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General canonical ensemble functional integral formalism with Hamiltonians containing pairing
interactions and Monte Carlo calculations for even-even, even-odd, and odd-odd nuclei

G. Puddu
Dipartimento di Fisica dell’Universita’ di Milano, I-20133 Milano, Italy

~Received 12 November 1998!

We present a functional integral formulation in the canonical ensemble for Hamiltonians containing pairing
interactions, equally applicable for even-even, even-odd, and odd-odd nuclei. A general stabilization technique,
necessary for Monte Carlo calculations is discussed and applied, within the Gaussian path Monte Carlo
method, to nuclei in the rare-earth region. Approximations, such as the Hartree-Bogoliubov mean-field, and the
static path approximations, defined directly in the canonical ensemble, are discussed.
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PACS number~s!: 21.60.Ka, 05.30.2d, 02.70.Lq
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I. INTRODUCTION

The problem of the proper inclusion of pairing effects
the low-energy nuclear structure is an old and important
~see, for example, Ref.@1#, and references therein!. In this
work we present the details of a new formalism which inc
porates the pairing terms in the Hamiltonian in the calcu
tion of the nuclear partition function, applicable for bo
even and odd particle numbers. So far, no Monte Carlo
culations for both an even and odd number of particles h
been performed, because of strong sign fluctuations fo
odd number of particles. The method presented in this w
seems to solve such a problem, at least in the cases stu
so far. The principal motivation behind this work is, first
all, that the Hamiltonian relevant for nuclear physics can
studied in an exact fashion and also we can understand q
titatively the validity of approximation schemes for realis
models. Usually approximation schemes are tested in s
able models rather than realistic models and their validity
the solvable models is extrapolated to the realistic cases
particular, the formalism, well suited for both even and o
particle systems, allows a systematic study of the validity
approximations~such as the Hartree-Bogoliubov approxim
tion! in a fashion that strictly conserves the particle num
as well as computation of the partition function via t
Monte Carlo integration technique. The details of the Mo
Carlo technique used to carry out the actual integration
discussed somewhere else~Refs.@2–4#!, and will not be re-
viewed here. We entirely avoid the use of particle num
projection techniques~Ref. @1#!, rather we offer a new way
of computing traces in the canonical ensemble~i.e., with a
given number of particles! of evolution operators which do
not conserve the particle number. The method we shall
cuss gives, as a bonus, also a simple way to perform ca
lations in the grand-canonical ensemble. An intrinsic am
guity in all approximation schemes in the canonic
ensemble is also brought into light by the new formalism

Pairing effects are parametrized, in the nuclear Ham
tonian, with nonlocal interaction termsai

†a
ī

†
aj̄aj where i , ī

are single-particle time-reversal orbits~monopole pairing!.
Sometimes higher angular momentum pairing terms are c
sidered, such as quadrupole pairing. The formalism and t
PRC 590556-2813/99/59~5!/2500~11!/$15.00
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niques, such as computation of traces in the canonical
semble, discussed in this work apply to general pair
interactions; only for sake of argument~the numerical calcu-
lations have been performed using the pairing1quadrupole
model!, we shall work with monopole pairing interaction. I
order to make the formalism applicable to nuclei in the lo
temperature region, we shall also present numerical sta
zation techniques, which are necessary for the Monte C
calculations. The simplest instance of these techniques
been used in a preliminary report of this work~Ref. @5#!.

The idea of parametrizing the short-range part of the
sidual interaction with pairing terms is the traditional on
and the standard theory of collective motion in nuclei
based on it. However, one can speculate, since the pa
term comes from a short-range part of the residual inter
tion, whether the same physics can be recast in terms of l
~e.g.,d forces! rather than nonlocal forces.

The residual two-body interaction can be written either
a sum of squares of one-body operators containing terms
ai

†aj , or a sum of pairing operators, containing terms li
ai

†aj
† times their Hermitian conjugates, or a combination

both. The separation of the residual interaction into a sum
squares of the particle-number preserving part and int
pairing part is here model given. In principle however, o
has the freedom of casting the full Hamiltonian or just pa
of it, in terms of the pairing field. The separation is, to som
extent, arbitrary. Ideally one would like to make such a se
ration so that, once the Hubbard-Stratonovich transforma
is applied, sign fluctuations in the functional integral expre
sion of the partition function, as well as other sources
statistical errors, are suppressed in the Monte Carlo inte
tion. This, however, can be decideda posteriori, rather than
a priori. As onea-priori criterion we take a decompositio
so that the resulting integrand inside the functional integ
~FI! has the same symmetry properties of the original tw
body Hamiltonian~in our case rotational invariance!.

An additional motivation for this work is that we woul
like to make the bridge between the exact FI and stand
approaches~such as the Hartree-Bogoliubov approximati
in the Grand-Canonical ensemble! conceptually simple and
natural. If the monopole pairing interaction would be writte
in a particle number preserving form the rotational inva
2500 ©1999 The American Physical Society



n
xi

o
t

th
ni

-
r,
if

-

on

ke
or
ic
in
he
to
to
u
a

rd
l
en
el
n

so

is

al
y
a

an
se
a

we
bl

lu

,

le
ir-
l-
the
we
and

ing

-
ase

to

en-
d

the
rt

PRC 59 2501GENERAL CANONICAL ENSEMBLE FUNCTIONAL . . .
ance of the integrand would be destroyed and there is
simple way of connecting the Hartree-Bogoliubov appro
mation to the FI.

This ambiguity expresses only one of the freedoms
writing the FI for a given Hamiltonian. Another importan
one, pointed out in Ref.@2#, is the following. In the grand-
canonical ensemble the chemical potential is fixed so that
average particle number has a desired value. In a cano
ensemble FI, a term like2mN̂ in the Hamiltonian~wherem

is the chemical potential andN̂ is the particle number opera
tor! does not change the exact partition function; howeve
leads to a different functional integral, and therefore to d
ferent canonical ensemble mean fields~defined as the maxi
mum of the functional integrand!, one for each value of the
chemical potential. This freedom~or ambiguity! was used in
order to suppress sign fluctuations in Ref.@2#. Since this
point is important, it will be emphasized in the discussi
below.

