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Temperature dependence of the nuclear free energy based on a finite-range mass formula

H. J. Krappe
Hahn-Meitner-Institut, D-14091 Berlin, Germany

~Received 9 September 1998!

The Yukawa-plus-exponential mass formula is generalized to describe the Gibbs free energy of hot, finite
nuclei. The temperature dependence is obtained by fitting the results of former temperature-dependent Thomas-
Fermi calculations with a finite-range mass formula. The temperature dependence of the pairing and Wigner
terms in the mass formula is also given.@S0556-2813~99!04405-2#

PACS number~s!: 21.10.Dr, 21.10.Ma, 25.70.Jj
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I. INTRODUCTION

Modeling fusion-fission reactions one has to calculate
conservative part of the generalized forces, which govern
collective motion, from the derivatives of the Gibbs free e
ergy with respect to the shape parameters@1#. Therefore a
reliable expression is needed for this quantity as function
the nuclear size, charge, shape, and temperature. The
racy must be such that fission-barrier heights are better
produced than within 1 MeV. For zero temperature this
achieved by fitting an appropriate mass formula to a stand
set of data consisting of all empirically known ground-sta
binding energies, corrected for shell and deformation effe
@2#, fission barrier heights@3#, corrected in the same way
equivalent sharp radii@4# and the average charge diffusene
@4#, and of some fusion barrier heights@5#. Such extensive
data do not exist for hot nuclei. One has therefore to rely
extended Thomas-Fermi calculations at finite temperature@6#
to obtain the temperature dependence of the free energy@7#.
Unfortunately, the droplet expansion, used in the latter
erence, is in general not suitable to infer fusion barr
heights and not sufficiently accurate for fission barriers
lighter nuclei at zero temperature. But we shall assume
the temperature coefficients, obtained in Ref.@7#, are accu-
rate enough to infer the temperature dependence of the
energy,DG5G(T)2G(T50), for compact shapes.

II. TEMPERATURE DEPENDENCE OF THE
COEFFICIENTS IN THE YUKAWA-PLUS-EXPONENTIAL

MASS-FORMULA

In the following we shall use the Yukawa-plus
exponential mass formula for the macroscopic part of
ground-state binding and the deformation energies at z
temperature in the specific form, fitted in Ref.@2# to a stan-
dard set of data

E~Z,N,shape!5MHZ1MnN1Eld1EW1Epair1 f ~kfr p!
Z2

A

2ca~N2Z!2aelZ
2.39 ~1!

with the liquid-drop energy proper
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Eld52aV~12kVI 2!A1aS~12kSI 2!B1A2/31c0A0

1c1

Z2

A1/3
B32c4

Z4/3

A1/3
, ~2!

the Wigner term

EW5WS uI u1H 1/A Z and N odd and equal

0 otherwise D , ~3!

and the average pairing energy@8#

Epair55
D̄p1D̄n2dnp Z and N odd,

D̄p Z odd and N even,

D̄n Z even andN odd,

0 Z and N even,

~4!

with

D̄n5
rBsurf

N1/3
e2sI2tI 2

, D̄p5
rBsurf

Z1/3
e2sI2tI 2

,

dnp5
h

BsurfA
2/3

~5!

and the four constantsr 55.72 MeV, h56.82 MeV, s
50.118, andt58.12. Expressions~1!–~3! involve the neu-
tron excess parameterI 5(N2Z)/(N1Z), the Coulomb pa-
rameters

c15
3e2

5r 0
and c45c1

5

4 S 3

2p D 2/3

, ~6!

the proton form factor

f ~kfr p!52
r p

2e2

8r 0
3 F145

48
2

327

2880
~kfr p!21

1527

1209600
~kfr p!4G

with the Fermi wave numberkf5(9pZ/4A)1/3r 0
21, the

Wigner-term constantW535 MeV, and the three shap
functions
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B15
1

8p2a4r 0
2A2/3EV

E
V
S 22

ur2r 8u
a De2ur2r8u/a

ur2r 8u/a
drdr 8,

B35
15

32p2r 0
5A5/3EV

E
V
F12S 11

ur2r 8u
2aden

D
3e2ur2r8u/adenG drdr 8

ur2r 8u
,

and

Bsurf5
1

4pr 0
2A2/3Esurf

ds.

For spherical nuclei the shape functions can be evaluate
closed form@5,9#. One obtainsBsurf51,

B1512
3

x0
2

1~11x0!S 21
3

x0
1

3

x0
2D e22x0, ~7!

