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Self-consistent solution of Galitskii-Feynman equations at finite temperature
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~Received 18 November 1998!

We solve the in-mediumT-matrix equation at finite temperature including the off-shell propagation of
nucleons. In this way a self-consistent spectral function for the nucleons is obtained. The results are compared
to a calculation using the quasiparticle approximation in theT-matrix equation. Also the effective in-medium
cross sections for the two cases are compared.@S0556-2813~99!03805-4#

PACS number~s!: 24.10.Cn, 21.65.1f
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I. INTRODUCTION

The calculation of properties of a strongly interacti
many-body system is a challenging problem. Many effo
have been devoted to calculations of the nuclear matter p
erties, both at zero and at finite temperature. Most of th
studies have been restricted to the quasiparticle approx
tion. The quasiparticle approximation can be justified in
vicinity of the Fermi energy at zero temperature@1#. Explicit
calculation shows that the width of the spectral function
proaches zero when the energy approaches the Fermi en
and the temperature tends to zero@2,3#. However, the knowl-
edge of the whole spectral function is needed for a s
consistent Brueckner or Galitskii-Feynman calculatio
Moreover at larger temperatures there is no region in
momentum space where the Pauli blocking reduces the s
tering width. If one wants to address the dynamics of hea
ion collisions at energies of a few hundreds of MeV p
nucleon the knowledge of effective cross sections in de
and excited nuclear nuclear matter is needed. The calcula
of the in-mediumT matrix ~or the BruecknerG matrix! gives
an estimate of this cross section@4#. The calculation of the
in-medium cross section~at equilibrium! can and should take
into account the off-shell propagation of the nucleons. T
off-shell propagation of scattering nucleons changes qua
tatively the value of the cross section and in the case of
emission it changes also its qualitative behavior@5,6#.

The existing calculations of the nuclear spectral functio
assume a quasiparticle approximations in the summatio
the ladder diagrams@7,2,8,3,9–11#. From the knowledge of
the T matrix ~in the Galitskii-Feynman equations! or the G
matrix ~in the Brueckner equations! the imaginary part of the
one-particle self-energy can be calculated@12–14#. How-
ever, it has been noted already several years ago that c
lations of the self-energy in the Born approximation using
semiclassical collision term and a quantum collision te
with off-shell propagators give different results@15#. The
semiclassical one-particle width being generally larger th
the self-consistent quantum one. Clearly the spectral fu
tions obtained in the quasiparticle approximation should
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checked in a self-consistent calculation with in-medium o
shell nucleon propagators.

A spectral function obtained in a self-consistent w
would provide very important information about nucle
matter and its behavior both at zero and at finite tempe
tures. We could mention in this respect the electron scat
ing on nuclei @16#, the subthreshold particle productio
@17,18#, the calculation of in-medium effective cross sectio
@4#, the backward scattering@19#, and of course, a self
consistent calculation of the saturation energy and the p
erties of the nuclear matter@7,2,8,3,9,11#. In the last example
the spectral function is needed not only for the off-sh
propagation of nucleons in the ladder diagrams. It enters
in the calculation of the Hartree-Fock energy~through the
calculation of the momentum distribution in an interacti
system! and the dispersive contribution to the real part of t
self-energy. The need for a self-consistent calculation wa
course recognized, but real calculation have not been
formed, except for restricted kinematical conditions@20#.
Only very recently the off-shell nucleon propagation a
scattering were addressed@21#.

In this work we present an exploratory self-consistent c
culation of the nucleon spectral function at finite temperat
in the T-matrix approximation. In the nuclear matter th
T-matrix approximation leads to pairing transition at lo
temperatures@11,10,9#. We do not intend to address here th
superfluidity transition at low temperatures. This means,
course, that we stay at temperatures above the pairing t
sition. The formalism to treat the pairing in theT-matrix
approximation is still missing both in the quasiparticle
well as in the self-consistent version@10,11#. It should be
pointed out that similar self-consistent calculations can
also performed in the Brueckner scheme at low temperat
where no pairing instability occurs.

