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A density expansion of th&*-nucleus optical potential is used within a momentum-space approach to
analyze the experimental total and elastic differential cross section data. We add to the microscopic first-order
optical potential a phenomenological higher-order term proportional to the nucleon density raised to a.power
A fit to the total cross section data yields a value foof 2.85+0.25 and a strength for the potential that
decreases slightly faster than the inverse of the kaon laboratory momentum. To obtain a higher-order potential
compatible with all the data and with parameters that are target independent, a renormalization of the differ-
ential cross section data by 30%, consistent with our estimate of systematic errors, is made. The need for such
a large renormalization is explaind&0556-28189)04105-9

PACS numbsgps): 25.80.Nv, 24.10.Eq, 24.10.Jv

I. INTRODUCTION exists[6], but it is not of a form that permits the extraction of
the density dependence. It is the goal of this work to extract
The properties of a hadrogsuch as its mass, radius, or the relevant parameters of the density dependence of the
scattering cross sections with various protee expected to higher-orderk *-nucleus interaction, specifically the power
be modified in a nucleus. At low densities, these are the sam@f the density with which it varies and the strength of its
as the properties in free space, but as the density increasesupling.
the effects of the medium will become increasingly impor-  The ratioR of the kaon-nucleus total cross section to that
tant. The quantitative characterization of these medium effor the deuteron,
fects is basic to the understanding of strong interaction dy-
namics and is of particular interest to, but not limited to, the R— 205 (1)
understanding of the role of quantum chromodynamics Aop’
(QCD) in nuclear physics. The unusually large higher-order
effects found here for thi *-nucleus reaction are a tantaliz- is sensitive to important features of the interaction. For light
ing indication of an underlying phenomena which could shechuclei such as®Li and 2C, this ratio is experimentally
some light on these matters. However, an understanding @freater than one. On the other hand, all existing theoretical
the missing physics still awaits additional data and more deealculations giveR<1 by a small amount. The first-order
tailed and predictive models. theory predictions are necessarily smaller than one as a
The properties of a hadron in the nucleus can be studiegimple result of nucleon shadowing, i.e., some of the nucle-
in a scattering experiment. The€" is uniquely important in  ons are hidden behind other nucleons. E&E, shadowing
this regard because of all hadrons it penetrates most deepiynounts to a 10% correction. All calculations are in agree-
into a nucleusK *-nucleus total, reaction, elastic, inelastic, ment because the optical potential, for an interaction as weak
and quasielastic cross section dpta-3] are all relevant for and nearly energy independent as #é-nucleon interac-
these studies, which confirfd,5] an enhance® *-nucleon  tion, is reasonably well approximated by the on-shetia-
scattering for a nucleon embedded in the nuclear mediuntrix times the density. Even making a change as dramatic as
One expects the enhancement to evolve with increasingeplacing the Klein-Gordon by the Kemmer-Duffin-Petiau
nuclear density; the details should provide insight into the7] propagator has little effe¢8]. The discrepancy between
underlying mechanism, which is not understood at thethe data and the theory is thus not only theory independent
present time. A phenomenological determination of the denbut its existence does not even seem to depend on the details
sity dependence may be obtained by modeling results from af the theory.
variety of nuclear targets using a density expansion of the Several explanations have been put forth for the physical
hadron-nucleus interaction. This expectation is based on therigin of the discrepancy iR They include an increase in
relatively weakk ™ interaction: the<™ can penetrate to den- the physical size of the nucled8] in the nuclear medium,
sities approaching normal nuclear matter dengityout 0.16 enhanced mesonic exchange currents caused by medium
nucleons/fr) for a medium-mass target such #€a, yetit modifications of mesonic massgg], medium modifications
probes relatively low densities for a light nucleus likei. to the mesons being exchanged between the kaon and the
An analysis of the< ™ data using an effective interaction target nucleon treated as a Dirac partidé], or a combina-
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tion of correlation effects and meson curreft4]. A calcu- TABLE I. The results from fitting théA dependence of the total
lation of conventional meson exchange currerit®] shows  cross section rati®, Eq.(1), at four different energies. The value of
that these are too small to be an explanation of the discrepéz for each fit, the strength of the second-order optical potential Im
ancy. A thorough examination of the dependence of physical. and the power of the density [see Eq/(2)] are given.
observables on the magnitude of the in-medium enhance=

ment of the kaon-nucleon amplitude can be found1ig]. Kap (MeV/c) T, (MeV)  x? @ Im A (fm®4)
Here we examine. the total and differe_ntial cross.section 488 200 033 2708 0.2090.023

data of Refs[2,:_3] using a phenomenol_ogu:al analysis. The 531 231 504 3908 0.154-0065

céa_ta l()f[2]2é:qn3|st54(§)f total cross sections on four targets, 656 327 373 2804 0.165-0.007
Li, *°C, 28sj, and“°Ca, at four laboratory momenta, 488, 714 374 777 2804 0125 0.005

