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Self-consistent solution of Galitskii-Feynman equations at finite temperature
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We solve the in-mediunT-matrix equation at finite temperature including the off-shell propagation of
nucleons. In this way a self-consistent spectral function for the nucleons is obtained. The results are compared
to a calculation using the quasiparticle approximation inTraatrix equation. Also the effective in-medium
cross sections for the two cases are compdi®d556-28189)03805-4

PACS numbd(s): 24.10.Cn, 21.65:f

I. INTRODUCTION checked in a self-consistent calculation with in-medium off-
shell nucleon propagators.

The calculation of properties of a strongly interacting A spectral function obtained in a self-consistent way
many-body system is a challenging problem. Many effortswould provide very important information about nuclear
have been devoted to calculations of the nuclear matter propnatter and its behavior both at zero and at finite tempera-
erties, both at zero and at finite temperature. Most of thos&ires. We could mention in this respect the electron scatter-
studies have been restricted to the quasiparticle approximd?d on nuclei [16], the subthreshold particle production
tion. The quasiparticle approximation can be justified in thd 17,18, the calculation of in-medium effective cross sections

vicinity of the Fermi energy at zero temperat(itd. Explicit (41, the backward scatterinfl9], and of course, a self-

calculation shows that the width of the spectral function ap_consistent calculation of the saturation energy and the prop-
ies of the nuclear mattgr,2,8,3,9,11 In the last example

proaches zero when the energy approaches the Fermi enerﬁ? S
and the temperature tends to z€2¢3]. However, the knowl- e speciral function is needed not only for the off-shell
: ’ propagation of nucleons in the ladder diagrams. It enters also

edge_ of the whole spectral f“r?c“‘?.” e .Self'in the calculation of the Hartree-Fock ener@irough the
consistent Brueckner or Galitskii-Feynman calculation.

M | h . S hcalculation of the momentum distribution in an interacting
oreover at larger temperatures there is no region In thQyqem and the dispersive contribution to the real part of the
momentum space where the Pauli blocking reduces the scafzjt_energy. The need for a self-consistent calculation was of

tering width. If one wants to address the dynamics of heavygoyrse recognized, but real calculation have not been per-
ion collisions at energies of a few hundreds of MeV performed, except for restricted kinematical conditiof20].
nucleon the knOWIGdge of effective cross sections in denS@my very recent|y the off-shell nucleon propagation and
and excited nuclear nuclear matter is needed. The calculatiogtattering were addressgzil].
of the in-mediumT matrix (or the BrueckneG matrix) gives In this work we present an exploratory self-consistent cal-
an estimate of this cross sectip#. The calculation of the culation of the nucleon spectral function at finite temperature
in-medium cross sectiofat equilibrium can and should take in the T-matrix approximation. In the nuclear matter the
into account the off-shell propagation of the nucleons. Thel-matrix approximation leads to pairing transition at low
off-shell propagation of scattering nucleons changes quanttemperature§l11,10,9. We do not intend to address here the
tatively the value of the cross section and in the case of soféuperfluidity transition at low temperatures. This means, of
emission it changes also its qualitative behayme]. course, that we stay at temperatures above the pairing tran-
The existing calculations of the nuclear spectral functiongsition. The formalism to treat the pairing in thiematrix
assume a quasiparticle approximations in the summation @Pproximation is still missing both in the quasiparticle as
the ladder diagramf7,2,8,3,9—11 From the knowledge of Well as in the self-consistent versiga0,11. It should be
the T matrix (in the Galitskii-Feynman equationsr theG ~ pointed out that similar self-consistent calculations can be
matrix (in the Brueckner equatiopthe imaginary part of the also performed in the Brueckner scheme at low temperatures
one-particle self-energy can be calculafg®-14. How-  Where no pairing instability occurs.
ever, it has been noted already several years ago that calcu-