II. IN-MEDIUM T MATRIX

In the present work we use the real-time Green’s fu
tions formalism@12–14#, which we found very suitable for
calculations at finite temperature in the Born approximat
@6#. In equilibrium the Green’s functions are defined by t
spectral function:

G,~p,v!5 i f ~v!A~p,v!,
2619 ©1999 The American Physical Society
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2620 PRC 59P. BOŻEK
G.~p,v!52 i @12 f ~v!#A~p,v!, ~1!

where

f ~v!5
1

e~v2m!/T11
~2!

is the Fermi distribution and the spectral functionA is

A~p,v!522 ImG1~p,v!. ~3!

G6 denote the retarded~advanced! Green’s function. The
spectral function can be written equivalently using the s
energy

A~p,v!5
G~p,v!

$@v2p2/2m2ReS1~p,v!#21G~p,v!2/4%
,

~4!

where

G~p,v!522 ImS1~p,v!. ~5!

In order to reach a consistent approximation scheme we h
to calculate the retarded self-energyS1 using the one-
particle Green’s functionsG. In a previous work we have
calculated the self-energy in the Born approximation@6#. Be-
low we address the calculation in the more complica
T-matrix approximation@12–14#. This approximation takes
into account the two-body correlations and thus becomes
act in a dilute system, but is not restricted to zero or l
temperatures as the Brueckner approximation. The nuc
matter at normal nuclear density is not a dilute interact
system and corrections from three-body correlations
probably non-negligible. However, theT-matrix ladder re-
summation in-medium represents a serious improvem
cl
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over the Born approximation and gives good approximatio
for one-particle properties of the system.

TheT matrix ~Fig. 1! for a system with a two-body inter
actionV(p,p8) is defined as@12–14#:

^puT6~P,v!up8&5V~p,p8!1E d3k

~2p!3E d3q

~2p!3
V~p,k!

3^kuG6~P,v!uq&^quT6~P,v!up8&, ~6!

where the disconnected two-particle propagator is

FIG. 1. ~a! Diagrammatic representation of the self-energy
theT-matrix approximation. The self-energy represented in diagr
~a! leads to Eqs.~13! and~16!. ~b! Diagrammatic representation o
the T-matrix equation~6!. The thin lines represent the noninterac
ing fermion propagators, the thick lines are interacting off-sh
propagators and the wavy lines denote the interaction potentia
the quasiparticle approximation the in-medium off-shell propaga
is replaced by the on-shell propagator in the intermediate state
the T-matrix equation and in the loops of the self-energy diagram
^puG6~P,V!up8&5~2p!3d3~p2p8!E dv8

2p E dv

2p

3
G,~P/21p,v2v8!G,~P/22p,v8!2G.~P/21p,v2v8!G.~P/22p,v8!

V2v6 i e
. ~7!
si-
Taking in the above expression only the particle-parti
propagator~the G.G. factor! results in the Brueckner ap
proximation. At this point the quasiparticle approximation
usually made

A~p,v!52pZd~v2vp!, ~8!

where the single-particle energy is the solution of

vp5
p2

2m
1ReS1~p,vp! ~9!

and
e
Z215S 12

] ReS1~p,v!

]v D
v5vp

. ~10!

Performing the calculations in the framework of the qua
particle approximation we shall set, however,Z51 as has
been done in many works@10,3,8#. This results in the on-
shell two-particle propagator

^kuG6~P,V!uk8&5~2p!3d3~k2k8!
12 f ~vp1

!2 f ~vp2
!

V2vp1
2vp2

6 i e
~11!
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PRC 59 2621SELF-CONSISTENT SOLUTION OF GALITSKII- . . .
with p1,25P/26k. Within the quasiparticle approximatio
the T-matrix equation takes the familiar form

^puT6~P,v!up8&5V~p,p8!1E d3k

~2p!3
V~p,k!

