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General canonical ensemble functional integral formalism with Hamiltonians containing pairing
interactions and Monte Carlo calculations for even-even, even-odd, and odd-odd nuclei
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We present a functional integral formulation in the canonical ensemble for Hamiltonians containing pairing
interactions, equally applicable for even-even, even-odd, and odd-odd nuclei. A general stabilization technique,
necessary for Monte Carlo calculations is discussed and applied, within the Gaussian path Monte Carlo
method, to nuclei in the rare-earth region. Approximations, such as the Hartree-Bogoliubov mean-field, and the
static path approximations, defined directly in the canonical ensemble, are discussed.
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I. INTRODUCTION nigues, such as computation of traces in the canonical en-
semble, discussed in this work apply to general pairing
The problem of the proper inclusion of pairing effects in interactions; only for sake of argumeftihe numerical calcu-

the low-energy nuclear structure is an old and important onéations have been performed using the paitingiadrupole
(see, for example, Refl], and references therginin this  mode), we shall work with monopole pairing interaction. In
work we present the details of a new formalism which incor-order to make the formalism applicable to nuclei in the low-
porates the pairing terms in the Hamiltonian in the calculatemperature region, we shall also present numerical stabili-
tion of the nuclear partition function, applicable for both zation techniques, which are necessary for the Monte Carlo
even and odd particle numbers. So far, no Monte Carlo calealculations. The simplest instance of these techniques has
culations for both an even and odd number of particles haveeen used in a preliminary report of this waiRef. [5]).
been performed, because of strong sign fluctuations for an The idea of parametrizing the short-range part of the re-
odd number of particles. The method presented in this worlsidual interaction with pairing terms is the traditional one,
seems to solve such a problem, at least in the cases studiadd the standard theory of collective motion in nuclei is
so far. The principal motivation behind this work is, first of based on it. However, one can speculate, since the pairing
all, that the Hamiltonian relevant for nuclear physics can beaerm comes from a short-range part of the residual interac-
studied in an exact fashion and also we can understand quatien, whether the same physics can be recast in terms of local
titatively the validity of approximation schemes for realistic (e.g., § force9 rather than nonlocal forces.
models. Usually approximation schemes are tested in solv- The residual two-body interaction can be written either as
able models rather th-an realistic models and thelr Valldlty Irh sum of squares of One-body Operators Containing terms like
the _solvable models is extrapolalted to the realistic cases. |§iTa-, or a sum of pairing operators, containing terms like
particular, the formalism, well suited for both even and Oddafaj times their Hermitian conjugates, or a combination of
particle systems, allows a systematic study of the validity o1y The separation of the residual interaction into a sum of

approximationgsuch as the Hartree-Bogoliubov approxima- g, ares of the particle-number preserving part and into a

tion) in a fashion that strictly conserves the particle n“mberpairing part is here model given. In principle however, one

as well as computation of the partition function via the paq the freedom of casting the full Hamiltonian or just parts

Monte Carlo integration technique. The details of the Montey¢ it, in terms of the pairing field. The separation is, to some

Carlo technique used to carry out the actual integration argyent arbitrary. Ideally one would like to make such a sepa-
discussed somewhere el§eefs.[2—4]), and will not be re- 4451 5o that, once the Hubbard-Stratonovich transformation

viewed here. We entirely avoid the use of particle numbefg 5jieq sign fluctuations in the functional integral expres-

projection techniquegRef. [1]), rather we offer a new way  gjon of the partition function, as well as other sources of
O.f computing traces In the canonlpal ensemble., W,'th 8  statistical errors, are suppressed in the Monte Carlo integra-
given number of particlgsof evolution operators which do jon This, however, can be decidedposteriorj rather than

not conserve the particle ?umber. TTe method W‘fe shall ?'sé priori. As onea-priori criterion we take a decomposition
cuss gives, as a bonus, also a simple way to perform calCyy, that the resulting integrand inside the functional integral
Iatl_ons_ln the grand-c_ano_nlcal ensemble._ An intrinsic amb|-(F|) has the same symmetry properties of the original two-
guity in all approximation schemes in the canonicalyqqy Hamiltonian(iin our case rotational invariance
ensemble is also brought into light by the new formalism. A aqditional motivation for this work is that we would

Pairing effects are parametrized, in Erhe nuclear '_Em”ﬁke to make the bridge between the exact FI and standard
tonian, with nonlocal interaction termes a;a;a; wherei,i  approachegsuch as the Hartree-Bogoliubov approximation
are single-particle time-reversal orbifsonopole pairing in the Grand-Canonical ensempleonceptually simple and
Sometimes higher angular momentum pairing terms are comatural. If the monopole pairing interaction would be written

sidered, such as quadrupole pairing. The formalism and teclin a particle humber preserving form the rotational invari-
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ance of the integrand would be destroyed and there is nthe monopole pairing Hamiltonian. The labels0, —i
simple way of connecting the Hartree-Bogoliubov approxi-(=i) refer to time-reversal orbitds= 2 is the total num-

matio'n to the; Fl. ber of available single-particle states.
This ambiguity expresses only one of the freedoms of
writing the FI for a given Hamiltonian. Another important -~ 1
one, pointed out in Ref.2], is the following. In the grand- P=3a'Pa, @

canonical ensemble the chemical potential is fixed so that the
average particle number has a desired value. In a canonicalhere P is an antisymmetric matrix in the single-particle

ensemble Fl, a term like- MN in the Ham"toniar(where’u indices. In the discussion that follows the details of the pair-

is the chemical potential arfl is the particle number opera- N9 Matrix 7 as well as of the quadrupole force are irrel-

tor) does not change the exact partition function; however, ipvan'tf,. afs the ?orr]]smerauons be_lrow spply r(;ga][dlessl of the
leads to a different functional integral, and therefore to dif-SPECIIC form of these matrices. To shorten the formulas we

ferent canonical ensemble mean fiedsfined as the maxi- shall consider one patrticle species. By defining the real and

mum of the functional integrandone for each value of the imaginary parts of the quadrupole operators as
chemical potential. This freedofor ambiguity was used in

