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Shell-model Monte Carlo studies of neutron-rich nuclei in the 1s-0d-1p-0f shells
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We demonstrate the feasibility of realistic shell-model Monte Carlo~SMMC! calculations spanning multiple
major shells, using a realistic interaction whose bad saturation and shell properties have been corrected by a
newly developed general prescription. Particular attention is paid to the approximate restoration of translational
invariance. The model space consists of the fullsd-p f shells. We include in the study some well-knownT
50 nuclei and several unstable neutron-rich ones aroundN520,28. The results indicate that SMMC calcula-
tions can reproduce binding energies,B(E2) transitions, and other observables with an interaction that is
practically parameter free. Some interesting insight is gained into the nature of deep correlations. The validity
of previous studies is confirmed.@S0556-2813~99!00405-7#

PACS number~s!: 21.60.Cs, 21.60.Ka, 27.40.1z, 21.10.Dr
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I. INTRODUCTION

Studies of extremely neutron-rich nuclei have reveale
number of intriguing new phenomena. Two sets of these
clei that have received particular attention are those w
neutron numberN in the vicinity of 1s0d and 0f 7/2 shell
closures (N'20 and N'28). Experimental studies o
neutron-rich Mg and Na isotopes indicate the onset of de
mation, as well as the modification of theN520 shell gap
for 32Mg and nearby nuclei@1#. Inspired by the rich set o
phenomena occurring near theN520 shell closure whenN
@Z, attention has been directed to nuclei near theN528
~sub!shell closure for a number of S and Ar isotopes@2,3#
where similar, but less dramatic, effects have been see
well.

In parallel with the experimental efforts, there have be
several theoretical studies seeking to understand and
some cases, predict properties of these unstable nuclei.
mean-field @4,5# and shell-model calculations@2,3,6–10#
have been proposed. The latter require a severe truncatio
achieve tractable model spaces, since the successful des
tion of these nuclei involves active nucleons in both thesd
and thep f shells. The natural basis for the problem is the
fore the fullsd-p f space, which puts it out of reach of exa
diagonalization on current hardware.

Shell-model Monte Carlo~SMMC! methods@11–13# of-
fer an alternative to direct diagonalization when the ba
become very large. Though SMMC methods provide limit
detailed spectroscopic information, they can predict, w
good accuracy, overall nuclear properties such as mas
total strengths, strength distributions, and deformation
precisely those quantities probed by recent experiment
thus seems natural to apply SMMC methods to these
stable neutron-rich nuclei. Two questions will arise
center-of-mass motion and choice of the interaction — t
PRC 590556-2813/99/59~5!/2474~13!/$15.00
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are not exactly new, but demand special treatment in v
large spaces.

The center-of-mass problem concerns momentum con
vation. It was investigated for the first time by Elliott an
Skyrme in 1955@14#, and a vast literature on the subject h
developed, but as of now, the methods proposed have
managed to reconcile rigor and applicability. Section II w
be devoted to explaining why this is so and to describe h
— short of ensuring exact momentum conservation — it
possible within a SMMC context to assess the damage
control it in order to perform meaningful calculations.

There has long been a consensus thatG matrices derived
from potentials consistent withNN data@15# are the natural
shell-model choice. Unfortunately, such interactions give
sults that rapidly deteriorate as the number of particles
creases. Two alternative cures have been proposed: se
fitted matrix elements~all the shell-model work quoted
above! or minimal ‘‘monopole’’ modifications@16#. The lat-
ter restricts the fit to far fewer quantities: some average m
trix elements, which are the ones that suffer from the b
saturation and shell properties of the realistic potentials. B
approaches have the common shortcoming of needing da
determine the fitted numbers, but recently a general par
etrization of the monopole field (Hm) has become available
that could be used to replace theG-matrix centroids for any
model space@17#. The interaction we present in Sec. III
the first monopole modifiedG matrix free of parameters
other than the six entering the independently derivedHm .

Section IV contains results for a number of unstab
neutron-rich nuclei near theN520 and 28 shell closures an
compares them to experiment and to other truncated sh
model calculations. Section V is devoted to a discussion
what we have accomplished and surveys further applicat
of such calculations.
2474 ©1999 The American Physical Society
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II. SMMC AND CENTER-OF-MASS MOTION

By momentum conservation, a many-body wave funct
must factorize asC(r )5f(R)C(r rel), whereR is the center-
of-mass coordinate andr rel the relative ones. There are fo
malisms in which the latter are constructed explicitly, b
they lead to very hard problems of antisymmetrization. W
can be done in a shell-model context is to work with a ba
that ensures that the eigenstates automatically factoriz
requested. This is accomplished by takingf(R) to be a har-
monic oscillator state, which implies that the basis must p
duce eigenstates of

Hc.m.5
P̃2

2Am
1

1

2
mAv2R̃22

3

2
\v, ~1!

with P̃5( i 51,Api , andR̃5(( i 51,Ar i)/A.
In order to diagonalize this one-body Hamiltonian in t

SM basis, we have to rewrite it using

S (
i 51

A

pi D 2

5A(
i 51

A

pi
22(

i , j
~pi2pj !