From a broader theoretical point of view one would li
to have a formalism which systematically allows one to c
rect known approximation schemes in the grand-canon
and in the canonical ensemble, starting from the underly
two-body Hamiltonian. Our main concern is, however, t
application of this formalism to exact calculations relevant
nuclear problems for both even and odd neutron and pro
numbers, but the formalism, because of its generality, co
also be useful in other context such as pairing phenomen
condensed-matter physics.

The theoretical starting point is provided by the Hubba
Stratonovich transformation~Ref. @6#! and by a new genera
method of computing fermionic traces in the canonical
semble in the presence of pairing operators. In order to
cidate the features of the canonical ensemble partition fu
tion, brought into light by the new formalism, we shall al
discuss widely used schematic pairing model~i.e., without
the quadrupole force! the degenerate version of which
widely used in testing approximation schemes.

The outline of this paper is as follows: in Sec. II we sh
recall the derivation of the FI starting from the two-bod
Hamiltonian. In Sec. III we shall go into the details of
general method of computing traces in the canonical
grand-canonical ensembles when pairing terms are pre
In Sec. IV we discuss the mean-field, and the static p
approximations~Ref. @7#! as an application of the formalism
and apply it to the schematic pairing model. In Sec. V
discuss Monte Carlo calculation in the canonical ensem
Some of the elements of the formalism discussed here
detail were introduced in Ref.@5#.

II. THE FI FOR THE PARTITION FUNCTION

We shall consider for sake of argument the pairing p
quadrupole Hamiltonian of Baranger and Kumar~Ref. @8#!

Ĥ5Ĥ02
k

2 (
a522

2

~21!aQ̂2a
~2!Q̂a

~2!2GP̂†P̂, ~1!

whereĤ05( i 52V
V Eiai

†ai is the single-particle Hamiltonian

Q̂a
(2)5( i , j (qa

(2)) i j ai
†aj ~for a522, . . . ,2) are thespherical

components of the quadrupole operator andP̂5( i .0a2 iai is
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the monopole pairing Hamiltonian. The labelsi .0, 2 i

(5 ī ) refer to time-reversal orbits.Ns52V is the total num-
ber of available single-particle states.

P̂5
1

2
a†Pa†, ~2!

whereP is an antisymmetric matrix in the single-partic
indices. In the discussion that follows the details of the pa
ing matrix P as well as of the quadrupole force are irre
evant, as the considerations below apply regardless of
specific form of these matrices. To shorten the formulas
shall consider one particle species. By defining the real
imaginary parts of the quadrupole operators as

Q̂25~Q̂2
~2!1Q̂22

~2! !/&, Q̂225~Q̂2
~2!2Q̂22

~2! !/ i&,

Q̂15~Q̂1
~2!2Q̂21

~2! !/ i&, Q̂215~Q̂2
~2!1Q̂22

~2! !/&,

Q̂05Q̂0
~2! ~3!

the quadrupole part of Eq.~1! can be rewritten as

(
a522

2

Q̂a
2,

and by defining the real and imaginary parts of the pair
operators as

R5~ P̂†1 P̂!/2, I 5~ P̂†2 P̂!/2i , ~4!

the pairing part can be rewritten as

P̂†P̂5R21I 21
1

2
@ P̂P̂†#, ~5!

where the commutator@ P̂P̂†# gives rise to an additional one
body term in the Hamiltonian and to a constant. In the c
of the monopole pairingR,I, @ P̂,P̂†# give the familiar qua-
sispin operators. In the following we shall set

Ĥ085Ĥ02S m1
G

2 D N̂. ~6!

We shall apply the Hubbard-Stratonovich transformation
the partition function forA particles defined as

Z5e2aA Tr@e2bĤ1aN̂#, ~7!

wherea5bm with m being the chemical potential, andN̂ is
the particle number operator. In the grand-canonical
semble, the trace is taken over the full Hilbert space anm
~or bettera! is fixed by the condition that

] ln Z

]a
50, ~8!

which is equivalent tô N̂&5A. The value ofa obtained by
solving Eq.~8! is a minimum for lnZ if the trace is taken in
the grand-canonical ensemble. In the canonical ensemble
trace in Eq.~7! is taken in the subspace of the full Hilbe
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2502 PRC 59G. PUDDU
space spanned byA particles only. In this case, since the fu
two-body Hamiltonian commutes with the particle numb
operator, the chemical potential is, in principle, arbitra
However, as pointed out in Ref.@2#, the value of the chemi-
cal potential affects the computability of the functional int
gral in the canonical ensemble~i.e., the statistical error de
pends on the chemical potential while the value of
integral does not!. Therefore, the chemical potential is s
lected so that the statistical error in the Monte Carlo eva
ation of the canonical ensemble functional integral is
smallest.

In order to apply the Hubbard-Stratonovich transform
tion the interval@0,b# is divided in M intervals of lengthe
(b5eM ) so that one can approximate with sufficient acc

racy e2e(Ĥ01V̂)5e2eĤ0e2eV̂. The Hubbard-Stratonovich
transformation

e~e/2!Ô2
5A e

2p E ds e~2e/2!s2
eesÔ ~9!

is then applied to each interaction term in the Hamiltonian
each time intervale. In our case this leads to, in the limit o
e→0,

Z5e2bGV/2NE )
n51

M S dfxndfyn )
a522

2

dsanD
3e2~e/2!k(ansan

2
2eG(n~fxn

2
1fyn

2
!e2aA Tr~Û !, ~10!

whereÛ is the evolution operator

Û5ÛMÛM21¯Û1 , ~11!

Ûn5e2e@Ĥ082k(asanQ̂a2G~fnP̂1fn
!P̂†!# ~12!

with fn5(fxn1 ifyn), andN is the normalization constan

N5S ek

2p D 5M /2S eG

p D M

.

Equation~10! applies for both the grand-canonical ensem
partition function~with the trace in Eq.~10! taken over the
full Fock space! and the canonical ensemble partition fun
tion @in this case the trace in Eq.~10! is restricted to the
subspace spanned byA particles#.

The difficulty with these FI’s lies in the fact that the ev
lution operator does not conserve particle number~although
the original two-particle Hamiltonian does!, while we are
primarily interested in traces having a fixed particle numb
For small systems such as nuclei this could pose a prob
Contrary to the usual way of proceeding we will prove th
canonical ensemble calculations are possible without u
particle number projectors as usually done.