531, 656, and 714 Me\¢/. The elastic differential cross sec- i - i i

tions [3] consist of data fofLi and '°C at 714 MeVEt. To

reduce the uncertainty in the normalization of the total cross 1 .

sections(in both the data and the theoretical calculations p'Y(q)= (277)3J [p(r)]%ed"d3. ®)

we analyze the rati® as defined by Eq1).

In the_ next section, we describe the model. In the foIIow-Here po is the density of nuclear matter, 0.16 T/ so the

Snits on\ are fm to the 3&—1) power. The normalizations

section measurements. In Sec. 1V, the differential cross S€¢5llow Ref [14]. Since we do not know as much about the

tions are mcluded in the analysis. Finally, a summary of th|sunderlying dynamics for kaons, we allowto be a variable
work is given in Sec. V.

whose value is determined by the data. If the dynamics is
conventional, we expeet=2 (although unconventional dy-
namics could also appear with this power of density
whereasy>2 would indicate the dominance of multinucleon

For the theoretical analysis, we utilize the momentum-processes, suggesting physics of an exotic, or at least of a
space optical model of Ref14]. There are many reasons for less than conventional, nature. Since we are varying the
utilizing the momentum-space approach. These incldde powera, our model consists of three parameters to be deter-
fully covariant kinematics, normalizations, and phase-spacenined from the data, one complex numberand one real
factors[15], (2) relativistically invariant amplitudegl 6], (3) parameterg.
the crossing symmetric Klein-Gordon propagaftd?], and
(4) an exact evaluation of the fermi averaging integral. A Il. TOTAL CROSS SECTIONS
review of the approach can be found[H.

The first-order potential is the leading term of a system- We first analyze the total cross section data of Ref.
atic, formal expansion of the full optical potential in powers The large uncertainties introduced by the systematic errors in
of the nuclear density matrd8]. This expansion, called the the measurement of an individual cross s_ection are reduced
hole-line expansion, is a convenient theoretical bookkeepingY taking the ratioR of the total cross section to that of the
representation of meson-nucleus reaction dynamics. Whiléeuteron defined in Ed(1), where both cross sections are
the first-order potential is essentially completely convenmeasured with the same beam and the same detector during
tional in character, the higher-order terms may contain exotiéhe same experiment. Similarly, the errors in the theory are
as We” as Conventiona' physiCS. I‘edulced by addressing this I’aﬁBO] The Fheoretical Cross

In the case of pionfl8,19, the mechanisms contributing Sections for the deuteron are calculated in momentum space

to the higher-order terms appear to be Comp|ete|y Converf.O"OWing Ref [21] The tOtal Cross SeCtiOI’IS are found to be
tional in character, and, in addition, the expansion converge¥ery insensitive to Ra, so for our analysis of the total cross
rap|d|y for the purpose of Ca|cu|ating elastic Scattering fromseCtion data we first restrict the parameters of the fit to the
nuclei up to several hundred MeV of incident pion kinetic meaningful set, Im\ and .
energy. In this case, the main correction is the second-order We begin by examining each energy independently. At
optical potential, which is adequately approximated in theeach energy we assume that a single value oflrand «
local-density approximation, i.e., may be taken to depend oMill provide an adequate description of the target depen-
the square of the nuclear density. dence given by the four measured nuclei. The results are
For the case of kaons, we are motivated by the success @fven in Table I. Note that the values afdetermined from
the hole-line expansion for pions, and we add to the microthis procedure are reasonably energy independent. The best-
scopic lowest-order optical potential a purely phenomenofit value for a as fit to the individual values determined at
logical higher-order potential proportional to a powerof  €ach energy is=2.85+0.25, where the error represents one

the nuclear density. In momentum space its form is standard deviation.
In Figs. 1-4 we show thA dependence of the rati for

each energy compared to the experimental data. The curves
indicate the sensitivity to the density dependence; they cor-
respond to theoretical calculations fer=2.85, «=2.85
+0.25, «=2.85-0.25, anda=2.0, where Im\ is read-
justed for each curve to give the best possible fit. We learn
wherep(®)(q) is the Fourier transform of the nuclear density several things from these figures. First, a quadratic density
to the @ power, dependence for the second-order potential is not at all ad-

