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Coulomb excitation of a damped oscillator and the Brink-Axel mechanism
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Multiple Coulomb excitation of collective nuclear modes is examined in the context of an extremely sche-
matic dynamic model consisting of a harmonic oscillator, taken to represent the relevant collective mode,
damped by linear coupling to a ‘‘bath’’ consisting also of harmonic oscillators, and forced by an applied
external pulse. The~well-known! exact solution of the model allows for an estimate cross section which takes
into account the joint effect ofall excitation mechanisms leading to definite excitation energy domains,
including the Brink-Axel mechanism, which occurs very naturally in this type of model. The semiclassical
estimate of cross sections leading to the two-phonon domain shows enhancement with respect to the corre-
sponding values obtained in the case of no damping. The magnitude of the enhancement decreases as the beam
energy increases~or, equivalently, as the impact parameter averaged time width of the external pulse de-
creases!, for model parameters chosen to conform to the appropriate nuclear orders of magnitude.
@S0556-2813~99!07505-6#

PACS number~s!: 24.30.Cz, 24.60.Ky, 24.10.Eq
in
n
er

r
b
a
rv
b

i
y’
ffe
ila
h
po

s
o
le
o
ro
c

w
ua
ob
w

X
m
in

ea
ea
ti

cr

es-
one

ole
led
but

ub-
all
to

-
om

d as
ng
e-
x-
of

me-

ode

s
sys-
be

on-
I. INTRODUCTION

Double excitation of the isovector giant dipole mode
Coulomb excitation processes involving heavy-ion collisio
at relativistic energies has now been observed in sev
nuclei: 136Xe @1#, 197Au @2#, and 208Pb @3,4#. The measured
cross sections for double excitation have been compa
with results of ‘‘semiclassical’’ coupled channel Coulom
calculations@5–7#, and it has been found that the theoretic
cross sections systematically underestimate the obse
ones by factors which are as large as 2–3 for Xe and Au
are reduced to about just 1.3 in the case of Pb@7#.

In a frequently used description of giant resonances
atomic nuclei one associates them with special ‘‘doorwa
states in the host nucleus which are spread through the e
of couplings to other nearby noncollective states. A sim
picture can be extended also to double excitations suc
those that have been observed for the giant isovector di
mode @5,6#. The convenience of this type of picture stem
from the fact that it can be readily implemented in terms
suitable decompositions of the phase space of the nuc
system through the use of appropriate projection operat
leading to the proper sorting of the various dynamical p
cesses involved. In the sorting process one usually introdu
energy-averaged amplitudes corresponding to the door
effects, which require the subsequent calculation of fluct
tion contributions to be incoherently added to the results
tained from them. A different approach can be found, ho
ever, in the work of Ponomarevet al. @8#, in which energy-
differential cross sections are calculated for the case of
in the framework of a perturbative semiclassical Coulo
excitation scheme, which correspond to the excitation of
dividual fine structure final states obtained from a nucl
structure calculation taking into account residual nonlin
couplings between one and two random phase approxima
phonons. The result again underestimates the observed
PRC 590556-2813/99/59~5!/2689~6!/$15.00
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section by a factor of about 4.
When the various doorway states involved imply the pr

ence of a vibrational band, however, as is the case when
considers multiphonon excitations of a giant isovector dip
mode, still another picture suggests itself in which one is
to single out not just a given state, or a group of states,
rather a collectivedegree of freedom@9#. Unlike in the case
of a set of doorways, to which one associates a certain s
space of the full quantum phase space which still involves
the nuclear degrees of freedom, in this case one is led
formulate the dynamics in afactorizedphase space, involv
ing on the one side the relevant collective degree of freed
and, on the other side, the remaining ones, considere
being ‘‘noncollective’’ in the adopted sense. The resulti
picture is that of a damped oscillator, the noncollective d
grees of freedom playing the role of a reservoir which e
changes energy with the collective mode. The dynamics
such a damped oscillator can be represented, albeit so
what schematically, by a Hamiltonian of the form

Hn5vdd†d^ 1k11d^ (
k

uek&ek^eku

1(
kk8

~ uek8&gk8kd^eku1uek&gk8k
* d†^ek8u!,

where the first two terms represent the collective linear m
of frequencyvd and the reservoir with spectrum$ek% and
eigenstates$uek&%, respectively, while the last term couple
these two subsystems. The ground state of the coupled
tem will have simple properties when the coupling can
seen as restricted so thatgk8k[0 unlessek8.ek . In this case
it reduces in fact to the product stateu0d& ^ ue0&, this latter
ket being the reservoir ground state. In fact, when this c
2689 ©1999 The American Physical Society
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2690 PRC 59B. V. CARLSON et al.
dition does not apply one has a correlated ground state w
contains components involving combined excitations of
two subsystems.