3
12 f ~vp1

!2 f ~vp2
!

v2vp1
2vp2

6 i e
^kuT6~P,v!up8&.

~12!

We are using an angular averaged two-particle propag
G6 both in the the self-consistent equation~6! and in its
quasiparticle counterpart~12!. This standard approximatio
for in-medium calculation allows us to perform a part
wave expansion of theT matrix.

The off-shell propagation of nucleons means that
spectral function is not sharply peaked aroundvp , also it
cannot be approximated by putting a frequency-independ
width G(p) in Eq. ~4!. This implies that the two frequenc
integrals in Eq.~7! have to be done numerically. The two
particle off-shell propagatorG6 can then be used to calcula
the T matrix using Eq.~6!. The equation for theT matrix is
an integral equation, but in the present work we use a se
rable potential and the solution of Eq.~6! is trivial. However,
we make no simplifying assumptions concerning the o
particle spectral functions, so that the intermediate tw
particle propagatorG6 takes into account the off-she
nucleon propagation.

The imaginary part of the self-energy can be obtain
from theT matrix

Im S1~p,V!5E dv

2pE d3k

~2p!3
A~k,v!

3^~p2k!/2uIm T1~p1k,V1v!u~p2k!/2&A

3@ f ~v!1g~v1V!#, ~13!

where the indexA indicates that theT matrix is antisymme-
trized and

g~v!5
1

e~v22m!/T21
~14!

is the Bose distribution. The relation~13! is true at equilib-
rium. The explicit expressions for the self-energies in
partial wave expansion of theT matrix can be found, e.g., in
@22#. Again in the quasiparticle approximation Eq.~13! sim-
plifies to

Im S1~p,V!5E d3k

~2p!3

3^~p2k!/2uIm T1~p1k,V1vk!u~p2k!/2&A

3@ f ~vk!1g~vk1V!#. ~15!

The real part of the self-energy can be obtained using
dispersion relation
or

e
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e

e

ReS~p,v!5SHF~p!1PE dv8

2p

G~p,v8!

v2v8
, ~16!

where the Hartree-Fock energy is given by

SHF~p!52 i E dv

2pE d3k

~2p!3

3V@~p2k!/2,~p2k!/2#AG,~k,v! ~17!

and in the quasiparticle approximation it is

SHF~p!5E d3k

~2p!3
V@~p2k!/2,~p2k!/2#Af ~vk!. ~18!

The set of equations~4!, ~6!, ~13!, and ~16! must be
solved self-consistently. The numerical solution of this set
equations is done by iteration starting with a spectral fu
tion with finite, constant width, and with the Hartree-Fo
part of ReS1. Then theT matrix is calculated from Eq.~6!
and the result is used to obtain the imaginary part of
self-energy from Eq.~13!. The iterations are performed unt
the self-energy becomes stable. Typically around 10 ite
tions are needed if the starting values of the Fermi ene
and the initial value of the single-particle width are of th
right order of magnitude.

The quasiparticle approximation in this work means th
the T matrix is calculated from formula~12!, where the
single-particle energies are determined by the Hartree-F
energy~18!. TheT matrix in the quasiparticle approximatio
is then used to calculate the imaginary part of the self-ene
@Eq. ~13!#. The quasiparticle approximation can be improv
by calculating the dispersive contribution to the real part
the self-energy@second term in Eq.~16!# @23,11,2,8#. Thus
the single-particle energies are modified and the sche
must be iterated until the real part of the self-energy sta
lizes. This is, however, still not a self-consistent sche
since the imaginary part of the self-energy is neglected in
calculation of theT matrix.