B3512
5

y0
2 F12

15

8y0
1

21

8y0
3

2
3

4 S 11
9

2y0
1

7

y0
2

1
7

2y0
3D e22y0G ~8!

with x05r 0A1/3/a andy05r 0A1/3/aden.
If the expression~1! is to be used for the free energy, th

constants MH57.28903 MeV, Mn58.07143 MeV, e2

51.439976 MeV fm, r p50.80 fm, ca50.145 MeV, c0
55.8 MeV, andael51.43331025 MeV @2# are either obvi-
ously temperature independent or shall be taken to be t
perature independent because of their minor importanc
the mass formula. At zero temperature the seven main liq
drop parameters have the values@2# r 051.16 fm, a50.68
fm, aden50.7 fm, aV516.00 MeV, kV51.911, aS521.13
MeV, and kS52.3. They shall be assumed to have a q
dratic dependence on the temperature when Eq.~1! is taken
to represent the macroscopic part of the Gibbs free ener

r 051.16~12xr 0
T2!, a50.68~12xaT2!,

aden50.7~12xaden
T2! ~9!

and similarly for the other four parameters. The justificati
for this parametrization is the same as in Refs.@6,7#: The
leptodermous expansion of the Thomas-Fermi expression
the Gibbs free energy can be represented by the droplet-
formula used in Ref.@7#

G5Gvol1Gasy1GsurfBsurf1GcurvBcurv1a081GCoul
~10!

with

Gvol5aV8A, Gasy5JAI2,

Gsurf5aS8A
2/32JAI2k~11k!21, ~11!
in

-
in
d-

-

or
pe

Gcurv5ac8A
1/3, GCoul5c18BCoulZ

2/A1/31c28Z
2/A,

~12!

and the abbreviationk59J/(4QA1/3) and the shape func
tions Bsurf,

BCoul5
15

32p2r 0
5A5/3EV

E
V

drdr 8

ur2r 8u
,

Bcurv5
1

8pr 0A1/3Esurf
S 1

R1~s!
1

1

R2~s! Dds,

whereR1(s) andR2(s) are the main curvature radii at th
surface points. It was shown in Ref.@6# that the temperature
dependence of the eight coefficientsaV8 , aS8 , ac8 , c18 ,
c28 , a08 , J, andQ of this mass formula can be expanded
a way analogous to Eq.~9! for T<4 MeV if the Thomas-
Fermi calculation is based on the SkM* potential. The c
responding temperature coefficientsxi8 are given in Table I
of @7#.

Alternatively, assuming strict incompressibility of nucle
matter, also the expression~2! can be derived from a lepto
dermous expansion@10#. Below, the temperature dependen
of Eq. ~10! shall therefore be mapped onto the temperat
dependence of Eq.~2! in the sense of a least squares fit of t
seven coefficientsxi in Eq. ~9! to the similarly parametrized
temperature dependence of the expressions~10!–~12!.

We first notice that because of Eq.~6! the temperature
coefficientxc1

8 in the direct Coulomb term of Eq.~12! yields

xr 0
52xc1

8 527.6331024 MeV22. For the sake of sim-

plicity we shall assume that the temperature coefficients
the charge diffusenessaden and of the total diffusenessa are
the same,xa5xaden

. In order to relatexa to xc2
8 we compare

the charge-diffuseness correction termc28Z
2/A in Eq. ~12!

with the corresponding term in Eq.~2!, c1Z2A21/3(B321).
To obtain the sameA dependence in both expressions, w
first take the limit of (B321) for large y0, i.e., aden!R,
which yields 25y0

22. In this limit c28'25c1(aden/r 0)25

23e2aden
2 r 0

23 . Inserting theT dependence ofc28 , aden, and
r 0 according to Eq.~9! we obtain

xa5
3

2
xr 0

2
c28r 0

3

6e2aden
2

xc
28
527.3731023 MeV22

by collecting the quadratic terms inT.
There is no one-to-one correspondence between

nuclear terms proper in Eq.~2! and ~10!. Therefore the four
temperature coefficientsxaV

, xaS
, xkV

, andxkS
shall be de-

termined by requiring the temperature dependence of the
pression~2! with coefficients~9! to optimally approximate
the temperature dependence of the expression~10! as func-
tion of its argumentsA, I and the shape variables in the
relevant ranges. For that purpose we first define the entr
following from Eq. ~2! S52]TEld(T) and similarly the en-
tropy following from Eq. ~10! S8(T,A,I , shape)5
2]TG(T). SinceS andS8 are rather smooth, analytic func
tions of A, I and the deformation parameters, the four te
perature coefficients can be determined by minimizing



f

o
om

o

ar

s.
l
fis
g
re

gs

n
so
de
t
.
th

ional
f

n-
lly

e

rs,
nt
is

sity
ty

ts
he
n
rent
tri-
a
s-

es
s
s

e—

2642 PRC 59H. J. KRAPPE
deviation (S2S8)2 along ‘‘strategic’’ cuts in theA,Z plane:
along the line ofb stability, i.e.,I (A)50.4A/(A1200) @11#,
which allows us to fixxaV