II. DRIVEN COUPLED OSCILLATORS

The standard semiclassical picture of the multiple C
lomb excitation of the damped giant isovector mode can
schematically described by a Hamiltonian of this type,
which one adds furthermore an external driving term for
collective mode. This driving term can be represented as

V~ t !5@ f ~ t !d†1 f * ~ t !d# ^ 1k ,

where the functionf (t) is a scalar ersatz for the Coulom
field of a passing charged projectile. In order to further si
plify this model to the point of complete solubility, the re
ervoir may be further specialized to a set of noncollect
linear oscillators, i.e.,

(
k

uek&ek^eku→(
k

vkbk
†bk ,

with a linear coupling of the form

(
kk8

~ uek8&gk8kd^eku1uek&gk8k
* d†^ek8u!

→(
k

~gkbk
†d1gk* d†bk!,

which in particular guarantees a simple, factorized grou
state. The semiclassical Coulomb multiple excitation proc
will therefore be studied in the very schematic, solub
model represented by the linear Hamiltonian

H5vdd†d^ 1k11d^ (
k

vkbk
†bk1(

k
~gkbk

†d1gk* d†bk!

1@ f ~ t !d†1 f * ~ t !d# ^ 1k . ~2.1!

As will be shown below, the effects induced by the prese
of the vibrational collective degree of freedom can be stud
in this model directly at the level of the fine structure gen
ated by the coupling to the reservoir, independently of
introduction of average amplitudes, so that both ene
smooth and fluctuation components are effectively trea
together. One possible drawback of this uniform treatm
lies actually in the ensuing difficulty of disentangling the
two, rather theoretically motivated, types of contribution.

In order to obtain the relevant solutions of the mod
problem posed by Eq.~2.1!, one begins by performing a
canonical transformation to the normal modes of the coup
system, which in view of the special nature of the coupli
term consists in introducing new bosonic operatorscn related
to thed,bk as

d5(
n

x0ncn , bk5(
n

xkncn , ~2.2!

where thex coefficients are chosen so that theH becomes
ch
e

-
e

e

-

e

d
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e
d
-
e
y
d
t

l

d

H5(
n

@vncn
†cn1x0n* f ~ t !cn

†1x0n f * ~ t !cn#. ~2.3!

It is perhaps worth recalling some features of this tra
formation to normal modes@10#. The eigenfrequenciesvn

are obtained from the dispersion equation

vn2vd5(
k

ugku2

vn2vk
,

while thex coefficients satisfy

xkn5
gk*

vn2vk
x0n ,

so that normalization gives

ux0nu25
1

11(
k

@ ugku2/~vn2vk!
2#

.

This last quantity describes the distribution of the collect
degree of freedom among the normal modes, as a result o
coupling to the reservoir degrees of freedom, normal mo
excitations corresponding to ‘‘fine structure’’ states of t
damped collective mode. Furthermore, using these relat
it is easy to obtain the sum rule relations

S1[(
n

vnux0nu25vd and

(
n

vn
2ux0nu22S1

25(
k

ugku2. ~2.4!

The first of these simply equates the collective frequencyvd
to the centroid of the fine structure frequenciesvn , while the
second relates the mean-square deviation of the fine struc
frequencies to the sum of the absolute squares of the
pling constantsgk . In the case of reservoir oscillator fre
quencies forming an endless picket fence andk-independent
couplingsgk , this quantity diverges.

Equation~2.3! describes a set ofindependentdriven os-
cillators, which can thus be dealt with separately, one by o
The relevant initial state in the present context is that
which all oscillators are in their respective ground states
order to obtain the solution one, e.g., considers the Heis
berg equation of motion for the operatorcn(t)
5Un(t)cnUn

†(t), Un(t) being the full evolution operator fo
the corresponding normal mode, which reads

i ċn~ t !5vncn~ t !1x0n* f ~ t !

and is readily solved as

cn~ t !5e2 ivn tcn2 ix0n* e2 ivn tE
0

t

dt8eivn t8 f ~ t8!,

revealing that, besides acquiring the usual harmonic ph
cn(t) undergoes a coherent displacement due to the actio
the driving force, the corresponding amplitude bei
exp(2ivn t)an(t), with
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PRC 59 2691COULOMB EXCITATION OF A DAMPED OSCILLATOR . . .
an~ t ![2 ix0n* E
0

t

dt8eivn t8 f ~ t8!. ~2.5!