III. SELF-CONSISTENT SPECTRAL FUNCTION

In this section we present the numerical results for
in-mediumT matrix and the nucleon self-energy in the se
consistent calculation and in the quasiparticle approximat
The calculations are performed in a very simple separa
rank-one Yamaguchi potential@24#:

V~p,p8!5(
a

laga~p!ga~p8! ~19!

in the 1S0 and 3S1 waves, using the form factors

ga~p!5
1

p21g2
, g5285.9 MeV ~20!

with l1S0
520.821 GeV2 andl3S1

520.839 GeV2. This al-
lows us to relate our results to alternative calculations us
the quasiparticle approximation without using a realistic b
complicated interaction. We have used a kinematical limit
the momentum integrations, limiting the momentum of a
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2622 PRC 59P. BOŻEK
nucleon toupu,1200 MeV, with the grid spacing of aroun
10 MeV. The effect of the cutoff in the free scatterin
changes the bounding energy of the deuteron to 2.1 M
The energy integrals were performed in the rangeuvu
,2400 MeV with the smallest grid spacing 1.75 MeV
low temperature or for calculations using a preset sm
single-particle width. In the present version of the calculat
we assumed that for all momenta the width of the nucle
spectral functions is sufficiently large so that a direct integ
tion in energies is possible. This limits the calculation
nonzero temperatures, since as small temperatures the si
particle width approaches zero at the Fermi energy likeT2.
Obviously, another limitation comes from the appearance
the pairing instability at small temperatures in theT-matrix
scheme. In practice the lowest possible temperature~using
only the S wave interaction! that we could get stable itera
tions for is 8 MeV. It is still significantly above the critica
temperature for the pairing transition, which is around
MeV in the quasiparticle approximation with the assum
interaction@10#. However, the single-particle width obtaine
at T58 MeV approaches the spacing grid at the limits
the kinematical region~due to the limitation toSwaves! and
near the Fermi momentum~an expected property of an inte
acting Fermi gas!. All the in-medium calculation here pre
sented have been performed at normal nuclear density.

It is easy to notice that the generalization of theT-matrix
calculation to include off-shell intermediate nucleon prop
gators does not change qualitatively the fact that a pai
instability appears at some critical temperature. The ima
nary part of theT matrix with off-shell propagators also van
ishes atv52m and at some temperature a pole appears
the real part of theT matrix. As mentioned above we coul
not study numerically the vicinity of the critical temperatu
in the self-consistent calculation.

In Fig. 2 the imaginary part of the self-energy at ze
momentum is given for different temperatures as a funct
of energy. In all the cases the self-consistent results are
different from the quasiparticle approximation. The se
consistent self-energies having generally a smaller imagin
part. As the temperature is lowered more structure is vis
in the self-energy. Beyond the minimum at the Fermi ene
(m.221 MeV at T510 MeV) a second maximum ap
pears around the energy 2m2v0, both in the self-consisten
and in the quasiparticle approximation.

The quasiparticle approximation, in the version here p
sented, is using Hartree-Fock single-particle energies. T
can be improved by defining the real-part of the self-ene
self-consistently from theT matrix. The quasiparticle single
particle energies can then be obtained from Eq.~9!. We as-
sumed also that the strength of the quasiparticle pole iZ
51. It is known that in the Brueckner scheme second a
third-order rearrangement terms include corrections to
real part of the self-energy and to the pole strength@23#. In
the T-matrix calculation these corrections were estimated
eratively@3,23#. We can test if these corrections can acco
for the difference between the quasiparticle and the s
consistent calculation. To this effect we shall use the re
part of the self-energy and the pole strengthZ obtained from
the self-consistent calculation together with a small cons
width in the spectral function. In Fig. 2 forT510 MeV the
dashed line represents the imaginary part of the self-en
.
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obtained using the same real part of the self-energy as in
self-consistent solution but with the imaginary part of t
self-energy fixed at 6 MeV. The small width of the spect
function mimics in that case thed function of the spectral
function in the quasiparticle approximation. The resulti
Im S1 is again very different from the self-consistent sol
tion. We have also taken into account the effect of the ren
malization factorZ and of the shift in the real part of th
self-energy in the quasiparticle-spectral function togeth
The result~long-dashed line forT510 MeV in Fig. 2! is
closer to the self-consistent solution then other quasipart
approximations. TheZ factor is smaller than 1 close to th
Fermi energy, reducing the occupancies for states contri
ing the most to the scattering width. It explains why th
result is closer to the self-consistent one. However, it is s
significantly different. It proves that it is not sufficient to tak
into account the correct real part of the self-energy and
correct strength of the quasiparticle peak~the same as in the
self-consistent solution! and to neglect the imaginary part o
the self-energy. The full spectral function for the nucle
with momentum- and frequency-dependent single-part
width must be taken for the intermediate propagators in
T-matrix equation~6!. For T510 MeV we plot also the re-