lations of the self-energy in the Born approximation using a II. IN-MEDIUM T MATRIX
semiclassical collision term and a quantum collision term .
with off-shell propagators give different resulf5]. The In the present work we use the real-time Green’s func-

semiclassical one-particle width being generally larger tharions formalism[12—14, which we found very suitable for

the self-consistent quantum one. Clearly the spectral funccalculations at finite temperature in the Born approximation

tions obtained in the quasiparticle approximation should b&6]. In equilibrium the Green’s functions are defined by the
spectral function:
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G7(p,w)=—i[1-f(w)]A(p,w), () ( ) @
where —_ 4
f 1 ) Q
()= g el ) \\)
is the Fermi distribution and the spectral functi@ns
A(p,w)=—2ImG*(p,w). (3) ®
G™ denote the retarde(advanceyl Green’s function. The =§ + %
spectral function can be written equivalently using the self-
energy FIG. 1. (a) Diagrammatic representation of the self-energy in
the T-matrix approximation. The self-energy represented in diagram
['(p,) (a) leads to Egs(13) and(16). (b) Diagrammatic representation of
A(p,w)= , the T-matrix equation(6). The thin lines represent the noninteract-
2 + 2 2
{lo—p72m—Rex"(p,w)]*+T'(p,w)/4} ing fermion propagators, the thick lines are interacting off-shell
(4) propagators and the wavy lines denote the interaction potential. In
h the quasiparticle approximation the in-medium off-shell propagator
where is replaced by the on-shell propagator in the intermediate states in
the T-matrix equation and in the loops of the self-energy diagrams.
I(p,0)=—2Im3*(p,0). (5) | P W9

In order to reach a consistent approximation scheme we havaver the Born approximation and gives good approximations
to calculate the retarded self-enerdy” using the one- for one-particle properties of the system.

particle Green’s function§. In a previous work we have ~ TheT matrix (Fig. 1) for a system with a two-body inter-
calculated the self-energy in the Born approximafiéh Be-  actionV(p,p’) is defined ag12-14:

low we address the calculation in the more complicated

T-matrix approximatiof12-14. This approximation takes

into account the two-body correlations and thus becomes e>2— N , , 3 dq

act in a dilute system, but is not restricted to zero or low PIT™(P.w)[p)=V(p.p Hf (ZW)SJ (277)3V(p,k)
temperatures as the Brueckner approximation. The nuclear

matter at normal nuclear density is not a dilute interacting X(K|G*(P,0)|q)(d|T"(P,w)|p'), (6)
system and corrections from three-body correlations are

probably non-negligible. However, thB-matrix ladder re-

summation in-medium represents a serious improvememwhere the disconnected two-particle propagator is

do' (d
(Blg= (PP =200 | 5o [ 5o

><G<(P/2-|- p,o— o' )GS(PI2—p,0')— G~ (PI2+p,0—w')G”(PI2—p,0")

O—w=xie

. (7)

Taking in the above expression only the particle-particle - JReS " (p,w)

propagator(the G™G~ facton results in the Brueckner ap- L=\l : (10
proximation. At this point the quasiparticle approximation is w=op

usually made

Performing the calculations in the framework of the quasi-

A(p,w)=27Z5(w— wp), 8 particle approximation we shall set, howev&r=1 as has
) ) _ ) been done in many workisl0,3,8. This results in the on-
where the single-particle energy is the solution of shell two-particle propagator
p2
wp=5— +RES* (p,0p) ) 1—f(wp)—f(wp)

(Klg=(P.)IK")=(2m)°%(k—k')

_ _ <+
QO wp, ~wp,Fie

and (11)
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with p, ,=P/2*=k. Within the quasiparticle approximation do' T'(p,0")
the T-matrix equation takes the familiar form ReE(p,wFEHF(p)*‘PJ o o 10
. , , 3 where the Hartree-Fock energy is given by
(BIT* (P.wlp) =V(p.p)+ [ 5 V(pK)
(2m) do [ d
1-f(wp)~f(wp) Sustp=i | 57 | (2m)°
X (KIT=(P,w)[p").