It is also an easy matter to use the initial condition and w
down the state at timet of this oscillator in the Schro¨dinger
picture. One gets

Un~ t !u0n&5ue2 ivn tan~ t !&

[e2uan(t)u2/2(
n50

`
@e2 ivn tan~ t !#n

An!
unn&, ~2.6!

where the statesunn& are the usual phonon number eige
states for thenth normal mode. In the case of short puls
one considers in connection with the semiclassical treatm
of Coulomb excitation, letting the pulse start sufficiently la
~after t50), one gets foran(T) at asymptotically large times
T essentially the Fourier transform of the pulse, a tim
independent quantity.

III. INCLUSIVE EXCITATION PROBABILITY AND THE
BRINK-AXEL MECHANISM

The next point to be discussed concerns the quanti
relevant for the Coulomb excitation problem, that one wish
to obtain from this general solution of the driven, damp
oscillator model. First and foremost are various excitat
probabilities, which eventually become translated to the c
responding cross sections. The ‘‘elementary,’’ excitat
probabilities that correspond to distinguishable nuclear e
tation processes are excitations to a definite phonon num
of each of the normal mode oscillators~i.e., definite ‘‘fine
structure’’ nuclear excitations!. Actual measurements are
however, more inclusive, and correspond to the probab
of exciting certain energy bands which can be associa
with total phonon number in the collection of normal mode
The calculation of these excitation probabilities is co
pletely straightforward in terms of Eq.~2.6!, given the fact
that the complete state of the model system is simply a p
uct state of coherent states of this sort. The probability
exciting a single phonon in normal moden ~while all other
normal modes remain in their respective ground states! is
calculated simply as

P1
(n)~ t !5U^0 . . . 1n0 . . . uF)

n8
ue2 ivntan~ t !&GU2

5expS 2(
n8

uan8~ t !u2D uan~ t !u2,

so that the corresponding inclusive one-phonon excita
probability is

P1~ t !5(
n

P1
(n)5expS 2(

n8
uan8~ t !u2D(n

uan~ t !u2.

In order to calculate inclusive probabilities for the excitati
of n phonons~of whatever type! one proceeds in the sam
way, keeping due track of the various possible multiplic
distributions, and obtains the simple result
e

nt

-
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s
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i-
er

y
d
.
-

d-
r

n

Pn~ t !5(
$n%

Pn
($n%)5expS 2(

n8
uan8~ t !u2D F(

n
uan~ t !u2Gn

n!
,

~3.1!

wherePn
($n%) stands for the probability of excitingn phonons

of types specified by$n%. This expression works also forn
50 ~probability of remaining in the product ground stat!
and makes obvious the overall probability normalizatio
Note that the inclusive probabilities have been obtained
the incoherent sumof ‘‘elementary’’ contributions corre-
sponding to the various included fine structure states.

The translation of thePn(t) ~at asymptotically large times
T) into cross section language involves in an essential w
the customary realization of the external electromagn
pulse f (t) in the context of the so-called semiclassical c
culations of nuclear excitation processes. This pulse, du
the passage of a projectile moving essentially in a stra
line trajectory at constant speed, will be parametrized here
the simple scalar ersatz@5#

f ~ t !5 f * ~ t !5
V0bmin

@gv~ t2t0!#21b2
[V0

tmin
2

~ t2t0!21t2
,

~3.2!

where V0 is an overall strength parameter,g is the usual
relativistic factor, andb is the impact parameter of th
straight line trajectory, which has to be larger thanbmin , the
value at which ‘‘other processes’’ are assumed to take o
The quantityt0 stands for the time of closest approach. In t
last step the definitions

t[
b

gv
, tmin[

bmin

gv

have been introduced. Note that the quantityt corresponds
to the~impact parameter dependent! time width of the pulse.

