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Elliptic flow and Hanbury-Brown—Twiss correlatiorislBT) are studied for noncentral relativistic nuclear
collisions. Azimuthal asymmetries show up in both elliptic flow and HBT radii and are calculated in both
collisionless and hydrodynamic limits relevant for peripheral and central collisions, respectively. Determining
the reaction plane and measuring the HBT radii as a function of the angle between the reaction plane and the
particle momenta can determine the physical quantities as source sizes, deformations, emission times, duration
of emission, and opacities. Comparison to SPS data and predictions for RHIC and LHC energies are given. The
centrality dependence with and without a phase transition to a quark-gluon plasma is discussed—in particular,
how the physical quantities are expected to display a qualitative different behavior in the case of a phase
transition.[ S0556-28189)06405-5

PACS numbds): 25.75~q, 25.70.Pq

[. INTRODUCTION occurring when the energy densities become high enough to
form a quark-gluon plasma at some semicentrality. The cen-
The azimuthal asymmetries in momentum spectra usualljrality, E+ or dN/dy dependence of a number of measurable
referred to as directed and elliptic flow are large in nucleaquantities as the ratio of the elliptic flow to the deformation,
collisions at intermediate energig$] which allows experi- ~duration of emission, opacity, etc., may display an interest-
mental reconstruction of the reaction plane. Also in relativ-ing behavior. - _ _ .
istic nuclear collisions at the AGE] and SPS3] aniso- The paper is organized as follows. First we describe the
tropic flow has been found in semicentral collisions. 9€ometry of semicentral relativistic nuclear collisions and
Likewise, the Hanbury-Brown—TwisgHBT) analyses have discuss the a_zimuthal asymmetries and deformat_ior_ws of the
successfully been made, however, so far without simultadverlap zone in Sec. II. In Sec. Ill we calculate elliptic flow
neous reconstruction of the reaction plane. The statistics md{ the collisionless and hydrodynamic limits relevant for pe-
permit this in the near future and the prospects look good fofiPheral and near central collisions, respectively, and com-
the RHIC and LHC colliders, where the multiplicities are Pare to recent SPS daf8]. HBT radii are calculated for
much higher and the number of pairs entering the HBTdeformed sources in Sec. IV. In Sec. V we discuss the quali-
analyses grow with the multiplicity squared. Particle interfer-tative behavior of a number of physical quantities from el-
ometry (HBT [4]) may also show source asymmetr[&s6] liptic flow to HBT radu—wnh and without a phase _transmon
spatially and complement the momentum space informatiof® & quark-gluon plasma. Finally a summary is given.
of flow. Earlier studies of directed and elliptic flow by hy-
drodynamicq7] as well as by the cascade corlemb [8,9] Il. GEOMETRY OF SEMICENTRAL COLLISIONS
has been compared to AGS and SPS data with some success. . .
The data shows interesting transverse momentum and rapid- _In noncentral nuclear collisions the reaction pIa_ne breaks
ity dependences for pions and protons that cannot be e)gmmuthal s.ymmetry. The asymmetry Qgcreases_W|th central-
plained by these models. ity and v_anlsh for the very cer_ltral c_oII|5|orﬁsee Fig. L _
The aim of this work is to return to the basic physics that We V_V'!I use the term:entrallty as Impact parame_téT n
leads to azimuthal anisotropies in semicentral collisions if"€ collision. It is not a directly measurable quantity but is
both coordinate and momentum space which are relevant féi0Sely correlated to the transverse energy prodicedthe

+p dr. (D)

the HBT radii and anisotropic flow, respectively. We shall Measured energy in the zero degree calorimeter, and the total
derive simple analytical formulas for elliptic flow and HBT Particle rapidity densitydN/dy. The latter is again approxi-
radii in both the collisionless and hydrodynamic limits rel- Mately proportional to the number of participating nucleons
evant for peripheral and near-central collisions, respectively.
A combined analysis of HBT and anisotropic flow yields :f i ( E _9>

. . . ) Npart plr+ r
detailed information on the particle source at freeze-out as overlaj 2 2
well as the expansion from the initial collision and up to
freeze-out. General properties as the initial geometry, shadrhe number of participants for colliding two spherical nuclei
owing effects, expansion, and freeze-out can be determineaf radiusR is shown in Fig. 2 as a function of impact param-
through detailed measurements on source sizes, deformater.
tions, lifetimes, duration of emission, opacities, transverse The standard geometry has thelirection along the lon-
and elliptic flow. We discuss the effects of a phase transitiorgitudinal or beam axis and thedirection along the impact
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FIG. 1. Reaction plane of semicentral-PBb collision for im-
pact parameteb=Rp,~7 fm. The overlap zone is deformed with
R.<R,. The reaction planex(z) is rotated by the angle> with
respect to the transverse particle momengumwhich defines the

outward direction in HBT analyses.

parametetb. Thus (,z) constitutes theeaction planeand
(x,y) the transverse direction witli perpendicular to the

12

2717

The azimuthal asymmetry or “deformation” of the
source can be defined as the relative difference between the
Gaussian radii squared

2 2
_R~=Rk
T2, p2°

Ry+R;

()

A simple estimate can be obtained from the full transverse
extent of the initial overlap of two nuclei of mass number
and radiusR,=1.2A'"? colliding with impact parameteb
(see Fig. 1 They areR,=Rn—b/2 and R,=Ri—b%4,

and the corresponding deformation is

b

4

The rms radii of the nuclear overlap zone weighted with
longitudinal thicknesses results in deformatidese Fig. 2
that are slightly smaller than E¢#) at semicentral collisions.
However, as the source expands the deformatien(R,
-R)/(Ry+R,) decreases for two reasons.

First, the expansion increasB(+R,) as is found in HBT
and Coulomb analysefl1]. Secondly, R,—R,) decrease
because the average velocities are larger inxttieany di-
rection. The latter is a consequence of the experimentally

reaction plane. It is convenient—also for comparison to HBTmeasured positive elliptic flojw >0 in Eq.(5)] in relativ-
analyses—to employ Gaussian parametrizations for anisdstic nuclear collisions where shadowing is mif2r3]. Mea-

tropic sources in both transverse directions

2

X y

Here, the Gaussian transverse siBgsandR, increase with
time as the source expands after the collision. The initial

1 2
S (x,y)= WXR)IGXF( TR Z_Rf,

)

suring the decrease of the deformation with centrality will

reveal important information on the expansion up to freeze-
out. For very peripheral collisions, where only a single

nucleon-nucleon collision occurs, the source must be azi-
muthally symmetric, i.e., the deformation must vanish and
therefore Eq.(4), which assumes continuous densities,

breaks down.

lll. ELLIPTIC FLOW

transverse radii, i.e., the rms radii of the overlap zone

weighted with nuclear thickness functions, are shown in Fig.