and xaS
; along one sequence o

isotopes, which determines a combination ofxkV
and xkS

;
and finally the deformation entropy along a sequence
heavy isotopes with a shape deviating sufficiently much fr
the spherical ground-state shape, which depends only onxaS

andxkS
. In view of the approximately linear dependence

both,S andS8, on T, it is sufficient to fit at one, sufficiently
large temperature. We therefore define three sums of squ
all to be evaluated forT54 MeV. First

u15
1

230E20

250

@S~A!2S~8A!#2dA.

The integral shall be taken along the line ofb stability, and
for spherical shapes. Second

u25
1

0.18E0.06

0.24

@S~ I !2S8~ I !#2dI

for Z570, i.e.,A(I )52Z/(12I ) and also spherical shape
And third, u3, the same asu2, but for Z592 and spheroida
shapes with axis ratio 1:2, corresponding roughly to the
sion saddle-point deformation of hot uranium. Minimizin
u11u21u3 with respect to the four remaining temperatu
coefficients gives

xaV
523.2231023, xaS

54.8131023,

xkV
55.6131023, xkS

5214.7931023.

The fit achieved with these coefficients is shown in Fi
1 and 2, in whichSandS8 are presented forT54 MeV and
T52 MeV, respectively, for four sequences of isotopes a
for the approximate fission-barrier shapes of uranium i
topes. Considering the intrinsic uncertainties of the exten
Thomas-Fermi calculations@6# and the fit@7#, the agreemen
achieved by this fit can be considered as satisfactory
terms of the entropy the level-density parameter of
Fermi-gas model isaF5S/(2T) and similarlyaF85S8/(2T).

FIG. 1. Nuclear entropyS from Ref. @2# ~full lines! andS8, the
result of our fit ~dashed lines!, for several sequences of isotop
with spherical shape. The highest pair of curves correspond
spheroidal uranium with half-axis ratio 1:2. The temperature i
MeV.
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Figure 3 shows these parameters along the one-dimens
path of theb-stability line, used above in the definition o
u1. The parameteraF was calculated forT54 MeV andaF8
for T54, and 0.005 MeV. IfS8 would be strictly a linear
function ofT, the level-density parameter would be indepe
dent ofT. The figure shows to which extent this is actua
true. The perfect agreement betweenaF and aF8 for T54
MeV shows again the quality of our fit, this time along th
line of b stability.

It is useful to compare these level-density paramete
generated by the SkM* potential, with the only independe
experimental information on the nuclear entropy, which
derived from the relation between entropy and level den
r(E)5]S/]EeS(E). There are several fits of the level-densi
parameter essentially for nuclei along the line ofb stability,
using the parametrizationaF5avA1asA

2/31acA
1/3 and ac-

counting in semiempirical ways for shell and pairing effec
and for the influence of low-lying collective states on t
level density @12–14#. Depending on the specific way i
which these effects are represented, substantially diffe
results are obtained for the Fermi-gas ‘‘background’’ con
bution to the empirical level density. But all of them yield
larger level density than the SkM* force in the Thoma

to
4

FIG. 2. Same as Fig. 1, but forT52 MeV.

FIG. 3. Level-density parametersaF , obtained from Ref.@7#,
andaF8 , both calculated at a temperature ofT54 MeV, as a func-
tion of the mass numberA along the line ofb stability ~full line!—
the two functions are indistinguishable on the scale of this figur
andaF8 , calculated atT50.005 MeV ~dashed line!; filled squares:
empirical fit from Ref.@12#, open squares: from Ref.@13#, triangles:
from an analysis of neutron resonances, Ref.@14#.
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Fermi mean-field theory and, in fact, than any level dens
derived from a shell model with a realistic potential. A
pointed out already by Bohr and Mottelson@15# it is not clear
whether the reasons are deficiencies in accounting for s
and collective-state effects in the empirical fits or wheth
the effective force in the Thomas-Fermi calculations must
modified to yield a larger effective mass.