Using this pulse in Eqs.~2.5! and ~2.6! we see that the
normal mode coherent displacements, and hence also th
clusive transition probabilities, become dependent on the
pact parameterb. Cross sections corresponding to the inc
sive transition probabilities are then obtained as usual fr
@6#

sn52pE
bmin

`

db b Pn~T;b!, ~3.3!

wherePn(T;b) is the time-independent asymptotic value
the inclusive transition probabilities, obtained in the con
tions discussed earlier. Using Eq.~3.2! the required
asymptotic valuesuan(T)u2 can in fact be obtained in close
form. Assuming thatt0@t so that the time integration in Eq
~2.5! can be extended to minus infinity with negligible erro
one gets

uan~T!u2→A2~b!ux0nu2e22vnt,

with

A~b!5pV0

bmin
2

gvb
.



k

2692 PRC 59B. V. CARLSON et al.
TABLE I. Multiphonon excitation paths for the collective damped oscillator. The notationsf andg refer
to the external pulse and to the coupling of the collective mode to the bath oscillators, respectively@see Eq.
~2.1!#. The Brink-Axel route linking the ground state~GS! to the two-phonon domain is indicated by the thic
arrows.

ddd . . . . . . . . . . . .
fl fl fl fl

g g g

Three phonons u3d ,$0k%& ↔ u2d,1k& ↔ u1d,2k&,u1d,1k,1k8& ↔ . . .
fl fl fl

g g

Two phonons u2d ,$0k%& ↔ u1d,1k& ↔ u0d,2k&,u0d,1k,1k8&
fl fm

g

One phonon u1d ,$0k%& ⇔ u0d,1k&
fm

GS u0d ,$0k%&
fo
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The asymptotic inclusive transition probabilities relevant
the calculation of cross sections can thus be written explic
as

Pn~b!5
1

n!
expS 2A2~b!(

n
ux0nu2e22vntD

3S A2~b!(
n

ux0nu2e22vntD n

, ~3.4!

while, for comparison, the corresponding probabilities
the undampedcollective oscillator reduce to

Pn
(0)~b!5

1

n!
e2A2(b)e22vdt

@A2~b!e22vdt #n. ~3.5!

The various processes which are taken into account in
~3.4! are identified in Table I, in terms of the original, co
lective and reservoir degrees of freedom. The probabili
Pn(b) are inclusive probabilities for populating each of t
n-phonon level groups. Forn>2 this involves several obser
vationally indistinguishable routes, among which is t
Brink-Axel @11# collective excitation in the presence of e
cited reservoir states. Two points are worth stressing h
first, excitation of thecollective two-phonon state does no
correspond to populating an asymptotically well-defin
~stationary! state, so that no probability~or cross section! can
be unambiguously attributed to this processper se, a feature
which is in fact independent of the particular realization
the reservoir implied in Eq.~2.1!; second, for that particula
realization the various processes indicated in Table I
taken into accountto all orders, both in the damping cou
plings gk and in the external pulsef (t).

A qualitative appraisal of the effect of the spreading
the inclusive excitation probabilities, which also serves
purpose of identifying the relevant scale parameters, can
obtained analytically by taking a simple normalized ‘‘box
distribution of widthI for the strengthsux0nu2, i.e.,
r
y

r

q.

s

e:

f

re

e
be

ux0nu2→
dvn

I FQS vn2vd1
I

2D2QS vd1
I

2
2vnD G ,

whereQ(x) denotes the usual unit step function. Replaci
the sum in Eq.~3.4! by an integral one obtains immediate

(
n

ux0nu2e22vnt→e22vdt
sinhI t

I t
,

which gives for the ratio of the probabilities with and with
out spreading:

Pn~b!

Pn
(0)~b!

→expF2A2~b!e22vdtS sinhI t

I t
21D G S sinhI t

I t D n

.

This expression clearly indicates the relevance of the qu
tity I t, which corresponds to the ratio of the collision timet
to the characteristic decay time of the collective mode 1I .
While it approaches unity in the limit of collision time
which are very short compared with the collective dec
time, it can lead otherwise to important enhancement effe
when the squared coherent displacement of the undam
collective modeA2(b)e22vdt is small, as is in fact the cas
for typical Coulomb excitation processes of isovector gia
dipole modes.

IV. NUMERICAL RESULTS

In order to display the quantitative effects of the dampi
on multiphonon nuclear excitation processes in a more ‘
alistic’’ situation we next compare results obtained by us
Eqs. ~3.4! and ~3.5! together with a ‘‘typical’’ discrete
strength distribution such that the quantitiesux0nu2 are cho-
sen as having the Lorentzian distribution

ux0nu2;
2

p

G vn
2Dvn

~vn
22v0

2!21G2vn
2

, (
n

ux0nu251,
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FIG. 1. Strength distribution of the collective mode~solid
squares! and one- and two-phonon excitation strengths forb
517 fm ~heavy and light vertical lines! andb521 fm ~heavy and
light histograms!, as functions of excitation energy, for projecti
energiesE/A50.1 GeV and 0.64 GeV.