FIG. 2. The imaginary part of the retarded self-energy as a fu
tion of energy forp50 at normal nuclear density and at differe
temperatures. The solid lines denote the self-consistent self-ene
and the dashed-dotted lines denote the results of the quasipa
approximation. ForT510 MeV the dotted line denotes the resu
when taking the Hartree-Fock energy as the real part of the s
energy and a constant width of the spectral function of 6 MeV. T
dashed line denotes the result of taking the self-consistent real
of the self-energy but a constant width of 6 MeV in the imagina
part of the self-energy. The long-dashed line represents the re
when taking in addition the renormalization factorZ from the self-
consistent solution.
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PRC 59 2623SELF-CONSISTENT SOLUTION OF GALITSKII- . . .
sult obtained by taking only the Hartree-Fock self-energy
the real part of the self-energy, i.e., the same as in the q
siparticle approximation and a constant width in the spec
function of 6 MeV. The result is very close to the one o
tained in the quasiparticle approximation, meaning tha
spectral function of width 6 MeV can be approximated by
d function. However, the true spectral function is differe
and cannot be taken as ad function.

The differences in the imaginary part of the self-ener
lead to significant differences in the spectral function. In F
3 the spectral functions are plotted for the quasiparticle
the self-consistent calculations. These results demons
that the nucleon spectral function cannot be calculated in
quasiparticle approximation. The position of the quasipa
cle peak is different in the two calculation. It is due to d
ferences in the real part of the self-energy. The Hartree-F
energies are slightly different because of different mom
tum distributions. Also the dispersive contribution to the re
part of the self-energy are different because they origin
from very different imaginary parts of the self-energies in t
two calculations. However, not only the positions of t
peaks in the spectral functions are different, also their wid
and shapes are different. Improvements on the calculatio
the real part of the self-energy will not lead to a corre
spectral function as long as the proper width of the interm
diate propagators in theT-matrix equation is not taken into
account, giving the correct self-consistent realand imaginary
parts of the self-energy.

In Fig. 4 the imaginary part of the self-energy at the qu
siparticle pole as a function of momentum is given. The
crease of the single-particle width with the temperature an
minimum around the Fermi energy can be observed. In
5 the Hartree-Fock energy and the complete real part of
self-energy at the quasiparticle pole in the self-consistent
culation, and the Hartree-Fock energy in the quasipart
approximation are given as a function of momentum. T
behavior of the real part of the self-energy at the tempe
tures studied is relatively smooth. Only at the lowest te

FIG. 3. The nucleon spectral function as a function of energ
normal nuclear density and atT510 MeV for three different mo-
menta. The solid and the dashed lines denote the self-consisten
the quasiparticle approximation results, respectively.
r
a-
al
-
a

t

y
.
d
te
e

i-

ck
-
l
te

s
of
t
-

-
-
a

g.
e
l-

le
e
-
-

peratureT58 MeV does a wiggle start to appear similar
the one observed in@10#. The momentum distributions ar
more diffuse for off-shell nucleons, leading to smoother d
pendence of the Hartree-Fock energy on momentum tha
the quasiparticle approximation@10#. The difference between
the single-particle energies in the self-consistent calcula
and in the quasiparticle approximation~dotted and dashed
lines in Fig. 5!, leads to very different scattering width als
when using the same imaginary part of the self-energy~dot-
ted and dashed lines in Fig. 2!.

