverse momentum@2,3#. Both pions and protons ar
found to have elliptic flow in the reaction plane at AGS@2#
and SPS@3# energies, i.e.,v2.0 for all rapidities and trans
verse momenta. At SPSv2&0.1 for protons but smaller fo
pions as well as for protons at AGS. We refer to Ref.@7# for
recent results on flow in relativistic heavy ion collisions.

At collision energies below a few GeV the nuclei shado
the collision region in the reaction plane. Consequently,
flow is ‘‘squeezed out’’ in they direction, i.e.,v2,0. At
ultrarelativistic energies Lorentz contraction of the nuclei
duce the amount of shadowing at midrapidities and one fi
that v2.0. We will in the following restrict ourselves to
ultrarelativistic energies and midrapidities where effects
shadowing are minor.

A. Collisionless limit and peripheral collisions

In peripheral collisions the nuclear overlap zone is sm
and at relativistic energies the expansion is fast. Produ
particles can therefore escape from the collision zone alm
without interacting with the other particles, i.e., the system
close to free streaming and the collisionless limit. We c
then calculate the first order correction to free stream
from particle collisions. This approximation is valid whe
the particle mean free pathslmfp.(sr)21 are larger than
the overlap zoneRx,y(b). For pions and protonslmfp of or-
der a few fm’s for particle densities of order nuclear satu
tion densities, i.e., comparable to source sizes in semice
collisions. If we assume that particles initially are produc
azimuthally symmetric in momentum space but not in co
dinate space, these subsequent interactions with como
will produce an azimuthally asymmetric momentum distrib
tion because the source is azimuthally asymmetric spatia

We shall not attempt to describe the initial hard nucleo
nucleon collisions, the fragmentation, or particle producti
Our starting point is some initial conditions at formation tim
t0;1 fm/c and consider the subsequent scatterings betw
comovers described by the Boltzmann or Nordheim@12#
equation

S ]

]t
1vp•¹ Dn15E d3p2

~2p!3
dVv12

ds

dV

3@n3n4~16n1!~16n2!

2n1n2~16n3!~16n4!#. ~6!

Here,ni5n(r i ,pi ,t) is the particle distribution function an
ds/dV is the c.m.s. differential cross section for scatteri
particles 112→314. Stimulated emission and Pauli bloc
ing are included by the6 factors.

To evaluate the effect of collisions on the distributio
function in Eq.~6! we assume Bjorken scalingvz5z/t ini-
tially at invariant timet0. As usual, the space-time rapidity
h5(1/2)ln@(t1z)/(t2z)# and t5At22z2 is the invariant
time. The transverse particle density distribution is appro
-
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mated by simple Gaussians as in Eq.~2!. The free streaming
distribution is then at later times

n~x,p!5 f 0~p' ,pz8!S'@r'2v'~t2t0!#. ~7!

Here, r'5(x,y) is the transverse radius,v'5(vx ,vy) the
transverse velocity. The local particle momentum distrib
tion f 0(p) is discussed in detail in Appendix A; in the fina
result it can be rewritten in terms of final measured mom
tum distributionsdN/d2pt . The scaled longitudinal momen
tum

pz85
t

t0
m' sinh~h2y! ~8!

takes the free streaming longitudinally into account@13#.
Transverse expansion of the source is incorporated by
Galilei transformations of the transverse coordinates (x,y).
Note that the momentum distribution of produced particles
azimuthally symmetric at initial production timet0. The de-
tailed form of f 0 will not be necessary for the evaluation o
elliptic flow or HBT radii. It is sufficient to know the rapidity
densitydNj /dy of the scattering particlesj.

In the collisionless limit we can now insert the fre
streaming distribution function in the collision term in ord
to calculate the first order correction to the distribution fun
tion from Eq. ~6!. This correction provides the deviatio
from cylindrical symmetry and directly leads to elliptic flow
v2

i for particle speciesi 5p,p,K, . . . , as isevaluated in de-
tail in Appendix A

v2
i 5

d

16pRxRy
(

j
^v i j s tr

i j &
dNj

dy

v i'
2

v i'
2 1^v j ,'

2 &
. ~9!

Here,v i is the particle,v j the scatterer, andv i j the relative
velocity. The averageŝ•••& refer to averaging over scattere
momentapj . Since it is the momentum transfer in collision
that deforms the particle momentum distribution around
lindrical symmetry, it is naturally themomentum transpor
cross sections tr

i j that enters. The elliptic flow parameter
proportional to the deformation and necessarily vanishes
an azimuthally symmetric source.

The other important factors in the elliptic flow are

s̃ i j [
dNj

dy

^v i j s i j &
pRxRy

. ~10!

It is the cross section times a transverse particle density
thus describes the effective ‘‘opacity’’ of the source for pa
ticles i scattering with particlesj.

It is remarkable that the initial timet0 does not enter in
Eq. ~9!. Thet0 dependence cancels to first approximation
explained in Appendix A, due to a compensation betwe
the densities decreasing with expansion time and that s
terings only lead to asymmetries as they pass through
source with time. The physical reason for the ‘‘late time
dominance in elliptic flow is that a particle has to travel
distance;R before it feels the source deformation, i.e
whether it moves in thex direction, or in they direction
which differs by a distanceRy2Rx.dR. This also explains
why the elliptic flow is proportional tov i'

2 . The slow par-
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ticles do not travel far enough to feel the deformation bef
the source has expanded by velocityv i j ,' .