2, ~2!

along with a similar expression for the coordinates. Th
Hc.m.5h11h2, whereh1 is a one-body oscillator spectrum
and h2 an oscillator two-body force. If one considers th
matrix element^n1l 1n2l 2uh2un3l 3n4l 4&, it is quite easy to
convince oneself — using a general property of the Tal
Moshinsky transformation and the oscillator form ofh2 —
that 2n11 l 112n21 l 252n31 l 312n41 l 4. In other words,
Hc.m. conserves the number of oscillator quanta. This imp
that if a basis containsall states of~or up to! n\v excita-
tions, diagonalizing a translationally invariant Hamiltonia
would ensure the factorization of the center-of-mass w
function. To separate the wave functions with 0\v center-
of-mass quanta it would be sufficient to do the calculatio
with

H̃5H1bc.m.Hc.m., ~3!

choosing a largebc.m. ~not to be confused with the SMMC
inverse temperature!. Thus, the procedure to deal with th
center-of-mass problem is conceptually straightforwa
Practically, things are not so simple. In32Mg, for example,
the sd-p f basis will contain states having between 0 and
\v quanta; however, it is very far from containing them a
and it does not even contain all those of 1\v . Then — and
this point is crucial — the restriction ofHc.m. to the basisis
no longer Hc.m.. As a consequence, the prescription in E
~3! is no longer a prescription to remove unwanted cen
of-mass excitations, but a prescription to remove someth
else. Still, whatever the restrictedHc.m. is in the model space
it is the operator most closely connected with the true o
Hence, rather than removing unwanted excitations, whic
now impossible in general, we may try to assess and con
the damage by using Eq.~3! to construct a set of state
ubc.m.& and see hoŵbc.m.uHubc.m.& behaves. Since the prob
lem is variational, the best we can do is choose abc.m. that
minimizes the energy.

Before proceeding, it is worth going quickly through th
history of the subject, under the light of these very elem
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tary considerations which are often ignored, thereby crea
unnecessary confusion. The pioneers of the subject were
liott and Skyrme @14# who treated a simple case, the
\vJTp5120 excitations on asp shell core, showing tha
one of them was simply the 1\v center-of-mass state. Othe
early important contributions are@18,19#. The first cross-
shell calculation in a full space appeared in 1968@20#:
(p1/2s1/2d5/2)

n, which successfully accounted for the spec
in the region around16O. The (p1/2

1 s1/2)J
pT5120 state con-

tained a spurious component of 5.556% of the Ellio
Skyrme state. Nonetheless, Gloeckner and Lawson@21# de-
cided to apply Eq.~3! with an arbitrarily largebc.m. to
eliminate the spurious components; by not realizing t
Hc.m. restricted to that small space generated very li
center-of-mass excitations and many genuine ones,
managed to eliminate the latter rather than the former.
spite of the criticism that ensued@22,23# showing that the
procedure could not possibly make sense~except in complete
spaces!, no formally satisfactory arguments were advanc
to replace it. Equation~3! remained a guide on where t
begin to minimize the center-of-mass nuisance, and it is
deed the basis of our variational suggestion. New projec
techniques have been developed@24#, but they rely on ex-
plicit construction of the spurious states and they are
applicable in SMMC calculations.

The recipe advocated by Whiteheadet al. @23# seems
quite compatible with the constrained variation sketch
above, and we have adopted it, since it proves sufficien
optimize the solutions. The idea is to addbc.m.Hc.m. to H, but
with bc.m. remaining fairly small. We have found thatbc.m.
51 works reasonably well. This value will push spurio
components up in energy by\v545A21/3225A22/3 MeV
.14 MeV while leaving the desired components relative
unscathed. A smaller value ofbc.m. leaves the spurious con
figurations at low enough energies that they are included
the Monte Carlo sampling, while larger values ofbc.m.
(.3) begin to remove the entirep f shell from the calcula-
tion and artificially truncate the space. Technically,Hc.m. suf-
fers from the sign problem, and we have to say a word ab
it.

SMMC methods reduce the imaginary-time, many-bo
evolution operator to a coherent superposition of one-b
evolutions in fluctuating one-body fields. This reduction
achieved via a Hubbard-Stratonovich transformation and
resulting path integral is evaluated stochastically. SMM
methods have been applied to numerous full-basis 0\v stud-
ies. The primary difficulty in these applications arises from
sign problem due to the repulsive part of effective nucleo
nucleon interactions. A practical solution to this sign pro
lem was obtained by considering a set of Hamiltonians cl
to the desired realistic Hamiltonian~H! and extrapolating to
the realistic case@25#. This technique has been validated
numerous studies that show the SMMC approach to b
viable and productive avenue to study extremely large ma
body problems@11–13#.

The original sign problem for realistic interactions w
solved by breaking the two-body interaction into ‘‘good
~without a sign problem! and ‘‘bad’’ ~with a sign problem!
parts:H5Hgood1Hbad. The bad part is then multiplied by
parameterg, with values typically lying in the range21
<g<0. The HamiltonianH5 f (g)Hgood1gHbad has no sign
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2476 PRC 59D. J. DEAN et al.
problem forg in this range. The functionf (g) is used to help
in extrapolations. It is constructed such thatf (g51)51, and
takes the form@12(12g)/x#, with x54. The SMMC ob-
servables are evaluated for a number of different negativg
values and the true observables are obtained by extrapol
to g51. If we fix the sign problem in the same manner
above forHc.m., we are no longer dealing with a Hami
tonian that pushesall spurious components to higher ene
gies — some components might even be lowered forg,0.
We will see shortly that this is not a real problem.

We typically choose a minimal extrapolation~linear, qua-
dratic, etc.! in the extrapolation parameter that gives ax2 per
datum of.1. In much of our work most quantities extrap
late either linearly or quadratically. We measure the cen
of-mass contamination by calculating the expectation va
of Hc.m.. In Fig. 1~a!, we show the value of̂Hc.m.& in 32Mg
for several different values ofbc.m..

1 It is apparent that
^Hc.m.& decreases asbc.m. increases. We also find that ne
bc.m.51, ^Hc.m.&!2\v.28 MeV showing that the center
of-mass contamination is minimal. Note that at appro

1All calculations presented here were performed in the ze
temperature formalism@13# using a cooling parameter of 1/b
50.5 MeV with Db51/32 MeV21. These values have bee
shown to be sufficient to isolate the ground state for even-e
nuclei. For all data presented here 4096 samples were taken at
value of the extrapolation parameterg.