FIG. 2. Enhancement of one- and two-phonon cross section
a result of the damping of the collective mode. Dashed curves
respond to the undamped collective mode; solid curves corresp
to the damping shown in Fig. 1.
with constant spacingDvn . The resonance parametersv0
513.5 MeV andG54.35 MeV have been chosen so th
the resulting strength distribution is a rough fit to the pho
excitation cross section for the~one-phonon! giant dipole
resonance in208Pb. The pulse strength parameterV0 has
been fixed so as to give the observed value@7# of the one-
phonon,208Pb-208Pb Coulomb excitation cross section
E/A50.64 GeV. The frequencyvd which appears in the
excitation probabilities for the undamped collective oscil
tor, Eq.~3.5!, is obtained using the energy-weighted sum ru
S1, Eq. ~2.4!, which givesvd515.2 MeV.

The collective mode strength fractionsux0nu2 obtained in
this way are shown in Fig. 1, together with the resulting on
and two-phonon excitation strength fractions for differe
values of the impact parameter and for the projectile ener
E/A of 0.1 and 0.64 GeV. The excitation strength fractio
are obtained by normalizing to one the excitation ene
distributions of the appropriate excitation probabilitie
Projectile-energy- and impact-parameter-dependent sh
distortions due to different effectiveness of the excitati
mechanism are clearly seen, being much more pronounce
lower projectile energies. Inclusive one- and two-phon

as
r-
nd

FIG. 3. Impact-parameter-weighted inclusive excitation pro
abilities for one and two phonons, with and without spreading,
functions of impact parameter for the projectile energiesE/A50.1
and 0.64 GeV.
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2694 PRC 59B. V. CARLSON et al.
damped, and undamped cross sections obtained using
~3.3! are shown in Fig. 2 as a function of incident energ
One- and two-phonon impact-parameter-weighted inclus
excitation probabilities for the projectile energies 0.1 a
0.64 GeV are shown in Fig. 3, as functions of impact para
eter, together with the corresponding probabilities for
undamped collective mode.

While both the one- and the two-phonon cross secti
are considerably enhanced by the damping of the collec
mode, one sees in Fig. 2 that the enhancement factor is
sistently larger for the two-phonon domain. This is sho
quantitatively in Fig. 4, where the ratio of the two-phonon
the one-phonon enhancement factors is plotted as a func
of projectile energy. Furthermore, the enhancement of
two-phonon cross sectionrelative to the one-phonon cros
section is seen todecreasemonotonically with projectile en-
ergy, consistently with the apparent trend@12,1–4,7# of the
‘‘missing two-phonon strength’’ in standard semiclassic
calculations carried out in the harmonic limitor including
spreading effects of the one-phonon collective state tre

FIG. 4. One- and two-phonon cross-section enhancement fa
and their ratio as a function of projectile energy.
do

o

a,
v.
q.
.
e

d
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e

s
e
n-
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e
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as an ‘‘exit doorway’’ @5,6#, which actuallyquenchesthe
cross-section ratio corresponding to the harmonic limit, r
resented here by the undamped cross sections. It is w
stressing in this connection that one important ingredi
which is missing in the latter calculations but is automa
cally taken into account here is the contribution of Brin
Axel excitation paths~see Table I! to the multiphonon do-
mains.

V. CONCLUSION

In this paper we have discussed an exactly soluble mo
of multiple giant resonance excitation. The model involve
harmonic oscillator, taken to represent the collective mo
damped through linear coupling to a bath consisting also
harmonic oscillators, and forced by an external pulse wh
simulates the Coulomb force between two colliding nucl
The exact solution of the model allows for assessment of
importance of the Brink-Axel phenomenon. It is found th
the latter appreciably enhances the excitation cross sec
when compared to the one obtained in the zero-coup
~harmonic! limit. This enhancement is found to decrease
the interaction time becomes shorter, in qualitative agr
ment with available data on relativistic Coulomb excitati
of double giant dipole resonances in several nuclei.

Because of the schematic character of the model, a
comparison with measured cross section is not warrante
this time. It may be anticipated, however, that treatme
including the Brink-Axel path@13,14# may account for the
observed Pb cross section in the harmonic limit, while a
harmonic effects@15# may be an additional required ingred
ent in the cases where the discrepancy between calcu
and observed cross sections is larger.
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