The centrality dependence of the elliptic flow can be
timated from Eq.~9!. In high-energy nuclear collisions th
total multiplicity dN/dy scales approximately with the num
ber of participating nucleons, Eq.~1! which is shown in Fig.
2 as function of impact parameter together withRx(b),
Ry(b), andd(b). The resulting centrality dependence ofv2
from Eq. ~9!, assuming thatdNj /dy are also proportional to
the number of participants, is shown in Fig. 2 as well.
vanishes for central and grazing collisions, has a maxim
for peripheral collisionsb.1.5R and decreases almost lin
early with increasing centrality. A very similar behavior w
found in the hydrodynamic calculations of Ollitrault@7#.

B. Hydrodynamic limit and semicentral collisions

In semicentral collisions at relativistic energies, whe
large particle densities are produced, rescatterings are a
dant and the hydrodynamic limit~see, e.g., Ref.@7#! is better
than the collisionless—at least up to freeze-out. We will h
attempt to extract some general features in the hydrodyna
limit and derive an approximate analytical formula for t
elliptic flow. Instead of introducing two independent tran
verse flow velocities (ux ,uy) we relate the transverse flow t
the spatial deformation by the plausible assumption that
transverse flow isequipotential, i.e., perpendicular to and
with constant magnitude on equidensity surfaces. This
sumption is obvious for cylindrical symmetric sources. Al
for a very deformed source, which appears as a slab in
transverse direction, the flow is perpendicular to most of
freeze-out surface. For a rectangular source the flow is
tially also perpendicular to the surface in all directions but
the source expands deviations may occur at the corners.
cerning the constant magnitude of the transverse flow on
freeze-out surface, that may be justified for deformed sou
by the following observation. In the Riemann solution
one-dimensional~1D! hydrodynamics, the flow velocity only
depends on time and the relative distance from the in
surface, i.e., (r 2R). As shown in Ref.@14# the Riemann
solution is also a very good approximation to the cylindric
case with longitudinal Bjorken scaling with an addition

scaling factor of (t0 /t)cs
2

for temperatures. For the slab o
the rectangular source, the magnitude flow velocities w
therefore only depend on the relative distances from the
tial transverse radii, i.e., (x2Rx) or (y2Ry). How good this
approximation is in general for near central relativistic hea
ion collisions should, of course, be checked by solving f
3D hydrodynamics.

With the simplifying approximation of equipotential flow
we can calculate the resulting particle spectrum for a loc
thermal distributionepu/T with longitudinal Bjorken flow

u5@g cosh~h!,g sinh~h!,u'#, ~11!

whereg5A11u'
2 . The transverse extent is parametrized

Eq. ~2!. With these assumptions the resulting momentum d
tribution can be found by integrating over the deformed eq
potential surfaces as described in Appendix B. The asymm
ric term gives the elliptic flow
e
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v255
1

4

p'
2 ^u'

2 &

T2
d, p'u'!T

1

2 S p'^u'&
T

21D d, p'u'@T6 . ~12!

It is expected that the elliptic flow is proportional to th
deformation which vanishes for central collisions. The r
evant deformation is now at freeze-out where the radii wh
may differ from the initial transverse radii is discuss
above.

The elliptic flow of Eqs.~12! depends only indirectly on
the unknown quantities as the initial densities, equation
state, expansion, etc., through the average transverse
temperature, and deformation. The transverse flow and t
perature can be extracted independently from transverse
analyses by looking at the particle mass dependence of
eragep' as suggested in Ref.@15# or by measuring theap-
parent temperatures@16#, i.e., the inverse of them' slopes.
As shown in Appendix C the apparent temperature obtai
from exponential fits to transverse mass spectra of mas
particles is

Tapp.T1
1

2
m^u'

2 &, ~13!

for large particle massesm and small transverse flow. Ex
perimentally, the apparent temperatures scales approxima
linearly with the masses of the pion, kaon, proton, and d
terium in central S1S and Pb1Pb collisions at AGS and
CERN @16# energies. From the experimental slopes 2dT/dm
we thus obtain̂ u'

2 &.0.15c2 and 0.3c2 for central S1S and
Pb1Pb collisions at SPS energies.

It is instructive to compare to another type of hydrod
namic flow parametrized by two transverse flow velocitie

u'5~uxx/Rx ,uyy/Ry!. ~14!

The resulting particle distribution can be calculated along
lines of Appendix B. The resulting elliptic flow is for sma
transverse momenta

v255
1

16

p'
2

T2
~^ux

2&2^uy
2&!, p'u'!T

1

8 S p'^u'&
T

21D ^ux
2&2^uy

2&

u'
2

, p'u'@T6 .

~15!

Comparing Eq.~15! to the elliptic flow data for protons o
Fig. 3 we can estimate the difference^ux

2&2^uy
2&.0.015,

i.e., an order of magnitude smaller than the average tra
verse flowu'

2 .(ux
21uy

2)/2.0.15 that was estimated from
Eq. ~13!. The elliptic flow of Eq.~15! is not related to the
spatial deformation as was the equipotential flow and the
fore its predictive power is less.