FIG. 1. ~a! The calculated value of̂Hc.m.& as a function ofbc.m.

for 32Mg. Two different extrapolations were performed as describ
in the text. The center-of-mass contamination is already sign
cantly reduced atbc.m.51. ~b! The calculated totalB(E2,01

→21) as a function ofbc.m.. ~c! The sd-shell and f 7/2-subshell
occupations as a function ofbc.m..
ion
s

r-
e

-

matelybc.m.51.5 the average of the two different techniqu
of extrapolation presented in Fig. 1~a! gives ^Hc.m.&
.0 MeV, and the calculations could be fine-tuned for ea
nucleus to obtain this value.

Figure 1~a! contains two different data sets correspondi
to two different methods of extrapolatinĝHc.m.& to the
physical case (g51). The solid circles show the results of
simple linear extrapolation where for this observablex2 per
datum is approximately 1. It has been established@11# that
^H& obeys a variational principle such that the extrapolat
curve must have a minimum~slope 5 0! at the physical
value (g51). As we sample values of the quantityH̃, it is
perhaps reasonable to extrapolate^Hc.m.& using this con-
straint as well~if H̃ were truly separable, this would be a
exact procedure!. A cubic extrapolation embodying this con
straint corresponds to the open circles in Fig. 1~a!.

We may further evaluate our extrapolation procedures
comparing SMMC and the standard shell-model results
22Mg. Shown in Fig. 2~a! is a detailed comparison for th
expectation of the energŷH&, and in Fig. 2~b! a comparison
for ^Hc.m.&. The standard shell-model results were obtain
using the codeANTOINE @26#. The SMMC results in Fig. 2~a!
employ a constrained fit such thatd^H&/dgug5150. The
slight deviation from the standard shell model atg520.6,
20.8,21.0 is due to increasing interaction matrix elemen
~with g), while Db, the imaginary-time step, is kept fixed

-

n
ach

d
- FIG. 2. ~a! The expectation of the Hamiltonian,^H&, for 22Mg
as a function of the extrapolation parameterg. Shown are standard
shell-model results and SMMC results.~b! The expectation of the
center-of-mass Hamiltonian,̂Hc.m.&, as a function ofg. SMMC
results are shown for two types of extrapolation procedures, as
cussed in the text, and are compared to standard shell-model re
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This deviation is also seen in Fig. 2~b!. Note that in Fig. 2~b!
neither the constrained fit nor the linear fit~both withx2 per
datum.1) give a precise description of the standard sh
model results atg51. An average of the two ways of ex
trapolation, as indicated by the solid line in Fig. 2~b!, appar-
ently gives the more precise result, and we shall do this
other Hc.m. values quoted throughout this paper. The er
bar for such an averaged result is given by adding in qua
ture the individual errors of both extrapolations.

In Fig. 1~b! we show the evolution of the totalB(E2) and
in Fig. 1~c! we show the occupation of thesd shell and the
f 7/2 shell as a function ofbc.m.. Note that the occupation o
the f 7/2 orbit decreases asbc.m. increases. This is due to
combination of the removal of actual center-of-mass exc
tions and the ‘‘pushing up’’ in energy of the real states. T
B(E2) decreases slowly withbc.m., although the uncertain
ties are consistent with a constant. However, the decre
particularly at bc.m.53, is likely to be real since we ar
working in an incompleten\v model space. At extremely
large values ofbc.m. we would remove thep f shell from the
calculation and return to the puresd-shell result, which is
substantially smaller than the result shown here. The s
evolution of theB(E2) with bc.m. does open the intriguing
possibility of studyingB(E2)’s with an interaction that ha
no sign problem~e.g., pairing1quadrupole) and no cente
of-mass correction with the hope of obtaining reasonable
sults.

Somewhere betweenbc.m.53 and 5,bc.m.Hc.m. begins to
change so strongly as a function ofg that our extrapolations
become unreliable and we can extract no useful informat
By bc.m.55, the extrapolated values become completely
reasonable, and numerical noise completely swamps the
culation. We thus conclude that a safe value for a gen
study is bc.m.51, although for a given nucleus this valu
may be fine-tuned to nearly eliminate all center-of-mass c
tamination from the statistical observables. This may be d
in future studies.

III. EFFECTIVE INTERACTION

Numerous shell-model studies have been carried ou
truncated model spaces for neutron-rich nuclei nearN520
@6,8,7# andN528 @2,3,9#. The number ofsd-p f shell effec-
tive interactions used almost exceeds the number of pap
but there are similarities between them. A common featur
Wildenthal’s universalsdshell ~USD! interaction@27# to de-
scribe the puresd-shell part of the problem. All also us
some corrected version of the original Kuo-Brown~KB!
G-matrix interaction@28# to describe nucleons in thep f
shell. The cross-shell interaction is handled in one of t
different ways: matrix elements are generated via aG matrix
or via the Millener-Kurath potential. As is common in th
type of calculation, selected two-body matrix elements a
single-particle energies have been adjusted to obtain ag
ment with experiment. As these interactions have been
duced for use in highly truncated spaces~usually with only
2p2h neutron excitations to thep f shell!, they are not suit-
able for use in the full space. We found that they genera
scatter too many particles from thesd to the p f shell, and
that theB(E2) values cannot be consistently calculated. W
are not saying that the interactions are wrong, but that we
l-
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not succeed in adapting them to the full space. Perhaps it
be done, but it would be of limited interest; the years
experience these forces embody cannot be transpose
other spaces, as thep f-sdg shells, for instance, where de
tailed fits are unthinkable. Therefore, we derived a new
fective interaction for the region: a monopole correct
renormalizedG matrix, derived from a modern potential.