III. COMPUTATION OF THE TRACE

In order to compute the trace in Eq.~10! ~whether in the
grand-canonical or in the canonical ensemble! we make use
of the generalized nonsingular~and in general nonunitary!
quasiparticle transformation introduced in Ref.@9#. First let
r
.
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us rewrite any operator, quadratic in the creation and ann
lation operators, of the type

K̂5a†K21a1
1

2
@aK11a1a†K22a

†# ~13!

as

K̂5
1

2
~a a†!S K11

K21

K12

K22
D S a

a†D2
1

2 (
i

~K12! i i ~14!

~here and in the followinga†K21a is short hand for
( i j ai

†K21i j aj , etc.!. In Eq. ~14! K2152K̃12. Sincea† anda
are treated on an equal footing, let us consider the row ve
g r5(aa†) @the corresponding column vector will be denot
asgc5col(a,a†) so that we can use matrix notations#. Ma-
trices in Eq.~14! have dimensionsNs3Ns . In short

K̂5
1

2
g rRgc2

1

2
tr K12, ~15!

R being antisymmetric. Every evolution operator at a giv
time intervaln can be written as in Eq.~15!. Consider the set
of operators

Ŵ5e~1/2!grRgc. ~16!

To every evolution operatorÛn one can associate an oper
tor Ŵn , a matrixRn and a complex numberCn as follows:

Ûn5CnŴn ,

Cn5e2tr K12~n!/25etr K21~n!/2,

Ŵn5e~1/2!grR~n!gc. ~17!

The set of the operatorsŴ transforms the creation and ann
hilation operatorsg r and gc in the following way~cf. Ref.
@9#!:

Ŵ21g rŴ5g rW̃,

Ŵ21gcŴ5Wgc , ~18!

where the matrixW ~not to be confused with the secon
quantized operatorŴ) is given by

W5eŝR, ŝ5S 0 1

1 0D . ~19!

W̃ in Eq. ~18! is the transpose ofW. Transformation~18!
preserves the anticommutation rules of the creation and
struction operators. It is easy to see that

ŝWŝ5W̃21. ~20!

This property follows from the antisymmetry ofR. It is con-
venient to define also the vectors

ḡ r5g r ŝ, ḡc5ŝgc . ~21!

Trivially ḡ r5(a†,a). Then, using Eq.~20!, one has



re

n
i

ca
n

o
ch

-

g
en

ft

-

rs
e

n
-

er
ith
e
-

y-

ne
the

ive.

hey
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Ŵ21ḡ rŴ5ḡ rW
21. ~22!

Equation~20! implies thatR in Eq. ~19! is antisymmetric.
The product of two such matricesW2 andW1 also satisfies
Eq. ~20!, and such matrices form a group which is a rep
sentation of the group of the nonsingular, nonunitary~in gen-
eral! transformationsŴ defined in Eq.~18!.

From the Baker-Campbell-Hausdorff theorem~see, for in-
stance, Ref.@10#! the product of two operators of type~16! is
also of type~16!, since the quadratic forms in the creatio
and annihilation operators form a Lie algebra. That is
Ŵ2 ,Ŵ1 are two operators of type~16! and

Ŵ5Ŵ2Ŵ1 , ~23a!

then

Ŵ5e~1/2!grRgc ~23b!

with

W5eŝR, W5W2W1 . ~23c!

One practical use of this group properties is that one
immediately calculate the product of the transformatio
ŴMŴM21 ...Ŵ1 by computing

W5WMWM21¯W1 , ~24!

and from thisR5ŝ ln W. Another important implication is
the following. Let us consider the grand-canonical trace
an operatorŴ ~which is the product of the operators at ea
time interval!, and a transformation~undefined for the mo-
ment! ẑ, then

Tr Ŵ5Tr@ ẑ21Ŵẑ #5Tr@e~1/2!ẑ21grRgcẑ#. ~25!

If T is the matrix associated withẑ according to the associa
tion law ~18!, then applying Eqs.~18! and ~22! to ẑ,

ẑ21ḡ r ŝRgcẑ5ḡ rT
21ŝRTgc . ~26!

Among the possibleT matrices there are those which brin
ŝR in diagonal form. In order to see this consider the eig
value problem for the matrixW5exp(ŝR) written as

WX5XS el

0

0

el8D
with l,l8 being diagonal. Then by multiplying to the le
and to the right byŝ one has

ŝWŝ~ ŝXŝ !5ŝXŝS el8

0

0
elD ,

and using Eq.~20!

W̃21~ ŝXŝ !5ŝXŝS el8

0

0
elD ,

which implies thatl852l. Therefore, by taking the trans
pose
-

f

n
s

f

-

~ ŝX̃ŝ !W215S el8

0

0
elD ~ ŝX̃!.

Since the matrix of the left eigenvectors ofW ~or of W21) is
the inverse of the matrix formed with the right eigenvecto
we haveX215ŝX̃ŝ, which proves the assertion that th
matrix of eigenvalues ofW ~or equivalentlyŝR̂) has the
property of Eq.~20!. Therefore, going back to Eq.~26!, tak-
ing T as the matrix which diagonalizesŝR̂, we have

T21ŝRT5S l
0

0
l8 D ~27!

with l852l, or

R5TS 0
2l

l
0DT21, ~28!