C. Comparison to elliptic flow at SPS energies

The elliptic flow as estimated by the collisionless and h
drodynamic limits may be compared to NA49 data at S
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2720 PRC 59HENNING HEISELBERG AND ANNE-MARIE LEVY
energies@3# taken for semicentral Pb1Pb collisions (b.R
.7 fm). Thep' dependence ofv2 for pions and protons is
measured at forward rapidities 4<y<5. We can take the
free cross sections and ignore medium effects since the
sities are small at late times when rescatterings lead
anisotropies~see Appendix A!. The relevant scattering cros
sections i j is that where nucleons act as scatterers beca
they are heavier than, e.g., pions and thus deflect more.
thermore, typical scattering cross sectionsspN are larger
than spp.10 mb @17#. The former is dominated by theD
resonance. Averaging of scatterer momenta we estim
spN.30 mb andsNN.40 mb. The transport cross sectio
are smaller because forward scattering without momen
loss should not be included. For an estimate we simply t
the transport cross section as half of the total cross sec
The relevant rapidity density is that of nucleons which
take from the NA49 experimentdNN /dy.30. From Fig. 2
we obtainRx.2 fm, Ry.3 fm, andd.0.4 for b5R. The
resulting elliptic flow is shown in Fig. 3 for pions and pro
tons. The estimates in the collisionless limit of Eq.~9! give a
reasonable description of both the magnitude andp' depen-
dence for both pions and protons. Furthermore, the meas
elliptic flow is largest at midrapidities and is approximate
proportional todN/dy as predicted by Eq.~9!.

In the hydrodynamic limit transverse flow couples top'

and elliptic flow is therefore expected to be the same for
particles at the samep' . The elliptic flow can differ if vari-
ous particle species freeze-out at different temperature
resonance decays affect the final distributions. The ellip
flow is shown in Fig. 3 for equipotential flow, Eq.~12!, with
T.160 MeV and^u'

2 &.0.15c2 as estimated above. An ex
cellent fit to the magnitude andp' dependence of proton
elliptic flow can be obtained with a deformation at freeze-o
of d.0.07. This value for the deformation is a factor;6
smaller than the initial deformation of the collision zone. It
expected to be smaller due to expansion between initial
lision and freeze-out but a full~311!-dimensional hydrody-
namic calculation is needed in order to check the magnit
of the deformation as well as the validity of equipotent
flow. The deformation at freeze-out can in principle be e

FIG. 3. Elliptic flow v2 for pions and protons versus transver
momentum. Data from NA49@3#. Curves represent the hydrody
namic limit of Eq.~12! ~full curve! and the collisionless limit of Eq.
~9! for pions ~dashed! and protons~dotted! ~see text for details!.
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tracted from HBT analyses as shown in the following sect
and would thus be an important independent check.

The pion elliptic flow cannot be explained in the hydr
dynamic limit as it differs from proton flow and does n
have the rightp' dependence. It is curious that the magn
tude of the pion elliptic flow lies between the collisionle
and hydrodynamic limit. This may indicate that semicent
Pb1Pb collisions at SPS energies lies between these
limits as one would expect since the particle mean free pa
are a few Fermi’s—comparable to the transverse source s
for b5RPb.7 fm/c. Comparing thep' dependence of ellip-
tic flow for pions and protons would reveal the change fro
collisionless expansion to hydrodynamic flow. In the col
sionless limit the pion and proton elliptic flow differ wherea
in the hydrodynamic limit they should become the same
shown in Fig. 3.

Calculations with theRQMD andVENUS models~see Refs.
@3,9# for detailed comparisons! give an almost rapidity inde-
pendent elliptic flow which underpredicts the SPS data b
factor ;224 at midrapidity. The smaller elliptic flow in
RQMD at midrapidities is attributed to ‘‘preequilibrium soft
ening’’ @8#. Hydrodynamic models results in correspondi
values forv2 which are;4 times larger for an ideal (cs

2

51/3) pion gas and;2 times larger when a first order phas
transition atTc;150 MeV is included@7#.

It is curious that the elliptic flow is less than a few perce
in relativistic nuclear collisions in comparison to the initi
spatial deformations which are of orderd.50% in semicen-
tral collisions. The reason can be understood in both
collisionless and hydrodynamic limits due to the limited tim
and distances that particles have to rescatter and dev
asymmetric collective flow before they freeze-out. In oth
words, the scatterings that lead to asymmetric flow occu
late times where the source and scatterers have already
panded and reduced the initial deformation.

The elliptic flow at RHIC and LHC energies would b
large if one simply extrapolates from intermediate, AGS a
SPS energies@3#. However, at the intermediate energi
shadowing is responsible for a negativev2 ~squeeze-out! and
is still felt at AGS energies. At SPS energies it may a
affect the forward rapidity data 4,y,5 where the projectile
nucleus is less Lorentz contracted and thus shadow. Bu
central rapidities at SPS and higher energies shadowin
minor due to the strong Lorentz contraction of nuclear siz
Therefore,v2 is unaffected by shadowing from SPS and
in energy, i.e., constant rather than increase as given b
naive extrapolation from intermediate, AGS and SPS en
gies. However, sincedN/dy and probably also the transvers
flow is larger at RHIC and LHC energies, we may expe
stronger elliptic flow. On the other hand, the expansion
duces the deformation and thus also the elliptic flow.

IV. HBT

A brief description of interferometry will be given de
scribing how to calculate correlation functions and HBT r
dii from a given source. The HBT radii will then be calcu
lated for deformed sources—transparent as well as opa
A brief description of results were presented in Ref.@18#. A
comparison is given and the advantages of a combined H
and elliptic flow analysis is discussed.
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Particle interferometry was invented by Hanbury-Brow
and Twiss~HBT! for stellar size determination@4# and is
now employed in nuclear collisions@19–24,10#. It is a very
powerful method to determine the three-dimensional sou
sizes, lifetimes, duration of emission, flow, etc., of pion
kaons, etc., at freeze-out. Since the number of pairs g
with the multiplicity per event squared the HBT method w
become even better at RHIC and LHC colliders where
multiplicity will be even higher.