A A2) L A2 A A2)  A@N g
order to suppress sign fluctuations in REZ]. Since this Q=(Q"+Q%)V2, Qo=(Q-Q%iv2,
point is important, it will be emphasized in the discussion N 52) A2 N ~(2) L A2)
below. Q1=(Q”—QX)/iv2, Q_1=(Qy+Q%)/v2,
From a broader theoretical point of view one would like . .
to have a formalism which systematically allows one to cor- Qo=Q¢ ()]

rect known approximation schemes in the grand-canonical .
and in the canonical ensemble, starting from the underlying"® duadrupole part of Eq1) can be rewritten as

two-body Hamiltonian. Our main concern is, however, the 2
application of this formalism to exact calculations relevant to E o2
nuclear problems for both even and odd neutron and proton a=22 ¥

numbers, but the formalism, because of its generality, could o _ _ N
also be useful in other context such as pairing phenomena idnd by defining the real and imaginary parts of the pairing

condensed-matter physics. operators as
The theoretical starting point is provided by the Hubbard- Sp e fr el
Stratonovich transformatiofRef. [6]) and by a new general R=(P'+P)/2, 1=(P'=P)/2, (4)

method of computing fermionic traces in the canonical en- . .

semble in the presence of pairing operators. In order to eld"€ Pairing part can be rewritten as

cidate the features of the canonical ensemble partition func- 1

tion, brought into light by the new formalism, we shall also PTP=R2+12+ Z[PPT], (5)
discuss widely used schematic pairing modes., without 2

the quadrupole forgethe degenerate version of which is ~ A ] ] »
widely used in testing approximation schemes. where the commutat¢P P'] gives rise to an additional one-

The outline of this paper is as follows: in Sec. Il we shall Pody term in the Hamiltonian and to a constant. In the case

recall the derivation of the FI starting from the two-body of the monopole pairing,|, [ P,P'] give the familiar qua-
Hamiltonian. In Sec. Il we shall go into the details of a sispin operators. In the following we shall set

general method of computing traces in the canonical and
grand-canonical ensembles when pairing terms are present.
In Sec. IV we discuss the mean-field, and the static path
approximationgRef.[7]) as an application of the formalism
and apply it to the schematic pairing model. In Sec. V weWe shall apply the Hubbard-Stratonovich transformation to
discuss Monte Carlo calculation in the canonical ensemblethe partition function forA particles defined as

Some of the elements of the formalism discussed here in - .

detail were introduced in Ref5]. Z=e “ATi{e PHTN], (7)

Ho=Ho—| n+ 5 |N. (6)

Il. THE Fl FOR THE PARTITION EUNCTION wherea= Bu with u being the chemical potential, amdis
the particle number operator. In the grand-canonical en-

We shall consider for sake of argument the pairing plussemble, the trace is taken over the full Hilbert space and

guadrupole Hamiltonian of Baranger and KuntRef. [8]) (or bettera) is fixed by the condition that
ok 2 .2 Al L ainz
H=HO—§a;2 (—1)2QQP-GP'P, (1) w O ®)

whereH,=3 _E;ala; is the single-particle Hamiltonian, wh||qh |sEeql:3|vaIent t.G('.\D:A'f Twﬁz\{?llﬁe Of optalnid by

~ ) COn o e ) Henherical S2ViNg q.(8) is a minimum for InZ if the trace is taken in
Qa7=2i(az7);aig; (fora=-2,...,2) are thespherical  the grand-canonical ensemble. In the canonical ensemble the
components of the quadrupole operator 8d>;-,a_;a;is  trace in Eq.(7) is taken in the subspace of the full Hilbert
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space spanned b particles only. In this case, since the full us rewrite any operator, quadratic in the creation and annihi-

two-body Hamiltonian commutes with the particle numberlation operators, of the type

operator, the chemical potential is, in principle, arbitrary.

However, as pointed out in RgR], the value of the chemi-

cal potential affects the computability of the functional inte-

gral in the canonical ensemblee., the statistical error de-

pends on the chemical potential while the value of the3S

integral does not Therefore, the chemical potential is se- 1

lected so that the statistical error in the Monte Carlo evalu- K=>(a aT)(

ation of the canonical ensemble functional integral is the 2

smallest. ) ] " )
In order to apply the Hubbard-Stratonovich transforma-(heré and in the followinga'Kz,a is short hand for

tion the interval[0,8] is divided in M intervals of lengthe EijaiTszjjaj, etc). In Eq. (14) K»;= —K,,. Sincea’ anda

(B=€eM) so that one can approximate with sufficient accu-are treated on an equal footing, let us consider the row vector

racy e~ (HotV)—a—Hoa—«V  The Hubbard-Stratonovich v,=(aa") [the corresponding column vector will be denoted

R —at E t t
K=a'Kya+ 2[aKllaJra Koya'] (13

a
al

Ku Koo
Ka Kz

1
- 52 (Kii (14

transformation as y.=col(a,a’) so that we can use matrix notatignila-
trices in EQ.(14) have dimensiondlsX Ng. In short
(e20%_ | € f (— el2) 02 necO .1 1
e =N, | doe e © R=5%Rye— 5Ky, (15)

is then applied to each interaction. termin the.HamiIt.on.ian atp being antisymmetric. Every evolution operator at a given
each time intervat. In our case this leads to, in the limit of i \a intervaln can be written as in Eq15). Consider the set
e—0, of operators