W5TS el

0
0

e2l DT21, ~29!

which gives the eigenvalue structure of an arbitraryW. In the
grand-canonical ensemble, therefore,

Tr Ŵ5Tr@e~1/2!gr ~2l
0

0
l

!gc#, ~30!

and an elementary calculation gives

Tr Ŵ5e( il i /2)
i

~11e2l i !, ~31!

which is the final result for the grand-canonical trace ofŴ.
Let us now focus on the canonical trace TrŴ. Equation

~25! no longer holds, since the operatorẑ which bringsŴ in
a diagonal form changes the particle number@the familiar
identity Tr(A)5Tr(B21AB) holds only if the trace is taken
over the full space over whichA and B are defined#. The
difficulty is avoided with the formal device of introducing a
arbitrary complex variablez5ea8 and considering the grand
canonical trace

Tr~ea8N̂Ŵ!5 (
A50

Ns

zA TrA~Ŵ!, ~32!

hereNs is the highest possible value for the particle numb
(Ns52V) and the TrA denotes the trace in the subspace w
exactlyA particles. First we will compute the left-hand sid
of Eq. ~32! and then we will perform the polynomial expan
sion in powers ofz5ea8 in order to extract algebraically
TrA(Ŵ) which is the quantity of interest. We stress thata8
Þa; we perform exact particle number projection by pol
nomial expansion of the generating function Eq.~32!, while
we keep the original chemical potentialm5a/b fixed.
Stated differently we use two chemical potentials: with o
(a8/b) we extract exact expressions for the traces in
canonical ensemble and the other~unrelated to the first! is
fixed so that the canonical ensemble trace is mostly posit
The canonical ensemble traces in Eq.~32! are traces of op-
erators which do not conserve the particle number and t
do not depend ona8 @Eq. ~32! is simply an exact expansion#
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2504 PRC 59G. PUDDU
but they do depend ona since the evolution operators doe
If we would use only one chemical potential (a8) we would
be selectingm50) and lose the freedom of modifying th
evolution operator. Before proceeding we point out that
final formulas, should be applicable to numerical cases
physical interest. In these cases all matrices under cons
ation tend to become numerically pathologically large as
temperature is decreased. This can be seen very simpl
looking at the grand-canonical expressions themselves. C
sider for example the matrixW which has to be diagonalize
in order to find the eigenvaluesl i which appear in the grand
canonical trace~31!. This matrix has eigenvalues of the typ
el i,e2l i; in the mean-field case thel i are the quasiparticle
energies multiplied by2b, and, depending on the single
particle space can be low and negative in energy~they are
generated by the high-lying single-particle states!. Thus be-
cause of the structure of the matrixW the eigenvalues are
very large and loss of numerical accuracy easily follows.
deal with the problem we introduce the following metho
Instead of the eigenvalue problem forW we consider the
eigenvalue problem for the supermatrix

W@2#5S 0
Wb

Wa

0 D , ~33!

where Wa5WM /2¯W2W1 and Wb5WMWM21¯WM /211 ,
in other wordsWa is the result of the evolution for the firs
M /2 time intervals, andWb is the result of the evolution fo
the lastM /2 intervals. Both matrices are better behaved th
their product. It is easy to see that the eigenvalues ofW@2#

are the square roots of the eigenvalues of the original ma
W. So the eigenvalues ofW@2# are better defined numericall
and from these thel i can be directly extracted. Even bett
behaved are the eigenvalues of the supermatrix

W@3#5S 0
Wb

0

0
0

Wc

Wa

0
0
D , ~34!

whereWa ,Wb ,Wc are the result of the evolution from 0 t
b/3 from b/3 to 2b/3 and from 2b/3 to b. It is easy to see
that the eigenvalues ofW@3# are the cubic roots of the eigen
values ofW, and therefore can be used to extract directly
l i . It is straightforward to generalize this ‘‘root’’ method t
fourth roots and so on. This method can of course be u
~and it has been implemented in Ref.@3#! in the case where
the pairing interaction is absent, in such a case canon
ensemble Monte Carlo calculations are straightforward. T
implementation of this idea in the Canonical ensemble in
case pairing is present and nontrivial. We shall keep
name ‘‘root’’ method, although strictly speaking we do n
take the root of the evolution operator in this case. To
clear, ‘‘square root’’ applies to the decomposition ofW in
two factors andnth root to the decomposition ofW in n
factors.

We shall discuss the method up to fourth roots~again it
can be generalized to higher roots!. We stress that the
method is essential in order to do Monte Carlo calculatio
in the canonical ensemble. We shall start with the case wh
no root is taken~i.e., W is not factorized!. From the point of
view of Monte Carlo calculations in the canonical ensem
e
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this is purely academic, since the numerical pathology is
strong that it can be implemented only at high temperatu
~at least in the erbium region! where pairing is no longer
effective. At least squares, cubic, and quartic roots ofW are
necessary.

Let us go back to Eq.~33! and rewrite the operator insid
the trace in the form~16!

Ŵ~z!5ea8N̂Ŵ5eaNs/2e~1/2!gr ~1
0

0
21

!gcŴ. ~35!

The operator product can easily be taken into account u
Eqs.~21!–~23!. Thus the matrix associated withŴ(z) @call it
W(z)# is given by

W~z!5ea~0
1

21
0

!W5S z
0

0
1/zDW. ~36!

Then one has, by taking the square in Eq.~31! for Ŵ(z)

@Trgc Ŵ~z!#25zNs det@11W~z!#

5detF S 1
0

0
zD1S z

0
0
1DWG , ~37!

where the fact that

zNs5detS 1
0

0
zD ~38!

has been used. One can rewrite Eq.~38! as

@Trgc Ŵ~z!#25det~Sv1zSp!, ~39!

where the matricesSv andSp do not depend onz and can be
expressed in terms of the block formingW as

Sv5S 1
W21

0
W22

D , Sp5S W11

0
W12

1 D . ~40!

The matrixSv is the contribution from the vacuum~of par-
ticles! since it is obtained forz50. From Eq.~39! one has

@Trgc Ŵ~z!#25det~Sv!det~11zSv
21Sp!. ~41!

Let m j ~not to be confused with the chemical potential! be
the eigenvalues of the matrixSv

21Sp . Since the left-hand
side of Eq.~41! is the square of a polynomial inz all eigen-
valuesm i must come in degenerate pairs. Therefore, to
construct the left-hand side we can simply write

@Trgc Ŵ~z!#5sAdet~Sv!)
i

Ns

8~11zm i !, ~42!

where the product is only over the distinct eigenvalues a
s561 is an overall sign necessary in taking the square r
of Eq. ~41!. s can be determined by considering Eq.~42!
for z51 ~i.e.,a850). In order to extract the canonical trace
from Eq. ~42!, i.e., the coefficient ofzA in Eq. ~42!, one can
use the recursion relation of Ref.@4#. Let us set
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)
i

Ns

8~11zm i !511zj~1,Ns!1z2j~2,Ns!1z3j~3,Ns!1¯ .

~43!