The standard HBT method for calculating the Bos
Einstein correlation function from the interference of tw
identical particles is now briefly discussed. For a source
sizeR we consider two particles emitted a distance;R apart
with relative momentumq5(k12k2) and average momen
tum K5(k11k2)/2. Typical heavy ion sources in nuclea
collisions are of sizeR;5 fm, so that interference occur
predominantly whenq&\/R;40 MeV/c. Since typical par-
ticle momenta areki*K;300 MeV/c, the interfering par-
ticles travel almost parallel, i.e.,k1.k2.K@q. The correla-
tion function due to Bose-Einstein interference of identi
spin zero bosons asp6p6, K6K6, etc., from an incoheren
source is~see, e.g., Ref.@23#!

C2~q,K !516U E d4x S~x,K !eiqx

E d4x S~x,K !
U 2

, ~16!

whereS(x,K ) is the source distribution function describin
the phase space density of the emitting source.

Experimentally the correlation functions are often para
etrized by the Gaussian form

C2~qs ,qo ,ql !511l exp@2qs
2Rs

22qo
2Ro

22ql
2Rl

2

22qoqsRos
2 22qoqlRol

2 #. ~17!

Here,q5k12k25(qs ,qo ,ql) is the relative momentum be
tween the two particles andRi , i 5s,o,l ,os,ol the corre-
sponding sideward, outward, longitudinal, out-sideward, a
out-long HBT radii, respectively. We have suppressed theK
dependence. We will employ the standard geometry, wh
the longitudinal direction is along the beam axis, theout-
ward direction is alongK' , and thesidewardaxis is perpen-
dicular to these. Usually, each pair of particles is Lore
boosted longitudinal to the system where their rapidity v
ishes,y50. Their average momentumK is then perpendicu-
lar to the beam axis and is chosen as the outward direc
In this system the pair velocitybK5K /EK points in the out-
ward direction withbo5p' /m' , wherem'5Am21p'

2 is
the transverse mass, and the out-longitudinal couplingRol
vanish at midrapidity@23#. Also Ros vanishes for a cylindri-
cally symmetric source or if the azimuthal angle of the re
tion plane is not determined and therefore averaged over
has been the case experimentally so far. The reduction fa
l in Eq. ~17! may be due to long lived resonances@22,24,6#,
coherence effects, incorrect Coulomb corrections, or o
effects. It isl;0.5 for pions andl;0.9 for kaons.

The Bose-Einstein correlation function can now be cal
lated for a deformed source. Let us first investigatetranspar-
ent sources assuming that it is equally likely that a parti
e
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arrives at the detector from the front side of the source
from the back side, i.e., rescatterings through the source
opacities are ignored. As in Ref.@6#, we parametrize the
transverse and temporal extent by Gaussians

S~x,K !;S'~x,y!expF2
~t2t f !

2

2dt2 Gep•u/T, ~18!

with longitudinal Bjorken flowu5(coshh,0,0,sinhh) as in
Eq. ~11! without transverse flow. Effects of transverse flo
will be discussed below. The transverse radiiRx ,Ry are the
Gaussian radii at freeze-out,t f is the freeze-out time, anddt
the duration of emission.

In order to calculate the correlation function of Eq.~16!
the Gaussian approximations is employed~see, e.g., Refs
@22,23#! which results in a correlation function of the form
given in Eq.~17!. Inserting the source~18! in Eq. ~16! and
Fourier transforming we obtain the correlation function. T
HBT radii are then obtained by comparing to the experim
tal correlation function of Eq.~17!.

It is convenient to introduce the source average of a qu
tity O defined by

^O&[
E d4x S~x,K !O

E d4x S~x,K !

. ~19!

With qx.q–x2q–bKt one can, by expanding Eq.~16! to
second order inqiRi and compare to Eq.~17!, find the HBT
radii @23#

Ri
25^~xi2b i t !

2&2^xi2b i t&
2, ~20!

Ri j
2 5^~xi2b i t !~xj2b j t !&2^xi2b i t&^xj2b j t&, ~21!

with i , j 5s,o,l . The HBT radii are a measure for the fluc
tuations@25#, variance or ‘‘length of homogeneity’’@26# of
(xi2b i t) over the source emission functionS(x,K). One
should notice that the coordinates (xo ,xs) are rotated with
respect to the (x,y) reaction plane~see Fig. 1! by the azi-
muthal anglef between the transverse momentump' and
the reaction plane. The beam axis is the samexl5z. In the
local c.m.s. frame (y50) the pair velocity isbo5b' ,
whereasbs5b l50. All Ri j vanish in this frame for cylin-
drical symmetric sources and for an azimuthally asymme
source onlyRos is nonvanishing.

For transparent sources the azimuthal dependence o
HBT radii has been calculated in detail by Wiedemann@6#.
In the longitudinal center-of-mass system of the pairy
50), the HBT radii are

Rs
25R2@11d cos~2f!#, ~22!

Ro
25R2@12d cos~2f!#1bo

2dt2, ~23!

Ros
2 5R2d sin~2f!, ~24!

Rl
25

T

m'

~t f
21dt2!, ~25!
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where R25(Rx
21Ry

2)/2 is the average of the source rad
squared. One notices the characteristic modulation cosf)
due to the rotation of the axesRo,s with respect to the reac
tion plane. Near target and projectile rapidities the direc
flow is appreciable and leads to cosf terms in Eqs.~22!,~23!
@7,6#. The outward and sideward HBT radii show a chara
teristic modulation as function of azimuthal angle with a
plitude of same magnitude but opposite sign. Measuring
amplitude modulation ofRs,o,os determines five quantitie
and thus overdetermines the three source parame
namely, the source sizeR, deformationd, and duration of
emissiondt.