As noted in Sec. I, ifG matrices have not been widel
used, it is because they were thought to be so flawed a
serve at best as input parameters to overall fits, as in the
of the famous USD interaction@27#. However, it was pointed
out 20 years ago@29# that practically all the problems of th
KB interaction amounted to the failure to produce theN,Z
528 closure, and could be corrected by changing at m
four centroids of the interaction. A perturbative treatment
the beginning of thep f shell using these modifications~the
KB3 interaction! gave good results@30#, and when theAN-

TOINE code became available@26#, the results became truly
excellent~@31,32# and references therein!. In the meantime, it
was confirmed in other regions that the only trouble with t
G matrices resided in their centroids, i.e., in the bad satu
tion and shell formation properties of the realistic potenti
@16#. The rest of the interaction was excellent, and stron
dominated by collective terms~pairing and quadrupole
mainly! @33#. We say interaction and not interactions, b
cause all the realistic ones produce very similar good mu
pole matrix elements and similar monopole failures. The o
standing problem is to replace case-by-case modification
a general specification ofHm , the monopole field, that yields
all the centroids once and for all. In Sec. III B we shall d
scribe the proposed solution@17# we have adopted.

There is great advantage in the SMMC context to ad
the schematic collective multipole Hamiltonian (HM) of
@33#, because its main terms have good signs, thereby el
nating extrapolation uncertainties; however, it may be a p
mature step. For one thing, it has not been established
that in the light nuclei the collective contribution is sufficie
to give high-quality results, a project better left to exact
agonalizations where fine details may be better probed. F
thermore, the renormalization treatment in@33# is somewhat
crude. A more complete treatment might yield significa
differences. This could be true even though potentials c
sistent with theNN data yield very similar collective contri
butions and are therefore reasonably well fitted even by o
potentials. Finally, even if it were true that realistic intera
tions are interchangeable, and that a crude treatmen
renormalization was adequate, there would certainly be
objection to using the best forces and the most sophistic
renormalizations available. In practice this is what we
here.

A. Renormalized G matrix

In order to obtain a microscopic effective shell-model i
teraction which spans both the 1s0d and the 0f 1p shells,
our many-body scheme starts with a free nucleon-nucl
interactionV which is appropriate for nuclear physics at lo
and intermediate energies. At present there are several po
tials available. The most recent versions of Machleidt a
co-workers@34#, the Nimjegen group@35#, and the Argonne
group@36# have ax2 per datum close to 1 with respect to th



o

e
o

rs
en
n
a

n

ls
n

tia

n
, a

t t
r
in
te

n
rc
on
la-
or
rta
o
e
,

th
ti

le
n

re
o

he

e

he

e
o

a-
le
b

p-
first

re
ec-

by
on

g
the

ac-

fec-
on
ld

th
it-
t a
the
e

de

red

-

eu-
le-

in

2478 PRC 59D. J. DEAN et al.
Nijmegen database@37#. The potential model of Ref.@34# is
an extension of the one-boson-exchange models of the B
group@38#, where mesons likep, r, h, d, v, and the fic-
titious s meson are included. In the charge-dependent v
sion of Ref.@34#, the first five mesons have the same set
parameters for all partial waves, whereas the paramete
thes meson are allowed to vary. The recent Argonne pot
tial @36# is also a charge-dependent version of the Argon
V14 @39# potential. The Argonne potential models are loc
potentials in coordinate space and include ap exchange plus
parametrizations of the short-range and intermediate-ra
parts of the potential. The Nimjegen group@35# has con-
structed potentials based on meson exchange and mode
rametrized in ways similar to the Argonne potentials. A
other important difference between, e.g., the Bonn poten
and the Argonne and Nimjegen potentials is the strength
the much-debated tensor force@40#. Typically, the Bonn po-
tentials have a smallerD-state admixture in the deutero
wave function than the Argonne and Nimjegen potentials
well as other potential models. A smaller~larger! D-state
admixture in the ground state of the deuteron means tha
tensor force is weaker~stronger!. The strength of the tenso
force has important consequences in calculations of the b
ing energy for both finite nuclei and infinite nuclear mat
~see, e.g., the discussion in Ref.@15#!. A potential model
with a weak tensor force tends to yield more attraction i
nuclear system than a potential with a strong tensor fo
however, all these modern nucleon-nucleon interacti
yield very similar excitation spectra. Moreover, in calcu
tions of Feynman-Goldstone diagrams in perturbation the
a potential with a weak tensor force tends to suppress ce
intermediate states of long-range character, like particle-h
excitations@41#. In this paper, we choose to work with th
charge-dependent version of the Bonn potential models
found in Ref.@34#.

The next step in our many-body scheme is to handle
fact that the repulsive core of the nucleon-nucleon poten
V is unsuitable for perturbative approaches. This problem
overcome by introducing the reaction matrixG given by the
solution of the Bethe-Goldstone equation

G5V1V
Q

v2H0
G, ~4!

wherev is the unperturbed energy of the interacting nuc
ons, andH0 is the unperturbed Hamiltonian. The projectio
operatorQ, commonly referred to as the Pauli operator, p
vents the interacting nucleons from scattering into states
cupied by other nucleons. In this work, we solve the Bet
Goldstone equation for several starting energiesV, by way
of the so-called double-partitioning scheme discussed in R
@15#. For the closed-shell core in theG-matrix calculation we
choose16O and employ a harmonic-oscillator basis for t
single-particle wave functions, with an oscillator energy\V
given by\V545A21/3225A22/3513.9 MeV, A516 being
the mass number.

Finally, we briefly sketch how to calculate an effectiv
two-body interaction for the chosen model space in terms
the G matrix. Since theG matrix represents just the summ
tion to all orders of ladder diagrams with particle-partic
diagrams, there are obviously other terms which need to
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included in an effective interaction. Long-range effects re
resented by core-polarization terms are also needed. The
step then is to define the so-calledQ̂ box given by

PQ̂P5PGP

1PS G
Q

v2H0
G1G

Q

v2H0
G

Q

v2H0
G1••• D P.

~5!

