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Coulomb excitation of a damped oscillator and the Brink-Axel mechanism
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Multiple Coulomb excitation of collective nuclear modes is examined in the context of an extremely sche-
matic dynamic model consisting of a harmonic oscillator, taken to represent the relevant collective mode,
damped by linear coupling to a “bath” consisting also of harmonic oscillators, and forced by an applied
external pulse. Théwell-known) exact solution of the model allows for an estimate cross section which takes
into account the joint effect ol excitation mechanisms leading to definite excitation energy domains,
including the Brink-Axel mechanism, which occurs very naturally in this type of model. The semiclassical
estimate of cross sections leading to the two-phonon domain shows enhancement with respect to the corre-
sponding values obtained in the case of no damping. The magnitude of the enhancement decreases as the beam
energy increasefor, equivalently, as the impact parameter averaged time width of the external pulse de-
creaseg for model parameters chosen to conform to the appropriate nuclear orders of magnitude.
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I. INTRODUCTION section by a factor of about 4.
When the various doorway states involved imply the pres-

Double excitation of the isovector giant dipole mode inence of a vibrational band, however, as is the case when one
Coulomb excitation processes involving heavy-ion collisionsconsiders multiphonon excitations of a giant isovector dipole
at relativistic energies has now been observed in severanode, still another picture suggests itself in which one is led
nuclei: 13%e [1], %7Au [2], and 2°8Pb[3,4]. The measured 10 single out not just a given state, or a group of states, but
cross sections for double excitation have been compare@ther a collectivelegree of freedorf®]. Unlike in the case
with results of “semiclassical” coupled channel Coulomb Of a set of doorways, to which one associates a certain sub-
calculationg5-7], and it has been found that the theoreticalspace of the full quantum phase space which still involves all
cross sections systematically underestimate the observdfie nuclear degrees of freedom, in this case one is led to
ones by factors which are as large as 2—3 for Xe and Au buformulate the dynamics in tactorizedphase space, involv-
are reduced to about just 1.3 in the case of Pb ing on the one side the relevant collective degree of freedom

In a frequently used description of giant resonances ifnd, on the other side, the remaining ones, considered as
atomic nuclei one associates them with special “doorway”being “noncollective” in the adopted sense. The resulting
states in the host nucleus which are spread through the effeBicture is that of a damped oscillator, the noncollective de-
of couplings to other nearby noncollective states. A similargrees of freedom playing the role of a reservoir which ex-
picture can be extended also to double excitations such &hanges energy with the collective mode. The dynamics of
those that have been observed for the giant isovector dipofguch a damped oscillator can be represented, albeit some-
mode[5,6]. The convenience of this type of picture stemsWhat schematically, by a Hamiltonian of the form
from the fact that it can be readily implemented in terms of
suitable decompositions of the phase space of the nuclear
system through the use of appropriate projection operators, _ t
leading to the proper sorting of the various dynamical pro- Hn=wqd de Lt 1d®§k: lededed
cesses involved. In the sorting process one usually introduces
energy-averaged amplitudes corresponding to the doorway * gt
effects, which require the subsequent calculation of fluctua- +§ (Je)gieided +ledgid (e,
tion contributions to be incoherently added to the results ob-
tained from them. A different approach can be found, how-
ever, in the work of Ponomarest al. [8], in which energy- where the first two terms represent the collective linear mode
differential cross sections are calculated for the case of Xeyf frequencywy and the reservoir with spectrufe,} and
in the framework of a perturbative semiclassical Coulombeigenstateg|e,)}, respectively, while the last term couples
excitation scheme, which correspond to the excitation of inthese two subsystems. The ground state of the coupled sys-
dividual fine structure final states obtained from a nucleatem will have simple properties when the coupling can be
structure calculation taking into account residual nonlineaseen as restricted so thgt =0 unlesse,, > €. In this case
couplings between one and two random phase approximatidh reduces in fact to the product std@,)®|€y), this latter
phonons. The result again underestimates the observed crdest being the reservoir ground state. In fact, when this con-
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dition does not apply one has a correlated ground state which ; . ; .
contains components involving combined excitations of the H=2 [w,clc,+x5, f(Dch+xo, f*(D)c,]. (2.3
two subsystems. g
It is perhaps worth recalling some features of this trans-
Il. DRIVEN COUPLED OSCILLATORS formation to normal modegl0]. The eigenfrequencies,