Next we consideropaquesources. In relativistic heavy
ion collisions source sizes and densities are large and
would expect rescatterings. As a result particles are predo
nantly emitted near the surface and arrive from the~front!
side of the source facing towards the detector. In Ref.@25# it
was found that for opaque sources, where mean free p
are smaller than source sizeslmfp&R, the sideward HBT
radius increase whereas the outward is significantly redu
simply because the surface emission region is smaller
the whole source. As in Refs.@25,27# Glauber absorption is
introduced by adding an absorption factor

Sabs~x,K !;expS 2E
x
sr~x8!dx8D , ~26!

where s is the interaction cross section,r the density of
scatterers, and the integral runs along the particle trajec
from source pointx to the detector. Defining the mean fre
path aslmfp5@sr(0)#21, wherer(0) is the central density
the source is opaque whenlmfp!R, and transparent whe
lmfp@R. Calculating the correlation function for an opaq
source from Eq.~16! and comparing to the definition of th
HBT radii in Eq.~17!, one generally obtains for small defo
mations

Rs
25gsR

2@11d cos~2f!#, ~27!

Ro
25goR2@12d cos~2f!#1bo

2dt2, ~28!

Ros
2 5gosR

2d sin~2f!, ~29!

andRl
2 is unchanged from Eq.~25!. Herego,s,os are model-

dependent factors that are functions of opacity but indep
dent of the deformation and can be calculated as for cy
drical symmetric sources. For a Gaussian source (r}S'),
which is moderately opaque (lmfp /R51), a numerical cal-
culation givesgs.1.4 andgo.0.9 ~see also Ref.@27#!. For a
disk source with the same rms transverse radius as
Gaussian radius~i.e., Rdisk52R), that emits similar to a

black body~i.e., lmfp!R), one findsgs54/3 andgo54@ 2
3

2(p/4)2#.0.2 @25#. Generally, (gs2go)>0 and the differ-
ence increases with opacity. Only for a completely transp
ent source isgs5go . In all casesgos.gs . In Fig. 4 the HBT
radii of Eqs.~22!–~29! are shown for a near-central collisio
(d50.4) with a moderate duration of emissio
(bo

2dt2/gsR
250.5) for various opacities lmfp /R

50.1,0.5,1.0,2.0,̀. As the opacity increases,go /gs de-
creases and therefore also the outward HBT radius and
amplitude.
d
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Comparing the HBT radii from an opaque source E
~27!–~29! with those of a transparent source Eqs.~22!–~24!,
one notices thatthe amplitudes in Rs and Ro differ by the
amount (gs2go). The modulation of the HBT radii withf
provides five measurable quantities which overdetermina
the four physical quantities describing the source: its sizeR,
deformationd, opacity (go2gs), and duration of emission
dt, at each impact parameter. The azimuthal dependenc
the HBT radii thus offers an unique way to determine t
opacity of the source as well as the duration of emiss
separately.

Experimentally, HBT analyses have not been combin
with determination of the reaction plane yet. Consequen
the azimuthal anglef is averaged and the information o
three of the five measurable quantities in Eqs.~27!–~29! is
lost. From the angular averaged difference between the
ward and sideward HBT radii

^Ro
22Rs

2&f5bo
2dt22~gs2go!R2, ~30!

one can only determine the sum of the positive duration
emission and negative opacity effect. Experimentally t
difference is small; NA49@10# and NA44 @19# data even
differ on the sign. Detailed analyses of thep' dependence of
the HBT radii from NA49 data within opaque sources@27#
indicate that the sources are transparent or at most mo
ately opaque. However, the NA44 data, for whichRo&Rs ,
requires an opaque source as seen from Eq.~30!. Further-
more, thep' dependence of the transverse HBT radii chan
if the source sizes, opacities, and duration of emission
alsop' dependent.

Transverse flow may affect the outward and sidew
HBT radii as opacity, i.e., the factorsgo,s may depend on

FIG. 4. HBT radii vs angle between reaction plane and tra
verse particle momenta. The HBT radii are normalized to the an
averaged sideward HBT radius squaredgsR

2 for the deformedd
50.4 source with duration of emissionbo

2dt2/gsR
250.5 and with

various opacities. The sideward HBT radius~full curve! is then the
same for both transparent@Eq. ~22!# and opaque@Eq. ~27!# sources
and likewise for the outside HBT radii@Eqs.~24! and~29!, dashed
curve#. The outward HBT radii are shown with chain-dashed curv
for a Gaussian source@Eqs. ~28! and ~23!# with various opacities
~from below and up!: lmfp /R50.1,0.5,1.0,2.0,̀.
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both. For transparent sources transverse flow has been
ied in @6,22,27# through Eq.~11! assuming that the trans
verse flow scales with transverse distanceu'.u0r' /R. Oth-
erwise the same transparent Gaussian source as in Eq.~18!
was employed. To lowest order in the transverse flow b
transverse HBT radii decrease by the same factor;(1
1u0

2m' /T) to leading order inu0. This transverse flow cor
rection is independent of the source size and therefore
the deformation. Consequently, spatial deformations redu
the amplitudes by the same amount in this model for b
transparent~see Ref.@6#! and opaque sources. There a
however, box shape models where the transverse flow re
Ro more thanRs @27#. A similar flow effect is found in
hydrodynamic models also@35# although it is considerably
less than the opacity effect, i.e., when the Cooper-F
freeze-out condition@28# is replaced by the Bugaev freez
out @29#. Preferably, a transverse flow analysis of parti
spectra should be performed in order to determine the m
nitude of the flow so that it can be separated from opa
effects. The crucial question, however, is whether the tra
verse flow is azimuthally dependent, i.e.,gs,o depend onf
and thereby change the amplitudes? We can estimate
effect from the elliptic flow. For a simple thermal source~18!
with transverse flow as in Eq.~14!, the resulting elliptic flow
Eq. ~15! led to a very small difference for semicentr
Pb1Pb collisions at SPS energies^ux

2&2^uy
2& less than a few

percent. Therefore, the azimuthal dependence of the flow
its effect on the amplitude in the HBT radii is also of th
order only which is much less thand.0.5 for semicentral
collisions. Both the deformation and elliptic flow decrea
with centrality. The conclusion is that besides opacity a
transverse flow may affect the factorsgo,s—but indepen-
dently of azimuthal angle. Therefore Eqs.~27!–~29! are still
valid and can be used to extract the duration of emiss
unambiguously.