The reaction plane, which breaks azimuthal symmetry,

2. For HBT the relevant radii are, however, those at freeze'aS been successiully determined in noncentral heavy ion
out which are larger due to expansion as discussed below.Collisions from intermediate up to ultrarelativistic energies
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[3]. The particle spectra are expanded in harmonics of the
azimuthal anglep event-by-evenf7]

dN dN

E—:—=J’d4xn X,
&p  Pudp dy do (x.p)

= m[l+ 2v41 Ccoq ¢— dr)

+20,c08Ap—PpR)+ - -1, 6)

wheren(x,p) is the particle distribution function in space
and timex=r,t and ¢ is the azimuthal angle of the reaction
plane. Assuming that the experimental uncertainties in event
plane reconstruction can be corrected for, each event can be
rotated such thapg=0. The asymmetry decreases with cen-
trality [see Figs. 1 and 2 and E@)] and vanish for the very

FIG. 2. Transverse radii of nuclear overlap, deformation, num-central collisions which are cylindrical symmetric. The ex-

ber of participants and elliptic flow paramefsee Eq(9) and texi

versus impact parameter.

pansion parameters avg for directedflow andv, for ellip-
tic flow.
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At Bevalac energies where the directed flow in semicenmated by simple Gaussians as in E2). The free streaming
tral collisions of heavy nuclei is up to 2Q1] with respectto  distribution is then at later times
the beam line. The directed flow decrease with energy and is
only ~1/20° at SPS energi¢8]. At AGS and SPS energies n(x,p)=fo(pL,py)SLIri—Vvi(r—10)]. (7)
there are now very accurate measurements for protons, posi- ) .
tive and negatively charged pions as a function of rapidity1€re, 1. =(x,y) is the transverse radius, =(vy,v,) the
and transverse momentu®,3]. Both pions and protons are transversg ve_I00|ty. Thg Iocall partlcle mo.mentgm dlst.nbu—
found to have elliptic flow in the reaction plane at AGH tion fo_(p) is dlscuss_ed in detail in Ap_pend|x A; in the final
and SP3] energies, i.ey,>0 for all rapidities and trans- result_|t can pe rewrlttzen in terms of final meagured momen-
verse momenta. At SP&,<0.1 for protons but smaller for tum distributionsdN/d-p, . The scaled longitudinal momen-
pions as well as for protons at AGS. We refer to Réf.for tum
recent results on flow in relativistic heavy ion collisions. ,

At collision energies below a few GeV the nuclei shadow p,=—m, sinh 7—Yy) (8)
the collision region in the reaction plane. Consequently, the 7o

flow is “squeezed out” in they direction, i.e.,v,<<0. At . - .
ultrarelativistic energies Lorentz contraction of the nuclei re_takes ihesiree streaming Iongnudmal!y into acco(ihg).
ransverse expansion of the source is incorporated by the

duce the amount of shadowing at midrapidities and one find alilei transformations of the transverse coordinate.
that v,>0. We will in the following restrict ourselves to ote that the momentum distribution of produced aritsilg(l.es is
ultrarelativistic energies and midrapidities where effects oiN . . - prod P
: : azimuthally symmetric at initial production timg. The de-
shadowing are minor. . . .
tailed form of f, will not be necessary for the evaluation of
elliptic flow or HBT radii. It is sufficient to know the rapidity
densitydN; /dy of the scattering particleis
In peripheral collisions the nuclear overlap zone is small In the collisionless limit we can now insert the free
and at relativistic energies the expansion is fast. Producestreaming distribution function in the collision term in order
particles can therefore escape from the collision zone almosb calculate the first order correction to the distribution func-
without interacting with the other particles, i.e., the system ision from Eg. (6). This correction provides the deviation
close to free streaming and the collisionless limit. We carfrom cylindrical symmetry and directly leads to elliptic flow
then calculate the first order correction to free streaming,’, for particle species=m,p,K, ..., as isevaluated in de-
from particle collisions. This approximation is valid when tail in Appendix A
the particle mean free pathsmpz(ap)‘1 are larger than
the overlap zon&, ,(b). For pions and protons, of or- i S i dN; vii
der a few fm’s for particle densities of order nuclear satura- V=T 5 2 (vijog) = 2 2
. e ; ) ) 16mRRy dy ,¢ +(v?))
tion densities, i.e., comparable to source sizes in semicentral iL it

collisions. If we assume that particles initially are producedHere,vi is the particles; the scatterer, and, the relative

azimuthally symmetric in momentum space but not in coor- locity. The averageé - -) refer to averaging over scatterer
dinate space, these subsequent interactions with comovef§ oY 965 - ging

will produce an azimuthally asymmetric momentum distribu—mhoincfr}tafri1 ’ St;]nce 'tn'f lthemm?nmﬁ?tfnm dtir?rr;ts)fetir Irr: ccr)lllsr:c()jns, i
tion because the source is azimuthally asymmetric spatialb%. % ) elo S (?‘[ pa_t cle to e” lih S l: 0 ta ou fy
We shall not attempt to describe the initial hard nucleon-ndrical symmetry, 11 naturally thenomentum transpor

o ’ . ] . IJ . . .
nucleon collisions, the fragmentation, or particle production C70SS Sectionsy that enters. The elliptic flow parameter is

Our starting point is some initial conditions at formation time ProPortional to the deformation and necessarily vanishes for

o~1 fm/c and consider the subsequent scatterings betweed! @zimuthally symmetric source. -
comovers described by the Boltzmann or Nordhdita] The other important factors in the elliptic flow are

A. Collisionless limit and peripheral collisions

€)

equation
| o E% M (10
J d3p2 do . dy 7TRny .
E+vp'v nl:f—adﬂvlzd_g
(2m) It is the cross section times a transverse particle density and
X[Nans(1=n)(1=Ny) thus describes the effective “opacity” of the source for par-

ticlesi scattering with particleg
—niny(1£n3)(1xny)]. (6) It is remarkable that the initial time, does not enter in
Eq. (9). The 7, dependence cancels to first approximation as
Here,n;=n(r;,p;.t) is the particle distribution function and explained in Appendix A, due to a compensation between
do/d( is the c.m.s. differential cross section for scatteringthe densities decreasing with expansion time and that scat-
particles +2—3+4. Stimulated emission and Pauli block- terings only lead to asymmetries as they pass through the

ing are included by the: factors. source with time. The physical reason for the “late time”
To evaluate the effect of collisions on the distribution dominance in elliptic flow is that a particle has to travel a
function in Eq.(6) we assume Bjorken scaling,= z/t ini- distance ~R before it feels the source deformation, i.e.,

tially at invariant timery. As usual, the space-time rapidity is whether it moves in thec direction, or in they direction
7=(1/2)I(t+2)/(t—2)] and r=t?>—2% is the invariant Which differs by a distanc®, — R,=SR. This also explains
time. The transverse particle density distribution is approxiwhy the elliptic flow is proportional to;izL . The slow par-
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ticles do not travel far enough to feel the deformation before 1 p2<u2)
the source has expanded by veloaity , . e ZL S, pu <T
The centrality dependence of the elliptic flow can be es- _ 4T
. . .. Vo= . (12)
timated from Eq.(9). In high-energy nuclear collisions the p.(uL)
total multiplicity dN/dy scales approximately with the num- ST~ 1) 5, pu>T

ber of participating nucleons, E¢l) which is shown in Fig.
2 as function of impact parameter together wiQ(b), |t js expected that the elliptic flow is proportional to the

