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finite-range mass formula

The Yukawa-plus-exponential mass formula is generalized to describe the Gibbs free energy of hot, finite
nuclei. The temperature dependence is obtained by fitting the results of former temperature-dependent Thomas-
Fermi calculations with a finite-range mass formula. The temperature dependence of the pairing and Wigner

terms in the mass formula is also givé80556-28189)04405-2

PACS numbeps): 21.10.Dr, 21.10.Ma, 25.70.Jj

I. INTRODUCTION
Modeling fusion-fission reactions one has to calculate the z?
conservative part of the generalized forces, which govern the
collective motion, from the derivatives of the Gibbs free en-
ergy with respect to the shape paramefdrs Therefore a  the wigner term
reliable expression is needed for this quantity as function of
|I|+[

+Cq

the nuclear size, charge, shape, and temperature. The accu-
racy must be such that fission-barrier heights are better re-
produced than within 1 MeV. For zero temperature this is
achieved by fitting an appropriate mass formula to a standar'g1
set of data consisting of all empirically known ground-state
binding energies, corrected for shell and deformation effects
[2], fission barrier height§3], corrected in the same way,
equivalent sharp radi#] and the average charge diffuseness
[4], and of some fusion barrier heightS]. Such extensive
data do not exist for hot nuclei. One has therefore to rely on
extended Thomas-Fermi calculations at finite temperaéire

to obtain the temperature dependence of the free en@igy
Unfortunately, the droplet expansion, used in the latter refyith
erence, is in general not suitable to infer fusion barrier
heights and not sufficiently accurate for fission barriers of
lighter nuclei at zero temperature. But we shall assume that
the temperature coefficients, obtained in R&f, are accu-

rate enough to infer the temperature dependence of the free
energy,AG=G(T)—G(T=0), for compact shapes.
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Il. TEMPERATURE DEPENDENCE OF THE
COEFFICIENTS IN THE YUKAWA-PLUS-EXPONENTIAL
MASS-FORMULA

In the following we shall use the Yukawa-plus- rameters
exponential mass formula for the macroscopic part of the
ground-state binding and the deformation energies at zero
temperature in the specific form, fitted in REZ] to a stan-
dard set of data
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the proton form factor
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and 042012(

and the four constants=5.72 MeV, h=6.82 MeV,s
=0.118, andt=8.12. Expression§l)—(3) involve the neu-
tron excess parametér=(N—2)/(N+2Z), the Coulomb pa-
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numbek;=(9wZ/4A) % ;?, the

Wigner-term constanWW=35 MeV, and the three shape
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—Ca(N=2)—2aqZ*% (1)
with the Fermi wave
with the liquid-drop energy proper functions
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and the abbreviatiok=9J/(4QAY3) and the shape func-

15 [r—r’| tions By,
|33:32 215583 ) v )y 1= 2ay
T o o 15 drdr’
drdr’ BCOUI:32 2e2ASR v v =1
Xe_r_r,/aden} , o
[r=r’|
S
= g,
and curv 87TrOA1/3 surf Rl(o_) RZ( 0')
Surfz;f . whereR; (o) andR,(o) are the main curvature radii at the
Amr5A%3) surt surface poin. It was shown in Ref[6] that the temperature

!

_ _ _ dependence of the eight coefficients,, ag, a., cq,
For spherical nuclei the shape functions can be evaluated & aj, J, andQ of this mass formula can be expanded in

closed form[5,9]. One obtainss,~ 1, a way analogous to Eq9) for T<4 MeV if the Thomas-
Fermi calculation is based on the SkM* potential. The cor-
B,=1— i+(1+Xo) 24 £+ i e 2%, 7) responding temperature coefficients are given in Table |
X3 Xo X3 of [7].
Alternatively, assuming strict incompressibility of nuclear
5 15 21 matter, also the expressidf) can be derived from a lepto-
By=1-—|1- av- +— dermous expansidri0]. Below, the temperature dependence
Yo Yo 8yj of Eq. (10) shall therefore be mapped onto the temperature
dependence of Eq2) in the sense of a least squares fit of the
3 9 - o . .
—o e+ |e (8) seven coefficients; in Eq. (9) to the similarly parametrized
4 2y0 y3 2y3 temperature dependence of the expressia@as—(12).
We first notice that because of E¢(f) the temperature
with xo=roAY¥a andyy=roAY¥agen. coefficientx;_ in the direct Coulomb term of Eq12) yields
If the expression(1) is to be used for the free energy,zthe X, =—X, =—7.63<10"* MeV 2 For the sake of sim-
constants M;=7.28903 MeV, M,=8.07143 MeV, e 0 1