It is very important to measure the centrality or impa
parameter dependence of the source sizes, deforma
opacity, emission times, and duration of emission in orde
determine how the source changes with initial energy d
sity. If no phase transition takes place one would expect
source sizes and emission times increase gradually with
trality whereas the deformation decreases approximatel
in Eq. ~3!. In peripheral collisions, where source sizes a
densities are small and few rescatterings occur, the sour
transparent and the HBT radii are given by Eqs.~22!–~25!.
For near central collisions source sizes and densities
higher which leads to more rescatterings. Thus the sourc
more opaque and the amplitudes should differ. It would
interesting to observe this gradual change in the amplitu
with centrality. At the same time it would provide a dire
experimental determination whether the source is transpa
or opaque as well as extracting the magnitudes of the opa
and duration of emission separately.

V. EFFECTS OF A PHASE TRANSITION

If the matter created in an ultrarelativistic heavy ion c
lision undergoes a phase transition it may affect the ellip
flow and the modulation of the HBT radii. The critical en
ergy density can be overcome either by increasing the c
trality, sizes of the colliding nuclei and/or by increasing t
ud-
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collision energy as will be possible at the RHIC collide
As.20→200 GeV. For energy densities just above the cr
cal value a mixed phase is created for a first order transi
with zero compressibility, i.e., vanishing sound speed. Ev
for a second order or smooth transition, the sound speecs

2

5dP/de is significantly reduced according to lattice calc
lations @30#. The resulting transverse flow is therefore r
duced@15# and should lead to smaller elliptic flow accordin
to Eq. ~12!.

Unfortunately, the elliptic flow and the modulation of th
HBT radii both scale with the deformation and thus decre
linearly with centrality and vanish for near central collision
where the phase transition might occur. However, by tak
the ratio of the elliptic flow to the amplitude of the HBT rad
v2 /d, the deformation cancel and the purely geometrical
fects are removed. Only the collective effects as transve
flow are left to first approximation. Since the transverse fl
has been found to increase with the size of the collis
system at AGS and SPS energies, we can also expect
increase with centrality in the absence of phase transitions
the presence of a phase transition, however, the transv
flow increase very little with centrality which results in
‘‘plateau’’ in the average transverse momentum as funct
of centrality@31,15#. The almost constant transverse flow f
centralities that produce a mixed phase should therefore
cording to Eq.~12! also show up in the ratiov2 /d versus
centrality such that the monotonic increase in transverse fl
andv2 /d is replaced at the critical centrality by a plateau
function of centrality as sketched in Fig. 5. The plateau
tends in an interval of semicentrality,c1→c2, where the
pressure is constant due to a mixed phase, i.e., vanis
sound speed.

The functional dependence ofv2 /d would be similar to
the van Hove prediction of the temperature as function
rapidity density@31#. Also it is similar to thecaloric curveas
was recently observed in intermediate energy nuclear c

FIG. 5. Schematic behavior of the centralitydN/dy or ET de-
pendence with and without a phase transition. From top to bot
the curves show the ratio of elliptic flow to deformationv2 /d,
opacitygo /gs , and duration of emissiondt. The expected behavio
without ~full curves! and with ~dashed curves! a first order phase
transition occurring in a region of semicentrality fromc1 to c2 is
described in the text.
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2724 PRC 59HENNING HEISELBERG AND ANNE-MARIE LEVY
sions @32#. The caloric curve plots the temperature vers
excitation energy and displays a plateau as was predicte
the liquid-gas phase transition of nuclear matter@34#. The
interpretation of the caloric curve is, however, debated in
low-energy community~see, e.g., Ref.@33#!.

If a phase transition occurs at some centrality, where
ergy densities exceed the critical value, one may also obs
sudden changes in the physical quantities measured in H
analyses. The emission time and duration of emission
crease drastically in hydrodynamic calculations@35# leading
to very largeRl andRo ~see also Fig. 5!. A long lived mixed
phase would also emit particles as a black body and thus
opacity increase and the opacity factorgo /gs decrease as
shown in Fig. 5. If droplet formation occurs leading to rap
ity fluctuations, one may be able to trigger on such fluct
tions and find smaller longitudinal and sideward HBT ra
@36#.

Alternatively, one could plot the quantities as function
collision energy or size of the colliding nuclei for fixed ce
trality with a similar qualitative dependence of the physic
quantities with and without a phase transition. Furthermo
if an interesting change in these quantities should occu
some centrality or collision energy, it would also be mo
interesting to look for simultaneousJ/C suppression@37#,
strangeness enhancement, decrease in directed, ellipt
transverse flow, or other signals from a phase transition.