To close this section we would like to make one obser
tion concerning the behavior of the self-energy around

t

and

FIG. 4. The imaginary part of the retarded self-energy at
quasiparticle pole as a function of momentum at normal nuc
density. All the results are for the self-consistent calculation. T
solid, dashed, and dotted lines represent ImS1 at 20, 10, and 8
MeV, respectively.

FIG. 5. The Hartree-Fock energy in the self-consistent calcu
tion ~solid line! and in the quasiparticle approximation~dotted line!
and the real part of the retarded self-energy in the self-consis
calculation on shell~dashed line! as functions of momentum a
normal nuclear density and at temperatures of 20 and 8 MeV.
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2624 PRC 59P. BOŻEK
pairing transition. At the critical temperature of the pairin
transition a pole appears in theT matrix for pairs with zero
total momentum both in the self-consistent and in the qu
particle calculations. In the quasiparticle approximation
leads to a singularity in the imaginary part of the self-ene
@10#. In the calculation of the self-energy using the off-sh
propagators~13! there is one more energy integration whi
washes out this singularity. As an illustration we show
Fig. 6 the imaginary part of the self-energy atT

FIG. 6. The imaginary part of the retarded self-energy as fu
tion of energy for p50 at normal nuclear density andT
54.1 MeV. The solid line denotes the quasiparticle approximat
and the dashed, dotted, and dashed-dotted lines represent the r
obtained using a fixed single-particle width of 6, 15, and 40 Me
respectively.
ve
i-
t
y
l

54.1 MeV in the quasiparticle approximation, compared
results obtained using a fixed width of the spectral funct
and the same Hartree-Fock energy as in the quasipar
calculation. We observe that the singularity which starts
build up atT54.1 MeV in the quasiparticle approximatio
is no longer present if finite widths of propagators are tak
Note that it is the off-shellness of the propagator in the c
culation of the self-energy~13! not in theT-matrix equation,
which causes the singularity in ImS1 to disappear.

IV. IN-MEDIUM CROSS SECTIONS

The modeling of the nonequilibrium evolution in a heav
ion reaction by semiclassical transport models requires
knowledge of the in-medium cross section. For nucleons
shell one can define the scattering cross sections similarl
in vacuum, but using an effective mass@4#. If the nucleons
are off-shell the definition of the cross section must be mo
fied because the outgoing waves are localized in space@21#.
In this section we will use a simplistic view of the scatterin
cross section as a parameter in the semiclassical colli
integral. The applicability of the quasiparticle approxim
tions in the description of the nonequilibrium dynamics
questionable if the equilibrium calculations indicate the ne
for self-consistent off-shell calculations. However, in ord
for the complex dynamical evolution to be tractable we ha
to restrict ourselves to quasiparticle transport models
heavy-ion collisions. One can, however, take into acco
in-medium modifications of the effective cross sections.
particular when calculating the in-medium cross sections
equilibrium one can take into account the full propagators
the ladder diagrams.

The semiclassical collision term for a nucleon of mome
tum p1 and energyv1 has the form@13#

-

n
ults
,

E dv2

2p

d3p2

~2p!3E dv3

2p

d3p3

~2p!3E dv4

2p

d3p4

~2p!3
~2p!4d3~p11p22p32p4!d~v11v22v32v4!

3u^kuT1~P,v11v2!uk8&Au2A~p1 ,v1!A~p2 ,v2!A~p3 ,v3!$@12 f ~p1 ,v1!#@12 f ~p2 ,v2!# f ~p3 ,v3! f ~p4 ,v4!