M 2 N
_ W=e27Ryc, 16
Z=e PO\ nl:ll (d(bxndd’ynaﬂz dUan) (18
To every evolution operatclfin one can associate an opera-
—(el)KS 02— €GZ (G2 + d2 ) a— aA T/ [ ~ .
xe an%an O™ Cyle” 2 Tr(U), (100 tor W,, a matrixR, and a complex numbeg,, as follows:

whereU is the evolution operator Un=CoW,,
0 _ 0 0 . 0 (11) Cn:e*"Klz(”)/zz elr Koq(n)/2
—YMYM-1 1 ’
. . S A — (12 ¥R
0= e~ Mo~ kEazanRa—G(dnP + 41P1)] (12 W, = el 7 RN, 17

The set of the operatok&/ transforms the creation and anni-

With én=(¢xntidyn), andAis the normalization constant hilation operatorsy, and vy, in the following way (cf. Ref.

ek | M2/ ¢\ M [9)):
ML _
™ ™ W2y, W=y W,
Equation(10) applies for both the grand-canonical ensemble WLy W=Wy,, (18)

partition function(with the trace in Eq(10) taken over the
full Fock spacg and the canonical ensemble partition func-\yhere the matrixw (not to be confused with the second
tion [in this case the trace in Eq10) is restricted to the ; AN e i

subspace spanned Byparticles. quantized operatdW) is given by

The difficulty with these FI's lies in the fact that the evo- A 0 1

lution operator does not conserve particle numiadthough w=geR, &z(l O)'
the original two-particle Hamiltonian dogswhile we are

primarily interested in traces having a fixed particle numbers

For small systems such as nuclei this could pose a problerr\1N in Eq. (18) is the transpose oW. Transformation(18)

Contrary to the usual way of proceeding we will prove thatp'reserves the anticommutation rules of the creation and de-

' . . . ._struction operators. It is easy to see that
canonical ensemble calculations are possible without usma P y
particle number projectors as usually done.

(19

oWo=W1, (20)

Ill. COMPUTATION OF THE TRACE This property follows from the antisymmetry &. It is con-

i ) venient to define also the vectors
In order to compute the trace in EQ.0) (whether in the

grand-canonical or in the canonical ensemble make use V=0, Ye=07c- (21)
of the generalized nonsingul#and in general nonunitayy
quasiparticle transformation introduced in REJ]. First let  Trivially 7,=(a',a). Then, using Eq(20), one has



PRC 59 GENERAL CANONICAL ENSEMBLE FUNCTIONA. . .. 2503

et
0

Wy, W=7,W1, (22) (&X&)le( 3) (%),
Equation(20) implies thatR in Eq. (19) is antisymmetric.
The product of two such matriced/, and W, also satisfies  Since the matrix of the left eigenvectors\8f(or of W™ 1) is
Eq. (20), and such matrices form a group which is a repre-the inverse of the matrix formed with the right eigenvectors

sentation of the group of the nonsingular, nonunit@amgen- we haveX~1=5X&, which proves the assertion that the

era) transformations¥ defined in Eq(18). _ matrix of eigenvalues ofV (or equivalently&R) has the
From the Baker-Campbell-Hausdorff theorésee, for in- property of Eq.(20). Therefore, going back to E(26), tak-

stance, Refl10]) the product of two operators of tyf#6) is . T as th trix which di lizeaR h

also of type(16), since the quadratic forms in the creation ing 1 as the matrix which diagonalizess, we have

and annihilation operators form a Lie algebra. That is if N
W,,W; are two operators of typél6) and T '%RT=|, )\,) (27)
W: \7\/2\7\/1, (23@ W|th )\, - — )\, or
then 0 A
R=T| _\ o|T" (28)
W= e(127 Ry (23b
with wW=T ¢ 0 T! 29
- 0 e—)\ ’ ( )
W=e"R,  W=W,W;. (230

which gives the eigenvalue structure of an arbittdfyin the
One practical use of this group properties is that one carand-canonical ensemble, therefore,

immediately calculate the product of the transformations - 0 A

R N N ] Tr W: Tr[e(l/z)’}/r(,)\ g)yc], (30)
Wy Wy —1...W,; by computing
W=Wy, Wy Wi, (24) and an elementary calculation gives
and from thisR=a In W. Another important implication is Trw= ezi)‘i/ZH (1+e™ M), (32)
the following. Let us consider the grand-canonical trace of i

an operatoW (which is the product of the operators at each
time interva), and a transformatiofundefined for the mo-

mend ¢, then

which is the final result for the grand-canonical traceMbf

Let us now focus on the canonical traceWr Equation

i i (25) no longer holds, since the operatowhich bringsW in

TrWzTr[Z*WZ]=Tr[e(1’2)4_1“/r73704]. (25)  a diagonal form changes the particle numbie familiar
identity Tr(A)=Tr(B~*AB) holds only if the trace is taken

If T is the matrix associated withaccording to the associa- 0Ver the full space over whicA and B are definedl The
tion law (18), then applying Eqs(18) and (22) to Z, difficulty is avoided with the for’mal device of introducing an
arbitrary complex variable=e“ and considering the grand-

5, 6RyL=7T YoRTy,. (26)  canonical trace

Among the possibld matrices there are those which bring A Ns A -
&R in diagonal form. In order to see this consider the eigen- Tr(e® W)= 2, ZATra(W), (32

value problem for the matridV=exp@R) written as A0
0 hereNs is the highest possible value for the particle number
WX= X( € )\/) (Ns=2Q) and the Tg denotes the trace in the subspace with
0 e exactly A particles. First we will compute the left-hand side
of Eqg. (32) and then we will perform the polynomial expan-
sion in powers ofz=e® in order to extract algebraically
Tra(W) which is the quantity of interest. We stress thet
e’ 0) # a; we perform exact particle number projection by poly-

with A,\’ being diagonal. Then by multiplying to the left
and to the right bys- one has

oWo(oXo)= &X&(

o e nomial expansion of the generating function E8R), while

we keep the original chemical potential=c«a/B fixed.
and using Eq(20) Stated differently we use two chemical potentials: with one
(a'lB) we extract exact expressions for the traces in the

S A Ana et 0 canonical ensemble and the otHenrelated to the firtis
W™(6Xa)=oXa 0o e\ fixed so that the canonical ensemble trace is mostly positive.