~1.439976 MeV fm,r,=0.80 fm, c,=0.145 MeV, c, ﬁ:icit);] we Sz%l‘l assume thatdth;at:]en:pterla(tjgfrfe coefficients of
=5.8 MeV, andag=1.433<10 > MeV [2] are either obvi- € charge dilfusenesgyen and of the total ailiusenessare

ously temperature independent or shall be taken to be teni'® SaMeXa=X,, . In order to relatex, to X, we compare
perature independent because of their minor importance ithe charge-diffuseness correction teoZ?/A in Eq. (12)
the mass formula. At zero temperature the seven main liquidwith the corresponding term in Eq2), ¢;Z?A~Y3(B;—1).
drop parameters have the valyed r,=1.16 fm,a=0.68 To obtain the samé& dependence in both expressions, we
fm, agen=0.7 fm, a,=16.00 MeV, k,=1.911, ag=21.13 first take the limit of 83— 1) for largey,, i.e., ager<R,
MeV, and ks=2.3. They shall be assumed to have a quawhich yields —5y, 2. In this limit c)~—5c;(agen/r0)%=
dratic dependence on the temperature when(Eqis taken — —3e?a3., 2. Inserting theT dependence of,, agen, and

to represent the macroscopic part of the Gibbs free energyr, according to Eq(9) we obtain

ro=1.161-x,T?), a=0.681-x,T?), 3 o3
X=X — —o X =—7.37%10"3 MeV 2
2 2770 pe2al 2
Ager= 0'7(1_XadenT ) 9 den

and similarly for the other four parameters. The justificationby collectmg the quadratic terms I
There is no one-to-one correspondence between the

for this parametrization is the same as in R¢&7]: The .
leptodermous expansion of the Thomas-Fermi expression f nruclear terms proper in E¢2) and (10). Therefore the four

the Gibbs free energy can be represented by the droplet-ty Smperature coefﬂuenbsav, Xag Xy andeS shall be de-

formula used in Ref[7] termined by requiring the temperature dependence of the ex-
pression(2) with coefficients(9) to optimally approximate
G=Gyoi* Gasy+ GsurBsurrt GeunBeunt a5+ Geoul the temperature dependence of the expresgifnas func-

(10 tion of its argumentdA, | and the shape variables in their
relevant ranges. For that purpose we first define the entropy
with following from Eq.(2) S=—d:E 4(T) and similarly the en-
, ) tropy following from Eg. (100 S'(T,A,l, shapey
Guo=avA,  Gasy=JAI, —d1G(T). SinceSandS’ are rather smooth, analytic func-
tions of A, | and the deformation parameters, the four tem-
Geur=asA?®—JAIPk(1+k) 1, (11 perature coefficients can be determined by minimizing the
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FIG. 1. Nuclear entropy from Ref.[2] (full lines) andS’, the
result of our fit(dashed lines for several sequences of isotopes

with spherical shape. The highest pair of curves corresponds t&. 3 sh h | h di . |
spheroidal uranium with half-axis ratio 1:2. The temperature is 4 igure 3 shows these parameters along the one-dimensional

MeV. path of theg-stability line, used above in the definition of
#,. The parametear was calculated foT =4 MeV andar

deviation G—S')? along “strategic” cuts in theA,Z plane:  for T=4, and 0.005 MeV. IfS" would be strictly a linear
along the line ofg stability, i.e.,| (A)=0.4A/(A+200)[11],  function ofT, the level-density parameter would be indepen-
which allows us to fIXXa and Xa; a|ong one sequence of dent of T. The figure shows to which extent this is actually
\ S ! —
isotopes, which determines a combinationxqf, and x,; true. The perfect agreement betwesn and ag for T=4

and finally the deformation entropy along a sequence 0F_/Iev shows again the quality of our fit, this time along the

heavy isotopes with a shape deviating sufficiently much from' < of B stability.