2 f ~p1 ,v1! f ~p2 ,v2!@12 f ~p3 ,v3!#@12 f ~p4 ,v4!#%, ~21!
g

with
e
icle
where P5p11p2 , k5(p12p2)/2, k85(p32p4)/2. When
putting the scattering particles on-shell and integrating o
the angle1 we can define an effective cross sections in the
collision term

E d3p2

~2p!3

up12p2u

M* ~P,k!
s$@12 f ~p1!#@12 f ~p2!# f ~p3! f ~p4!

2 f ~p1! f ~p2!@12 f ~p3!#@12 f ~p4!#%, ~22!

where

1We use only theS wave in the present work.
r M* ~P,k!5S ]^vp1
1vp2

&V

]k2 D 21

~23!

is the effective mass. The sign^ . . . &V denotes the averagin
over the angle. The cross section is

s~P,k!5
M* ~P,k!2

4p
^u^kuT1~P,vp1

1vp2
!uk&Au2&V .

~24!

In Fig. 7 are presented the results for then-p and n-n
cross sections. The in-medium cross sections calculated
the self-consistentT matrix are generally larger than th
cross sections obtained in the framework of the quasipart
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approximation. Only part of the difference can be explain
by a factor originating in the difference in the effectiv
masses in the two calculations. Both cross sections pres
resonancelike peak in then-p scattering related to the pairin
resonance~aboveTc). These kind of structures in the energ
dependence of the cross sections do not influence the ev
tion of the system, since the cross sections are always
grated over momentum@25#. However, the overall averag
cross sections in Fig. 7 are different and could lead to diff
ent transport properties in the collision. Before definite co
clusions can be drawn calculations should be repeated w
realistic interaction.

V. CONCLUSIONS

We have presented a self-consistent calculation of the
medium T matrix. The intermediate propagators in th

FIG. 7. The in-medium cross sections for the scattering of
shell quasiparticles with zero total momentum as functions of
c.m. momentum at three different temperatures and at nor
nuclear density. The dashed-dotted and the dashed lines deno
n-p and then-n cross sections, respectively, calculated with t
self-consistent in-mediumT matrix. The solid lines denote the co
responding in-medium cross sections calculated with theT matrix
in the quasiparticle approximation and the dotted lines represen
corresponding free cross sections.
-

a-
d

t a

lu-
te-

r-
-
a

n-

T-matrix equation are full off-shell propagators. Both the re
and imaginary part of the self-energy in these propaga
have been obtained consistently from theT matrix. The
coupled system of equations was solved by iteration for
case of a simple separable interaction. The results were c
pared to a calculation using the quasiparticle approxima
for the intermediate propagators in theT-matrix equation.

The imaginary parts of the self-energies and the spec
functions obtained in the two calculations are very differe
One cannot calculate reliably the spectral functions with
using consistently the same spectral function through
whole approximation scheme. The width of the se
consistent spectral function is generally smaller than its q
siparticle estimates. The self-consistentT matrix also pre-
sents a pairing instability at some critical temperatu
However, in the vicinity of the critical temperature the se
consistent iteration procedure cannot be performed num
cally.

We have calculated the corresponding in-medium cr
sections in the two approximations. The obtained cross s
tions are different and indicate that a self-consistent res
mation of the ladder diagrams may be important for a corr
estimation of transport properties of the nuclear matter
finite temperature.

The spectral functions are very sensitive to approxim
tions of the imaginary part of the propagators in theT-matrix
equation. In the present work we have demonstrated both
necessity and the feasibility of a full self-consistent ladd
diagram resummation when calculating the spectral fu
tions in the nuclear matter at finite temperature. The met
here presented could also be applied to Brueckner-type
culations. Before applying the iteration procedure to zero
low temperature, an explicit method of energy integration
quasiparticles around the Fermi energy must be imp
mented. Similar methods must be used to overcome the l
tations in the momenta of nucleons due to the cutoff. Nuc
ons with large momenta are important for the description
short-range correlations. Since generally the width of
spectral function is smaller at low temperature, one may
pect that the effect of the off-shell nucleon propagati
would be less dramatic at zero temperature.
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