VI. SUMMARY

In summary, measuring the reaction plane in relativis
nuclear collisions, the elliptic flow and HBT radii simulta
neously gives a detailed description of the source at free
out as well as how the source expands in space and
from the initial collision and up to freeze-out. The ellipt
flow was calculated in the collisionless limit from the Bolt
mann equation with a collision term as well as in the hyd
dynamic limit assuming equipotential flow. The collisionle
limit is expected to be valid for peripheral collision whe
few rescatterings are expected. Alternatively, the hydro
namic limit is expected to be valid for central collision whe
many rescatterings are expected. For small transverse so
deformations the elliptic flow is proportional to the deform
tion in both limits. Detailed cascade and~311!-dimensional
hydrodynamic calculations are clearly needed of both
radial and elliptic flow as well as HBT radii for noncentr
nuclear collisions with and without phase transitions.

The estimates in the collisionless limit of Eq.~9! give a
reasonable description of both the magnitude andp' depen-
dence of the elliptic flow measured at SPS energies
Pb1Pb semicentral collisions for both pions and proto
Furthermore, the measured elliptic flow is largest at mid
pidities and is approximately proportional todN/dy as also
predicted by Eq.~9!. In the hydrodynamic limit transvers
flow couples top' and elliptic flow is therefore expected t
be the same for all particles at the samep' . For equipoten-
tial flow given by Eq.~12! can also describe the proton e
liptic flow, however, with a deformation is a factor;7
smaller than the initial deformation of the collision zone. It
expected to be somewhat smaller due to expansion betw
initial collision and freeze-out. The measured elliptic flo
for pions lies between the collisionless and hydrodynam
s
for
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limit as could be expected since the particle mean free p
are a few Fermi’s—comparable to the transverse source s
for b5RPb.7 fm/c. Comparing thep' dependence of el-
liptic flow for pions and protons reveals distinctively th
change from collisionless expansion to hydrodynamic flo
In the collisionless limit they differ~see Fig. 3! whereas in
the hydrodynamic limit they should become the same.

The modulation of the HBT radii with azimuthal ang
between the reaction plane and particle transverse mom
can be exploited to obtain source sizes, deformations,
times, duration of emission, and opacities separately. H
radii provides important space-time information whic
complements the momentum space information from part
spectra on elliptic flow during expansion and freeze-out. T
HBT radii can distinguish between opaque sources E
~27!–~29! from transparent source Eqs.~22!–~24! because
the amplitudes in Rs and Ro differ. The modulation of the
HBT radii with f provides five measurable quantities whic
overdeterminates the four physical quantities describing
source: its sizeR, deformationd, opacity (go2gs), and du-
ration of emissiondt, at each impact parameter. The az
muthal dependence of the HBT radii thus offers an uniq
way to determine the opacity of the source as well as
duration of emission separately. Tracking these phys
quantities with centrality will provide detailed informatio
about the source created in relativistic nuclear collisions
may reveal a phase transition as sketched in Fig. 5.
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APPENDIX A: EVALUATION
OF THE COLLISION INTEGRAL

In order to calculate the elliptic flow, we need the partic
distribution integrated over space for normalization in E
~5!. With the free streaming distribution function of Eq.~7!
we find at any timet

dN1

dy d2p'

5~2p!23E m'cosh~h2y!n~r ,p,t !t dh d2r'

5~2p!23t0E dpz f 0~p' ,pz!. ~A1!

The change of particle momenta due to collisions is
change in the particle distribution function integrated ov
space and time

dDN1

dy d2p'

5
E1

~2p!3E S ]n

]t D
coll

dt d3r . ~A2!

In the collisionless limit we can now insert the free strea
ing distribution function~7! in the collision term in order to
calculate the first order correction to the distribution fun
tion. As will be shown below, the system expands rapidly
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low densities, where collisions mainly contribute, and the
fore the final state factors (16ni) from stimulated emission
Pauli blocking can be ignored. For small angle scatteri
the loss and gain terms in (n3n42n1n2) nearly cancel lead-
ing to a suppression factor at forward and backward an
;(12cos2 u). Furthermore, little momentum is lost in sma
angle deflections leading to little deformation in momentu
space. We therefore replace the cross section by an an
and energy averagedtransport cross sections tr and keep
only the loss term}n1n2

dDN1

dyd2p'

52
E1

~2p!3E d2r't dt dhE d3p2

~2p!3
v12s trn1n2 ,

~A3!

where we have changed variables to the space-time rap
and invariant time.

At late times we can utilize that the free streaming dis
bution longitudinally can be approximated by

f 0~p' ,pz8!.
t0

t
m'

21d~y2h!E dpz f 0~p' ,pz!, ~A4!

where the latter integral can be eliminated by use of
~A1!. The resulting free streaming distribution function
Eq. ~7! becomes

n~x,p!.S'~r'2v't8!
~2p!3

tm'

d~y2h!
dN

dy d2p'

.

~A5!

First we deal with the integration over transverse coor
nates

I'[E dx dy S'~r'2v1't8!S'~r'2v2't8!

5
1

4pRxRy
expF2

t 82

4Rx
2 ~v1x2v2x!

22
t 82

4Ry
2 ~v1y2v2y!2G ,

with t85t2t0. The transverse particle momentum or velo
ity with respect to the reaction plane~x axis! is v1'

5(v1x ,v1y)5v1'(cosf,sinf), in terms of the azimutha
anglef. Assuming deformations are small we obtain by e
panding ind

I'5
1

4pRxRy
expF2

t 82v12
2

4R̄2 G
3S 12

t82v1'
2

4R̄2
d cos~2f!1O~d2!D , ~A6!

wherev125uv1'2v2'u is the relative velocity. At this point
we make the important observation that the asymmetric t
proportional to cos(2f) is weighted by a factort825(t
2t0)2, i.e., scatterings at early times contribute little to a
muthal asymmetries in the momentum distribution wher
they are important aroundt;2R̄/v12. This justifies Eqs.
~A4! and ~A5! as well as the neglect of the Bose and Fer
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factors (16ni) in the collision term as densities are low
late times. The physical reason for the ‘‘late time’’ dom
nance in elliptic flow is that particles have to travel a d
tance ;R before it feels the source deformation, i.e
whether it moves in thex direction, whereRx,R, or in they
direction, whereRy.R.