Then the quantitiesj(n,Ns) satisfy the recursion relation

j~n,s!5msj~n21,s21!1j~n,s21!, ~44!

wherej(n,s) is constructed from the firsts eigenvaluesm i
only. The canonical trace forA particles is finally given by

TrA Ŵ5sAdet~Sv!j~A,Ns!. ~45!

As mentioned before, Eq.~46! is not numerically applicable
in Monte Carlo calculations at low temperature because v
large numbers are involved in both the computation ofSv
and of them i . Rather we use the method of roots, previou
discussed.

Consider first the square-root method. Let us writeW
5WbWa with Wa being the result form the evolution from
to b/2 andWb the result form the evolution fromb/2 to b.
Then Eq.~37! becomes

@Trgc Ŵ~z!#25detF S 1
0

0
zD1S z

0
0
1DWbWaG . ~46!

Let us note first that detWa51 ~the matricesW are such that
they have eigenvalues where one is the inverse of the oth!.
Let Aa5Wa

21. Then

@Trgc Ŵ~z!#25detF S 1
0

0
zDAa1S z

0
0
1DWbG . ~47!

Let

Aa5S ~Aa!11

~Aa!21

~Aa!12

~Aa!22
D ,

Wb5S ~Wb!11

~Wb!21

~Wb!12

~Wb!22
D ,

then Eq.~47! can be rewritten as
is
ry

r

@Trgc Ŵ~z!#25detF S ~Aa!11

~Wa!21

~Aa!12

~Wa!22
D

1zS ~Wa!11

~Aa!21

~Wa!12

~Aa!22
D G . ~48!

Equation~41! still holds with new matricesSv andSp which
can be read off from Eq.~48!

Sv5S ~Aa!11

~Wa!21

~Aa!12

~Wa!22
D , ~49a!

Sp5S ~Wa!11

~Aa!21

~Wa!12

~Aa!22
D . ~49b!

These matrices are better behaved numerically than the
trices defined by Eq.~40! sinceAa andWb contain only half
of the time intervals. The same considerations made in E
~41!–~45! still apply including the argument about the d
generacy of the eigenvalues ofSv

21Sp . More powerful de-
compositions are the cubic and fourth roots whereW
5WcWbWa andW5WdWcWbWa . For the cubic let us set

h5S 1
0

0
zD , k5S z

0
0
1D , ~50!

then

@Trgc Ŵ~z!#25det@hAa1hkWcWb#, ~51!

and using the matrix identity

detS P11

P21

P12

P22
D5detP22det@P112P12P22

21P21#, ~52!

one can rewrite Eq.~50! as

@Trgc Ŵ~z!#25detS hAa

2Wb

hk
Ac

D ~53!

(Ac5Wc
21). It is important to realize that we had to doub

the size of the matrix from which we are taking the determ
nant in Eq. ~52!. The right-hand side of Eq.~54! can be
written now explicitly as
@Trgc Ŵ~z!#25detF S ~Aa!11

0
2~Wb!11

2~Wb!21

~Aa!12

0
2~Wb!12

2~Wb!22

0
0

~Ac!11

~Ac!21

0
1

~Ac!12

~Ac!22

D 1zS 0
~Aa!21

0
0

0
~Aa!22

0
0

1
0
0
0

0
0
0
0
D G . ~54!
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Again in this expression the structure of the determinant

@Trgc Ŵ~z!#25det@Sv1zSp# ~55!

with Sv andSp that can be found by inspection of Eq.~54!.
Therefore,

@Trgc Ŵ~z!#25detSv det@11zSv
21Sp#. ~56!
There is a difference between this case and the prev
ones. Every submatrixSv andSp have twice the dimension
~i.e., 4Ns) of the matrices appearing in the case of t
square-root decomposition. The polynomial in Eq.~56!, on
the other hand, has to be the square of a polynomial of
gree Ns . Therefore, half of the eigenvalues ofSv

21Sp are
zero and the remaining half consists of degenerate doub
of which we keep only eigenvalue per doublet in taking t
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2506 PRC 59G. PUDDU
square root Eq.~56!. From the ‘‘purged’’ set of eigenvalue
of Sv

21Sp one can compute the canonical partition functi
using Eqs.~43! and ~44!. In the case of the fourth-root de
compositionW5WdWcWbWa , one can proceed in a simila
way and obtain the following results forSv andSp :

Sv5S ~Aa!11

0
2~Wb!11

2~Wb!21

~Aa!12

0
2~Wb!12

2~Wb!22

0
~Wd!21

~Ac!11

~Ac!21

0
~Wd!22

~Ac!12

~Ac!22

D ,

~57a!

Sp5S 0
~Aa!21

0
0

0
~Aa!22

0
0

~Wd!11

0
0
0

~Wd!12

0
0
0

D . ~57b!

Again the size of these matrices are 4Ns; therefore, since
det(11zSv

21Sp) has to be the square of a polynomial of d
greeNs , half of the eigenvalues ofSv

21Sp have to be zero
and the remaining 2Ns have to come in degenerate double
of which we keep only one per doublet in Eqs.~43! and~44!.
In principle~although it has not be done in practice!, one can
go forward and construct matricesSv andSp for higher-order
decompositionsW5WpWp21¯W2W1 ; however, they were
not deemed necessary for the numerical cases discuss
this paper. They would, however, be necessary if one wo
consider more complicated models than the one consid
in this paper, like pairing1quadrupole1octupole.

As a concluding remark we note that the matricesSv and
Sv

21Sp for the no root, square, cubic, and quartic root ca
@given by Eqs.~40!, ~49!, ~54!, and ~57!, respectively#, al-
though differing in each case, have the following properti
detSv is the same regardless of the root andSv

21Sp have the
same eigenvalues for all roots except when the matrix
larger dimensions, in which case the additional eigenval
are zero.

IV. APPLICATIONS OF THE FORMALISM:
THE PURE PAIRING MODEL

AND APPROXIMATION SCHEMES

Before discussing Monte Carlo calculations, which are
main purpose of this work, we apply the formalism co
structed in the previous section to a simplified model and
the mean-field approximation. This is not meant to imp
that such an approximation is uniquely defined or a go
approximation. The goodness of the approximation u
mately relies in how well the approximation reproduces
exact Monte Carlo results. However, even in cases where
approximation is not accurate, the mean field plays a cen
role in the construction of the Gaussian path Monte Ca
method and moreover it offers at least a qualitative und
standing of the exact results.