Ry(b), and &(b). The resulting centrality dependencewf  geformation which vanishes for central collisions. The rel-
from Eq. (9), assuming thadN; /dy are also proportional 1o eyant deformation is now at freeze-out where the radii which

the number of participants, is shown in Fig. 2 as well. It 4y giffer from the initial transverse radii is discussed
vanishes for central and grazing collisions, has a maximum,gye.

for peripheral collisiond=1.5R and decreases almost lin-  The glliptic flow of Egs.(12) depends only indirectly on
early with increasing centrality. A very similar behavior was the unknown quantities as the initial densities, equation of
found in the hydrodynamic calculations of Ollitra{i]. state, expansion, etc., through the average transverse flow,
temperature, and deformation. The transverse flow and tem-
perature can be extracted independently from transverse flow
analyses by looking at the particle mass dependence of av-
In semicentral collisions at relativistic energies, whereeragep, as suggested in Refl5] or by measuring thep-
large particle densities are produced, rescatterings are abuparent temperaturefl6], i.e., the inverse of then, slopes.
dant and the hydrodynamic limisee, e.g., Ref7]) is better ~ As shown in Appendix C the apparent temperature obtained
than the collisionless—at least up to freeze-out. We will herefrom exponential fits to transverse mass spectra of massive
attempt to extract some general features in the hydrodynamisarticles is
limit and derive an approximate analytical formula for the
elliptic flow. Instead of introducing two independent trans-
verse flow velocities |y ,u,) we relate the transverse flow to
the spatial deformation by the plausible assumption that the
transverse flow isequipotential i.e., perpendicular to and for large particle masses and small transverse flow. Ex-
with constant magnitude on equidensity surfaces. This agerimentally, the apparent temperatures scales approximately
sumption is obvious for cylindrical symmetric sources. Alsolinearly with the masses of the pion, kaon, proton, and deu-
for a very deformed source, which appears as a slab in ongrium in central S-S and Pb-Pb collisions at AGS and
transverse direction, the flow is perpendicular to most of thaCERN[16] energies. From the experimental slopekl2dm
freeze-out surface. For a rectangular source the flow is iniwe thus obtainu®)=0.15? and 0.8 for central S-S and
tially also perpendicular to the surface in all directions but asPb+Pb collisions at SPS energies.
the source expands deviations may occur at the corners. Con- |t js instructive to compare to another type of hydrody-
cerning the constant magnitude of the transverse flow on thgamic flow parametrized by two transverse flow velocities
freeze-out surface, that may be justified for deformed sources
by the following observation. In the Riemann solution to U = (UX/Ry UyY/Ry). (14
one-dimensionallD) hydrodynamics, the flow velocity only
depends on time and the relative distance from the initiall he resulting particle distribution can be calculated along the
surface, i.e., (—R). As shown in Ref[14] the Riemann lines of Appendix B. The resulting elliptic flow is for small
solution is also a very good approximation to the cylindricaltransverse momenta
case with longitudinal Bjorken scaling with an additional

2
scaling factor of é‘olr)cg for temperatures. For the slab or ip_L(<u2>_<uz>) pu <T
the rectangular source, the magnitude flow velocities will 1612\ y/on BT
therefore only depend on the relative distances from the ini-  v,=

B. Hydrodynamic limit and semicentral collisions

1
Tap=T+ Em(ui), (13

. . . 1 2\ /142

tial transverse radii, i.e.x—R,) or (y—R,). How good this _( Pu(uL) _1)<”x> (uy) U >T
approximation is in general for near central relativistic heavy 8 T Uf ’ LEL

ion collisions should, of course, be checked by solving full (15)

3D hydrodynamics.
With the simplifying approximation of equipotential flow Comparing Eq.(15) to the elliptic flow data for protons of
we can calculate the resulting particle spectrum for a locallyFig. 3 we can estimate the differen«ﬁai)—(ui)z0.0lS,

thermal distributioneP¥" with longitudinal Bjorken flow i.e., an order of magnitude smaller than the average trans-
B , verse flowu? =(u+u?)/2=0.15 that was estimated from
u=[ycost{7),ysinh(7),u,], (1) Eq. (13). The elliptic flow of Eq.(15) is not related to the

spatial deformation as was the equipotential flow and there-

. . fore its predictive power is less.
wherey=+/1+u Lz_ The transverse extent is parametrized by P P

Eq. (2). With these assumptions the resulting momentum dis-
tribution can be found by integrating over the deformed equi-
potential surfaces as described in Appendix B. The asymmet- The elliptic flow as estimated by the collisionless and hy-
ric term gives the elliptic flow drodynamic limits may be compared to NA49 data at SPS

C. Comparison to elliptic flow at SPS energies
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12 tracted from HBT analyses as shown in the following section
@ protons (NA49 data) . .
o pions (NAGS data) and would thus be an important independent check.
10 rotonsifpolliesd] The pion elliptic flow cannot be explained in the hydro-
p, ' dynamic limit as it differs from proton flow and does not
8 | ----- pions (coll.less)

have the rightp, dependence. It is curious that the magni-
tude of the pion elliptic flow lies between the collisionless
and hydrodynamic limit. This may indicate that semicentral
Pb+Pb collisions at SPS energies lies between these two
limits as one would expect since the particle mean free paths
are a few Fermi’'s—comparable to the transverse source sizes
for b=Rpy=7 fm/c. Comparing thep, dependence of ellip-
tic flow for pions and protons would reveal the change from
collisionless expansion to hydrodynamic flow. In the colli-
0.0 05 10 15 50 sionless limit the pion and proton elliptic flow differ whereas
p, (GeV/o) in the hydrodynamic limit they should become the same as
shown in Fig. 3.