— — —+
w wpl wp2_|6

XV[(p—Kk)/2(p—k)/2]aG™(k,®) (17
(12 and in the quasiparticle approximation it is
We are using an angular averaged two-particle propagator
G~ both in the the self-consistent equatié®) and in its EHF(p):j
quasiparticle counterpafii2). This standard approximation

for in-medium calculation allows us to perform a partial )
wave expansion of th& matrix. The set of equationg4), (6), (13), and (16) must be
The off-shell propagation of nucleons means that theSolved self-consistently. The numerical solution of this set of
spectral function is not sharply peaked aroung, also it equations is done by iteration starting with a spectral func-
cannot be approximated by putting a frequency-independerito With finite, constant width, and with the Hartree-Fock
width T'(p) in Eq. (4). This implies that the two frequency Part of Re™. Then theT matrix is calculated from Eq6)
integrals in Eq.(7) have to be done numerically. The two- @nd the result is used to obtain the imaginary part of the
particle off-shell propagatag * can then be used to calculate S€lf-energy from Eq(13). The iterations are performed until
the T matrix using Eq.(6). The equation for thg matrix is ~ the self-energy becomes stable. Typically around 10 itera-
an integral equation, but in the present work we use a sepdloNs are needed if the starting values of the Fermi energy
rable potential and the solution of E@) is trivial. However, ~and the initial value of the single-particle width are of the
we make no simplifying assumptions concerning the onefight order of magnitude.
particle spectral functions, so that the intermediate two- Th€ guasiparticle approximation in this work means that
particle propagatorG* takes into account the off-shell the T matrix is calculated from formuld12), where the

d®k
(2m)®

VI(p=K)/2(p=K)/2]af(wi). (18)

nucleon propagation. single-particle energie; are determi_ned _by the Har_tree_—Fock
The imaginary part of the self-energy can be obtaineo?”ergy(ls)- TheT matrix in th_e qugsmartlcle approximation
from the T matrix is then used to calculate the imaginary part of the self-energy
[Eg. (13)]. The quasiparticle approximation can be improved
do  d% by calculating the dispersive contribution to the real part of
|m2+(p,9):f _f A(K, w) the self-energysecond term in Eq(16)] [23,11,2,8. Thus
2m) (2m)3 the single-particle energies are modified and the scheme

must be iterated until the real part of the self-energy stabi-
X((p=K)2IMT (p+k,Q+w)[(P=K)/2a  |izes. This is, however, still not a self-consistent scheme
X[F(w)+g(w+Q)] (13) since the imaginary part of the self-energy is neglected in the
’ calculation of theT matrix.

where the inde)A indicates that thd matrix is antisymme-
trized and Ill. SELF-CONSISTENT SPECTRAL FUNCTION

In this section we present the numerical results for the
in-mediumT matrix and the nucleon self-energy in the self-
consistent calculation and in the quasiparticle approximation.
The calculations are performed in a very simple separable

is the Bose distribution. The relatidd3) is true at equilib- '@nk-one Yamaguchi potentip24]:
rium. The explicit expressions for the self-energies in the

9(w)=— (14
e

w—2u)IT _ 1

partial wave expansion of thEmatrix can be found, e.g., in V(p.p')=2 No9.(P)9.(p") (19
[22]. Again in the quasiparticle approximation E43) sim- @
plifies to in the 'S, and 3S; waves, using the form factors
ms - [
m2"(p,Q)= (2m)° g9.(p)= 2 y=285.9 MeV (20)
_ + _
X((p=K)/2Im T (p+k, Q)| (p=K)2a i Nis=—0.821 GeV andhss=—0.839 GeVr. This al-
X[f(wr) +9(w+Q)]. (15  lows us to relate our results to alternative calculations using

the quasiparticle approximation without using a realistic but
The real part of the self-energy can be obtained using theomplicated interaction. We have used a kinematical limit in
dispersion relation the momentum integrations, limiting the momentum of any
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nucleon to|p| <1200 MeV, with the grid spacing of around R