1. MODEL

. . A L.
<k'|u<2)|k>=;p<“><k'—k), (2)
0
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FIG. 1. The total cross section rativersus atomic masA for FIG. 3. The same as Fig. 1 excédp,=656 MeV/c.
kaon laboratory momenturk,,=488 MeV/c. The data are from
Ref. [2] and the targets aréLi, !2C, %Si, and *°Ca. The solid In Table | we also give the value of determined by a

curve is the theoretical result for a second-order potential as definegast fit with « fixed at 2.85. For a conventional second-order
in Eq. (2) with “_:2'85' The_daShed curves are far=2.85  cqrrection, a rough estimate for the magnitude of the correc-
+0.25=3.10 and=2.85-0.25=2.60. The dotted curve is for the - ;4 193] gives a value directly proportional to a length scale
potential proportional to the density squareds2.0. In all cases, (the correlation length for correlation correctipnthe den-
the strength of the potential I is varied to produce the best . .

sity squared, and the two-body total cross section, and

possible fit. ' )
inversely proportional to the meson momentig The en-
ergy dependence of the second order would then be expected

does produce reasonable results on average. to be proportional thKN/ko. The total cross sectiotaver-

The value ofa is fixed dominantly by the difference be- @ded over proton and neutromr, is rather constant over
tween Li and 12C. Note that the low value of thBLi cross  this energy range. It goes from 12.9 mb at 488 MeVd
section at 531 Me\W is giving a higher value ofr at this 14.3 mb at 714 MeM, indicating only an 11% increase.
one energy. We also see that the heavier nuclei are insengthus we would expect thk, * to dominate and produce a
tive to the value ofx. The reason for this is that although the decreasing second-order interaction. Within the rather large
K™ nucleon is weak on the scale of a strong amplitude, théluctuations in the values of In, we see a decrease in bn
kaon cannot penetrate all the way through a nucleus such alsat is slightly more rapid thehgl, There is certainly noth-
28si or “°Ca[22]. Thus the density to which the scattering is ing exotic in the energy dependence of Am
most sensitive is determined by the two-body amplitude and
the penetrability that it allows. The effective density does not
vary from target to target for these heavier nuclei. The de-
crease irR with increasingA is the result of shadowing. As In [24] it was observed that for low-energy kaons and for
the size of the nucleus increases, a somewhat smaller fractigiions in the GeV range of energies there is sufficient
of the total number of nucleons are visible to the kaon. TheCoulomb-nuclear interference to be able to extract in a

equate. On the other hand, the best-fit valitre2.85+0.25

IV. DIFFERENTIAL CROSS SECTIONS

theory reproduces this phenomenon quite well. model independent way both the real and imaginary parts of
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FIG. 2. The same as Fig. 1 excdpt,=531 MeV/c. FIG. 4. The same as Fig. 1 excdpt,=714 MeV/c.
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the forward strong-interaction scattering amplitude from thegible contribution to the elastic scattering. In addition, we
differential cross section data alone. As the imaginary part ofind that a meaningful fit requires that we include additional
this amplitude is also related to the total cross sectiorsystematic errors in the differential cross section above and
through the optical theorem, the use of both differential ancdheyond the small statistical errors given[i]. These arise
total cross sections provides a means of assessing the consigcause the resolution in the spectrometer was such that not
tency of the different data sets and thus improving confipnly the elastic final state was included in the raw data but
dence in the analysis for the real part of the forward elastica|so several low-lying excited states. The contribution of
scattering amplitude. From the real part of the scatteringhese excited states to the data can be removed using a model
amplitude, one may then determine Rewhose value is an  for the elastic and inelastic scattering to the measured data. A
independent source of information for understanding the Ofipreliminary analysi$28] indicates that the results [18] will
gin of the medium effects. For the data available, the procechange somewnhat if additional excited states are included in
dure of Ref.[25] worked well[24] for pions, but for kaons  this correction. There is thus some amount of additional un-
the more limited data necessitated additional assumptions igertainty in the precise shape of the differential cross section.
obtain the forward-scattering amplitudes. In our currentrhjs both provides further motivation to concentrate on the
work, by utilizing a model for the first- and second-order forward angle points where these corrections are smallest
optical potential and including the total cross section datagnd also requires either adding some estimated error to the
we are able to improve this analysis. differential cross sections or equivalently enhancing the im-