FIG. 3. Elliptic flow v, for pions and protons versus transverse  Calculations with theRomb andvENUS models(see Refs.
momentum. Data from NA493]. Curves represent the hydrody- [3,9] for detailed comparisongive an almost rapidity inde-
namic limit of Eq.(12) (full curve) and the collisionless limit of Eq.  pendent elliptic flow which underpredicts the SPS data by a
(9) for pions (dashed and protongdotted (see text for details factor ~2—4 at midrapidity. The smaller elliptic flow in
RQMD at midrapidities is attributed to “preequilibrium soft-
ening” [8]. Hydrodynamic models results in corresponding
values forv, which are~4 times larger for an idealcé

—— pions and protons (hydro.)

energieq 3] taken for semicentral PbPb collisions p=R
=7 fm). Thep, dependence af, for pions and protons is

measured at fprward rapiditiessgls_s. We can .take the =1/3) pion gas and- 2 times larger when a first order phase
free cross sections and ignore medium effects since the deg}, \sition afT .~ 150 MeV is included 7]
c .

sities are small at Iate.t|mes when rescatterings lead 10y is curious that the elliptic flow is less than a few percent
anlsptroe!e_s(see Appendix A The relevant scattering Cross i, ro|ativistic nuclear collisions in comparison to the initial
sectiong" is t_hat where nucl_eons act as scatterers becausﬁ)atial deformations which are of ordé=50% in semicen-
they are heavier than, e.g., pions and thus dNeerct more. FUir| collisions. The reason can be understood in both the
thermtzTrS, typical scattering cross sectionS™ are larger o4 isionless and hydrodynamic limits due to the limited time
than o7=10 mb[l?]. The former is dominated by th& g4 gistances that particles have to rescatter and develop
N NN , tz§symmetric collective flow before they freeze-out. In other
o""=30 mb ando""=40 mb. The transport cross sections,orqs. the scatterings that lead to asymmetric flow occur at

are smaller because forward scattering without momentunye times where the source and scatterers have already ex-
loss should not be included. For an estimate we simply take . qed and reduced the initial deformation.

the transport cross section as half of the total cross section. 1,4 elliptic flow at RHIC and LHC energies would be

The relevant rapidity density is that of nucleons which wejg e i one simply extrapolates from intermediate, AGS and
take from the NA49 experimentNy /dy=30. From Fig. 2 gpg energieg3]. However, at the intermediate energies
we obtainR,=2 fm, Ry=3 fm, and§=0.4 forb=R. The  ghaqowing is responsible for a negative(squeeze-oland
resulting elliptic flow is shown in Fig. 3 for pions and pro- ig gjj| felt at AGS energies. At SPS energies it may also
tons. The estimates in the collisionless limit of @) give & atfet the forward rapidity datay<5 where the projectile
reasonable description of both the magnitude pndlepen-  ,cjeys is less Lorentz contracted and thus shadow. But at

dence for both pions and protons. Furthermore, the measure@a| rapidities at SPS and higher energies shadowing is
elliptic flow is largest at midrapidities and is approximately minor due to the strong Lorentz contraction of nuclear sizes.
proportional todN/dy as pr(_adlcted by Eq9). Therefore,v, is unaffected by shadowing from SPS and up
In the hydrodynamic limit transverse flow couplesfo iy energy, i.e., constant rather than increase as given by a
and elliptic flow is therefore expected to be the same for all,5;ye extrapolation from intermediate, AGS and SPS ener-
particles at the samg, . The elliptic flow can differ if vari- gies. However, sincéN/dy and probably also the transverse
ous particle species freeze-out at different temperatures qp,y is larger at RHIC and LHC energies, we may expect

resonance decays affect the final distributions. The ellipti%tronger elliptic flow. On the other hand, the expansion re-
flow is shown in Fig. 3 for equipotential flow, EQL2), with  q,ces the deformation and thus also the elliptic flow.
T=160 MeV and(u?)=0.152 as estimated above. An ex-

ce_lle_nt fit to the magni_tude qnm depende_nce of proton IV. HBT
elliptic flow can be obtained with a deformation at freeze-out
of 6=0.07. This value for the deformation is a facter6 A brief description of interferometry will be given de-

smaller than the initial deformation of the collision zone. It is scribing how to calculate correlation functions and HBT ra-
expected to be smaller due to expansion between initial coldii from a given source. The HBT radii will then be calcu-
lision and freeze-out but a fu(B+1)-dimensional hydrody- lated for deformed sources—transparent as well as opaque.
namic calculation is needed in order to check the magnitudé brief description of results were presented in Ré&8]. A

of the deformation as well as the validity of equipotential comparison is given and the advantages of a combined HBT
flow. The deformation at freeze-out can in principle be ex-and elliptic flow analysis is discussed.
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Particle interferometry was invented by Hanbury-Brownarrives at the detector from the front side of the source as
and Twiss(HBT) for stellar size determinatiofd] and is  from the back side, i.e., rescatterings through the source and
now employed in nuclear collisiorjfa9-24,1Q. It is a very  opacities are ignored. As in Ref6], we parametrize the
powerful method to determine the three-dimensional sourc&ransverse and temporal extent by Gaussians
sizes, lifetimes, duration of emission, flow, etc., of pions,
kaons, etc., at freeze-out. Since the number of pairs grow (17— 71)?
with the multiplicity per event squared the HBT method will S(x,K)~SL(x,y)exr{ T T os2
become even better at RHIC and LHC colliders where the

multiplicity will be even higher. ) with longitudinal Bjorken flowu= (cosh#,0,0,sinhy) as in
_The standard HBT method for calculating the Bose-gq (11) without transverse flow. Effects of transverse flow
Einstein correlation function from the interference of two ill be discussed below. The transverse raglii,R, are the
: R,

|d.entR|caI partplss IS now b.”fﬂy dls'cuzsez.' For aasource 0gaussian radii at freeze-out; is the freeze-out time, andéir
sizeR we consider two particles emitted a distane® apart 1o quration of emission.

with relative momentung=(k,—k) and average momen- |, order tg calculate the correlation function of Ha6)

tum K=(k;+kp)/2. Typical heavy ion sources in nuclear yo Gayssian approximations is employ@te, e.g., Refs.
collisions are of sizeR~5 fm, so that interference occurs 27 >3) which results in a correlation function of the form
predommantly whem<7#/R~40 MeV/c. Slnce typl_cal par-  given in Eq.(17). Inserting the sourcél8) in Eq. (16) and
ticle momenta are;=K~300 MeVic, the interfering par-  Foyrier transforming we obtain the correlation function. The

ticles travel almost parallel, i.ek; =k,=K>q. The correla- 4T radii are then obtained by comparing to the experimen-
tion function due to Bose-Einstein interference of identicaliy| correlation function of Eq(17).