The canonical ensemble traces in E8R) are traces of op-
which implies that\' = — \. Therefore, by taking the trans- erators which do not conserve the particle number and they
pose do not depend om’ [Eq. (32) is simply an exact expansibn
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but they do depend oa since the evolution operators does. this is purely academic, since the numerical pathology is so
If we would use only one chemical potentiat’() we would  strong that it can be implemented only at high temperatures
be selectingu=0) and lose the freedom of modifying the (at least in the erbium regiprwhere pairing is no longer
evolution operator. Before proceeding we point out that theeffective. At least squares, cubic, and quartic rootSvodire
final formulas, should be applicable to numerical cases ofhecessary.

physical interest. In these cases all matrices under consider- Let us go back to Eq.33) and rewrite the operator inside
ation tend to become numerically pathologically large as theéhe trace in the forn{16)

temperature is decreased. This can be seen very simply by i

looking at the grand-canonical expressions themselves. Con- W(z)=e* MW= eN2a(12% (] ey, (35)
sider for example the matriw/ which has to be diagonalized

in order to find the eigenvalues which appear in the grand- The operator product can easily be taken into account using
Ci‘_“"["ﬁ""! tracg31). Th|§ matrix has eigenvalues Qf thg type Egs.(21)—(23). Thus the matrix associated withi(z) [call it
eti,e”Mi; in the mean-field case the are the quasiparticles W(z)] is given by

energies multiplied by-g, and, depending on the single-

particle space can be low and negative in endtbgy are Lo
generated by the high-lying single-particle statd$us be- W(z)=e0 1)W=(
cause of the structure of the matn¥ the eigenvalues are

very large and loss of numerical accuracy easily follows. To , , A
deal with the problem we introduce the following method. Then one has, by taking the square in Ezf) for W(2)
Instead of the eigenvalue problem f@v we consider the

z O

o 1 /z)W' (36)

eigenvalue problem for the supermatrix [Trge W(2)12=2"sdef 1+ W(z)]
1 0 z 0
0 W _
VV[Z]Z(vvb o) 33 _de{ 0 Z)+(0 l)W}' 37

where W= Wy, - -WoW; and Wy=Wy Wy _ 17 “Wijo11, where the fact that
in other wordsW, is the result of the evolution for the first
M/2 time intervals, andV, is the result of the evolution for MNs— de( 1 0) (38)
the lastM/2 intervals. Both matrices are better behaved than 0 z
their product. It is easy to see that the eigenvalueSVo!
are the square roots of the eigenvalues of the original matriRas been used. One can rewrite E2f) as
W. So the eigenvalues &%.2! are better defined numerically R
and from these tha&; can be directly extracted. Even better [TrgCW(z)]2=de(SU+z§)), (39
behaved are the eigenvalues of the supermatrix
where the matriceS, andS, do not depend om and can be

0 0 W, expressed in terms of the block formig as
wiel=[w, 0 0|, (34)
0 W, 0 (1 0 (W Wy
: SU_(Wzl sz)’ =1 o 1 49

whereW, ,W, ,W, are the result of the evolution from 0 to

BI3 from B/3 to 28/3 and from 23/3 to B. It is easy to see The matrixS, is the contribution from the vacuuifof par-
that the eigenvalues &f!3! are the cubic roots of the eigen- ticles) since it is obtained for=0. From Eq.(39) one has
values ofW, and therefore can be used to extract directly the

\; . It is straightforward to generalize this “root” method to [Trch(z)]2=de(Sv)detlJrzngp). (41)
fourth roots and so on. This method can of course be used

(and it has been implemented in RE3]) in the case where | gt 4, (not to be confused with the chemical potentiaé

the pairing interaction is absent, in such a case canonicg,e eigenvalues of the matrig, 'S,. Since the left-hand
ensemble Monte Carlo calculations are straightforward. Thg;ye of Eq.(41) is the square of a ;olynomial inall eigen-

implementation of this idea in the Canonical ensemble in th‘?/alues,u- must come in degenerate pairs. Therefore, to re-
I . 3

case pairing is present and nontrivial. We shall keep the . «irict the left-hand side we can simply write
name “root” method, although strictly speaking we do not

take the root of the evolution operator in this case. To be Ng

clear, “square root” applies to the decomposition \&fin [Tr,.W(2)]=s de(SU)H "(1+zpuy), (42)
two factors andnth root to the decomposition diV in n 9 [

factors.

We shall discuss the method up to fourth ro@gain it  where the product is only over the distinct eigenvalues and
can be generalized to higher roptdVe stress that the s==1 is an overall sign necessary in taking the square root
method is essential in order to do Monte Carlo calculation®f Eq. (41). s can be determined by considering E42)
in the canonical ensemble. We shall start with the case wheffler z=1 (i.e.,a’ =0). In order to extract the canonical traces
no root is taker(i.e., W is not factorizegl From the point of  from Eq.(42), i.e., the coefficient of” in Eq. (42), one can
view of Monte Carlo calculations in the canonical ensembleuse the recursion relation of R¢#]. Let us set
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L - (A (A
H (1+2zu) =1+ 2&(1Ng) + Z2E(2Ng) + Z26(3Ng) ++ -+ . [Tree WD) " =det| ) (W),

“3 H((wa)n (Wa)sz .
Then the quantitieg(n,N,) satisfy the recursion relation (A1 (Ad)aa) |

(44) Equation(41) still holds with new matrices, andS; which

éns)=pn=1s=1)+£ns—1), can be read off from Eq48)

where £(n,s) is constructed from the firg eigenvaluesy; (A,) (A,)
only. The canonical trace fok particles is finally given by sv:((wa)” (Wa)lz), (499
a/21 al22
TraW=s\de(S,)£(ANy). (45) ((wam (wam)
S,= . 49h
As mentioned before, E¢46) is not numerically applicable P l(Adzr (Ad)a (490

in Monte Carlo calculations at low temperature because ver
large numbers are involved in both the computationSpf
and of theu; . Rather we use the method of roots, previously
discussed.