10 MeV. The effect of the cutoff in the free scattering T=20MeV
changes the bounding energy of the deuteron to 2.1 MeV. ;
The energy integrals were performed in the rarge
<2400 MeV with the smallest grid spacing 1.75 MeV at
low temperature or for calculations using a preset small
single-particle width. In the present version of the calculation
we assumed that for all momenta the width of the nucleon
spectral functions is sufficiently large so that a direct integra-
tion in energies is possible. This limits the calculation to
nonzero temperatures, since as small temperatures the single-
particle width approaches zero at the Fermi energy Tike
Obviously, another limitation comes from the appearance of
the pairing instability at small temperatures in fhenatrix
scheme. In practice the lowest possible temperatusing

only the S wave interactiop that we could get stable itera-
tions for is 8 MeV. It is still significantly above the critical
temperature for the pairing transition, which is around 4
MeV in the quasiparticle approximation with the assumed
interaction[10]. However, the single-particle width obtained

at T=8 MeV approaches the spacing grid at the limits of
the kinematical regiofidue to the limitation t&s waves and

-iImZ(p=0,0) (MeV)

. . 0 : +
near the Fermi momenturian expected property of an inter- -200 -100 0 100 200
acting Fermi gas All the in-medium calculation here pre- ® (MeV)
sented have been performed at normal nuclear density.
It is easy to notice that the generalization of thenatrix FIG. 2. The imaginary part of the retarded self-energy as a func-

calculation to include off-shell intermediate nucleon propa-ion of energy forp=0 at normal nuclear density and at different
gators does not change qualitatively the fact that a pairingemperatures. The solid lines denote the self-consistent self-energies
instability appears at some critical temperature. The imagiand the dashed-dotted lines denote the results of the quasiparticle
nary part of theT matrix with off-shell propagators also van- approximation. FoiT=10 MeV the dotted line denotes the result
ishes atw=2u and at some temperature a pole appears irwhen taking the Hartree-Fock energy as the real part of the self-
the real part of th& matrix. As mentioned above we could energy and a constant width of the spectral function of 6 MeV. The
not study numerically the vicinity of the critical temperature dashed line denotes the result of taking the self-consistent real part
in the self-consistent calculation. of the self-energy but a constant width of 6 MeV in the imaginary
In Fig. 2 the imaginary part of the self-energy at zeropPart of the self-energy. The long-dashed line represents the result,
momentum is given for different temperatures as a functiorYVher_‘ taking in f_:\ddition the renormalization factfrom the self-
of energy. In all the cases the self-consistent results are vefpnsistent solution.
different from the quasiparticle approximation. The self-
consistent self-energies having generally a smaller imaginargbtained using the same real part of the self-energy as in the
part. As the temperature is lowered more structure is visibleself-consistent solution but with the imaginary part of the
in the self-energy. Beyond the minimum at the Fermi energyself-energy fixed at 6 MeV. The small width of the spectral
(u=-—21 MeV at T=10 MeV) a second maximum ap- function mimics in that case thé function of the spectral
pears around the energyx2- wq, both in the self-consistent function in the quasiparticle approximation. The resulting
and in the quasiparticle approximation. Im3 ™ is again very different from the self-consistent solu-
The quasiparticle approximation, in the version here pretion. We have also taken into account the effect of the renor-
sented, is using Hartree-Fock single-particle energies. Thimalization factorZ and of the shift in the real part of the
can be improved by defining the real-part of the self-energyself-energy in the quasiparticle-spectral function together.
self-consistently from th& matrix. The quasiparticle single- The result(long-dashed line foiT=10 MeV in Fig. 2 is
particle energies can then be obtained from ). We as-  closer to the self-consistent solution then other quasiparticle
sumed also that the strength of the quasiparticle pol2 is approximations. The& factor is smaller than 1 close to the
=1. It is known that in the Brueckner scheme second andrermi energy, reducing the occupancies for states contribut-
third-order rearrangement terms include corrections to théng the most to the scattering width. It explains why this
real part of the self-energy and to the pole strer@®i. In result is closer to the self-consistent one. However, it is still
the T-matrix calculation these corrections were estimated itsignificantly different. It proves that it is not sufficient to take
eratively[3,23]. We can test if these corrections can accountinto account the correct real part of the self-energy and the
for the difference between the quasiparticle and the selfeorrect strength of the quasiparticle pa#the same as in the
consistent calculation. To this effect we shall use the realself-consistent solutiorand to neglect the imaginary part of
part of the self-energy and the pole strengtbbtained from the self-energy. The full spectral function for the nucleon
the self-consistent calculation together with a small constanvith momentum- and frequency-dependent single-particle
width in the spectral function. In Fig. 2 far=10 MeV the  width must be taken for the intermediate propagators in the
dashed line represents the imaginary part of the self-energy-matrix equation(6). For T=10 MeV we plot also the re-
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FIG. 3. The nucleon spectral function as a function of energy at  FIG. 4. The imaginary part of the retarded self-energy at the
normal nuclear density and at=10 MeV for three different mo-  quasiparticle pole as a function of momentum at normal nuclear
menta. The solid and the dashed lines denote the self-consistent agénsity. All the results are for the self-consistent calculation. The
the quasiparticle approximation results, respectively. solid, dashed, and dotted lines representSlmat 20, 10, and 8