The Q̂ box is made up of nonfolded diagrams which a
irreducible and valence linked. We can then obtain an eff
tive interactionHeff5H̃01Veff in terms of theQ̂ box with
@15#

Veff~n!5Q̂1 (
m51

`
1

m!

dmQ̂

dvm
$Veff

~n21!%m, ~6!

where~n! and (n21) refer to the effective interaction aftern
and n21 iterations. The zeroth iteration is represented
just the Q̂ box. Observe also that the effective interacti
Veff(n) is evaluated at a given model space energyv, as is
the case for theG matrix as well. Here we choosev5
220 MeV. The final interaction is obtained after foldin
results in eigenvalues which depend rather weakly on
chosen starting energy~see, e.g., Ref.@42# for a discussion!.
All nonfolded diagrams through second order in the inter
tion G are included. For further details, see Ref.@15#. Fi-
nally, the reader should note that when one defines an ef
tive interaction for several shells, the effective interacti
may be strongly non-Hermitian. This non-Hermiticity shou
arise already at the level of theG matrix. However, since the
G matrix is calculated at a fixed starting energy for bo
incoming and outgoing states, it is by construction Herm
ian. Since we are calculating an effective interaction a
fixed starting energy, the individual diagrams entering
definition of theQ̂ box are thereby also made Hermitian. Th
non-Hermiticity which stems from folded diagrams is ma
explicitly Hermitian through the approach of Suzukiet al. in
Ref. @43#.

B. Monopole field

As results concerning the monopole field are scatte
through many papers@16,33,44,45#, the most relevant of
which is not yet published@17#, this subsection offers a com
pact presentation of the main ideas.

The centroids we have often mentioned are — in a n
tron proton (np) representation — the average matrix e
ments

Vrs
xx85

(
J

~2J11!Vrsrs
Jxx8

(
J

~2J11!

, ~7!

wherexx8 stands for neutrons or protons in orbitsrs, respec-
tively. Technically, the monopole fieldHm is that part of the
interaction containing all the quadratic two-body forms
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scalar products of fermion operatorsarx
†
•asx8 ~same parity

for r and s). The clean extraction of these forms from th
total H ~i.e., the separationH5Hm1HM , M for multipole!
is not altogether trivial@44#. It is conceptually important be
cause it makesHm closed under unitary transformations
the a†,a operators, and therefore closed under spher
Hartree-Fock variation. The expectation values we may w
to vary are those of theHm

d , the diagonal part ofHm in a
given basis. Callingmrx the x-number operator for orbitr,
we obtain

Hm
d 5 (

rx,sx8
Vrs

xx8mrx~msx82d rsdxx8!, ~8!

a standard result~it is the extraction of the nondiagonal term
that is more complicated!. The expectation value ofHm

d for
any state is the average energy of the configuration to wh
it belongs~a configuration is a set of states with fixedmrx for
each orbit!. In particular,Hm

d reproduces the exact energy
closed shells~cs! and single-particle~or hole! states built on
them@(cs)61#, since for this set (cs61) each configuration
contains a single member. Consequently, it is unconta
nated by direct configuration mixing. As an example,
56Ni, the two-body~no Coulomb! contribution to the binding
energy in thep f shell is approximately 73 MeV, and con
figuration mixing~i.e., HM) is responsible for only 5 MeV;
the rest is monopole. If we compare to thetotal binding of
484 MeV, it is clear that the monopole part becomes ov
whelming, even allowing for substantial cross-shell mixi
~which, incidentally, is included in the present calculation!.

Therefore,Hm
d is responsible entirely for the bulkO(A)

and surface energiesO(A2/3), and for a very large part of the
shell effects@O(A1/3), i.e., the 73 MeV#. There can be little
doubt this is where the trouble comes in the realistic pot
tials.

In a nutshell, the idea in@17# is to fit Hm
d to the (cs)61

set, the single-particle and single-hole spectra around do
magic nuclei. It is assumed that the bulk and surface te
can be separated, and by canceling the kinetic energK
5\v/2(p(p13/2)mp , mp is the number of particles in har
monic oscillator~HO! shell p, against the collective mono
pole term @33,45#, the leading term inHm . Defining W
5\v(p(mp /ADp)2/4, one obtains an expression of ord
O(A1/3) that has strong shell effects producing the HO c
sures. To this one addsl •s and l • l one-body terms that pro
duce the observed splittings around HO closures. The fil
order is now established, and as the largest orbit – wh
comes lowest — is full, it alters significantly the splitting o
its neighbors~e.g., the spectrum of57Ni is totally different
from that of 41,49Ca). This is taken care of by strictly two
body terms. With a total of six parameters~two for the W
24K1 l •s1 l • l part and four for the two-body contribu
tions!, the fit yields a rms deviation of 220 keV for 90 da
points.

All terms have a common scaling in\v540/r, obtained
using a very accurate fit to the radii^r 2&50.9rA1/3, where

r5$A1/3@12~2T/A!2#%e~3.5/A!. ~9!

Note that due to this scaling it is possible to use the sa
functional form fromA55 to A5209.
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Figure 3 shows the mechanism of shell formation for n
clei with T54. There is an overallunbinding drift of
O(A1/3), with pronounced HO closures due toW24K at
(N,Z)5(16,8), ~20,12!, and ~28,20!. The addition of the
l •s1 l • l terms practically destroysthe closures except fo
the first (24O), and creates a fictitious one at40S. It is only
through the two-body terms that closure effects reappear,
now the magic numbers are 6 (20C), 14 (20C,36Si), and 28
(48Ca,64Ni). Note that the shell effect in32Mg is minuscule.
The same is true for30Ne among theT55 nuclei. Among
the four two-body terms inHm , there is one that is over
whelmingly responsible for the new~EI, for intruder, ex-
truder! magic numbers. It produces an overall (T51,
mainly! repulsion between the largest~extruded! orbit of the
shell and the others. The extruder becomes the intruder in
shell below.This is the term that is missing in the realist
interactions. The problems in the excitation spectra of47Ca,
48Ca, and49Ca@29,15# disappear if the realistic centroids a
replaced by those — even more realistic, apparently —
Hm .

To close this subsection we give some useful formulas
relate thenp and isospin (mT) representations. We have

HmT
d 5K1(

r<s

1

~11d rs!
Farsmr~ms2d rs!