The mean-field approximation~at finite temperature! is
defined as the maximum of the integrated in the FI repres
tation of the partition function. Since the integrand chang
depending on the value ofa so does its maximum, i.e., th
mean field. This is true even if the trace inside the FI is tak
in the subspace having a good particle number.

Thus by changing the value ofa we obtain a family of FI.
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This peculiarity was used in Ref.@2#, wherea was selected
so that sign fluctuations are suppressed in the Monte C
sampling. In order to choose a value ofa we make the fol-
lowing qualitative reasoning. Reasonable values ofa are
close to the one that minimizes the canonical ensem
mean-field partition function~this may not be the optima
value ofa for Monte Carlo calculations but is close to it!. In
fact if, for a given value ofa, the contributions to the exac
partition function in the vicinity of the mean field are to
large, there has necessarily to be a cancellation from s
other contributions. If the mean-field contribution is th
smallest possible~for the appropriate value ofa!, then the
contributions from the other regions in the integration d
main should act coherently, i.e., with the same sign. T
argument is of course qualitative. In practice we start fro
the chemical potentials from approximate grand canon
calculations@the actual values are the ones used in Ref.@11#
in the framework of the static path approximation~SPA!#
modify them if the sign fluctuations are too large. This fe
ture, i.e., that the feasibility of Monte Carlo canonical e
semble calculation depends on the grand-canonical ense
should not be regarded as obvious. In fact in the case
evolution operator conserves particle number, it is poss
to perform directly in the canonical ensemble, calculatio
either exact~Monte Carlo! or approximate@Mean field, SPA,
random-phase approximation~RPA! at finite temperature,
RPA-SPA! without any reference to the grand-canonical e
semble~without the aid of particle number projectors!. In the
case of pairing forces part of this desirable feature is lost.
input value from the grand-canonical ensemble is essentia
somehow the chemical potentials should be predeterm
before any Monte Carlo calculation.

In order to elucidate some peculiar features of the cano
cal ensemble and also in order to see how the formal
constructed in the previous section works in a simple ca
the remaining of this section is devoted to the static p
approximation~SPA! and the mean field for both the pur
pairing model and for the pairing1quadrupole model. The
static path approximation is defined by settingM51, e5b
in the functional integral. Let us consider first the pure pa
ing model.

This model has been studied numerically in Ref.@2# using
the Gaussian path method. In order to simplify formulas
index r will be reserved for eitheri .0 or ī . Equation~10!,
in the SPA, simplifies to

Z5e2aA2bVG/2NE ~dfx dfy!e2bG~fx
2
1fy

2
!Tr~Û !,

~58!

the evolution operatorÛ, is now

Û5e2b@Ĥ082G~f P̂1f!P̂†!# ~59!

with f5fx1 ify and

H085(
r 51

2V

~Ern̂r ! ~Er5e r2q!, ~60!

andq5m1G/2. Let us write the evolution operatorÛ in the
form ~17!. Then
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Tr Û5CTr Ŵ,

C5e2b( i .0Ei, ~61!

sR5S 2bE
bGfP

2bGf!P
bE D . ~62!

HereE is the diagonal matrix with elementsEi ,Eī5Ei . The
matrix P is in block form

P5S 0
1

21
0 D ~63!

with 1 being the unit matrix of dimensionsV3V. More
explicitly

sR5S 2bEi

0
0

2bGḟ

0
2bEi

bGf
0

0
bGf!

bEi

0

2bGf!

0
0

bEi

D . ~64!

Clearly only i , ī levels are coupled. LetD5Gf, v r

5AEr
21D2, and letCr5cosh(bvr), Sr5sinh(bvr) for short,

then

W51
Ci2

Ei

v i
Si 0 0 2

Gf!

v i
Si

0 Ci2
Ei

v i
Si

Gf!

v i
Si 0

0 Ci2
Ei

v i
Si

Gf!

v i
Si 0

0
Gf

v i
Si Ci1

Ei

v i
Si 0

2
Gf

v i
Si 0 0 Ci1

Ei

v i
Si

2
~65!

or in short

W5S C2,i

0
0

2a

0
C2,i

a
0

0
a!

C1,i

0

2a!

0
0

C1,i

D . ~658!

The meaning of the symbols in Eq.~658! can be obtained by
inspection from Eq.~65!. It is simple to construct the matrix
Sv

21Sp and to diagonalize it. The root method described
the previous section is not needed in this case since we c
out the calculations analytically. The result is

detSv
1/25)

i .0
C1,i , ~66!
rry

Sv
21Sp5S C2,i 0 0 2a!

0 C2,i a! 0

0 2a
C2,i

C1,i

12uau2

C1,i
0

a
C2,i

C1,i
0 0

12uau2

C1,i

D .

~67!

The eigenvalues of this matrix, as mentioned earlier, are
generate, and are complex. The fact that the eigenvalues
complex is crucial to understand how a purely single-parti
picture, as the mean-field canonical ensemble is, cont
correlations caused by pairing. The eigenvaluesm r ~one per
doublet! of Sv

21Sp come in complex conjugate pairs. In th
very low-temperature limit for even particle numberA
52N the quantityj of Eq. ~46! is dominated by

um1u2um2u2¯umNu2.

If the last particle is removed~the factor of 2 is brought by
the trace!

um1u2um2u2¯2 Re~mN!.

Thus the correlations caused by pairing are contained als
the imaginary part of them i ; in fact a large imaginary par
on the last occupied eigenvalue implies a large canon
trace in the case of even number of particles, that is m
binding for the last pair. Weak pairing effects are obtained
the eigenvalues are almost real~in such a case no extra con
tribution to the trace is obtained in the case of even part
number!. Rather than being a mathematical unphysical a
fact of the mean-field approximation, the fact that the eig
values are complex is a necessity to obtain an even-odd
fect. The explicit expression for the eigenvaluesm i is

mk52
e2bvk6 i @Gufu~12e22bvk!/2vk#

11e22bvk1~Ek /vk!~12e22bvk!
. ~68!

As b→` this gives

mk5
6 i ~Gufu/vk!

11Ek /vk
. ~688!