Consider first the square-root method. Let us white
=W, W, with W, being the result form the evolution from
to B/2 andW, the result form the evolution frons/2 to B.
Then Eq.(37) becomes

Yhese matrices are better behaved numerically than the ma-

trices defined by Eq40) sinceA, andW, contain only half

of the time intervals. The same considerations made in Egs.

(41)—(45) still apply including the argument about the de-

0 generacy of the eigenvalues sglsp. More powerful de-
compositions are the cubic and fourth roots whéhée

=W,W,W, and W=W W _W,W,. For the cubic let us set

h—(l O) k_(z 0) 50
. (46) “\o z/r “Tlo 1) (50

then

. ) 10 z O
[TrgcW(2)]°=de o z/Tlo 1 WpW,
Let us note first that d&t/,=1 (the matricesV are such that )
they have eigenvalues where one is the inverse of the)other [TrgCW(z)]2=de{hAa+ hkW W], (51

Let A,=W, . Then . o
a a and using the matrix identity

. 1 0 z O
2_ =
M=ol (o GJaelg fw). @ ol P D) ~detP el Py PP Parl, (52
Let one can rewrite Eq(50) as
A :((Aa)ll (Aa)lz) e WP hA, hk 53
2 (A2 (Ad)z)’ [TrgeW(2)I"=det _yy - A (53
(W) (Wy)go (Acz.Wc’l). It is important to realize that we had to double
W= (Wy)o1  (Wy)ao)’ the size of the matrix from which we are taking the determi-

nant in Eq.(52). The right-hand side of Eq54) can be

then Eq.(47) can be rewritten as written now explicitly as
|
(Aa)11 (Aa)12 0 0 0 0 10
MW P=ded | i W (Ao (Ase| *2| B 8- 0 0 (54
~(Wh)az —(Wp)az (Ac)2r (Ac)2z 0 0 0 0

Again in this expression the structure of the determinant is There is a difference between this case and the previous
R ones. Every submatri$, andS, have twice the dimension
[TrgCW(z)]zzde[S,,JrzS,] (55 (i.e., 4Ng) of the matrices appearing in the case of the
square-root decomposition. The polynomial in Eg§6), on
with S, and S, that can be found by inspection of EG4).  the other hand, has to be the square of a polynomial of de-
Therefore, gree Ng. Therefore, half of the eigenvalues &f 'S, are
A zero and the remaining half consists of degenerate doublets
[TrgeW(2)]°=detS, def1+2S 'S;]. (56)  of which we keep only eigenvalue per doublet in taking the
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square root Eq(56). From the “purged” set of eigenvalues This peculiarity was used in Ref2], wherea was selected
of s;lsp one can compute the canonical partition functionso that sign fluctuations are suppressed in the Monte Carlo
using Eqgs.(43) and(44). In the case of the fourth-root de- sampling. In order to choose a value ®ive make the fol-
compositionW=WyW_W,W,, one can proceed in a similar lowing qualitative reasoning. Reasonable valuesaofre

way and obtain the following results f&, andS;: close to the one that minimizes the canonical ensemble
mean-field partition functior(this may not be the optimal
(Aa)11 (Ad)12 0 0 value ofa for Monte Carlo calculations but is close t.iln
0 0 (Wg)o1 (Wy)ao fact if, for a given value ofy, the contributions to the exact
S,= “(Wp)1y —Wpp (Adr (Adp | partition function in the vicinity of the mean field are too
—(Wp)or —(Wp)as (Adar  (Ad)g large, there has necessarily to be a cancellation from some

(579  other contributions. If the mean-field contribution is the
smallest possibléfor the appropriate value ak), then the

0 0 (W11 (Wy)12 contributions from the other regions in the integration do-

(A2 (A2 0 main should act coherently, i.e., with the same sign. This

Sp= 0 0 0 0 . (57D  argument is of course qualitative. In practice we start from
0 0 0 0 the chemical potentials from approximate grand canonical

calculationdthe actual values are the ones used in REf]
Again the size of these matrices arél4 therefore, since 1IN the framework of the static path approximati¢@PA)]
det(1+z$15p) has to be the square of a polynomial of de- modify them if the sign fluctuations are too large. This fea-
greeNg, half of the eigenvalues cﬁv’lsp have to be zero ture,b:.e., tlha;c tthe fgzasmlléty of tl\f:lonte ((:jarlo Canorlncal en-bl
and the remaining i85 have to come in degenerate doubletg>€Mp'€ caicuiation depends on the grand-canonical énsemboie

of which we keep only one per doublet in E¢43) and(44). Zhgrlgoﬁoé b;{;;, ?aggﬁgefsegb\/;tyjé I?] f|$1(t:)telrn .E[h.i Cecl)ssi'l;[)?:
In principle (although it has not be done in practicene can Vol b ves part u 1L 1S oSS

go forward and construct matric€s andS;, for higher-order teoitrf)eerrf;g:(?\;lrgﬁtﬂey C'gr}[g%f:norno')c(?r:]:%‘c’l\i;n;)rﬁe?skgjlzl)"’g'ons
decompositionV=WpWy ;- --WoWy; however, they were 00 ace roximatio(Fr;FE)PA) at finite temperature
not deemed necessary for the numerical cases discussed P bp P '

. . A-SPA without any reference to the grand-canonical en-
this paper. They would, however, be necessary if one woul ‘ . . ;
consider more complicated models than the one consideresbemble(\'\”t.h.OUt the aid of partlc!e ““”.‘ber prmect@mrip the
in this paper, like pairing quadrupole- octupole case of pairing forces part of this desirable feature is lost. An

As a concluding remark we note that the matriGesand input value from the grand-canonical ensemble is essential or
_1 9 . . somehow the chemical potentials should be predetermined
S, °S, for the no root, square, cubic, and quartic root case