1brsS Tr•Ts2
3

4
md rsD G , ~10!

which reproduces the average energies of configuration
fixed mrTr .

Calling Dr52 j r11 the degeneracy of orbitr, we rewrite
the relevant centroids incorporating explicitly the Pauli r
strictions:

Vrx,sx85

(
J

Vrsrs
Jxx8~2J11!@12~2 !Jd rsdxx8#

Dr~Ds2d rsdxx8!
,

FIG. 3. Monopole shell effects in the binding energies ofT
54 nuclei.
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2480 PRC 59D. J. DEAN et al.
Vrs
T 5

(
J

Vrsrs
JT ~2J11!@12~2 !J1Td rs#

Dr@Ds1d rs~2 !T#
, ~11!

ars5
1

4
~3Vrs

1 1Vrs
0 !, brs5Vrs

1 2Vrs
0 . ~12!

In the np scheme each orbitr goes into tworx and rx8
and the centroids can be obtained throughxÞx8:

Vrx,sx85
1

2 FVrs
1 S 12

d rs

Dr
D1Vrs

0 S 11
d rs

Dr
D G ,

Vrx,sx5Vrs
1 . ~13!

C. Monopole terms in the calculations

The calculations used the preliminary version ofHm @17#,
which for the purposes of this study should make little d
ference. All we have said above is valid for both the old a
the new version except for details. Only one of them is wo
mentioning here, and it concerns the single-particle ener
shown in Table I. It is seen that the old and new values
quite close to those adopted in the calculations, though
old set puts thes1/2 and f 5/2 orbits higher. This reflects the
awkward behavior of thel • l part ofHm that changes sign a
the p53 shell. This problem was treated artificially in th
old version through a single-particle mechanism that w
discarded in the calculations, mainly because keepin
would have demanded a readjustment of the interaction
each nucleus — an unwanted complication in a feasibi
study such as this one. As a consequence, we expect ths1/2
orbit to be overbound with respect to itssd partners in the
upper part of the shell. In the new version the mechan
becomes two-body and should do much better.

There has been much discussion about the choice of
cross-shell gap, i.e., the distance between thed3/2 and f 7/2
orbits, which plays a crucial role in all truncated calculatio
It could be thought from Table I that it is rather small. B
this is an illusion sinceHm will make it evolve. In29Si it will
increase to 4.5 MeV ('500 keV above experiment!, which
grows up to 5.2 MeV in40Ca, now too small with respect t
the binding energy~BE! difference 2BE(40Ca)2BE(41Ca)
2BE(39Ca)57.2 MeV. The only way to decide whethe
these positionings are correct is through calculations suc
the present ones. We return to this issue in Sec. IV.

TABLE I. Single-particle energies used in this study compa
to the two sets in Refs.@17#.

jp SPE old SPE new SPE calc.

d5/2 3 16.679 15.193 15.129
s1/2 3 12.454 12.719 12.629
d3/2 3 10.404 10.543 10.629
f 7/2 3 9.022 8.324 8.629
p3/2 2 6.381 6.133 5.595
p1/2 2 1.336 0.722 0.784
f 5/2 2 0.000 0.000 0.000
d
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The analysis of binding energies is a delicate exerc
because external parameters have to be introduced. The
losophy behindHm is to make all calculationscoreless. Be-
cause of the\v propagation~which should be extended t
HM), nuclei readjust their sizes and energies asN and Z
change. If the bulk terms are added, there is, in principle,
need to fit anything, and the calculated energies are abso
— not referred to any core. In the present calculations
interaction was kept fixed, and the way to proceed is
traditional one, by referring all energies to the core of16O.
First, we estimate Coulomb effects usingVc50.717Z(Z
21)(A21/32A21), and then fit

Hcorr5«m1a
m~m21!

2
1b

T~T11!23m/4

2
. ~14!

It is generally assumed that« should be close to the single
particle energy of17O(24.14 MeV) and that the quadrati
terms are the averageHmT over the space@from Eq. ~10!#.
However, these assumptions do not apply here. The co
bution tob from HmT is relatively small. The symmetry en
ergy must be counted as one of the bulk terms, and the
we can do is to take it from fits to the binding energie
which yield consistently similar numbers. From@45# we
adopt the formS522@4T(T11)#(121.82/A1/3)/A, where
the main term has been reduced by the approximately 6 M
coming fromHm . We cannot change these parameters;
can only check that the fit toHcorr yields ab consistent with
them. But there is subtlety: the isospin term vanishes am
51 because it is taken to be two-body, whileS gives a
substantial 1.15 MeV contribution at17O. Therefore, to use
the form ofHcorr, « must beS corrected~in the same sense
that we Coulomb correct! to 24.1421.15525.29 MeV.
For b we must take some averageS, which we choose to be
the value atA540, i.e.,b52.34. Finally fora we must ex-
pect a small value, since it should come entirely fromHm .
The fit yields ~in MeV! «525.34, a520.319, andb
51.99 and ax2 per degree of freedom of 3.12. While« and
b are very comfortably close to our expectations,a is much
too large. But that is not a problem: the program that tra
forms Hm into Vrs

T had been thoroughly checked for excit
tion energies but not for binding energies. It had a bug in
that accounts for nearly2250 keV in thea term. Hence,
whenS is taken into account and the bug is corrected, the
becomes~in keV! «5250, a5259, andb5235. The num-
bers are now pleasingly small and the principal uncertai
stems from the parameters inS.

Our mass results are shown in Figs. 4~a! and 4~b!. While
there is both underbinding and overbinding of the nuc
studied, the agreement is reasonably acceptable. It beco
remarkable if we consider that — in view of the smallness
Hcorr — it is practically parameter free. For completeness,
Fig. 4~c! we show^Hc.m.& for the same nuclei. Notice that fo
the nuclei above mass 40 the center-of-mass contamina
could be further corrected by fine-tuningbc.m.. However, for
our present purposes, we will be content with the remova
much of the center-of-mass energy.