These are the eigenvalues of the evolution operator to
filled to construct the canonical trace at very low tempe
ture. As these eigenvalues do not have the usual expone
dependence onb considerable excitation might take plac
Putting the various terms together, Eq.~60! becomes

Z5e2aA2bVG/2
bG

p E ~dfx dfy!

3e2xbG~fx
2
1fy

2
!e2b( i .0Ei)

i .0
C1,ij~A,Ns!, ~69!

wherej(A,Ns) is the canonical ensemble trace formed w
the A particles distributed in the set of eigenvaluesmk given
by Eq. ~70!. Usually the integral is reexpressed using as
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2508 PRC 59G. PUDDU
integration variable the gapD, since the integrand is invari
ant under rotations of the variablesfx ,fy ; integration of the
rotation angle gives

Z5e2aA2bVG/2
2b

G E
0

`

Dd De2bD2/Ge2b( i .0Ei

3)
i .0

C1,ij~A,Ns!. ~698!

On the other hand, the particle number dependence in
integrand is contained inj(A,Ns). In order to get further
insight, let us specialize to the particular case of the deg
erate pure pairing model, where all single-particle unp
turbed levels are zero, i.e.,Er52q. In this case allvk have
a common value

v5Aq21D2,

letting alsoE be the common value of allmk . Equation~69!
can be approximated using the saddle-point method and
leading contribution is the mean field. The mean-field pa
tion function is therefore

Zmf5e2aA2bVG/2e2bD2/GebqVC1
Vj~A,2V!

with D being the value that gives the maximum of the in
grand. To obtain the energy, in the low-temperature lim
one has to compute2]b ln Z. The quantity2]b ln j tends to
0, leaving the only dependence of the energy from the p
ticle number in the external input chemical potentialm.
While in the grand-canonical ensemble the chemical po
tials are implicitly determined by the number of particles
the canonical ensemble, instead, the chemical potential i~at
least in principle! a free parameter. This is the structure
the fully particle-number-projected mean-field partition fun
tion, for the degenerate pairing model as well as of the st
path approximation for the same model.

Let us now consider the pairing1quadrupole model of
heavy nuclei, in the SPA. The SPA expression for the pa
tion function is

Z5e2bGV/2NE S dfx dfy )
a522

2

dsaD
3e2~b/2!k(asa

2
2bG~fx

2
1fy

2
!e2aA Tr~Û !, ~70!

whereÛ is the evolution operator

Û5e2b@Ĥ082k(asaQ̂a2G~f P̂1f!P̂†!# ~71!

with f5(fx1 ify) andN is the normalization constant

N5S bk

2p D 5/2S bG

p D . ~72!

It is more convenient to work in the intrinsic frame. This
accomplished by performing a transformation from the va
ables sa (a522, . . . ,2) to the new variables
s28 ,s08 ,u1 ,u2 ,u3 , with the constraints218 5s1850 and
s228 5s28 ~these are not the spherical but the cartesian c
ponents of a rank-2 tensor!. The variablesu1 ,u3 ,u3 are the
he
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Euler angles, and the standard deformation variable wh
we call hered,g instead ofb,g ~in order to avoid confusion
with the inverse of the temperature! are related tos28 ,s08 by

s285cd sing, s085cd cosg, ~73!

where c5\v0 /k and v0 is the harmonic oscillator fre-
quency. The final expression for the partition function in t
SPA is obtained after performing the integration over t
Euler angles and in usingd,g,D as integration variables is
given by

Z5e2bGV/2N8E Dd Dd4 sin~3g!dd dg

3e2~b\v0/2k!d22b/GD2
e2aA Tr~Û ! ~74!

with N8 being

N85N16p2~\v0 /k!5/G.

The evolution operator in Eq.~74! is

Û5e2b@Ĥ92D~ P̂1 P̂†!# ~75a!

with

Ĥ95Ĥ082\v0d~cosgQ̂21singQ̂0!. ~75b!

The trace in Eq.~76!, whether in the canonical or in th
grand-canonical ensemble, can be conveniently compute
the representation that diagonalizesĤ9. Since time-reversa
orbits are not mixed by the quadrupole potential in Eq.~75b!
the eigenvalues ofĤ9 are degenerate and the transformati
that diagonalizesĤ9 in one set of levels is the same as t
one that diagonalizesĤ9 in the time-reversal levels. As a
consequence the pairing operators in the bases that diag
izes Ĥ9 retains the same form. Therefore, we can work
this single-particle basis and the problem becomes the pr
ous one~the pure pairing case!, except that we also have a
integration over the deformation variables. Although in pr
ciple both the mean-field partition function and the SPA p
tition function in the canonical ensemble depend on
chemical potential, because of the pairing terms, they h
different sensitivity to it; not surprisingly the mean field
much more sensitive to variation of the chemical poten
than the SPA: the more accurate the approximation the
the partition function is sensitive to the chemical potentia
until any dependence disappears altogether in the exact
tition function.

V. MONTE CARLO CALCULATION WITH THE PAIRING
PLUS QUADRUPOLE MODEL

In this section we shall discuss Monte Carlo calculatio
using the pairing plus quadrupole model of Baranger a
Kumar ~Ref. @8#!. The method of performing the functiona
integral stochastically is the Gaussian path method, as
cussed in Refs.@2–4#, etc. Essentially it consists of the fo
lowing steps.
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~1! First a preliminary calculation as done in Ref.@11# is
performed in order to have approximate values of the che
cal potentials, in the grand-canonical ensemble.

~2! A canonical ensemble mean-field calculation is p
formed. It gives the maximum of the integrand in the fun
tional integral. The action we maximize includes also t
volume elements of the gap and deformation variables. T
helps smooth out phase changes as a function of the ch
cal potentials.

~3! The integration variables in the functional integral a
decomposed in two groups. One group generates the sym
tries in the integrand~Euler angles and gauge angles for t
pairing fields!. The other generates the remaining integrat
variables, as done in Refs.@2,3#. The symmetry variables ar
approximated with their time average~this is to avoid a con-
straint on the remaining variables!, i.e., they are the zero
Fourier components of the integration variables. The rem
ing variables~nonzero Fourier components! are generated
with an approximate Gaussian probability distribution~hence
the name of the method! about their mean-field values@see
~2!#. The integration variables in the original exact function
integral are then reconstructed.