. ! It is useful to compare these level-density parameters,
the spherical ground-state shape, which depends onk,ON o ated by the SkM* potential, with the only independent

andx,. In view of the approximately linear dependence of experimental information on the nuclear entropy, which is
both,SandS’, onT, it is sufficient to fit at one, sufficiently derived from the relation between entropy and level density
large temperature. We therefore define three sums of squargs(E) = 9S/9Ee™F). There are several fits of the level-density

FIG. 2. Same as Fig. 1, but far=2 MeV.

all to be evaluated fof =4 MeV. First parameter essentially for nuclei along the ling@stability,
using the parametrizatioa:=a,A+aA?*+a A and ac-

lei ZSO[S(A)_S(,A)]sz_ counting in semiempirical ways for shell and pairing effects

230) 20 and for the influence of low-lying collective states on the

_ _ 3 level density[12—14. Depending on the specific way in
The integral shall be taken along the line@fstability, and  which these effects are represented, substantially different

for spherical shapes. Second results are obtained for the Fermi-gas “background” contri-
1 roza bution to the emp_irical level density. But aII.of them yield a
92:_f ' [S(1)—S'(1)]2dI larger level density than the SkM* force in the Thomas-

018 0.06

40 T T
for z=70, i.e.,A(l1)=22Z/(1—1) and also spherical shapes.
And third, 65, the same a$#,, but for Z=92 and spheroidal
shapes with axis ratio 1:2, corresponding roughly to the fis- 30
sion saddle-point deformation of hot uranium. Minimizing
0.+ 6,+ 65 with respect to the four remaining temperature
coefficients gives

w

Xa =—3.22x10 3, x, =4.81x10 3,
Vv S

X, =5.61X10"%, x, =—14.79<10"".

Ks
0 L | L L L
The fit achieved with these coefficients is shown in Figs. %0 100 150 200 250
1 and 2, in whichSandS' are presented foF =4 MeV and A

T=2 MeV, respectively, for four sequences of isotopes and g5 3. Level-density parametess , obtained from Ref[7],

for the approximate fission-barrier shapes of uranium is0znqa’ | poth calculated at a temperaturef 4 MeV, as a func-
topes. Considering the intrinsic uncertainties of the extendeglon of the mass numbek along the line ofg stability (full line)—
Thomas-Fermi calculatior{§] and the fit[ 7], the agreement  the two functions are indistinguishable on the scale of this figure—
achieved by this fit can be considered as satisfactory. landa/, calculated aff=0.005 MeV (dashed ling filled squares:
terms of the entropy the level-density parameter of thempirical fit from Ref[12], open squares: from RdfL3], triangles:
Fermi-gas model is-=S/(2T) and similarlyar=S'/(2T).  from an analysis of neutron resonances, Rid.
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Fermi mean-field theory and, in fact, than any level densityThe temperature dependence %§(T) is again given nu-
derived from a shell model with a realistic potential. As merically in Ref.[17]. For temperatures just beloW, one
pointed out already by Bohr and Mottelsfib] it is notclear has H.(T)=1.74H.(0)(1-T/T.,) in terms of H.(0)
whether the reasons are deficiencies in accounting for she# \/47pA, and H(T)/H(0)=1—(T/T.)? well below T,
and collective-state effects in the empirical fits or whether[16]. The density of pairg is given bypp:ﬁA2/3zll3 and
the effective force in the Thomas-Fermi calculations must bg, = 9AZ3N2 for protons and neutrons, respectively, with

modified to yield a larger effective mass. 9= (2/372)Y3m rgﬁ—zzo_mg MeV ! [8].
A justification of the Wigner term was given in R¢fL.8]
lll. TEMPERATURE-DEPENDENCE OF THE PAIRING in terms of the numbeH of nucleon pairs with the same
AND WIGNER TERMS IN THE MASS FORMULA orbital wave functions. We shall show that the temperature

. o . dependence of this quantity can easily be obtained in the
The Wigner and pairing energies in Hq) represent av- constant-level-density model used in the preceding para-

erage correlation energies, not contained in the Thomas-ra h to calculate pairing correlations. With= p + py, the