MeV, respectively.
sult obtained by taking only the Hartree-Fock self-energy for

the real part of the self-energy, i.e., the same as in the qugreratureT=8 MeV does a wiggle start to appear similar to
siparticle approximation and a constant width in the spectrajhe one observed ifil0]. The momentum distributions are
function of 6 MeV. The result is very close to the one ob-more diffuse for off-shell nucleons, leading to smoother de-
tained in the quasiparticle approximation, meaning that gendence of the Hartree-Fock energy on momentum than in
spectral function of width 6 MeV can be approximated by athe quasiparticle approximatigt0]. The difference between
o function. However, the true spectral function is differentthe single-particle energies in the self-consistent calculation
and cannot be taken aséafunction. and in the quasiparticle approximatigdotted and dashed
The differences in the imaginary part of the self-energylines in Fig. 5, leads to very different scattering width also
lead to significant differences in the spectral function. In Fig.when using the same imaginary part of the self-enddpy-
3 the spectral functions are plotted for the quasiparticle anged and dashed lines in Fig).2
the self-consistent calculations. These results demonstrate To close this section we would like to make one observa-
that the nucleon spectral function cannot be calculated in thgon concerning the behavior of the self-energy around the
guasiparticle approximation. The position of the quasiparti-
cle peak is different in the two calculation. It is due to dif-
ferences in the real part of the self-energy. The Hartree-Fock
energies are slightly different because of different momen-
tum distributions. Also the dispersive contribution to the real
part of the self-energy are different because they originate
from very different imaginary parts of the self-energies in the
two calculations. However, not only the positions of the
peaks in the spectral functions are different, also their widths
and shapes are different. Improvements on the calculation of
the real part of the self-energy will not lead to a correct
spectral function as long as the proper width of the interme-
diate propagators in th&matrix equation is not taken into
account, giving the correct self-consistent raadlimaginary
parts of the self-energy. i T=8MeV
In Fig. 4 the imaginary part of the self-energy at the qua- =
siparticle pole as a function of momentum is given. The de- M PR RS N B
crease of the single-particle width with the temperature and a 0 200 400 600 800 1000
minimum around the Fermi energy can be observed. In Fig. . MoV
5 the Hartree-Fock energy and the complete real part of the P (MeV)
self-energy at the quasiparticle pole in the self-consistent cal- F|G. 5. The Hartree-Fock energy in the self-consistent calcula-
culation, and the Hartree-Fock energy in the quasiparticlgon (solid line) and in the quasiparticle approximaticaotted line
approximation are given as a function of momentum. Theand the real part of the retarded self-energy in the self-consistent
behavior of the real part of the self-energy at the temperaealculation on shel(dashed ling as functions of momentum at
tures studied is relatively smooth. Only at the lowest tem-normal nuclear density and at temperatures of 20 and 8 MeV.