: ; Defore any Monte Carlo calculation.
[given by Eqs.(4_0), (49), (54), and (57), respeptwel}', al- . In order to elucidate some peculiar features of the canoni-
though differing in each case, have the following properties;

d is th dl fth 4s h h tal ensemble and also in order to see how the formalism
ets, is the same regardless of the root d'S, have the  conqirycted in the previous section works in a simple case,

same eigenvalues for all roots except when the matrix hag,e remaining of this section is devoted to the static path
larger dimensions, in which case the additional e'genvalueépproximation(SPA) and the mean field for both the pure

are zero. pairing model and for the pairingquadrupole model. The
static path approximation is defined by settibg=1, e=
IV. APPLICATIONS OF THE FORMALISM: in the functional integral. Let us consider first the pure pair-
THE PURE PAIRING MODEL ing model.
AND APPROXIMATION SCHEMES This model has been studied numerically in R&f.using

Before discussing Monte Carlo calculations, which are thd"€ Gaussian path method. In order to simplify formulas the

main purpose of this work, we app]y the formalism Con_lndexr will be reserved for either>0 ori. Equation(lO),
structed in the previous section to a simplified model and tdn the SPA, simplifies to
the mean-field approximation. This is not meant to imply
that su_ch an approximation is uniquely define_d or a goo_d Z:e—aA—,BQG/ZNf (d¢xd¢y)e‘BG(‘/’§+¢’§)Tr(0),
approximation. The goodness of the approximation ulti-
mately relies in how well the approximation reproduces the (58)
exact Monte Carlo results. However, even in cases where th
approximation is not accurate, the mean field plays a centrd
role in the construction of the Gaussian path Monte Carlo
method and moreover it offers at least a qualitative under-
standing of the exact results. . .

The mean-field approximatiofat finite temperatupeis with = ¢,+iy and

e evolution operatod, is now

0 = e~ BlHG—G(¢P+4*Ph)] (59)

defined as the maximum of the integrated in the FI represen- 20

tation of the partition function. Since the integrand changes Hy=>, (Ed,) (E;=€—0q), (60)
depending on the value af so does its maximum, i.e., the r=1

mean field. This is true even if the trace inside the Fl is taken .

in the subspace having a good particle number. andq=u+G/2. Let us write the evolution operatbr in the

Thus by changing the value efwe obtain a family of FI.  form (17). Then
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TrO=CTrw,

C= e*ﬂ2i>oEi, (61)

—BE  —BG¢'P
P ©2

HereE is the diagonal matrix with elemenks ,E=E;. The
matrix P is in block form

0o -1
7>=(1 o) (63)

with 1 being the unit matrix of dimensionQ X (). More
explicitly

—BE; 0 0 - BGo*
0 —BEi BG¢” 0
R=\ o pes pe o |- ©®
-BG¢y O 0 BE;
Clearly only i,i levels are coupled. LeA=G¢, o,

= \/EZr +A?, and letC,=coshBw,), S, = sinh(8w,) for short,
then

) Go*
- 0 0 —
Cim oS o S
Go*
0 - 0
Ci— S S
B 0 c E| Go* 0
W= |_'Z;fi w; S
Go i
0 —S C+—S 0
oS Ctos
G
——‘j’si 0 0 Ci+—S
Wj
(65
or in short
C_; 0 0 —a*
_ 0 c_; a 0 ,
W= 0 a C., 0 . (65")
—-a 0 0 C.j

The meaning of the symbols in E5’) can be obtained by
inspection from Eq(65). It is simple to construct the matrix
s;lsp and to diagonalize it. The root method described in
the previous section is not needed in this case since we carry

out the calculations analytically. The result is

detsi?=]] c, ;, (66)

i>0

GENERAL CANONICAL ENSEMBLE FUNCTIONA. . ..

2507
C_. 0 0 —a*
0 C_; a* 0
C_; 1-|a?
S,'S=| 0 —a—— 0
P Ciri Cui
C_ i 1_|a|2
a— 0 0
C. Cii
(67)

The eigenvalues of this matrix, as mentioned earlier, are de-
generate, and are complex. The fact that the eigenvalues are
complex is crucial to understand how a purely single-particle
picture, as the mean-field canonical ensemble is, contains
correlations caused by pairing. The eigenvalpggone per
double} of S,lep come in complex conjugate pairs. In the
very low-temperature limit for even particle numbér

= 2N the quantity¢ of Eq. (46) is dominated by

|M1|2|M2|2"'|MN|2-

If the last particle is removeghe factor of 2 is brought by
the trace

| al? ol -2 R ).

Thus the correlations caused by pairing are contained also in
the imaginary part of the; ; in fact a large imaginary part

on the last occupied eigenvalue implies a large canonical
trace in the case of even number of particles, that is more
binding for the last pair. Weak pairing effects are obtained if
the eigenvalues are almost réal such a case no extra con-
tribution to the trace is obtained in the case of even particle
numbeyj. Rather than being a mathematical unphysical arti-
fact of the mean-field approximation, the fact that the eigen-
values are complex is a necessity to obtain an even-odd ef-
fect. The explicit expression for the eigenvalyesis

e Puxi[Glg|(1—e 2P 2m,]
e 11 e 2Pt (Bl o) (1—e 2P

(68)

As B—oe this gives

*i(Gl el wy) )
MR I T E ok (68)
These are the eigenvalues of the evolution operator to be
filled to construct the canonical trace at very low tempera-
ture. As these eigenvalues do not have the usual exponential
dependence o considerable excitation might take place.
Putting the various terms together, E§0) becomes