III. TEMPERATURE-DEPENDENCE OF THE PAIRING
AND WIGNER TERMS IN THE MASS FORMULA

The Wigner and pairing energies in Eq.~1! represent av-
erage correlation energies, not contained in the Thom
Fermi approximation. Their temperature dependence
therefore to be obtained differently. The temperatu
dependent version of the one-parameter BCS model use
Ref. @8# can be found in standard text books@16#. We there-
fore give the results only. There is no pairing above
critical temperatureTc50.568D0, where D0 is the zero-
temperature energy gapD̄p or D̄n of Eq. ~5! for protons or
neutrons, respectively. The functionD(T) is given for allT
<Tc only numerically in terms ofT0 @17#. For temperatures
just below Tc one obtainsD(T)53.1Tc(12T/Tc)

1/2. For
smallT a reasonable representation ofD(T) is obtained from
D(T)/D05 tanh$TcD(T)/(TD0)% @16#. The parameterdnp in
Eq. ~5! is not derived from a systematic, microscopicn-body
theory, but rather based on qualitative arguments@8#. For
simplicity we shall therefore take it to be proportional
Dp(T)/Dp(0) or Dn(T)/Dn(0), whichever is smaller, in or-
der to ensure that aboveTc there remains no extra neutron
proton pairing beyond contributions already accounted fo
the Thomas-Fermi expression.

In addition to the temperature dependence of the odd-e
terms one has to addDG(T)5T(Ss2Sn) to the expression
~10!, representing the effect on the Gibbs free energy of
change in the entropy when one goes from the supercond
ing to the normal state. Note that the Thomas-Fermi ca
lation @6# contains onlyTSn . In terms of the critical mag-
netic fieldHc(T)

Ss2Sn5
Hc

4p

]Hc

]T
.
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The temperature dependence ofHc(T) is again given nu-
merically in Ref.@17#. For temperatures just belowTc one
has Hc(T)51.74Hc(0)(12T/Tc) in terms of Hc(0)
5A4prD0 andHc(T)/Hc(0)512(T/Tc)

2 well below Tc
@16#. The density of pairsr is given byrp5qA2/3Z1/3 and
rn5qA2/3N1/3 for protons and neutrons, respectively, wi
q5(2/3p2)1/3mr0

2\2250.019 MeV21 @8#.
A justification of the Wigner term was given in Ref.@18#

in terms of the numberH of nucleon pairs with the sam
orbital wave functions. We shall show that the temperat
dependence of this quantity can easily be obtained in
constant-level-density model used in the preceding pa
graph to calculate pairing correlations. Withr5rp1rn the
average occupation probability of thel th nucleon state with
given spin and isospin isn̄l(M )5@11e(4b/r)( l 2M )#21,
whereM is the number of nucleons with that spin and iso
pin. In terms ofn̄l we have

H~b!5(
l 51

`

(
$ i , j %

n̄l~Mi !n̄l~M j !, ~13!

where Mi is either the number of protons with spin up
spin down, M15Z↑,M25Z↓ or the number of neutrons
with spin up or downM35N↑,M45N↓. The inner sum in
Eq. ~13! runs over the six different pairs
$Z↑Z↓%, $N↑N↓%, $Z↑N↑%, $Z↑N↓%, $Z↓N↑%, and
$Z↓N↓% between states in the four columns of Fig. 2 in R
@18#. We haveuN2Zu5uM11M22M32M4u and for even-
even nucleiM15M2 , M35M4, for odd-even nucleiM1
5M211, M35M4 or M15M2 , M35M411, and for
odd-odd systemsM15M211, M35M411. Using the rela-
tions ( l n̄l(Mi)5Mi and

n̄l~Mi !n̄l~M j !5
e2~4b/r!Mi

e2~4b/r!Mi2e2~4b/r!M j
n̄l~Mi !

1
e2~4b/r!M j

e2~4b/r!M j2e2~4b/r!Mi
n̄l~M j !

we find for the number of pairs~13! in terms of the two
temperature-dependent functions
f ~b!5H coth~b/r!~ uN2Zu! for even-even nuclei,

1
2 @coth~b/r!~ uN2Zu11!1 coth~b/r!~ uN2Zu21!# for even-odd nuclei

1
4 coth~b/r!~ uN2Zu12!12 coth~b/r!~ uN2Zu!1 coth~b/r!~ uN2Zu22! for odd-odd nuclei

and

d~b!5H 0 for even-even nuclei,

1
2 coth~2b/r!1@e~2b/r!~ uN2Zu11!21#212@e~2b/r!~ uN2Zu21!21#21 for even-odd nuclei,

coth~2b/r!1 1
2 coth~b/r!~ uN2Zu12!2coth~b/r!~ uN2Zu22! for odd-odd nuclei
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the expression

H~b!5
3

2
A2~ uN2Zu! f ~b!2d~b!.

Following the arguments presented in Ref.@18# this yields a
Wigner energy of the formEW5W@ uI u f (b)1d8(b)# with

d8~b!5H @d~b!21#/A for N5Z, odd-odd nuclei,

0 else.
In the limit T→0 this expression can easily be shown to gi
the standard zero-temperature expression for the Wigner
ergy as given in Ref.@18#.
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