Re):(p,mp) (MeV)
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=4.1 MeV in the quasiparticle approximation, compared to
p=p, T=4.1MeV results obtained using a fixed width of the spectral function
and the same Hartree-Fock energy as in the quasiparticle
calculation. We observe that the singularity which starts to
build up atT=4.1 MeV in the quasiparticle approximation

is no longer present if finite widths of propagators are taken.
Note that it is the off-shellness of the propagator in the cal-
culation of the self-energgl3) not in theT-matrix equation,
which causes the singularity in [Ei" to disappear.

80 -

ImZ(p=0,0) (MeV)

IV. IN-MEDIUM CROSS SECTIONS

The modeling of the nonequilibrium evolution in a heavy-
ion reaction by semiclassical transport models requires the

0o b= 200 knowledge of the in-medium cross section. For nucleons on-
-200 -100 0 100 shell one can define the scattering cross sections similarly as
o (MeV) in vacuum, but using an effective magy. If the nucleons

are off-shell the definition of the cross section must be modi-
FIG. 6. The imaginary part of the retarded self-energy as funcfied because the outgoing waves are localized in sfie

tion of energy for p=0 at normal nuclear density and  In this section we will use a simplistic view of the scattering
=4.1 MeV. The solid line denotes the quasiparticle approximationcross section as a parameter in the semiclassical collision
and the dashed, dotted, and dashed-dotted lines represent the resimtegral. The applicability of the quasiparticle approxima-
obtained using a fixed single-particle width of 6, 15, and 40 MeV,tions in the description of the nonequilibrium dynamics is
respectively. guestionable if the equilibrium calculations indicate the need

for self-consistent off-shell calculations. However, in order
pairing transition. At the critical temperature of the pairing for the complex dynamical evolution to be tractable we have
transition a pole appears in tfiematrix for pairs with zero to restrict ourselves to quasiparticle transport models of
total momentum both in the self-consistent and in the quasiheavy-ion collisions. One can, however, take into account
particle calculations. In the quasiparticle approximation itin-medium modifications of the effective cross sections. In
leads to a singularity in the imaginary part of the self-energyparticular when calculating the in-medium cross sections at
[10]. In the calculation of the self-energy using the off-shell equilibrium one can take into account the full propagators in
propagatorg13) there is one more energy integration which the ladder diagrams.
washes out this singularity. As an illustration we show in  The semiclassical collision term for a nucleon of momen-
Fig. 6 the imaginary part of the self-energy a  tum p,; and energyw; has the forn{13]

——(2m)*8%(p1+ P2—P3— Pa) S w1+ w3~ w3~ wy)

dw, d°p, f do; d®p; [ dw, dpy

2 (2m)3 2 (277)3 2 (277)3
><|(k|T+(P,wl+w2)|k’)A|2A(p1,w1)A(p2,wz)A(p3,w3){[1—f(pl,wl)][l—f(p2,wz)]f(pg,wg)f(p4,w4)
—f(p1,0)f(P2,w)[1—F(P3,w3) [ 1—f(Ps,w4) ]}, (21)

where P=p;+p,, k=(p1—p2)/2, k' =(p3—pa)/2. When

putting the scattering particles on-shell and integrating over M*(p’k):(
the anglé we can define an effective cross sectisrin the