—ahe BGJ
_ o aA-p0GRP>
Z=e . (d¢xd¢y)
x e b8+ e A2i=oE [ C, &ANy), (69
=0

where&(A,Ny) is the canonical ensemble trace formed with
the A particles distributed in the set of eigenvalygsgiven
by Eg. (70). Usually the integral is reexpressed using as the
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integration variable the gapy, since the integrand is invari- Euler angles, and the standard deformation variable which
ant under rotations of the variabléesg, ¢, ; integration of the  we call heres,y instead of,y (in order to avoid confusion
rotation angle gives with the inverse of the temperaturare related tar; o) by

Z:e—aA—BQG/2§ fod Ao BAHG—Bi- o o,=Cdsiny, op=cdcosy, (73
0

where c=fiwg/k and wqy is the harmonic oscillator fre-
) quency. The final expression for the partition function in the
Xil;lo C i€(AN). (69) SPA is obtained after performing the integration over the
Euler angles and in using,y,A as integration variables is
On the other hand, the particle number dependence in th@iven by
integrand is contained ig(A,N). In order to get further
insight, let us specialize to the particular case of the degen- Z:efﬁemzj\/»f AdAs*sin(3y)dady
erate pure pairing model, where all single-particle unper-

turbed levels are zero, i.&£, = —q. In this case all, have A

a common value &= “ X @ (Broo/209° = pIGA e aA Tr(()) (74)
=2+ A? with A7 being

letting also€ be the common value of alt, . Equation(69) N'=N1672(hwo/k)°IG.

can be approximated using the saddle-point method and t
leading contribution is the mean field. The mean-field parti-
tion function is therefore

h1ehe evolution operator in Eq74) is

0= e AH"-AP+PT)] (759
2

me: e~ aA*BQG/ZefﬁA /Geﬁqﬂcgg(A,zﬂ) with

with A being the value that gives the maximum of the inte-

grand. To obtain the energy, in the low-temperature limit, . R .

one has to compute d,In Z. The quantity— g In & tends to H"=H{—fwo8(cosyQ,+sinyQo). (75b)

0, leaving the only dependence of the energy from the par-

ticle number in the external input chemical potential  The trace in Eq(76), whether in the canonical or in the

While in the grand-canonical ensemble the chemical potengrand-canonical ensemble, can be conveniently computed in

tials are implicitly determined by the number of particles iNihe representation that diagonaliZeé. Since time-reversal

the canonical ensemble, instead, the chemical potentiat is orbits are not mixed by the quadrupole potential in &&b)

least in principle a free parameter. This is the structure of he ei | G q dth ¢ .
the fully particle-number-projected mean-field partition func- the eigenvalues are degenerate and the transformation

tion, for the degenerate pairing model as well as of the statighat diagonalize$i” in one set of levels is the same as the
path approximation for the same model. one that dlagonallzebl” in the time-reversal levels. As a
Let us now consider the pairirgquadrupole model of consequence the pairing operators in the bases that diagonal-

heavy nuclei, in the SPA. The SPA expression for the partijzes H” retains the same form. Therefore, we can work in
tion function is this single-particle basis and the problem becomes the previ-
2 ous one(the pure pairing cageexcept that we also have an
— a—BGOR2 integration over the deformation variables. Although in prin-
z=e Nf <d¢xd¢y 11 daa) ciple both the mean-field partition function and the SPA par-
tition function in the canonical ensemble depend on the
X @~ (BKZa05~ BG(9+ 6 g~ ah Tr(0), (700  chemical potential, because of the pairing terms, they have
A different sensitivity to it; not surprisingly the mean field is
whereU is the evolution operator much more sensitive to variation of the chemical potential
. . S than the SPA: the more accurate the approximation the less
0 = e AlH)=k2a0aQa=G($P+¢"P1)] (71)  the partition function is sensitive to the chemical potentials,
until any dependence disappears altogether in the exact par-
with ¢p=(p+i¢,) and N is the normalization constant tition function.
,Bk 5/2 ﬂG
277) ( ) (72 V. MONTE CARLO CALCULATION WITH THE PAIRING

PLUS QUADRUPOLE MODEL

It is more convenient to work in the intrinsic frame. This is  |n this section we shall discuss Monte Carlo calculations
accomplished by performing a transformation from the vari—using the pairing plus quadrupole model of Baranger and
ables o, (a=-2,...,2) to the new variables Kumar (Ref.[8]). The method of performing the functional
05,00,01,60,,05, with the constrainte’ ;=c;=0 and integral stochastically is the Gaussian path method, as dis-
o’ ,=0j (these are not the spherical but the cartesian comeussed in Refg.2—4], etc. Essentially it consists of the fol-
ponents of a rank-2 tensofThe variablesd, , 65,65 are the lowing steps.

o

w



PRC 59 GENERAL CANONICAL ENSEMBLE FUNCTIONA. . .. 2509

TABLE I. Canonical ensemble free energies for several nuclei TABLE Il. Sensitivity of the canonical ensemble mean field as a
obtained from the Gaussian path Monte Carlo method. The rightfunction of the neutron chemical potential. Shown are the free en-
most column shows the free energies obtained in the static patbrgies, the gap& andp), and the deformation variable.
approximation in the grand-canonical ensemble.

Dy164 (1T =3.0)

uT Nucleus F (exac) F (SPA un up F Gapn Gapp  Deform.
3.0 Dy162 —301.72(—0.06, +0.07) —293.1317 —-5.30 -16 —-2953 1.0798  1.5680 0