We now consider the differential cross sections fai portance given to the measured rafoof the total cross
and '°C at 714 MeV¢ taken from Ref[3], in addition to the  section. We have chosen to reduce the error assigned to the
total cross sections. We use the differential cross section datgtal cross sections thus forcing a good fit to these measure-
for angles less than 25 degrees only, and we fit these pointaents. We find this is roughly equivalent to assigning the
together with the total cross sections. We limit ourselves tajifferential cross sections an additional error of about 10%.
forward-angle data because the overall strength of the optical we employed two separate fitting procedures. In the first
potential and its range are determined primarily by the forprocedure, we fit the differential cross sections together with
ward scattering data, whereas more subtle issues are ifhe total cross section datum at 714 MeMbr the two nu-
volved in the details of the differential cross section at larger|ei 12C and 6Li. We vary the values ok andN separately
angles, as we discuss below. _ _ for each nucleus, fixing at its best-fit valueq=2.85. Fit-

We incorporate the systematic error in the differentialting the parameters separately for these two nuclei gives in-
cross section by treating its normalizatibhas an indepen-  sjght into the interplay between the d4tatal cross section
dent parameter to be varied in thé fit to the data. The and angular distributionsand the parameters of our model.

contribution ofN to x? is given by xfom given by However, since the resulting values)ofare different for the
two nuclei in this procedure, we next fit usinggammonset
, (1-N)? of parameters. andN but maintainingr at 2.85. We expand
XNorm= " ANZ () the data set to include the total cross sections for the com-

plete set of nuclefLi, *°C, 28Si, and“°Ca. This final fit to
whereAN is the error in the normalization. The systematicthe total data set at 714 Me¥with values forA andN that
error for the differential cross sections is 15%. There is als@re independent oA provides the results for our model of
a 15% error in the theoretical calculations arising from thethe higher-order corrections.
error in the experimental two-body amplitudeXs] that are The best fit values af andN in our first fitting procedure
used as input. Since we are interested in the relative size @fre given in Table Il. For reasons discussed above, we have
the theory compared to the experiment, we add these twused the differential cross sections for angles less than 25
errors in quadrature to give an effective 21% foN. degrees. The real part of the forward scattering amplitude
In addition, there is also an error associated with the=(0) presented is the difference between the full scattering
analysis of the transmission experimental data, from whictamplitude and the finite-size Coulomb amplitude extrapo-
the total cross section is determined by an extrapolation ofated to zero. It does not contain any additional modifications
data to zero solid angle. This error arises from the largd25] that are designed to further remove Coulomb effects.
Coulomb-nuclear interference in the forward direction andWe see that for?C the fit requires a renormalization of the
the necessity of introducing a model to extrapolate througtdifferential cross section by 2%, which is well within
it. The most consistent approaf2i7,6] would, of course, be our estimate of the total relative normalization between the
to use our own model of elastic scattering to perform thistheory and the data.
extrapolation, but we estimate the error introduced by not The fit for SLi is interesting. Notice in Fig. 5 that the
doing so is only about 5%. Thus, we adopt the simpler proexperimental differential cross section data lies below the
cedure of using the total cross sections from the experimentdirst-order theory for®Li, whereas the measured total cross
paper and adding this 5% to the quoted systematic &rdir  section lies abov§s] the theory. Fitting the total cross sec-
This gives an effective systematic error of 22%. That this istion data thus requires increasing the value of the imaginary
an adequate procedure is verified by fitting two different val-part of A. However, this will necessarilincreasethe theo-
ues of the total cross section extracted from the same data astical differential cross section and therefore worsen the fit
in [2] and[6] and finding that our results change only at theof this quantity to the data. To avoid contradiction, our fitting
few percent level. procedure raises the experimental differential cross section
For SLi we ignore the quadrupole contribution to the elas-through the renormalizatioN, while lowering the theoretical
tic scattering. It was shown in Rdf28] that this is a negli- differential cross section by forcing a cancellation of the real
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TABLE II. The results of fitting the total cross section ratio and the forward angle differential cross
section separately fotLi and *°C atk'®=714 MeV. The value ofr has been fixed at 2.85. The strength of
the second-order potential, the renormalizatioN of the differential cross section data, the experimental
value of the cross section ratR,,, the cross section ratio that results from the theoretic&®fit and the
extracted value of the real part of the forward scattering amplitudé (R¢ are given.