ep-u/T, (18)

spin zero bosons as™ 7=, K*K*, etc., from an incoherent 1t j5 convenient to introduce the source average of a quan-
source is(see, e.g., Ref23]) tity © defined by
2
f d*x S(x,K)e'd* f d*x S(x,K)O
Ca(q.K)=1x . (16) (O)y="— . (19
f d*x S(x,K) f d*x S(x,K)

where §(x,K) is the source distribution function describing with gqx=q-x—q-Bxt one can, by expanding Eql16) to

the phase space density of the emitting source. second order im;R; and compare to Eq17), find the HBT
Experimentally the correlation functions are often param-adij [23]

etrized by the Gaussian form

RZ=((x— Bi)?)—(xi— Bit)?, (20)
(17) Rizj =((x;— Bit) (xj— Bjt)) —{(Xi — Bit){X;— Bjt), (21)

with i,j=s,0,l. The HBT radii are a measure for the fluc-
tuations[25], variance or “length of homogeneity[26] of
X;— Bijt) over the source emission functid®(x,K). One
hould notice that the coordinates,(Xx;) are rotated with
respect to theX,y) reaction plangsee Fig. 1 by the azi-
fhuthal angle¢ between the transverse momentpm and
the reaction plane. The beam axis is the sagez. In the

Ca(0s,0o,a1) =1+ ex — q?R2— g2R%— q?R?
_ZQOQSRgs_ 2qoqIR§I]-

Here,g=k;—k,=(0qs,0,.4)) is the relative momentum be-
tween the two particles anR;, i=s,0,l,0s,0l the corre-
sponding sideward, outward, longitudinal, out-sideward, an
out-long HBT radii, respectively. We have suppressedkhe
dependence. We will employ the standard geometry, wher
the longitudinal direction is along the beam axis, thoeit-

ward direction is alongK , , and thesidewardaxis is perpen- local c.m.s. frame Y=0) the pair velocity isB,= 8
. . - o Ml

dicular to these. Usually, each pair of particles is Loremz\/vhereasﬁs=ﬁ,=0. All R;; vanish in this frame for cylin-

poosted Iongﬂudmal to the system wh_ere their rapldlty VaNyrical symmetric sources and for an azimuthally asymmetric
ishes,y=0. Their average momentuK is then perpendicu-

. . .~ . source onlyR,¢ is nonvanishing.
lar to the beam axis and is chosen as the outward direction. For transparent sources the azimuthal dependence of the

In this ;ystem th? pair velocitghc = K/E, points inz the O_Ut' HBT radii has been calculated in detail by Wiedem#6h
ward direction withB,=p, /m, , wherem, =\m“+p} IS |, the |ongitudinal center-of-mass system of the pair (

the transverse mass, and the out-longitudinal coupiRgg =0), the HBT radii are

vanish at midrapidity 23]. Also R, vanishes for a cylindri-

cally symmetric source or if the azimuthal angle of the reac- RZ=RY1+5cog2¢)], (22)
tion plane is not determined and therefore averaged over—as

has been the case experimentally so far. The reduction factor Rgz R[1— 6cos(2¢)]+,8§572, (23)

\ in Eq. (17) may be due to long lived resonande®,24,§,
coherence effects, incorrect Coulomb corrections, or other
effects. It is\~0.5 for pions and\~0.9 for kaons.

The Bose-Einstein correlation function can now be calcu- T
lated for a deformed source. Let us first investigaa@spar- RZ=— (72+ 679, (25
ent sources assuming that it is equally likely that a particle m,

R3.=R25sin(2¢), (29)
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where R?= (R2+ Rf,)/2 is the average of the source radii 2.0
squared. One notices the characteristic modulation @)s(2 R./g.R

due to the rotation of the axé®,  with respect to the reac- === RJ7,R -
tion plane. Near target and projectile rapidities the directed 151 77 R./0.R o - |
flow is appreciable and leads to afgerms in Eqs(22),(23) . , Ry
[7,6]. The outward and sideward HBT radii show a charac- ~ 7
teristic modulation as function of azimuthal angle with am- « | - ‘,,./"_ ,,,,,

s
-

e

plitude of same magnitude but opposite sign. Measuring the - 1.0 —-—--—-"":-:;2,-—- —-

—_—" e ———
——— s i

amplitude modulation oRg, ,s determines five quantities ‘E— e
and thus overdetermines the three source parameters —  |-—-—-=-—""""""
namely, the source sizBR, deformationd, and duration of
emissionér. ~TT b

Next we consideropaquesources. In relativistic heavy TS S~
ion collisions source sizes and densities are large and on - ~<
would expect rescatterings. As a result particles are predomi g k= ‘ ‘ ‘ -
nantly emitted near the surface and arrive from tfrent) 0.0 0.1 0.2 0.3 0.4 0.5
side of the source facing towards the detector. In R&H] it o/
was found that for opaque sources, where mean free paths

are smaller than source Siz&%p=R, Fhe .Sld.efward HBT verse particle momenta. The HBT radii are normalized to the angle
radius increase whereas the outward is significantly reducegﬁeraged sideward HBT radius squagd? for the deformeds
simply because the surface emission region is smaller than 4 4 squrce with duration of emissigsf 572/g,R?=0.5 and with
the whole source. As in Reff25,27 Glauber absorption is yarious opacities. The sideward HBT raditisll curve) is then the

05

FIG. 4. HBT radii vs angle between reaction plane and trans-

introduced by adding an absorption factor same for both transparefiq. (22)] and opaquéEqg. (27)] sources
and likewise for the outside HBT radiEgs.(24) and(29), dashed

Sand X,K)~exp — j ap(x")dx' |, (26) curvel]. The qutward HBT radii are shown Wi'th cha?n-dashed'c_urves
X for a Gaussian sourdéegs. (28) and (23)] with various opacities

(from below and up N\, /R=0.1,0.5,1.0,2.63.
where ¢ is the interaction cross sectiop, the density of
scatterers, and the integral runs along the particle trajectory Comparing the HBT radii from an opaque source Egs.
from source poink to the detector. Defining the mean free (27)—(29) with those of a transparent source E(g2)—(24),
path as\mp=[op(0)]~*, wherep(0) is the central density, one notices thathe amplitudes in Rand R, differ by the
the source is opaque whex,<R, and transparent when amount @s—g,). The modulation of the HBT radii witf
Amip>R. Calculating the correlation function for an opaque provides five measurable quantities which overdeterminates
source from Eq(16) and comparing to the definition of the the four physical quantities describing the source: its Bize
HBT radii in Eq.(17), one generally obtains for small defor- deformation s, opacity @,—9.), and duration of emission
mations o7, at each impact parameter. The azimuthal dependence of
5 5 the HBT radii thus offers an unique way to determine the

Rs=0sR7[ 1+ 5cod24)], (27 opacity of the source as well as the duration of emission
separately.