collision term

-1
Hw, +w
< Py p2>0> (23)

k2

is the effective mass. The sign. .) denotes the averaging

d®p, |p1—pol over the angle. The cross section is
————{[1-f(p)[1—f(p2)1f(pP3)f(pa)
f (2m)° M* (P.K) {[ (PO P2) 1f(P3) f(Pa M* (P.K)2 . )
U(P’k):T<|<k|T (P’wpl+wp2)|k>A| )a-
—H(p) ([ 1=F(pa)J[1—F(pa)]}, (22 24
where In Fig. 7 are presented the results for thg and n-n

cross sections. The in-medium cross sections calculated with
the self-consistenT matrix are generally larger than the
We use only thes wave in the present work. cross sections obtained in the framework of the quasiparticle
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R T-matrix equation are full off-shell propagators. Both the real
L i T=20MeV

and imaginary part of the self-energy in these propagators
have been obtained consistently from tfiematrix. The
coupled system of equations was solved by iteration for the
case of a simple separable interaction. The results were com-
pared to a calculation using the quasiparticle approximation
for the intermediate propagators in tfiematrix equation.

The imaginary parts of the self-energies and the spectral
functions obtained in the two calculations are very different.
One cannot calculate reliably the spectral functions without
using consistently the same spectral function through the
whole approximation scheme. The width of the self-
consistent spectral function is generally smaller than its qua-
siparticle estimates. The self-consist@himatrix also pre-
sents a pairing instability at some critical temperature.
However, in the vicinity of the critical temperature the self-
consistent iteration procedure cannot be performed numeri-

200

T=10MeV

b
-------

onn(k) (mb)

.......

0 cally.
0 200 400 We have calculated the corresponding in-medium cross
k (MeV) sections in the two approximations. The obtained cross sec-

tions are different and indicate that a self-consistent resum-
FIG. 7. The in-medium cross sections for the scattering of ondmation of the ladder diagrams may be important for a correct
shell quasiparticles with zero total momentum as functions of theestimation of transport properties of the nuclear matter at
c.m. momentum at three different temperatures and at normdinite temperature.
nuclear density. The dashed-dotted and the dashed lines denote the The spectral functions are very sensitive to approxima-
n-p and then-n cross sections, respectively, calculated with thetijons of the imaginary part of the propagators in Theatrix
self-consistent in-mediur matrix. The solid lines denote the cor- equation. In the present work we have demonstrated both the
responding in-medium cross sections calculated withTtheatrix  necessity and the feasibility of a full self-consistent ladder
in the quasi_particle approxima?ion and the dotted lines represent th&iagram resummation when calculating the spectral func-
corresponding free cross sections. tions in the nuclear matter at finite temperature. The method
L . , ere presented could also be applied to Brueckner-type cal-
approximation. Only part of the difference can be eXpIa',ne(J;ulations. Before applying the iteration procedure to zero or
by a factor originating in the difference in the effective o, tomperature, an explicit method of energy integration for

masses in the two calculations. Both cross sections presemtﬁ']asiparticles around the Fermi energy must be imple-
resonancelike peak in thiep scattering related to the pairing mented. Similar methods must be used to overcome the limi-

resonancgaboveT.). These kind of structures in the energy t4tions in the momenta of nucleons due to the cutoff. Nucle-

dependence of the cross sections do not influence the evolyne with large momenta are important for the description of

tion of the system, since the cross sections are always int& ot range correlations. Since generally the width of the
grated over momenturfe5]. However, the overall average gnectra) function is smaller at low temperature, one may ex-

cross sections in Fig. 7 are different and could lead to differ-pect that the effect of the off-shell nucleon propagation

ent transport properties in the collision. Before definite conyyquid be less dramatic at zero temperature.

clusions can be drawn calculations should be repeated with a
realistic interaction. ACKNOWLEDGMENTS
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