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Size matters: Origin of binomial scaling in nuclear fragmentation experiments
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The relationship between measured transverse energy, total charge recovered in the detector, and size of the
emitting system is investigated. Using only very simple assumptions, we are able to reproduce the observed
binomial emission probabilities and their dependences on the transverse energy. Our results show that the
observed scaling can arise due to a combination of finite-size effects and detector acceptance effects.
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PACS numbdss): 25.70.Pq, 24.10.Pa, 24.60.Ky

During the last decade, evidence has been mounting that *
nuclear matter undergoes a phase transition in the nuclear o?= E (n—(nY)2P,(m,p)=mp(1—p). 3
fragmentation process. From general considerations regard- n=0
ing the elementary nucleon-nucleon interactiogpulsive at
short and attractive at intermediate distance® expect the This result suggests that one may interpret the parametsr
nuclear phase diagram to show a van der Waals “liquidthe elementary probability for the emission of one fragment
gas” phase transition of first order, terminating in a second-and the parameten as the total number of tries. This would
order transition at the critical point. indicate that the problem of multifragment emission is reduc-

Recent observations point to evidence of first- andible to that of multiple one-fragment emission. The claim for
second-order transitions. In experiments studying Au-Aureducibility and its interpretation as the consequence of a
collisions conducted at the GSI, a measurement of the tensimple barrier penetration phenomenon was further strength-
perature as a function of excitation energy found possiblened by the observation that jn() has a linear dependence
evidence for a two-phase coexistence regjtie not unlike  on 1A/E,, where E, is the total transverse energ{,
the scenarios predicted by statistical multifragmentation==3,E,, sir? ¢. Finally, the same scaling was found for dif-
models with excluded volum,3]. Other experiments con- ferent beam energies and different projectile-target combina-
ducted at the Bevalac focused on the extraction of critications.
exponents fromalmos) completely reconstructed Au frag- Other authors have criticized the above work, pointing
mentation events on C targets, studying the dependence efir that there are different emission probabilities for differ-
the second moment of the charge distribution and size of thent size IMFs, and that there are problems in the transforma-
largest fragment as a function of the total charged particl@ion between the total transverse energy and a true thermal
multiplicity [4-6]. It was shown[7,8] that these data are energy[33], focusing on autocorrelations between the num-
consistent with the second-order phase transition predicteer of IMFs and the transverse ener@4]. (See also the
by the nuclear percolation modgd-12]. replies to these criticisms in Ref82,35.)

If one wants to gain a fundamental understanding of the In the present paper we add to this discussion by showing
fragmentation process that goes beyond simple equilibriurhow binomial distributions arise naturally from finite-size
model descriptions of the phenomena, then a proper descrigffects. In particular, we focus on the dependence of the
tion of the origin and time evolution of fluctuations is essen-experimentally recovered charge as a function of the mea-
tial [13-16, in particular if one wants to understand why sured transverse energy. We then demonstrate one way in
particular molecular dynamics codes produce fragmémts which the dependence of the binomial paramgtesn the
not) and what their connections to the fundamental processagtal transverse energy could arise. To be fair, one should
of nuclear fragmentation afd7-27. also note that the possibility of “spacelike” interpretations,

In this light, the recent findings of Morettet al. and oth-  j.e., finite source size, was discussed in R81] as an alter-
ers are very interesting28—32. This group found that the native to the “timelike” interpretation outlined above.
probability P, of emitting n intermediate mass fragments  We begin our study by generating power-law-distributed

(IMFs) follows a binomial distribution random fragmentation events. This is accomplished by deter-
| mining the charge of individual fragments with a probability
P, (m,p)= ’ p"(1—p)™". (1) distribution proportional taz™7, whereZ is the_ f_ragment
n! (m—n)! charge andr is the power-law exponent. For definiteness, we