Experimentally, HBT analyses have not been combined
> e with determination of the reaction plane yet. Consequently,
Ros=0osR"dsiN(24), (29 the azimuthal angle is averaged and the information on
three of the five measurable quantities in E@Y)—(29) is

2 .
andRy is unchanged from Eo[25)_. Herego,syos_are mc_)del- lost. From the angular averaged difference between the out-
dependent factors that are functions of opacity but mdepeq,—vard and sideward HBT radii

dent of the deformation and can be calculated as for cylin-
drical symmetric sources. For a Gaussian sougey ), R2—R2) = 82572 — (a.—q.)R? 30
which is moderately opaquex f,/R=1), a numerical cal- (Ro=Rs)9=Bod7 ~ (95~ IR’ (30

CP'a“O” glVE@S.ZlA andg,=0.9 (see also Re{.27]).'For a8 one can only determine the sum of the positive duration of
disk source V.V'th. the same rms transvelzrse.ra.dlus as Mgmission and negative opacity effect. Experimentally this
Gaussian radiugi.e., Ryg=2R), that emits similar to a difference is small; NA4910] and NA44[19] data even
black body(i.e., \mip<R), one findsgs=4/3 andg,=4[3 differ on the sign. Detailed analyses of the dependence of

— (m/4)?]1=0.2[25]. Generally, §s—g,)=0 and the differ- the HBT radii from NA49 data within opaque sourde&y]
ence increases with opacity. Only for a completely transparindicate that the sources are transparent or at most moder-
ent source igs=4, . In all casex,=gs. In Fig. 4 the HBT  ately opaque. However, the NA44 data, for whiRh<R,

radii of Egs.(22)—(29) are shown for a near-central collision requires an opaque source as seen from (8. Further-
(6=0.4) with a moderate duration of emission more, thep, dependence of the transverse HBT radii change
(,8§57-2/gSR2=0.5) for various opacities \pgp/R if the source sizes, opacities, and duration of emission are
=0.1,0.5,1.0,2.;. As the opacity increasegj,/gs de- alsop, dependent.

creases and therefore also the outward HBT radius and its Transverse flow may affect the outward and sideward
amplitude. HBT radii as opacity, i.e., the factorg,  may depend on

R2=g,R’[1— 8cog2¢)]+ B2672, (29
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both. For transparent sources transverse flow has been stud-
ied in [6,22,27 through Eq.(11) assuming that the trans-
verse flow scales with transverse distange=ugr, /R. Oth- =
erwise the same transparent Gaussian source as ifiLBq. / //”
was employed. To lowest order in the transverse flow both I ey -~

transverse HBT radii decrease by the same faetdqrl
Jruﬁml /T) to leading order irug. This transverse flow cor-
rection is independent of the source size and therefore also
the deformation. Consequently, spatial deformations reduces -
the amplitudes by the same amount in this model for both Ny \
transparent(see Ref.[6]) and opaque sources. There are, N
however, box shape models where the transverse flow reduce ey

R, more thanRg [27]. A similar flow effect is found in & - )
hydrodynamic models als[85] although it is considerably
less than the epacity effect, i.e., when the Cooper-Frye 0 e o
freeze-out conditiori28] is replaced by the Bugaev freeze- centrality, dN/dy or E,
out [29]. Preferably, a transverse flow analysis of particle

spectra should be performed in order to determine the mag- FIG. 5. Schematic behavior of the centraliy/dy or E; de-
nitude of the flow so that it can be separated from opacitypendence with and without a phase transition. From top to bottom
effects. The crucial question, however, is whether the tranghe curves show the ratio of elliptic flow to deformation /s,
verse flow is azimuthally dependent, i.gs, depend ong opacityg, /gs, and duration of emissiofir. The expected behavior
and thereby change the amplitudes? We can estimate thigthout (full curves and with (dashed curvesa first order phase
effect from the elliptic flow. For a simple thermal souf(d®) transition occurring in a region of semicentrality frash to c2 is
with transverse flow as in E@14), the resulting elliptic flow ~ described in the text.

Eq. (15 led to a very small difference for semicentral

Pb+Pb collisions at SPS energiéss) — <u ) less than a few collision energy as will be possible at the RHIC collider,
percent. Therefore, the azimuthal dependence of the flow angs=20— 200 GeV. For energy densities just above the criti-
its effect on the amplitude in the HBT radii is also of that cal value a mixed phase is created for a first order transition
order only which is much less thaf=0.5 for semicentral with zero compressibility, i.e., vanishing sound speed. Even
collisions. Both the deformation and elliptic flow decreasefor a second order or smooth transition, the sound spged
with centrality. The conclusion is that besides opacity also=dP/de is significantly reduced according to lattice calcu-
transverse flow may affect the factogg .—but indepen- lations [30]. The resulting transverse flow is therefore re-

(arb. units)
o)
D\
‘L

P N —

dently of azimuthal angle. Therefore Eq87)—(29) are still  duced[15] and should lead to smaller elliptic flow according
valid and can be used to extract the duration of emissiono Eq. (12).
unambiguously. Unfortunately, the elliptic flow and the modulation of the

It is very important to measure the centrality or impactHBT radii both scale with the deformation and thus decrease
parameter dependence of the source sizes, deformatiolmearly with centrality and vanish for near central collisions,
opacity, emission times, and duration of emission in order tavhere the phase transition might occur. However, by taking
determine how the source changes with initial energy denthe ratio of the elliptic flow to the amplitude of the HBT radii
sity. If no phase transition takes place one would expect tha, /8, the deformation cancel and the purely geometrical ef-
source sizes and emission times increase gradually with cefiects are removed. Only the collective effects as transverse
trality whereas the deformation decreases approximately #fow are left to first approximation. Since the transverse flow
in Eq. (3). In peripheral collisions, where source sizes andhas been found to increase with the size of the collision
densities are small and few rescatterings occur, the source $ystem at AGS and SPS energies, we can also expect it to
transparent and the HBT radii are given by E(2)—(25).  increase with centrality in the absence of phase transitions. In
For near central collisions source sizes and densities am@e presence of a phase transition, however, the transverse
higher which leads to more rescatterings. Thus the source fow increase very little with centrality which results in a
more opaque and the amplitudes should differ. It would be‘plateau” in the average transverse momentum as function
interesting to observe this gradual change in the amplitudesf centrality[31,15. The almost constant transverse flow for
with centrality. At the same time it would provide a direct centralities that produce a mixed phase should therefore ac-
experimental determination whether the source is transparegbrding to Eq.(12) also show up in the ratio, /& versus
or opaque as well as extracting the magnitudes of the opacityentrality such that the monotonic increase in transverse flow
and duration of emission separately. andv,/ 4§ is replaced at the critical centrality by a plateau as
function of centrality as sketched in Fig. 5. The plateau ex-
tends in an interval of semicentralitg;—c,, where the
pressure is constant due to a mixed phase, i.e., vanishing