Target Re\ (fm54) Im A (fm°>%) N Rexp Rin Re F(0)(fm)
6L 0.593+0.055 0.1850.004 1.16:0.02 1.012-0.010 1.012 —0.656
2c 0.029-0.005 0.127#0.001 1.120.02 1.022-0.009 1.021 —-2.01

part of the phenomenological higher-order potential againsfential, whereas the fit td°C was acceptable without such a
the real part of the first-order amplitude through a large valugancellation. For this reason we obtained a larger value of Re
for Rex, ReX=0.593+0.055 fn?. This cancellation is sig- A for SLi than for *2C. In our second fitting procedure,
nificant in spite of the large size of the imaginary part\of  where, according to the hole-line expansiemmust have the
Im \=0.185+0.003 fn?“. The required renormalization of same value for the two nuclei, the cancellation is no longer
the SLi differential cross section measurements istTB%  effective. Instead, the differential cross sections acquire a
and is quite consistent with the value obtained f&€. No-  |arger renormalization than they had before, placing the for-
tice that the average value of Im=0.13+0.01 fnP*is con-  ward angle data for’Li abovethe first-order theory. The
sistent with the value found from the total cross sectionslifference between the first-order theory and trenormal-
alone as given in Table I. ized) data is now able to be repaired principally by the value

In the second fit, we expand the data set by including alsef Im \, which increases the theoretical forward-angle dif-
the total cross section data féfSi and“°Ca and assume that ferential cross sections for all nuclei. In this fashion, there is
the parameters andN are independent of the target in ac- no longer a need for a large value of Repreviously found
cord with the hole-line expansion. The most noticeable diffor 6Li but not for 12C.
ference for this fit is that the differential cross sections are We would like to emphasize our finding that within the
renormalized by 3% 2%, whereas in our first procedure a framework of the hole-line expansion, no choice of optical
17% renormalization was necessary. There is little penaltpotential parameters can simultaneously fit the total cross
for making the large renormalization of the data needed tgections and increase the differential cross section'fer
arrive at this solution because of the large systematic uncewithout simulatneously increasing the differential cross sec-
tainty. The resulting value of is given by Rex=—0.015 tion for 6Li. For this reason, we believe that all theoretical
+0.010 frP* and Im A=0.124£0.0002 fn?“. These are models with a reasonable microscopic basis will be unable to
similar to the fit to *°C alone. reproduce the existing empirical cross section data without

Because of the large systematic uncertainty, our seconkrge renormalization of it, such as we have been forced to
fitting procedure is able to produce a solution quite differentmake. Precisely how this happens will depend on the model,
from that of the first, but one of comparalié. Recall that  but since we have chosen a quite general parametrization of
in our first procedure, the fit t8Li entailed a cancellation of the optical potenital, we expect no more than semiquantita-
the higher-order potential against the first-order optical potive changes from the results of our study.

The theoretical results for the total cross sections are
given in Fig. 6. The results are comparable to those in Fig. 4
where only the totals were fit utilizing one parameter,Nm

1.10 T T T T

do/dQ (°Lb)

1 b’U
1 $ 1.00 b
b<
o § t
10
3 0.95 4
. L L L 10
0 10 20 30 40 50
© (deg) I
FIG. 5. The differential cross section for elastic scatteringf 6f 0.90 . . . s
from 6Li and *°C atk,= 714 MeV/c versus scattering angle. The 0 10 2 0 40
bottom curve is forLi and goes with the left axis; the top curve is
for *2C and goes with the right axis. The data are from R&fand FIG. 6. The same as Fig. 4 except the curves result from a fit to

the curves are from the first-order momentum space optical modehis total cross section data and to the differential cross section data
calculation. simultaneously.
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10° . . 3 TABLE Ill. The results of fitting the total cross section ratios
and the differential cross sections féiri and *°C simultaneously at

> kiab="714 MeV. The value ofx has been fixed at 2.85. The cross

section ratios given by the theoB, and the real part of the for-

ward scattering amplitude Re(0) are given.