. wish to generate events with exacBy,s charges. If an event
The parametersn andp are related to the average and vari- pac |ess thaiZ,; charges, we add another fragment; if it has

ance of the distribution: more thanZgs charges, we throw it out. For an infinite sys-
o tem, we would expect the multiplicity distributions for indi-
(n)y= 2 n P,(m,p)=m-p 2) vidual fragments of a give# to follow a Poisson distribu-
n 1 ’ .
n=0 tion,
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)\”exq—)\) ) ) 10071 7T
Qn(N\)=———7F—— with A=(n)=0". (4) 50 Zoys
20 |- 100 ]
And since the combined probability distribution of two ok |
Poisson-distributed variables is again a Poissonian, § i 40
°r 20
: 10
2 — —
Qu(A)®Qn(A2) =2, Qi(A1)Qn-i(A2)=Qu(A1+A2), 1 5
(5) 0.6 [
we would expect that the multiplicity distribution of the total 0.5 3 20 -
number of IMFs is also Poissonian. 0.4 40
The individual probability distributions for IMFs, how- . F 10
ever, cannot be exactly Poissonian, because the tails of the A, 031 100 E
distributions are cut off due to the finite size of the emitting o2k 5 4
system. Thus the probability distributions in our simulation g //
are closer to a binomial distribution with rather large values 0.1F 3
of mand small values op. (Whenm—c, p—0 such that 0.0 Bl L
mp= const, we obtain a Poissonian as the limit of a binomial "0 5 10 15 20 25 30
distribution) Typical values ofp we find for the probability k

distributions of our individual fragments aze3x 10~ 2 for a o
system of 100 total charges. These small valuep hiply FIG. 1. Dependence of the binomial fit paramefgr&ndm, of
. o . the probability distributions for intermediate mass fragments from
that the probability distributions are very close to a Poisson - - S :
S chargeZ=3 to Z=k on the upper summation limk, for different
distribution. However, for a system of only ten charges therqOtal charges of the fragmenting systeZy
are significant deviation from the Poisson limit due to the vs!

finite-size corrections. This fact, combined with the dependencezfs on the

We now ask what the combined probability distribution average transverse energiscussed below; see Fig), Dro-

for fragments charges in the interval 3ko k=4.5,...,30  \iqes one possible explantation for the scaling observed by
is. (If we usek=20, this corresponds to the usual definition Moretto et al.

of IMFs.) We find numerically that to very good approxima- ¢ this point, we should insert that this result is not de-
tion this distribution is again a binomial distribution, for all pendent on the fact that we started from a Poisson distribu-
values ofk. The binomial parameterp, and m, have a tion in the infinite-size limit. We have also conducted similar
monotonical behavior as a function Bf ~ py rises mono-  gydies for sub- and even super-Poissonian distributions, al-
tonically until it saturates & =Zsys, andm, falls monotoni- ~ \yays with the same outcome. In all cases, the finiteness of
cally. This results directly from the mathematical fact thate system provides a stronger reduction of the variance than

the mean of the combined probability distribution is the suM 4t of the mean and thus pushes the resulting IMF multiplic-
of the mean values of the individual distributions, but the

variance is always smaller than the sum of the variances for 1007
the folding of binomial distributions. [
In Fig. 1, we show the behavior of the parametgysand [
my of the combined probability distributions as a function of 80 -
k, the upper limit charge for the folding procedure, for dif- [
ferent values ofZg . For each value oZg, we generated [
10* events. This figure already contains the essentials to pro- 60 -
ducing the same patterns observed by Moretto and collabo- I
rators. We can clearly see that as we include more and more [
fragments in the definition of IMFs the extracted values of 40
the binomial parametep, increase, and those fan, de-
crease. We can also see tipat [ = p(k=3)] decreases as [
we increase the total charge of the fragmenting system. This 20
is expected: the larger the total available charge, the closer
the probability distributions of individual fragmen(m this
caseZ=3) will be to the Poissonian limit. It is essential to 0
note that the values gy for each system size saturatekat
=Zss. This is obvious, because we cannot have IMFs larger
than the total charge available. But this obvious fact has an F|G. 2. Dependence of the total charges of detected in a frag-
interesting consequence: The smaller the system size, thgentation eventZ,,, on the total transverse enerfly detected in
fewer the terms that can contribute to the construction of théhe experiment 58 MeV Kr+Au [37]. The error bars indicate the
asymptotic value op,, and the lower the asymptotic value width (standard deviationof the distribution on an event-by-event
of py. basis.
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FIG. 3. Dependence of the binomial paramgpeof the IMF FIG. 4. Dependence of the binomial paramgteof the IMF

distribution on the transverse energy for three different values of distribution on the transverse energy, assuming that the effective
power 7 of the fragment probability increases linearly with trans-

ity probability distribution in the direction of the binomial verse energy. Plot symbols with error bars represent our calcula-
limit [36]. However, since most multifragmentation modelstions; the solid line is a fit to the experimental data of Moretto and
produce Poissonian IMF multiplicity probability distribu- collaborators.
tions, we focus on this scenario in the present paper.