As a final example of the soundness of the interaction,
show in Fig. 5 a number of low-lying states for22Mg calcu-
lated by direct diagonalization in the fullsd-p f space, com-
pared to both asd-shell calculation using the USD interac

d
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tion and to experiment@46#. Generally, our interaction agree
reasonably well with both experiment and the USD inter
tion. The more refined treatment ofHm will no doubt further
improve the agreement. We also note that we have chec
the center-of-mass contamination for all of the excited sta
shown in the first column of Fig. 5, and it is as small as t
shown for the ground state in Fig. 2.

IV. RESULTS

A. Comparison with experiment and other calculations

There is limited experimental information about th
highly unstable, neutron-rich nuclei under consideration.

FIG. 4. ~a! The binding energy relative to the16O core for
various nuclei in this study.~b! The difference between experime
and theory for these nuclei.~c! The expectation of the center-o
mass Hamiltonian for the nuclei calculated in this study.
-

ed
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n

many cases only the mass, excitation energy of the first
cited state, theB(E2) to that state, and theb-decay rate are
known, and not even all of this information is available
some cases. From the measuredB(E2), an estimate of the
nuclear deformation parameterb2 has been obtained via th
usual relation

b254pAB~E2;0g.s.
1 →21

1!/3ZR0
2e, ~15!

with R051.2A1/3 fm andB(E2) given ine2 fm4.
Much of the interest in the region stems from the une

pectedly large values of the deducedb2, results which sug-
gest the onset of deformation and have led to speculat
about the vanishing of theN520 andN528 shell gaps. The
lowering in energy of the 21

1 state supports this interpreta
tion. The most thoroughly studied case, and the one wh
most convincingly demonstrates these phenomena, is32Mg
with its extremely largeB(E2)5454678e2 fm4 and corre-
spondingb250.513@1#; however, a word of caution is nec
essary when deciding on the basis of this limited informat
that we are in the presence of well-deformed rotors:
22Mg, we would obtainb250.67, even more spectacula
and for 12C, b250.8, well above the superdeformed band

FIG. 5. Theoretical and experimental level spectra for22Mg are
compared. The left spectrum is obtained from the Hamiltonian
scribed in the text. USD is the Wildenthalsd-shell interaction used
in a sd-shell calculation for comparison.
TABLE II. The computed and measured values ofB(E2) for the nuclei in this study usingep51.5 and
en50.5.

B(E2;0g.s.
1 →21

1)expt B(E2,total)SMMC B(E2;0g.s.
1 →21

1) B(E2,0g.s.
1 →21

1)USD

22Mg 4586183 334627 314.5
30Ne 303632 342@8#,171 @53# 143.2
32Mg 454678 @1# 494644 448@8#,205 @53# 177.1
36Ar 296.56628.3 @46# 174648 272.8
40S 334636 @2# 270666 398@3#,390 @9#
42S 397663 @2# 194664 372@3#,465 @9#
42Si 445662 260@9#
44S 314688 @3# 274668 271@3#,390 @9#
44Ti 6106150 @52# 692663
46Ar 196639 @2# 369677 460@2#,455 @9#
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Most of the measured observables can be calcula
within the SMMC framework. It is well known that inde-
formednuclei the totalB(E2) strength is almost saturated b
the 0g.s.

1 →21
1 transition~typically 80%–90% of the strength

lies in this transition!. Thus the total strength calculated b
SMMC simulations should only slightly overestimate t
strength of the measured transition. In Table II the SMM
computed values ofB(E2,total) are compared both to th
experimentalB(E2;0g.s.

1 →21
1) values and to the value

found in various truncated shell-model calculations. Reas
able agreement with experimental data across the spa
obtained when one chooses effective charges ofep51.5 and
en50.5. We also indicate in the right column of Table II th
USD values for theB(E2,0g.s.

1 →21
1) ~with effective charges

of ep51.5 anden50.5) for thesd-shell nuclei. Note that the
sd-shell results are much lower for30Ne and 32Mg than is
seen experimentally. All of the theoretical calculations
quire excitations to thep f shell before reasonable values c
be obtained. We note a general agreement among all ca
lations of theB(E2) for 46Ar, although they are typically
larger than experimental data would suggest. We also no
somewhat lower value of theB(E2) in this calculation as
compared to experiment and other theoretical calculation
the case of42S. Shown in Table III are effective charge
from other calculations.

Table IV gives selected occupation numbers for the nu
considered. We first note a difficulty in extrapolating som
of the occupations where the number of particles is ne
zero. This leads to a systematic error bar that we estima
60.2 for all occupations shown, while the statistical er
bar is quoted in the table. The extrapolations for occupa
numbers were principally linear. Table IV shows that22Mg
remains as an almost puresd-shell nucleus, as expected. W
also see that the protons in30Ne, 32Mg , and 42Si are almost

TABLE III. The effective chargesep anden used in the various
truncated shell-model calculations for the nuclei in this study.

Reference ep en

@2# 1.6 0.9
@3# 1.35 0.65
@7,9# 1.5 0.5
@8# 1.3 0.5
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entirely confined to thesd shell. This latter is a pleasing
result in at least two regards. First, it shows that the inter
tion does not mix the two shells to an unrealistically lar
extent. Second, if spurious center-of-mass contamina
were a severe problem, we would expect to see a la
proton f 7/2 population for these nuclei due to the 0d5/2-0 f 7/2
‘‘transition’’ mediated by the center-of-mass creation ope
tor. The fact that there is little protonf 7/2 occupation for
these nuclei confirms that the center-of-mass contamina
is under reasonable control.

An interesting feature of Table IV lies in the neutron o
cupations of theN520 nuclei (30Ne and 32Mg) and theN
528 nuclei (42Si, 44S, and 46Ar). The neutron occupations
of the two N520 nuclei are quite similar, confirming th
finding of Fukunishiet al. @8# and Poves and Retamosa@7#
that theN520 shell gap is modified. In fact, the neutronf 7/2
orbital contains approximately two particles before theN
520 closure, thus behaving like an intruder single-parti
state. Furthermore, we see that two-particle–two-hole~2p-
2h! excitations dominate, although higher excitations a
play some role. We also see that the neutrons occupying
p f shell inN520 systems are principally confined to thef 7/2
subshell.

