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Size matters: Origin of binomial scaling in nuclear fragmentation experiments
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~Received 27 August 1998!

The relationship between measured transverse energy, total charge recovered in the detector, and size of the
emitting system is investigated. Using only very simple assumptions, we are able to reproduce the observed
binomial emission probabilities and their dependences on the transverse energy. Our results show that the
observed scaling can arise due to a combination of finite-size effects and detector acceptance effects.
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PACS number~s!: 25.70.Pq, 24.10.Pa, 24.60.Ky
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During the last decade, evidence has been mounting
nuclear matter undergoes a phase transition in the nuc
fragmentation process. From general considerations reg
ing the elementary nucleon-nucleon interaction~repulsive at
short and attractive at intermediate distances!, we expect the
nuclear phase diagram to show a van der Waals ‘‘liqu
gas’’ phase transition of first order, terminating in a seco
order transition at the critical point.

Recent observations point to evidence of first- a
second-order transitions. In experiments studying Au-
collisions conducted at the GSI, a measurement of the t
perature as a function of excitation energy found poss
evidence for a two-phase coexistence regime@1#, not unlike
the scenarios predicted by statistical multifragmentat
models with excluded volume@2,3#. Other experiments con
ducted at the Bevalac focused on the extraction of crit
exponents from~almost! completely reconstructed Au frag
mentation events on C targets, studying the dependenc
the second moment of the charge distribution and size of
largest fragment as a function of the total charged part
multiplicity @4–6#. It was shown@7,8# that these data ar
consistent with the second-order phase transition predi
by the nuclear percolation model@9–12#.

If one wants to gain a fundamental understanding of
fragmentation process that goes beyond simple equilibr
model descriptions of the phenomena, then a proper des
tion of the origin and time evolution of fluctuations is esse
tial @13–16#, in particular if one wants to understand wh
particular molecular dynamics codes produce fragments~or
not! and what their connections to the fundamental proces
of nuclear fragmentation are@17–27#.

In this light, the recent findings of Morettoet al. and oth-
ers are very interesting@28–32#. This group found that the
probability Pn of emitting n intermediate mass fragmen
~IMFs! follows a binomial distribution

Pn~m,p!5
m!

n! ~m2n!!
pn~12p!m2n. ~1!

The parametersm andp are related to the average and va
ance of the distribution:

^n&5 (
n50

`

n Pn~m,p!5m•p, ~2!
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~n2^n&!2 Pn~m,p!5m p~12p!. ~3!

This result suggests that one may interpret the parameterp as
the elementary probability for the emission of one fragm
and the parameterm as the total number of tries. This woul
indicate that the problem of multifragment emission is red
ible to that of multiple one-fragment emission. The claim f
reducibility and its interpretation as the consequence o
simple barrier penetration phenomenon was further stren
ened by the observation that ln(p21) has a linear dependenc
on 1/AEt, where Et is the total transverse energy,Et
5( lEkl sin2 ul . Finally, the same scaling was found for di
ferent beam energies and different projectile-target comb
tions.

Other authors have criticized the above work, pointi
our that there are different emission probabilities for diffe
ent size IMFs, and that there are problems in the transfor
tion between the total transverse energy and a true the
energy@33#, focusing on autocorrelations between the nu
ber of IMFs and the transverse energy@34#. ~See also the
replies to these criticisms in Refs.@32,35#.!

In the present paper we add to this discussion by show
how binomial distributions arise naturally from finite-siz
effects. In particular, we focus on the dependence of
experimentally recovered charge as a function of the m
sured transverse energy. We then demonstrate one wa
which the dependence of the binomial parameterp on the
total transverse energy could arise. To be fair, one sho
also note that the possibility of ‘‘spacelike’’ interpretation
i.e., finite source size, was discussed in Ref.@31# as an alter-
native to the ‘‘timelike’’ interpretation outlined above.

We begin our study by generating power-law-distribut
random fragmentation events. This is accomplished by de
mining the charge of individual fragments with a probabili
distribution proportional toZ2t, where Z is the fragment
charge andt is the power-law exponent. For definiteness,
wish to generate events with exactlyZsyscharges. If an even
has less thanZsys charges, we add another fragment; if it h
more thanZsys charges, we throw it out. For an infinite sy
tem, we would expect the multiplicity distributions for ind
vidual fragments of a givenZ to follow a Poisson distribu-
tion,
2695 ©1999 The American Physical Society
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Qn~l!5
ln exp~2l!

n!
with l5^n&5s2. ~4!