What is the dependence &f s on the transverse energy tally found functional dependence &f s on E, that we show
E; in the experiments of Morettet al.? This is shown in Fig. in Fig. 2 for the system Kr Au is basically the same for all
2 for the reaction K#Au at 55A MeV [37,38. The filled in  target-projectile combinations and beam energies below ap-
plot symbols show the meafy for each value of thé,, proximately 10& MeV (for higher beam energies, we have
and the error bars give the widfetandard deviationof the  sizable radial flow contributions to the transverse energy
distribution. The dominant feature of this figure is the linearTransverse energy basically measures the impact parameter,

rise of the mean value dgwith E;, that is to say, the size of the emitting system, and for any
experiment measuring inclusive fragment distributions the
(Zsyd E))=~2+0.09E/MeV, (6)  results will be very much similar to the ones displayed in

Fig. 2. This explains the universal scaling observed by Mor-
for values ofE; less than 0.7 GeV, and the saturatiorzgf, ~ ettoet al. without the need for invoking some deeper reason
for larger values. for this apparent universality; a plot of pv* vs 1AE, is

The width of theZg {E+) distribution is significant, on dominated by effects of the variation of the size of the emit-
the order of ten units of charge. If we wish to construct theting system. We should point out that our findings are not
probability distributions of intermediate mass fragments bydependent on the fact that the intermediate mass fragments
using our knowledge of the dependence of the binomial pacarry transverse energy themselves. The only correlations en-
rametergp andm on the system siz€Fig. 1), and the depen- tering our analysis are the experimental ones between trans-
dence of the system size on transverse energy, we have yerse energy and system size.
integrate over the experimentally measured width of the We can obtain more or less complete agreement with the
Z.,{E7) distribution. The resulting values @ffor the inte- ~ experimental data, if we allow the power-law parametésr
grated distributions are shown as a functiongpfin Fig. 3.  the fragment mass distribution to vary with the impact pa-
We have run three different calculations, using three differfameter and beam energy. This variation is a well-
ent values of the exponent in our fragment production documented experimental fag38—40Q; the experimentally
probability distributionsp(Z)=Z~". In this figure, we dis- observed value ofr increases with impact parameter and
play the results in the same way that Moretibal. have therefore falls with transverse energy. If we assume
done. One can already see that there is qualitative agreement
with the tendencies observed by Morettioal.: for all values 7(E;)=3.5~E;/(0.5 GeV), )
of 7, we observe an approximately linear rise opirt with
1/\JE,. This, however, isiot the consequence of some kind then we get the result displayed in Fig. 4. Our calculations
of thermal scaling. Instead, it is purely a consequence of thare represented by the plot symbols. The error bars are sta-
variation of the size of the emitting system as a function oftistical and computed on the basis 0k20* events for each
the transverse energy, and with it a change in the effectivpoint. The solid line is a fit to the experimental results of
parametep in the binomial probability distribution. Moretto et al. As one can see, there is very good agreement.

The projectile and target masses only enter into our conAssuming other functional dependencesradf E; may even
sideration as upper cutoffs for the possible maximum valuegield better results. This agreement, however, is not quite as
for Zssand, with it, the upper values &; . The experimen- relevant as the main message we wish to impress on the
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reader: The universal scaling of pn! vs 1/\/Et can be ex- extract from this type of analysis. For instance, the effects of
plained by a power-law-distributed fragment spectrum, thevarying system size could be eliminated with utilization of
finite size of the system emitting the fragments, and the decompletely reconstructed fragmentation events. For these
pendence of the measured value of the transverse energy types of events, percolation models predict a transition be-
that size. Since both thermal and nonthermal models catween sub- and super-Poissonian fluctuations near the perco-
produce power-law-distributed fragment spectra, the obtation threshold16]. Once the kind of correlations discussed
served scaling in the experimental data is thus not a suffiby us above are removed, then this type of fluctuations
cient signature of thermal scaling. analysis should yield insightful information about the char-
Even though the main message of the present paper is thagter of the nuclear fragmentation phase transifit].
the E; dependence of the extracted binomial parameters of
the fragment multiplicity distributions can be explained

rather straightforwardly, we do not wish to convey the mes- This work was supported by the National Science Foun-

sage that there is no interesting information that one canlation, Grant No. PHY-9605207.
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