~4! Since the FI is rewritten as an expectation value w
a Gaussian probability density, the exact integral is co
puted with the distribution function generated in~3!.

~5! Typically, with a good choice of the chemical pote
tials, only a few percent of the contributions are negative
cases where the percentage is higher the chemical poten

TABLE I. Canonical ensemble free energies for several nu
obtained from the Gaussian path Monte Carlo method. The ri
most column shows the free energies obtained in the static
approximation in the grand-canonical ensemble.

1/T Nucleus F ~exact! F ~SPA!

3.0 Dy162 2301.72~20.06,10.07! 2293.1317
2.5 Dy162 2302.61~20.14,10.21! 2294.3684
2.0 Dy162 2303.30~20.10,10.13! 2296.4250
3.0 Dy163 2305.02~20.10,10.15! 2296.7328
2.5 Dy163 2306.26~20.17,10.30! 2297.9815
2.0 Dy163 2306.52~20.13,10.17! 2300.0526
3.0 Dy164 2308.84~20.11,10.16! 2300.1281
2.5 Dy164 2309.06~20.16,10.28! 2301.3883
2.0 Dy164 2310.02~20.16,10.24! 2303.4726
3.0 Ho163 2301.73~20.10,10.15! 2293.6146
2.5 Ho163 2302.39~20.15,10.25! 2294.8953
2.0 Ho163 2303.45~20.16,10.25! 2297.0243
3.0 Ho164 2304.88~20.12,10.19! 2297.1913
2.5 Ho164 2305.16~20.09,10.11! 2298.4802
2.0 Ho164 2306.70~20.14,10.20! 2300.6196
3.0 Ho165 2308.62~20.12,10.18! 2300.5570
2.5 Ho165 2308.83~20.15,10.24! 2301.8551
2.0 Ho165 2310.10~20.20,10.34! 2304.0057
3.0 Er167 2311.90~20.13,10.21! 2303.6765
2.5 Er167 2312.00~20.09,10.12! 2304.9702
2.0 Er167 2313.45~20.13,10.17! 2307.1237
3.0 Tm168 2311.24~20.10,10.15! 2303.4195
2.5 Tm168 2311.66~20.14,10.22! 2304.7026
2.0 Tm168 2311.89~20.12,10.16! 2306.8530
i-

-
-
e
is
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e-
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n-

l
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n
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are adjusted and the calculation is repeated from point~2!.
This percentage of negative contributions does not dep
on whether the particle number is even or odd. There
integration variables~as the gaps, the deformation variabl
d,g! which are constrained to be positive~or, in the case ofg
between 0 andp/3!; step ~3! generates them around th
mean-field with a Gaussian distribution, thus au function is
included in the integrand. Some integration points fall o
side the allowed range. Acceptance ratio is kept at about

~6! The result of the calculation is the partition functio
itself ~although the method can be extended to compute
trix elements!. In the simplest version of the Gaussian pa
method ~i.e., all Gaussians have width set to 1! statistical
errors on the partition function are large. But since we d
with very large numbers the corresponding errors on the
energies are quite small.

Although free energies are not immediately related
quantities of experimental interest, comparison of the ex
free energies with the ones determined with an approxim
tion scheme, helps determine the degree of validity of
approximation schemes themselves in realistic models.
calculations discussed below are performed with a few up
several thousands Monte Carlo sweeps. The value ofb/M
was kept almost constant and equal to about 0.025 MeV21.
The results are shown in Table I. The rightmost colum
shows the grand-canonical SPA results. The discrepancy
tween the canonical and grand-canonical SPA free ener
was found to be small~so only the grand-canonical SP
results are shown! and both are about 7 MeV higher than th
exact Monte Carlo free energies. The source of this la
discrepancy is the number of time slices (M51 for the SPA
and 60 to about 100 in the exact case!. This discrepancy, of

i
t-
th

TABLE II. Sensitivity of the canonical ensemble mean field a
function of the neutron chemical potential. Shown are the free
ergies, the gaps~n andp!, and the deformation variable.

Dy164 (1/T53.0)
mn mp F Gapn Gapp Deform.

25.30 21.6 2295.3 1.0798 1.5680 0
25.10 21.6 2293.0 1.1207 1.5680 0
24.90 21.6 2290.6 1.1681 1.5680 0
24.70 21.6 2288.5 1.2217 1.5680 0
24.50 21.6 2286.5 1.2800 1.5680 0
24.45 21.6 2294.2 0.4872 0.7373 0.368
24.40 21.6 2294.2 0.4387 0.7359 0.368
24.35 21.6 2294.13 0.0000 0.7326 0.370
24.30 21.6 2294.13 0.0000 0.7326 0.370
24.25 21.6 2294.13 0.0000 0.7326 0.370
24.20 21.6 2294.13 0.0000 0.7326 0.370
24.15 21.6 2294.13 0.0001 0.7326 0.370
24.10 21.6 2294.13 0.0779 0.7323 0.370
24.05 21.6 2294.14 0.3819 0.7273 0.373
24.00 21.6 2294.16 0.4719 0.7227 0.375
23.95 21.6 2294.18 0.5845 0.6669 0.419
23.90 21.6 2294.25 0.6135 0.6652 0.428
23.70 21.6 2294.7 0.6752 0.6678 0.439
23.50 21.6 2295.3 0.7192 0.6708 0.445
23.30 21.6 2296.0 0.7627 0.6743 0.450
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course, disappears asM is decreased, so the source of t
discrepancy is identified unambiguously.

In Table II we study the sensitivity of the canonical e
semble mean-field result~the one obtained by varying th
effective action without the inclusion of volume elements! as
a function of the neutron chemical potential. Also shown
the gap variable~for both neutrons and protons! and the stan-
dard deformation variable. The canonical ensemble SPA
culation for the free energy~not shown in Table II! is about
v.

.

e

l-

300 MeV and varies by about 2 MeV in the same interval
chemical potentials.

As a concluding remark, the scheme proposed in t
work suggests a functional integral formulation which is fr
of pathological sign fluctuations in the case of an odd nu
ber of particles when the Hamiltonian contains pairing term
At least for the cases studied so far, this method does
seem to have the limitations of the one used in Ref.@12#,
which is ill-behaved for even-odd and odd-odd nuclei.
s
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