. . . . are obtained from the dispersion equation
The standard semiclassical picture of the multiple Cou- P d

lomb excitation of the damped giant isovector mode can be |gk/?
schematically described by a Hamiltonian of this type, to wy—wd=2 > — o0
which one adds furthermore an external driving term for the kB Ok
collective mode. This driving term can be represented as ypile the x coefficients satisfy

V() =[f(t)dT+f*(1)d]® 1, gt

Xk, = X
kv w,— Wy Ov >

where the functiorf(t) is a scalar ersatz for the Coulomb
field of a passing charged projectile. In order to further sim-g5 that normalization gives
plify this model to the point of complete solubility, the res-

ervoir may be further specialized to a set of noncollective 1
linear oscillators, i.e., [Xo,|?=

1+ 2 (ol (@, = 00)?]

Z |€k>€k<fk|—>2 wkblbk,
K K This last quantity describes the distribution of the collective
degree of freedom among the normal modes, as a result of its
coupling to the reservoir degrees of freedom, normal mode

excitations corresponding to “fine structure” states of the
2 (|Ek,>gk,kd<6k|+|6k>g:,kd‘r<ek,|) fja}mped coIIectiye mode. Furthermor_e, using these relations
Kk’ it is easy to obtain the sum rule relations

with a linear coupling of the form

HEk (9kbfd+gydToy), S,=2 w,/xp,|?=wy and

v

which in particular guarantees a simple, factorized ground ) - )
state. The semiclassical Coulomb multiple excitation process > 0ol —31:; lgul. (2.4
will therefore be studied in the very schematic, soluble g

model represented by the linear Hamiltonian The first of these simply equates the collective frequengy
to the centroid of the fine structure frequenaies while the
H=wyd d® L+ 1,® >, wbibe+ > (gebid+gldiby) second relates the mean-square deviation of the fine structure
K K frequencies to the sum of the absolute squares of the cou-
pling constantgg,. In the case of reservoir oscillator fre-
quencies forming an endless picket fence &hddependent
ouplingsgy, this quantity diverges.
Equation(2.3) describes a set ahdependentriven os-
ators, which can thus be dealt with separately, one by one.
he relevant initial state in the present context is that in
hich all oscillators are in their respective ground states. In
rder to obtain the solution one, e.g., considers the Heisen-
erg equation of motion for the operatoc,(t)
= UV(t)cVU‘;(t), U, (t) being the full evolution operator for
the corresponding normal mode, which reads

+[f(t)dT+f* (1) d]®@ 1. (2.2

As will be shown below, the effects induced by the presencé:
of the vibrational collective degree of freedom can be studieq:iII
in this model directly at the level of the fine structure gener-
ated by the coupling to the reservoir, independently of th
introduction of average amplitudes, so that both energ
smooth and fluctuation components are effectively treate?
together. One possible drawback of this uniform treatmen
lies actually in the ensuing difficulty of disentangling these
two, rather theoretically motivated, types of contribution.

In order to obtain the relevant solutions of the model
problem posed by Eq(2.1), one begins by performing a
canonical transformation to the normal modes of the coupled g is readily solved as
system, which in view of the special nature of the coupling

ic,(t)=w,C,(t) +x3,f(t)

term consists in introducing new bosonic operatyrselated _ . _ t S
to thed,b, as Cv(t)zef"””tcy—IXSVef'“’”tf dt’e'»U (1),
' 0
d= Xo.C,. by= Xe Co . 22 revealing that, besides acqui.ring the usual harmonic p'hase,
Ey vty k Ey kv 22 c,(t) undergoes a coherent displacement due to the action of

the driving force, the corresponding amplitude being
where thex coefficients are chosen so that tHebecomes exp(—iw,t)a,t), with
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a,()=—ix}, f;dt'ewv"f(w. (2.5 [E |ay<t>|2}
Py()=2 Pﬁ””=exp(—2 |aVr(t>|2) -

v

3

(3.2)