25 Dy162 —302.61(—0.14,+0.21) —294.3684 —-5.10 -16 —293.0 1.1207  1.5680 0

2.0 Dy162 —303.30(—0.10,+0.13 —296.4250 —4.90 -16 —290.6 1.1681  1.5680 0

3.0 Dy163 —305.02(-0.10, +0.15 —296.7328 —4.70 -16 —2885 1.2217  1.5680 0

2.5 Dy163 —306.26(—0.17,+0.30 —297.9815 —4.50 -16 —286.5 1.2800  1.5680 0

2.0 Dy163 —306.52(—0.13,+0.17) —300.0526 —4.45 -16 —294.2 0.4872  0.7373 0.368
3.0 Dyl64  —308.84(—0.11,+0.16 —300.1281 —4.40 -1.6 —294.2 0.4387  0.7359 0.368
25 Dyl64  —309.06(—0.16,+0.28 —301.3883 —4.35 —-1.6 —294.13 0.0000 0.7326 0.370
2.0 Dy164 —310.02(-0.16,+0.24 —303.4726 —-4.30 -1.6 —294.13 0.0000 0.7326 0.370
3.0 Hol63  —301.73(—0.10,+0.19 —293.6146 —4.25 -16 —294.13 0.0000 0.7326 0.370
25 Hol63  —302.39(—0.15,+0.29 —294.8953 —4.20 -1.6 —294.13 0.0000 0.7326 0.370
2.0 Hol63  —303.45(—0.16,+0.29 —297.0243 —4.15 -1.6 —294.13 0.0001 0.7326 0.370
3.0 Hol64 —304.88(—0.12,+0.19 —297.1913 —4.10 -1.6 —294.13 0.0779 0.7323 0.370
2.5 Hol64 —305.16(—0.09,+0.11) —298.4802 —4.05 -1.6 —294.14 0.3819 0.7273 0.373
2.0 Hol64  —306.70(—0.14, +0.20 —300.6196 —4.00 -16 —294.16 0.4719 0.7227 0.375
3.0 Ho165 —308.62(—-0.12,+0.18 —300.5570 —3.95 —-1.6 —294.18 0.5845 0.6669 0.419
25 Hol65  —308.83(—0.15,+0.24 —301.8551 -3.90 -1.6 —294.25 0.6135 0.6652 0.428
2.0 Hol65  —310.10(—0.20,+0.39 —304.0057 —-3.70 -16 —294.7 0.6752  0.6678 0.439
3.0 Er167 —311.90(-0.13,+0.21) —303.6765 —3.50 -16 —2953 0.7192  0.6708 0.445
25 Erl67 —312.00(—0.09, +0.12) —304.9702 -3.30 -16 —296.0 0.7627  0.6743 0.450
2.0 Er167 —313.45(-0.13,+0.17) —307.1237

3.0 Tm168  —311.24(-0.10,+0.15 —303.4195

25 Tm168  —311.66(—0.14,+0.22 —304.7026 are adjusted and the calculation is repeated from p@nt
2.0 Tm168  —311.89(-0.12,+0.16  —306.8530  This percentage of negative contributions does not depend

on whether the particle number is even or odd. There are
integration variablegas the gaps, the deformation variables

(1) First a preliminary calculation as done in REE1] is  §,y) which are constrained to be positit@r, in the case o¥
performed in order to have approximate values of the chemibetween 0 andn/3); step (3) generates them around the
cal potentials, in the grand-canonical ensemble. mean-field with a Gaussian distribution, thu® &nction is

(2) A canonical ensemble mean-field calculation is per-included in the integrand. Some integration points fall out-
formed. It gives the maximum of the integrand in the func-side the allowed range. Acceptance ratio is kept at about 0.4.
tional integral. The action we maximize includes also the (6) The result of the calculation is the partition function
volume elements of the gap and deformation variables. Thigself (although the method can be extended to compute ma-
helps smooth out phase changes as a function of the chentrix elements$. In the simplest version of the Gaussian path
cal potentials. method (i.e., all Gaussians have width set tp Statistical

(3) The integration variables in the functional integral areerrors on the partition function are large. But since we deal
decomposed in two groups. One group generates the symmeith very large numbers the corresponding errors on the free
tries in the integrandEuler angles and gauge angles for theenergies are quite small.
pairing fields. The other generates the remaining integration Although free energies are not immediately related to
variables, as done in Ref,3]. The symmetry variables are quantities of experimental interest, comparison of the exact
approximated with their time averagghis is to avoid a con- free energies with the ones determined with an approxima-
straint on the remaining variables.e., they are the zero tion scheme, helps determine the degree of validity of the
Fourier components of the integration variables. The remainapproximation schemes themselves in realistic models. All
ing variables(nonzero Fourier componentare generated calculations discussed below are performed with a few up to
with an approximate Gaussian probability distributibence  several thousands Monte Carlo sweeps. The valug/f
the name of the methodibout their mean-field valugsee  was kept almost constant and equal to about 0.025 MeV
(2)]. The integration variables in the original exact functional The results are shown in Table I. The rightmost column
integral are then reconstructed. shows the grand-canonical SPA results. The discrepancy be-

(4) Since the Fl is rewritten as an expectation value withtween the canonical and grand-canonical SPA free energies
a Gaussian probability density, the exact integral is comwas found to be smal{so only the grand-canonical SPA
puted with the distribution function generated(B). results are showrand both are about 7 MeV higher than the

(5) Typically, with a good choice of the chemical poten- exact Monte Carlo free energies. The source of this large
tials, only a few percent of the contributions are negative. Indiscrepancy is the number of time sliced € 1 for the SPA
cases where the percentage is higher the chemical potentiadad 60 to about 100 in the exact caskhis discrepancy, of



2510 G. PUDDU PRC 59

course, disappears & is decreased, so the source of the300 MeV and varies by about 2 MeV in the same interval of
discrepancy is identified unambiguously. chemical potentials.

In Table 1l we study the sensitivity of the canonical en- As a concluding remark, the scheme proposed in this
semble mean-field resulthe one obtained by varying the work suggests a functional integral formulation which is free
effective action without the inclusion of volume elemerats  of pathological sign fluctuations in the case of an odd num-
a function of the neutron chemical potential. Also shown areber of particles when the Hamiltonian contains pairing terms.
the gap variabléfor both neutrons and protonand the stan- At least for the cases studied so far, this method does not
dard deformation variable. The canonical ensemble SPA cakeem to have the limitations of the one used in R&g],
culation for the free energgnot shown in Table Nis about  which is ill-behaved for even-odd and odd-odd nuclei.
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