Sincet0!R̄/v' , the time integral becomes

E
t0

`dt

t
I'52

d

8pRxRy

v1'
2

v12
2

cos~2f!1const, ~A7!

where the constant is independent of azimuthal anglef. Fi-
nally, we carry out thep2 anddh integrals in Eq.~A3! using
Eq. ~A7! with the result

dDN1

dy d2p'

5^v12s tr&
dN2

dy

dN1

dy d2p'

3
d

8pRxRy

v1'
2

^v12
2 &

cos~2f!1const, ~A8!

where the averaging over scatterer momenta is indicated
^•••&. Originally we only included loss terms in the Boltz
mann equation and thereby replaced the cross section by
transport cross section. The gain terms will not affect
asymmetric term but will cancel the constant term in E
~A8! when the number of particles is conserved. If there
net particle absorption or production,v2 should be multiplied
by the ratio of initial and final particle number.

We can now generalize to several kinds of scatterers
replacing 1 by a given particle speciesi as pions, protons
etc., and replace the scatterer 2 by a sum of scatterersj. By
dividing Eq. ~A8! by dN1 /dy d2p' we obtain by comparing
to the definition, Eq.~5!, of elliptic flow

v2
i 5

d

16pRxRy
(

j
^v i j s tr

i j &
dNj

dy

v i'
2

v i'
2 1^v j'

2 &
. ~A9!

APPENDIX B: EVALUATION OF EQUIPOTENTIAL
FLOW IN SEMICENTRAL COLLISIONS

In this appendix we evaluate the elliptic flow for an asym
metric source with equipotential flow which is parametriz
spatially as a Gaussian in transverse directions. We ass
particles are thermally distributed with local flow velocityu'

as in Eq.~11!. By assumption the transverse flow is consta
on the freeze-out surface which is determined by

a25
x2

Rx
2

1
y2

Ry
2

, ~B1!

i.e., u' is a function ofa but independent of the azimutha
anglef85tan21(y/x). Also, the transverse flow velocity i
perpendicular to the elliptic surface

u'5u'n5u'~a!
~Ry

2 cosf8,Rx
2 sinf8!

ARy
4 cos2 f81Rx

4 sin2 f8
. ~B2!
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In calculating the azimuthal dependence only the tra
verse directions are important as normalizations cance
Eq. ~5!. Thus

dN

dy d2p'

}E a da S'~a!E df8 exp~u'•p' /T!. ~B3!

Expanding for small deformations we obtain

dN

dy d2p'

} K I 0S p'u'

T
@11d cos~2f!# D L , ~B4!

where the averagê•••& refers to radial average overa of the
transverse flow.I 0 is the Bessel function of imaginary argu
ment which has the limits

I 0~x!5H 11
1

4
x2, x!1

exp~x!/A2px, x@1
J . ~B5!

Expanding for small deformations and comparing to the d
nition of elliptic flow ~5! we finally obtain

v255
1

4

p'
2 ^u'

2 &

T2
d, p'u'!T

1

2 S p'^u'&
T

21D d, p'u'@T6 . ~B6!

APPENDIX C: APPARENT TEMPERATURES
AND TRANSVERSE FLOW

Transverse flow affects the measuredp' andm' slopes.
The apparent temperatures, obtained by fitting the partic
spectra bydN/d2p'}exp(2m' /Tapp), are larger than the in
trinsic ones. It is difficult to determine the intrinsic temper
ture and the transverse flow separately fromp' slopes of
pions alone@38#. Recent measurements@16# of apparent tem-
peratures for various massive particlesp,K,p,d,3He, etc.,
may allow us to estimate the transverse flow uniquely as
now be described.

Assume a thermal source in two dimensions with intrin
temperatureT at freeze-out and~transverse! flow u' locally,
m

-
in

-

-

ll

c

i.e., n;exp(pu/T). For small transverse deformations th
flow is almost azimuthally symmetric and its average va
is equal to the cylindrical symmetric valueu'(r ). The dis-
tribution of particles is thus

n~r ,p,t !;expF2gm'1p'•u'

T G . ~C1!

In three dimensions the source is further complicated by
thermal factor exp@2m' cosh(y2h)/T#. After integrating
over longitudinal direction orh, however, the results ar
very similar whenm'@T.

The dependence on the angleu betweenp' andu' in Eq.
~C1! is crucial. Integrating over transverse coordinates gi
the distribution

dN

d2p'

}expF2g
m'

T G^I 0~p'u' /T!&, ~C2!

where ^•••& refers to radial average of the transverse flo
and I 0 the Bessel function@see Eq.~B5!#.

The apparent temperature defined as the inversem' slope
becomes

Tapp[F2
d

dm'

lnS dN

d2p'

D G21

5H T1
1

2
m'^u'

2 &, p'u'!T,m'u'
2 !T

TAg2u', p'u'@T,p'@m
J . ~C3!

At small p' the result is the expected one when the kine
energy of flow is added to the thermal energies in two
mensions. At largep' and flow one instead obtains theblue-
shift formula @39#. Experimentally, the apparent temperatu
is determined by exponential fits todN/d2p' in a certain
region ofp' and it may therefore differ somewhat from E
~C3!.

One should notice that in experimental fits to partic
spectra the apparent temperatures are parametrized asTapp
5T1mb2. Consequently, this flow parameter differs fro
ours by a factorb25^u'
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