If the matter created in an ultrarelativistic heavy ion col- sound speed.
lision undergoes a phase transition it may affect the elliptic The functional dependence of /5 would be similar to
flow and the modulation of the HBT radii. The critical en- the van Hove prediction of the temperature as function of
ergy density can be overcome either by increasing the cerrapidity density{31]. Also it is similar to thecaloric curveas
trality, sizes of the colliding nuclei and/or by increasing thewas recently observed in intermediate energy nuclear colli-

V. EFFECTS OF A PHASE TRANSITION
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sions[32]. The caloric curve plots the temperature versudimit as could be expected since the particle mean free paths
excitation energy and displays a plateau as was predicted fare a few Fermi’'s—comparable to the transverse source sizes
the liquid-gas phase transition of nuclear maftg84]. The for b=Rp,=7 fm/c. Comparing thep, dependence of el-
interpretation of the caloric curve is, however, debated in thdiptic flow for pions and protons reveals distinctively the
low-energy communitysee, e.g., Ref33]). change from collisionless expansion to hydrodynamic flow.
If a phase transition occurs at some centrality, where enin the collisionless limit they diffe(see Fig. 3 whereas in
ergy densities exceed the critical value, one may also obsenthe hydrodynamic limit they should become the same.
sudden changes in the physical quantities measured in HBT The modulation of the HBT radii with azimuthal angle
analyses. The emission time and duration of emission inbetween the reaction plane and particle transverse momenta
crease drastically in hydrodynamic calculati¢B5] leading can be exploited to obtain source sizes, deformations, life-
to very largeR, andR, (see also Fig. b A long lived mixed times, duration of emission, and opacities separately. HBT
phase would also emit particles as a black body and thus thedii provides important space-time information which
opacity increase and the opacity facigg/gs decrease as complements the momentum space information from particle
shown in Fig. 5. If droplet formation occurs leading to rapid- spectra on elliptic flow during expansion and freeze-out. The
ity fluctuations, one may be able to trigger on such fluctuaHBT radii can distinguish between opaque sources Egs.
tions and find smaller longitudinal and sideward HBT radii (27)—(29) from transparent source Eq®2)—(24) because
[36]. the amplitudes in Rand R, differ. The modulation of the
Alternatively, one could plot the quantities as function of HBT radii with ¢ provides five measurable quantities which
collision energy or size of the colliding nuclei for fixed cen- overdeterminates the four physical quantities describing the
trality with a similar qualitative dependence of the physicalsource: its sizéR, deformations, opacity @,—ds), and du-
quantities with and without a phase transition. Furthermoregation of emissiondr, at each impact parameter. The azi-
if an interesting change in these quantities should occur ahuthal dependence of the HBT radii thus offers an unique
some centrality or collision energy, it would also be mostway to determine the opacity of the source as well as the
interesting to look for simultaneou¥V suppressiorf37], duration of emission separately. Tracking these physical
strangeness enhancement, decrease in directed, elliptic quantities with centrality will provide detailed information
transverse flow, or other signals from a phase transition. about the source created in relativistic nuclear collisions and
may reveal a phase transition as sketched in Fig. 5.

VI. SUMMARY
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flow was calculated in the collisionless limit from the Boltz- proved NA49 datd3].

mann equation with a collision term as well as in the hydro-

dynamic limit assuming equipotential flow. The collisionless APPENDIX A: EVALUATION
limit is expected to be valid for peripheral collision where OF THE COLLISION INTEGRAL

few rescatterings are expected. Alternatively, the hydrody- In order to calculate the elliptic flow, we need the particle

namic limit is e>_<pected to be valid for central collision where y<tibition integrated over space for normalization in Eq.
many rescatterings are expected. For small transverse sour,

! N X X ﬁ% With the free streaming distribution function of EQ)
deformations the elliptic flow is proportional to the deforma- we find at any timer
tion in both limits. Detailed cascade ai8H-1)-dimensional
hydrodynamic calculations are clearly needed of both the
radial and elliptic flow as well as HBT radii for noncentral —:(277)—3f m, cosi —y)n(r,p,t) rd 7 dr,
nuclear collisions with and without phase transitions. dy &?p,

The estimates in the collisionless limit of E@®) give a

reasonable description of both the magnitude pndiepen- :(277)—37()[ dp, fo(p, .p,). (A1)
dence of the elliptic flow measured at SPS energies in
Pb+Pb semicentral collisions for both pions and protons. . . .
Furthermore, the measured elliptic flow is largest at midra- The c_hange of partlclg momenta due_ to .COII'S'OnS is the
pidities and is approximately proportional ¢N/dy as also change in the particle distribution function integrated over
predicted by Eq(9). In the hydrodynamic limit transverse space and time
flow couples top, and elliptic flow is therefore expected to
be the same for all particles at the same. For equipoten- dAN, _ Es J (‘9_n> 3
! : . dtd°r. (A2)
tial flow given by Eq.(12) can also describe the proton el- dyd?p, (2m)3 /.,
liptic flow, however, with a deformation is a factor7
smaller than the initial deformation of the collision zone. Itis In the collisionless limit we can now insert the free stream-
expected to be somewhat smaller due to expansion betweémg distribution function(7) in the collision term in order to
initial collision and freeze-out. The measured elliptic flow calculate the first order correction to the distribution func-
for pions lies between the collisionless and hydrodynamidion. As will be shown below, the system expands rapidly to




PRC 59 ELLIPTIC FLOW AND HANBURY-BROWN-TWISS . .. 2725

low densities, where collisions mainly contribute, and therefactors (1=n;) in the collision term as densities are low at
fore the final state factors ¢1n;) from stimulated emission- late times. The physical reason for the “late time” domi-
Pauli blocking can be ignored. For small angle scattering®ance in elliptic flow is that particles have to travel a dis-
the loss and gain terms imgn,—n4n,) nearly cancel lead- tance ~R before it feels the source deformation, i.e.,
ing to a suppression factor at forward and backward anglewhether it moves in th& direction, whereR,<R, or in they
~(1—co¢ 6). Furthermore, little momentum is lost in small direction, whereR,>R.