Fermi approximation. Their temperature dependence had 2P €p g ilitv of th ' | Pp Pn TS h

therefore to be obtained differently. The temperature-ayerage c_mcupaﬂoh pro_bab_”_w of thé nuc:ec/m ISt?Ate V\i't

dependent version of the one-parameter BCS model used f{ven spin and isospin |sn,(M)=[_1+e( P p)(_ )] [

Ref.[8] can be found in standard text bodks]. We there- whereM is the number of nucleons with that spin and isos-

fore give the results only. There is no pairing above thepin. In terms ofn; we have

critical temperatureT.=0.568\,, where A, is the zero- -

temperature energy gap, or A, o_f Eq. (5) fpr protons or H(ﬁ)=z 2 E(Mi)E(Mj)a (13)

neutrons, respectively. The functidq(T) is given for all T =1 {i,j}

<T,. only numerically in terms offy [17]. For temperatures L . .

justc belng one gbtainsA(T) =03[1T](1—T/T )pl/z For where M; is either the number of protons with spin up or

c +lc c/ - ; — —

smallT a reasonable representationdfT) is obtained from Spt'r? do_wn, Ml_dZT’r';A\AZZZ'\Il CIJ\;I tﬁ?\l ”“;“hbef of neutrons

A(T)/Ao= tanKTA(T)/(TAp)} [16]. The parameteis,, in \I,EVI sp|1n3up or downviz= Tt,h a=N{. dgﬁlnnertsum In

Eq. (5) is not derived from a systematic, microscopibody Zq.Z ( )N lr\luns Zovl\?r Ze N SIx 7 l|\leren pa:jlrs

theory, but rather based on qualitative argumd®sils For {ZTNl}'b{ INI} {Z1 .T}’h{fT l},l{ l T%,F' Za'mR f

simplicity we shall therefore take it to be proportional to {1§ \ﬁ ﬁtweiln s;atiasl\;lnt <,\e/|ou|rv|co ul\r/rlms od f'g' In Ret.

A,(T)/A,(0) or An(T)/An(0), whichever is smaller, in or- L8] We I"J‘.‘ﬁ' i |—|M ot M2 Mo b al an or even-

der to ensure that abovk, there remains no extra neutron- (ivl\(iln ngci/ll 2 OKA od I\;leveg nuc(;—:- s

proton pairing beyond contributions already accounted for in_ 21, Mg=M, or My=Mj, Ms=M,+1, and for

the Thomas-Fermi expression. odd—odd_systemM 1=M,+1, M3=M,+1. Using the rela-
In addition to the temperature dependence of the odd-evelions =n;(M;) =M; and

terms one has to addG(T)=T(S;—S,) to the expression

(10), representing the effect on the Gibbs free energy of the (MO (M) =

change in the entropy when one goes from the superconduct- R

ing to the normal state. Note that the Thomas-Fermi calcu-

lation [6] contains onlyTS,. In terms of the critical mag- g~ (4BIPIM,

netic field H,(T) T @RI _ g (4N

o= (4BlIpM;

o apion,_ g appm, M (M)

(M)

SS_Sn:ﬂ IH. we find for the number of pair¢l3) in terms of the two
A7 IT temperature-dependent functions

coth(B/p)(IN—2Z|) for even-even nuclei,
f(8)= 3 [coth B/p)(IN—2Z|+1)+ coth(B/p)(|IN—Z|—1)] for even-odd nuclei
3 coth( B/p)(IN—2Z|+2)+2 coth( B/p)(I[N—Z|)+ coth( B/p)(|N—Z|—2) for odd-odd nuclei

and

0 for even-even nuclei,
S(B)=14 3 coth(2p/p)+[e@PPNIN=21+1) _1]~1_1gFPN=2I-1_1]"1 for even-odd nuclei,

coth(28/p)+ 5 coth B/p)(IN—Z|+2) —coth B/p)(|IN—Z| —2) for odd-odd nuclei
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the expression In the limit T— 0 this expression can easily be shown to give
3 the standard zero-temperature expression for the Wigner en-
H(B)= EA_(lN_Zl)f(ﬂ)_ 5(B). ergy as given in Ref.18].

Following the arguments presented in Rdf3] this yields a
Wigner energy of the fornk,,=W[|I|f(8)+ 8’ (8)] with ACKNOWLEDGMENTS
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