And since the combined probability distribution of tw
Poisson-distributed variables is again a Poissonian,

Qn~l1! ^ Qn~l2![(
i 50

n

Qi~l1!Qn2 i~l2!5Qn~l11l2!,

~5!

we would expect that the multiplicity distribution of the tot
number of IMFs is also Poissonian.

The individual probability distributions for IMFs, how
ever, cannot be exactly Poissonian, because the tails o
distributions are cut off due to the finite size of the emitti
system. Thus the probability distributions in our simulati
are closer to a binomial distribution with rather large valu
of m and small values ofp. ~Whenm→`, p→0 such that
mp5const, we obtain a Poissonian as the limit of a binom
distribution.! Typical values ofp we find for the probability
distributions of our individual fragments are<331022 for a
system of 100 total charges. These small values ofp imply
that the probability distributions are very close to a Poiss
distribution. However, for a system of only ten charges th
are significant deviation from the Poisson limit due to t
finite-size corrections.

We now ask what the combined probability distributio
for fragments charges in the interval 3 tok, k54,5, . . . ,30
is. ~If we usek520, this corresponds to the usual definitio
of IMFs.! We find numerically that to very good approxim
tion this distribution is again a binomial distribution, for a
values of k. The binomial parameterspk and mk have a
monotonical behavior as a function ofk: pk rises mono-
tonically until it saturates atk5Zsys, andmk falls monotoni-
cally. This results directly from the mathematical fact th
the mean of the combined probability distribution is the s
of the mean values of the individual distributions, but t
variance is always smaller than the sum of the variances
the folding of binomial distributions.

In Fig. 1, we show the behavior of the parameterspk and
mk of the combined probability distributions as a function
k, the upper limit charge for the folding procedure, for d
ferent values ofZsys. For each value ofZsys, we generated
104 events. This figure already contains the essentials to
ducing the same patterns observed by Moretto and colla
rators. We can clearly see that as we include more and m
fragments in the definition of IMFs the extracted values
the binomial parameterpk increase, and those formk de-
crease. We can also see thatp3 @5pk(k53)# decreases a
we increase the total charge of the fragmenting system. T
is expected: the larger the total available charge, the clo
the probability distributions of individual fragments~in this
caseZ53) will be to the Poissonian limit. It is essential t
note that the values ofpk for each system size saturate atk
5Zsys. This is obvious, because we cannot have IMFs lar
than the total charge available. But this obvious fact has
interesting consequence: The smaller the system size,
fewer the terms that can contribute to the construction of
asymptotic value ofpk , and the lower the asymptotic valu
of pk .
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This fact, combined with the dependence ofZsys on the
average transverse energy~discussed below; see Fig. 2!, pro-
vides one possible explantation for the scaling observed
Moretto et al.

At this point, we should insert that this result is not d
pendent on the fact that we started from a Poisson distr
tion in the infinite-size limit. We have also conducted simil
studies for sub- and even super-Poissonian distributions
ways with the same outcome. In all cases, the finitenes
the system provides a stronger reduction of the variance
that of the mean and thus pushes the resulting IMF multip

FIG. 1. Dependence of the binomial fit parameterspk andmk of
the probability distributions for intermediate mass fragments fr
chargeZ53 to Z5k on the upper summation limitk, for different
total charges of the fragmenting system,Zsys.

FIG. 2. Dependence of the total charges of detected in a f
mentation event,Zsys, on the total transverse energyEt detected in
the experiment 55A MeV Kr1Au @37#. The error bars indicate the
width ~standard deviation! of the distribution on an event-by-even
basis.
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ity probability distribution in the direction of the binomia
limit @36#. However, since most multifragmentation mode
produce Poissonian IMF multiplicity probability distribu
tions, we focus on this scenario in the present paper.

What is the dependence ofZsys on the transverse energ
Et in the experiments of Morettoet al.? This is shown in Fig.
2 for the reaction Kr1Au at 55A MeV @37,38#. The filled in
plot symbols show the meanZsys for each value of theEt ,
and the error bars give the width~standard deviation! of the
distribution. The dominant feature of this figure is the line
rise of the mean value ofZsys with Et ,

^Zsys~Et!&'210.092Et /MeV, ~6!

for values ofEt less than 0.7 GeV, and the saturation ofZsys
for larger values.