«5 gg Target Rexp Rin Re F(0)(fm)
a 10° OC}

3 3 6L 1.012+0.010 1.005 —-1.05

° T 2c 1.022+0.009 1.025 -2.23

sections, we find that the powerwould decrease by about

. ‘ . 0.1 to 0.2, that the renormalization of the differential cross

0 10 20 o (deg) 30 40 50 sections would increaséor the final analysis from 30 to
38%), and that ImA would increase similarly to Im\

FIG. 7. The same as Fig. 5 except the data have been renormaf 0.165 f?,

ized by 30% as resulted from the fitting process. The curves are Our philosophy is very different from that of Ref6],

from the momentum space optical model calculations and includevhere an energy-independent adddependent “second-

the full second-order potential as defined in E2). order” correction proportional to the density was used. In

our case, the potential is instead energy dependentfand

In Fig. 7 we present the differential cross sections. Here wéhdependent. To fit their potential to the data, they first adjust
plot the data with the 30% renormalization. These curvedh® imaginary part of the impulse approximation optical po-
should be compared to the first-order curves given in Fig. 5tential to fit °Li. The remainder of the nuclei then have the
In Fig. 8 we present the ratio of the differential cross sectiondMaginary part of the optical potential further scaled by a
for ¥°C to SLi. We see that the fit is a compromise to the factor proportional to §—p.), where p is the average
magnitude of the ratio and that the shape is not reproduceauclear density of the target apd is an adjustable param-
guantitatively. The resulting values f&andF(0) are given eter. The strong\ dependence evident in Figs. 1-4 requires
in Table IIl. The value of Ré(0) changed significantly for this factor to be stronghA dependent. In our work, by con-
both targets reflecting the change in normalization of therast, the variation of the cross sections witlarises purely
data. As explained above, the renormalization of the differfrom the dependence of the higher-order optical potential on
ential cross sections is a result of the qualitative features dhe density. Because they have more parameters, their results
the total cross section measurements and would be necessapduce more accurate fits to the data than our work.

for any analysis of the total body of data. We thus tend to We have investigated the possibility of adding an addi-
believe the results of this analysis. However, a definitivetional term to our phenomenology in order to improve the fit
value forF(0) will require a well determined normalization for angles greater than 25 degrees. We tried terms that were
for the differential cross section data. of the formk’ -k, g?=(k’—Kk)?2, cosé, or cogs, all times

The experimental total cross sections that result from thg(«) e found that adding these terms did not significantly
analysis of Ref[6] are about 3% higher than those of Ref. improve our results.

[2] even though they utilize the same transmission data. If
we repeat our analysis using these numbers for the total cross

V. CONCLUSIONS

We have found that the strorydependence of the total
cross sections fofLi and '%C indicate an energy-dependent
higher-order potential that is proportional to the density to
the 2.85-0.25 power. This could be considered an indication
of either an exotic mechanism or a slowly convergent mul-
tiple scattering theory where the power being larger than two
is modeling significant third and higher-order corrections.
This latter possiblility is also exotic in that the kaon-nucleon
two-body amplitude is much weaker than other strong am-
plitudes so one would expect a more rapidly convergent
theory, not one that converges more slowly. A more conven-
tional energy-dependent potential proportional to the square
, , , , of the density is clearly ruled out. In analyzing the total and

0 s oy % % forward angle differential cross sections fokri and *°C at
714 MeV/c for the strength of the potential, we find two

FIG. 8. The ratio of the differential cross section € to the  solutions of comparablg?. Our different solutions amount
cross section fofLi for k=714 MeV/c. The dashed curve is the to different means of accounting for an unusual feature of the
first-order result while the solid curve includes the full phenomeno-data, namely the fact that the first-order theory under predicts
logically determined second-order potential. the total cross section while it over-predicts the differential
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cross section forPLi. The resulting second-order potential mation. Single charge exchange data e and °C, for
provides a phenomenological representation of this physicexample, would allow a phenomenological determination of
When we analyze the angular distributions fiti and **C  the isospin dependence of the physical mechanism that un-
separately, we find an important role for the real part of thederlies the existing discrepancy. Even the single point at zero
optical potential and that a moderate, 17% renormalization ofiegrees would reveal the relative isoscalar to isovector
the differential cross section data is required. On the othegtrength of the higher-order mechanism.

hand, when we analyze the angular distributions simulta-
neously, the real part of the optical potential plays a much
smaller role and we are able to find a comparable fit if we
accept a 30% renormalization of the differential cross section
data. (This renormalization is accounting for both the sys- C.M.C. and D.J.E. are grateful to the Los Alamos Na-
tematic uncertainty in the norm of the data and also the untional Laboratory for its kind hospitality during part of the
certainty in the overall norm of the theoryn both proce- work, while C.M.C. and M.B.J. are similarly grateful to
dures, a comparable value for the imaginary part of theé/anderbilt University. The work of D.J.E. was supported in
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