. _— i : n!
It is also an easy matter to use the initial condition and write

down the state at timeof this oscillator in the Schidinger

picture. One gets whereP"}) stands for the probability of exciting phonons

of types specified byv}. This expression works also for

—|la—iw,t
U.(D]0,)=le (1) =0 (probability of remaining in the product ground state

o [T ()] and makes obvious the overall probability normalization.
=g lmMI72Y In,), (2.6)  Note that the inclusive probabilities have been obtained as
n=0 Vnt the incoherent sumof “elementary” contributions corre-

h h h | oh b , sponding to the various included fine structure states.
w ereft e ﬁtatﬁ@) aﬂla t edUSllla r? onon n?mh er elglen— The translation of th@,(t) (at asymptotically large times
states for thevth normal mode. In the case of short pu S’eST) into cross section language involves in an essential way

optécolnadbers n cgnn(alct|9n W;]th thel semmlass;ft;d trelatlmeqﬁe customary realization of the external electromagnetic
of Coulomb excitation, letting the pulse start sufficiently atepulsef(t) in the context of the so-called semiclassical cal-

(Taftert=Q),”onehgelt:s forr,(T) at ?symptfotiﬁally Izlarge imes oations of nuclear excitation processes. This pulse, due to
. dessen(;la y the Fourler transtorm of the pulse, a time-,e hassage of a projectile moving essentially in a straight
Independent quantity. line trajectory at constant speed, will be parametrized here by

the simple scalar ersaf5]
[ll. INCLUSIVE EXCITATION PROBABILITY AND THE

BRINK-AXEL MECHANISM Ho=f* Vobmin Tain
. . . (=)= = :
The next point to be discussed concerns the quantities, [yv(t—tg)]?+b? 0(t—t0)2+ '
relevant for the Coulomb excitation problem, that one wishes (3.2

to obtain from this general solution of the driven, damped

oscillator model. First and foremost are various excitation’VN€re Vo is an overall strength parametey, is the usual

probabilities, which eventually become translated to the corf€lativistic factor, andb is the impact parameter of the

responding cross sections. The “elementary,” excitationStraight Iine_trajectory, which has to be larger thag,, the
probabilities that correspond to distinguishable nuclear exciv@!ue at which “other processes” are assumed to take over.
tation processes are excitations to a definite phonon numbdf€ duantityto stands for the time of closest approach. In the

of each of the normal mode oscillatofise., definite “fine @St Step the definitions

structure” nuclear excitations Actual measurements are, b b. .
however, more inclusive, and correspond to the probability T=—, Tmin= —min
of exciting certain energy bands which can be associated Yo Yo

with total phonon number in the collection of normal modes.
The calculation of these excitation probabilities is com-
pletely straightforward in terms of E@2.6), given the fact

have been introduced. Note that the quantitgorresponds
to the (impact parameter dependgtitne width of the pulse.

that the complete state of the model system is simply a prochoUSIng this pulse in Eqs(2.5) and (2.6) we see that the

uct state of coherent states of this sort. The probability for rmal mode coherent displacements, and hence also the in-
o . : ‘ - P Y 1% usive transition probabilities, become dependent on the im-
exciting a single phonon in normal mode(while all other

normal modes remain in their respective ground siakes pact parameteb. Cross sections corresponding to the inclu-
P 9 sive transition probabilities are then obtained as usual from

calculated simply as 6]
P{(t)=|(0...1,0.. I{H Ie"”’vtav(t»} 0'n=277f db b P,(T:b), 3.3
v Brmin
_ B 2 2 whereP,(T;b) is the time-independent asymptotic value of
exp( ; |,/ (1)] )'a”(t)l ' the inclusive transition probabilities, obtained in the condi-

tions discussed earlier. Using Ed3.2) the required
ing i i - itatiof@Symptotic valuesa,(T)|? can in fact be obtained in closed
so that the corresponding inclusive one-phonon excitatio v

probability is form. Assuming that,> 7 so that the time integration in Eqg.
(2.5 can be extended to minus infinity with negligible error,
one gets
Pyt =2 P&”’=exp( -2 |aV,(t)|2) 2 la, (0%
s 4 s |a,(T)[?—A%(b)[xo, %27,