angle deflections leading to little deformation in momentum  since 7,<R/v, , the time integral becomes

space. We therefore replace the cross section by an angular

and energy averagetlansport cross sectiornoy, and keep wd 5 vf
only the loss termenqn = TH
y 12 LO 7 I, 8RR, Uizcos(2¢)+const, (A7)
At Elfdz de32 here th dependent of hal adg|
=— r,rdr ——U1204N1N5, where the constant is independent of azimuthal adgl€i-
dydzpi (277)3 i n (277)3 1204N1 N2 p g

nally, we carry out th, andd # integrals in Eq(A3) using

(A3) Eq. (A7) with the result
where we have changed variables to the space-time rapidity
and invariant time. dAN, —( >% dN,
At late times we can utilize that the free streaming distri- dy d?p, V120 dy dy d?p,
bution longitudinally can be approximated by
><—5 Vi g2¢)+const, (A8)
o To co const,
fo(p )= 2m_ "oy~ ) [ dp.fo(p. . (A9 BIRR, (v

where the averaging over scatterer momenta is indicated by
{---). Originally we only included loss terms in the Boltz-
mann equation and thereby replaced the cross section by the
transport cross section. The gain terms will not affect the
asymmetric term but will cancel the constant term in Eq.
7 ] (A8) when the number of particles is conserved. If there is
dy dp, net particle absorption or productian, should be multiplied
(A5) by the ratio of initial and final particle number.

] ] ) ] . We can now generalize to several kinds of scatterers by
First we deal with the integration over transverse coordiyeplacing 1 by a given particle speciegs pions, protons,

where the latter integral can be eliminated by use of Eq
(Al). The resulting free streaming distribution function of
Eq. (7) becomes

277)36 dN
Tml (y_

n(x,p)=S,(r,—v,7")

nates etc., and replace the scatterer 2 by a sum of scattgréns
dividing Eq. (A8) by dN, /dy d?p, we obtain by comparing
hEJ' dx dy S(r, —vy, 7)S, (r, —Vy, 7') to the definition, Eq(5), of elliptic flow
1 i '’ O S ooty IV (A9)
_ _ _ 2 _ 2 Vo=t o5 2 \Vij0g) 50 5 5 -

with 7 = 7— 7,. The transverse particle momentum or veloc-  APPENDIX B: EVALUATION OF EQUIPOTENTIAL

ity with respect to the reaction plan& axis) is vy, FLOW IN SEMICENTRAL COLLISIONS
=(v1x,V1y) =v1, (COSP,SiNG), in terms of the azimuthal ) ) o

angle¢. Assuming deformations are small we obtain by ex- In this appendix we evaluate the elliptic flow for an asym-

panding ind metric source with equipotential flow which is parametrized
spatially as a Gaussian in transverse directions. We assume
1 2 fz par_ticles are thermally dis?ributed with local flow v_elociiy
LSRR T = as in Eq.(11). By assumption _the_transvers.e flow is constant
TRXRy 4R on the freeze-out surface which is determined by

2
X

, (AB) a?= 2+y2,

RZ R

X

2

12..2
x(l— T 0L Scog26) +O(2)

wherev ,=|vy, —V,, | is the relative velocity. At this point . . . .
we make the important observation that the asymmetric terrh® U1 iS @ function ofa but independent of the azimuthal

! —tan-1 N
proportional to cos(@) is weighted by a factorfr'é(r angle ¢’ =tan™ “(y/x). Also, the transverse flow velocity is

5 . . . . . perpendicular to the elliptic surface
—79)%, i.€., scatterings at early times contribute little to azi-

muthal asymmetries in the momentum distribution whereas (R2 cos’ R2 sing’)
. yy . . g _ _ Yy IR
they are important arouneé~2R/v4,. This justifies Egs. u,=u,n=u,(a

) , ——_. ®)
(A4) and(A5) as well as the neglect of the Bose and Fermi \/Rf, cos ¢’ + R sir? ¢
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In calculating the azimuthal dependence only the transi.e., n~exp(puT). For small transverse deformations the
verse directions are important as normalizations cancel iflow is almost azimuthally symmetric and its average value
Eq. (5. Thus is equal to the cylindrical symmetric valug (r). The dis-

q tribution of particles is thus
N

dy d?p,

Expanding for small deformations we obtain

ocfadag(a)fdﬁex;iui-pl/T). (B3) —ym, +p,-u;

n(r,p,t)~exr{ T (Cy

In three dimensions the source is further complicated by the

dN oc<|0( pLTUL[1+5COS(2¢)])>, (B4) thermal factor exp—m, coshy—#)/T]. After integrating

dy &p, over Ipn_gitudinal direction orp, however, the results are
very similar whenm, >T.
where the averagg - - ) refers to radial average ovarof the The dependence on the angléetweerp, andu, in Eq.
transverse flowl is the Bessel function of imaginary argu- (C1) is crucial. Integrating over transverse coordinates gives
ment which has the limits the distribution
1 2 < dN m;
lo(X)= 3¢ X<t _ (B5) dsz“eXF{_Y? (To(p.u, /T)), (C2)

expx)/\V2mx, x>1
where(- - -) refers to radial average of the transverse flow
Expanding for small deformations and comparing to the defiand|, the Bessel functiofisee Eq.B5)].

nition of elliptic flow (5) we finally obtain The apparent temperature defined as the inversslope
202 becomes
1 pi(uy
Z—TZ \ p.u <T . d | dN 1
Vo= . (BG) app—| ~ g N
] pugu) am T dp,
> T —1]6, pLu>T

1
T+ §m¢<uf>, p U, <T,mu’<T

APPENDIX C: APPARENT TEMPERATURES a
AND TRANSVERSE FLOW TNy—uy,

. (C3
p.u>T,p,>m

Transverse flow affects the measuggd andm, slopes. At small p, the result is the expected one when the kinetic
The apparenttemperatures, obtained by fitting the particle energy of flow is added to the thermal energies in two di-
spectra bydN/d?p, <exp(—m, ITopp, are larger than the in-  mensions. At large@, and flow one instead obtains theue-
trinsic ones. It is difficult to determine the intrinsic tempera- shift formula[39]. Experimentally, the apparent temperature
ture and the transverse flow separately from slopes of is determined by exponential fits @N/d®p, in a certain
pions alond38]. Recent measuremerjtis] of apparent tem-  region ofp, and it may therefore differ somewhat from Eq.
peratures for various massive particlesk,p,d,*He, etc., (C3).
may allow us to estimate the transverse flow uniquely as will One should notice that in experimental fits to particle
now be described. spectra the apparent temperatures are parametrizég,gs

Assume a thermal source in two dimensions with intrinsic=T+m2. Consequently, this flow parameter differs from
temperaturd at freeze-out anétransversgflow u, locally,  ours by a fact0582:<uf>/2.
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