The width of theZsys(ET) distribution is significant, on
the order of ten units of charge. If we wish to construct t
probability distributions of intermediate mass fragments
using our knowledge of the dependence of the binomial
rametersp andm on the system size~Fig. 1!, and the depen-
dence of the system size on transverse energy, we hav
integrate over the experimentally measured width of
Zsys(ET) distribution. The resulting values ofp for the inte-
grated distributions are shown as a function ofEt in Fig. 3.
We have run three different calculations, using three diff
ent values of the exponentt in our fragment production
probability distributions,p(Z)}Z2t. In this figure, we dis-
play the results in the same way that Morettoet al. have
done. One can already see that there is qualitative agree
with the tendencies observed by Morettoet al.: for all values
of t, we observe an approximately linear rise of lnp21 with
1/AEt. This, however, isnot the consequence of some kin
of thermal scaling. Instead, it is purely a consequence of
variation of the size of the emitting system as a function
the transverse energy, and with it a change in the effec
parameterp in the binomial probability distribution.

The projectile and target masses only enter into our c
sideration as upper cutoffs for the possible maximum val
for Zsys and, with it, the upper values ofEt . The experimen-

FIG. 3. Dependence of the binomial parameterp of the IMF
distribution on the transverse energy for three different values ot.
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tally found functional dependence ofZsyson Et that we show
in Fig. 2 for the system Kr1Au is basically the same for al
target-projectile combinations and beam energies below
proximately 100A MeV ~for higher beam energies, we hav
sizable radial flow contributions to the transverse energ!.
Transverse energy basically measures the impact param
that is to say, the size of the emitting system, and for a
experiment measuring inclusive fragment distributions
results will be very much similar to the ones displayed
Fig. 2. This explains the universal scaling observed by M
etto et al. without the need for invoking some deeper reas
for this apparent universality; a plot of lnp21 vs 1/AEt is
dominated by effects of the variation of the size of the em
ting system. We should point out that our findings are n
dependent on the fact that the intermediate mass fragm
carry transverse energy themselves. The only correlations
tering our analysis are the experimental ones between tr
verse energy and system size.

We can obtain more or less complete agreement with
experimental data, if we allow the power-law parametert for
the fragment mass distribution to vary with the impact p
rameter and beam energy. This variation is a we
documented experimental fact@38–40#; the experimentally
observed value oft increases with impact parameter an
therefore falls with transverse energy. If we assume

t~Et!53.52Et /~0.5 GeV!, ~7!

then we get the result displayed in Fig. 4. Our calculatio
are represented by the plot symbols. The error bars are
tistical and computed on the basis of 23104 events for each
point. The solid line is a fit to the experimental results
Morettoet al. As one can see, there is very good agreeme
Assuming other functional dependences oft of Et may even
yield better results. This agreement, however, is not quite
relevant as the main message we wish to impress on

FIG. 4. Dependence of the binomial parameterp of the IMF
distribution on the transverse energy, assuming that the effec
power t of the fragment probability increases linearly with tran
verse energy. Plot symbols with error bars represent our calc
tions; the solid line is a fit to the experimental data of Moretto a
collaborators.
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reader: The universal scaling of lnp21 vs 1/AEt can be ex-
plained by a power-law-distributed fragment spectrum,
finite size of the system emitting the fragments, and the
pendence of the measured value of the transverse energ
that size. Since both thermal and nonthermal models
produce power-law-distributed fragment spectra, the
served scaling in the experimental data is thus not a s
cient signature of thermal scaling.

Even though the main message of the present paper is
the Et dependence of the extracted binomial parameter
the fragment multiplicity distributions can be explaine
rather straightforwardly, we do not wish to convey the m
sage that there is no interesting information that one
d
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extract from this type of analysis. For instance, the effects
varying system size could be eliminated with utilization
completely reconstructed fragmentation events. For th
types of events, percolation models predict a transition
tween sub- and super-Poissonian fluctuations near the pe
lation threshold@16#. Once the kind of correlations discusse
by us above are removed, then this type of fluctuatio
analysis should yield insightful information about the cha
acter of the nuclear fragmentation phase transition@41#.
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