In order to calculate inclusive probabilities for the excitationWith
of n phonons(of whatever typg one proceeds in the same )
way, keeping due track of the various possible multiplicity min

b
distributions, and obtains the simple result Alb)=mVo yvb’
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TABLE I. Multiphonon excitation paths for the collective damped oscillator. The notafiansl g refer
to the external pulse and to the coupling of the collective mode to the bath oscillators, respé¢séedhq.
(2.1)]. The Brink-Axel route linking the ground stat&S) to the two-phonon domain is indicated by the thick

arrows.
000 S - - .
fl fl fl fl
g g g
Three phonons — [34.{0}) < 24 < [1aZdllalele)
fl fl fl
g g
Two phonons 20.40) < [lal) o [0620.[00 %10
f] fg
g
One phonon |14.,10,}) = |04, L)
g
GS |04,{0x})
The asymptotic inclusive transition probabilities relevant for ) w, I |
the calculation of cross sections can thus be written explicitly  [Xo.|°— 0| w,~ g+ 5~ 0| wgt 57O
as
1 where®(x) denotes the usual unit step function. Replacing
P, (b)= meXF( —Az(b)z |X0V|292w,,1') the sum in Eq(3.4) by an integral one obtains immediately
sinhl 7
n 2 |X0V|2e—2w],74)e—2wdr ,
x| A2(0) 2 [xo,/%e727 | (34 Z 7

which gives for the ratio of the probabilities with and with-
while, for comparison, the corresponding probabilities forout spreading:

the undampedtollective oscillator reduce to
1 Pa(b)
_ A2 —2wyT, _ YN
PO(b)=—re A A p)e 27", 35  PPA(b)

sinhl 7
lr

sinhl 7\"

—>ex;{—A2(b)e2‘”dT ) .
Iy

This expression clearly indicates the relevance of the quan-
q'rty I 7, which corresponds to the ratio of the collision time
to the characteristic decay time of the collective mode 1/
hile it approaches unity in the limit of collision times
which are very short compared with the collective decay
time, it can lead otherwise to important enhancement effects
when the squared coherent displacement of the undamped
collective modeA?(b)e 224" is small, as is in fact the case
Yor typical Coulomb excitation processes of isovector giant
dipole modes.

The various processes which are taken into account in E
(3.4) are identified in Table I, in terms of the original, col-
lective and reservoir degrees of freedom. The probabilitie
P,(b) are inclusive probabilities for populating each of the
n-phonon level groups. Far=2 this involves several obser-
vationally indistinguishable routes, among which is the
Brink-Axel [11] collective excitation in the presence of ex-
cited reservoir states. Two points are worth stressing her
first, excitation of thecollective two-phonon state does not
correspond to populating an asymptotically well-defined
(stationary state, so that no probabilitpr cross sectioncan
be unambiguously attributed to this process se a feature IV. NUMERICAL RESULTS

which is in fact independent of the particular realization of |y order to display the quantitative effects of the damping
the reservoir implied in Eq(2.1); second, for that particular  on multiphonon nuclear excitation processes in a more “re-
realization the various processes indicated in Table | argjistic” situation we next compare results obtained by using
taken into accounto all orders both in the damping cou- Egs. (3.4) and (3.5 together with a “typical” discrete
plings gy and in the external pulst). strength distribution such that the quantitiesg,|> are cho-

A qualitative appraisal of the effect of the spreading onsen as having the Lorentzian distribution
the inclusive excitation probabilities, which also serves the

purpose of identifying the relevant scale parameters, can be 2 I' o?Aw
obtained analytically by taking a simple normalized “box” [Xou|2~ = 5 2V2 VZ > > IX0,/2=1,
distribution of widthl for the strengths$x,,|?, i.e., T (0, wp) +1w, v
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FIG. 1. Strength distribution of the collective modsolid
squares and one- and two-phonon excitation strengths bor
=17 fm (heavy and light vertical lingsandb=21 fm (heavy and
light histogramy as functions of excitation energy, for projectile

energieEE/A=0.1 GeV and 0.64 GeV.
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FIG. 3. Impact-parameter-weighted inclusive excitation prob-
abilities for one and two phonons, with and without spreading, as
functions of impact parameter for the projectile enerdi¢a=0.1
and 0.64 GeV.

with constant spacindw,. The resonance parameteang
=13.5 MeV andl'=4.35 MeV have been chosen so that
the resulting strength distribution is a rough fit to the photo-
excitation cross section for th@ne-phonop giant dipole
resonance in®Pb. The pulse strength paramedés has
been fixed so as to give the observed vdldEof the one-
phonon?%Pb-2%Pph Coulomb excitation cross section at
E/A=0.64 GeV. The frequencwy which appears in the
excitation probabilities for the undamped collective oscilla-
tor, Eq.(3.5), is obtained using the energy-weighted sum rule
S, Eq. (2.4), which giveswy=15.2 MeV.

The collective mode strength fractiohs,,|? obtained in
this way are shown in Fig. 1, together with the resulting one-
and two-phonon excitation strength fractions for different
values of the impact parameter and for the projectile energies
E/A of 0.1 and 0.64 GeV. The excitation strength fractions
are obtained by normalizing to one the excitation energy
distributions of the appropriate excitation probabilities.

FIG. 2. Enhancement of one- and two-phonon cross sections d3rojectile-energy- and impact-parameter-dependent shape
a result of the damping of the collective mode. Dashed curves cordistortions due to different effectiveness of the excitation
respond to the undamped collective mode; solid curves corresporiiechanism are clearly seen, being much more pronounced at

to the damping shown in Fig. 1.

lower projectile energies. Inclusive one- and two-phonon,
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6.0 T T y ; as an “exit doorway” [5,6], which actuallyquencheshe
cross-section ratio corresponding to the harmonic limit, rep-
5ol — 1 phonon 1 resented here by the undamped cross sections. It is worth
— 2"22222,, honon stressing in this connection that one important ingredient
8 P P which is missing in the latter calculations but is automati-
8 40 cally taken into account here is the contribution of Brink-
£ Axel excitation pathgsee Table)l to the multiphonon do-
§ 50 mains.
£ V. CONCLUSION
W20t . .
In this paper we have discussed an exactly soluble model
of multiple giant resonance excitation. The model involves a
1.0 | harmonic oscillator, taken to represent the collective mode,

. . . . damped through linear coupling to a bath consisting also of
0.0 0.2 0.4 06 0.8 harmonic oscillators, and forced by an external pulse which
E/A (GeV) simulates the Coulomb force between two colliding nuclei.
FIG. 4. One- and two-phonon cross-section enhancement factors€ exact solution of the model allows for assessment of the
and their ratio as a function of projectile energy. importance of the Brink-Axel phenomenon. It is found that
the latter appreciably enhances the excitation cross section
EWhen compared to the one obtained in the zero-coupling
@iarmonic) limit. This enhancement is found to decrease as

(3.9 are shown in Fig. 2 as a function of incident energy. he interaction time becomes shorter, in qualitative agree-
One- and two-phonon impact-parameter-weighted inclusivé : . orter, In q ag
ment with available data on relativistic Coulomb excitation

excitation probabilities for the projectile energies 0.1 and . X . ;
of double giant dipole resonances in several nuclei.

0.64 GeV are shown in Fig. 3, as functions of impact param- Because of the schematic character of the model, a full

eter, together with the corresponding probabilities for the : . o
. comparison with measured cross section is not warranted at
undamped collective mode.

this time. It may be anticipated, however, that treatments

While both the one- and the two-phonon cross Secuon?ncluding the Brink-Axel pat{13,14 may account for the

are considerably enhanced by the damping of the COIIeCtIVebserved Pb cross section in the harmonic limit, while an-

mode, one sees in Fig. 2 that the enhancement factor is co armonic effect§15] may be an additional required ingredi-
sistently larger for the two-phonon domain. This is shown y q 9

quantitatively in Fig. 4, where the ratio of the two-phonon toent in the cases where the discrepancy between calculated

; - and observed cross sections is larger.
the one-phonon enhancement factors is plotted as a function 9

of projectile energy. Furthermore, the enhancement of the We acknowledge partial financial support from MCT/
two-phonon cross sectiorelative to the one-phonon cross FINEP/CNPq Contract No. 41.96.0886.(BRONEX), Fun-
section is seen tdecreasemonotonically with projectile en- da@o de Amparo aPesquisa do Estado do Rio de Janeiro
ergy, consistently with the apparent trefi®,1-4,7 of the ~ (FAPERJ, Funda@o de Amparo aPesquisa do Estado de
“missing two-phonon strength” in standard semiclassicalSa Paulo (FAPESP, Contract No. 96/1381-0, and Fun-
calculations carried out in the harmonic limit including  da@o Universifaia Jose Bonifacio. B.V.C., L.F.C., and
spreading effects of the one-phonon collective state treatedl.S.H. were supported by CNPq.
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