The conclusions that follow from looking at nuclei wit
N.20, particularly those withN528, are that theN520
shell is nearly completely closed at this point, and that
N528 closure shell is reasonably robust, although appro
mately one neutron occupies the upper part of thep f shell.
Coupling of the protons with the low-lying neutron excit
tions probably accounts for the relatively largeB(E2), with-
out the need of invoking rotational behavior.

In Table V we show the SMMC total Gamow-Telle
~GT2) strength. We compare our results to those of previo
truncated calculations, where available. In all cases, our
sults are slightly smaller than, but in good accordance w
other calculations. Since we do not calculate the stren
function, we do not computeb-decay lifetimes.

B. Pairing properties

For a given angular momentumJ, isospinT, and parityp,
we define the pair operators as

AJM,TTzp
† ~ab!5

~21! l a

A11dab

@aj a

† 3aj b

† #JM,TTz, ~16!
TABLE IV. The calculated SMMC neutron~n! and proton~p! occupation numbers for thesd shell, the 0f 7/2 subshell, and the remaining
orbitals of thep f shell. The statistical errors are given for linear extrapolations. A systematic error of60.2 should also be included.

N,Z n-sd n-f 7/2 n-p f5/2 p-sd p-f 7/2 p-p f5/2

22Mg 10,12 3.9360.02 0.160.02 20.0560.01 2.0460.02 0.0060.01 20.0560.01
30Ne 20,10 9.9560.03 2.3260.03 20.2660.02 2.0360.02 20.0160.01 20.0260.01
32Mg 20,12 9.8460.03 2.3760.03 20.2160.02 3.9960.03 0.0560.02 20.0560.01
36Ar 18,18 9.0760.03 1.0860.02 20.1560.02 9.0760.03 1.0860.02 20.1560.02
40S 24,16 11.0060.03 5.0060.03 20.0160.02 7.5760.04 0.5460.02 20.1260.02
42Si 28,14 11.7760.02 7.3460.02 0.9060.03 5.7960.03 0.2560.02 20.0760.01
42S 26,16 11.4160.02 6.3360.02 0.2560.03 7.4960.03 0.5860.02 20.0960.02
44S 28,16 11.7460.02 7.1860.02 1.0660.03 7.5460.03 0.5660.02 20.1260.02
44Ti 22,22 10.4260.03 3.5860.02 0.0060.02 10.4260.03 3.5860.02 0.0060.02
46Ar 28,18 11.6460.02 7.1360.02 1.2360.03 8.7460.03 1.3460.02 20.0860.02
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where the parity is given by (21)l a1 l b. These operators ar
boson like in the sense that they satisfy the expected c
mutation relations in the limit where the number of valen
nucleons is small compared with the total number of sing
particle states in the shell. In the SMMC calculation we co
pute the pair matrix in the ground state as

MJTTzp
~ab,cd!5(

M
^AJM,TTzp

† ~ab!AJM,TTzp
~cd!&,

~17!

which is a Hermitian and positive-definite matrix in th
space of ordered orbital pairs (ab) ~with a<b). The total
number of pairs is given by

PJTTzp
5 (

abcd
MJTTzp

~ab,cd!. ~18!

The pair matrix can be diagonalized to find the eigenbos
BaJTTzp

† as

BaJMTTzp
† 5(

ab
caJTp~ab!AJMTTzp

† ~ab!, ~19!

wherea51,2, . . . labels the various bosons with the sam
angular momentum, isospin, and parity. ThecaJTp are the
eigenvectors of the diagonalization, i.e., the wave functi
of the boson, and satisfy the relation

(
j aj b

caJTTzp
* cmJTTzp

5dam . ~20!

These eigenbosons satisfy

(
M

^BaJM,TTzp
† BgJM,TTzp

&5naJTTzp
dag , ~21!

where the positive eigenvaluesnaJTTzp
are the number of

JTTzp pairs of typea.
We first show the number of pairsPJTTzp

in the J

50, T51 positive-parity pairing channels. This quanti
can be interpreted as the total strength for the pair transfe
particles of the given quantum numbers. Shown in Fig. 6

TABLE V. The calculated total Gamow-Teller strength (GT2)
from this study. The results of other studies, when available,
presented for comparison.

Nucleus SMMC Other

22Mg 0.57860.06
30Ne 29.4160.25
32Mg 24.0060.34
36Ar 2.1360.61
40S 22.1960.44 22.87@9#
42S 28.1360.42 28.89@9#
42Si 40.6160.34
44S 34.5960.39 34.93@9#
44Ti 4.6460.66
46Ar 29.0760.44 28.84@9#
-

-
-

s

s

of
e

our results in the proton-neutron~top!, proton-proton
~middle!, and neutron-neutron~bottom! channels as a func
tion of the nucleusA. Notice that only in theN5Z nucleus
36Ar do the proton-neutron pairs play a significant role,
has been discussed in@47#. Generally, one also sees an i
crease in the proton-proton pairs asA is increased. Notice
also that a fair amount of increase occurs in the sulfur a
argonne isotope chains as one adds neutrons. This is no
case in the two Mg isotopes calculated, in which we se
significant increase in the neutron-neutron correlations,
very little change in the proton-proton sector. This holds
both the Ne and Mg chains@48#. For the heavier isotopes in
the region, in general, theJ50 neutron-neutron pairs are no
significantly enhanced for the nuclei that we have calcula
here. Since there are many more particles and hence m
pairing, one expects enhancements to occur in higherJ pairs
since the total number of pairs is a conserved quantity fo
given number of like nucleons. We also calculated the p
ing in the same channels, but with negative parityp
5(21)l a1 l b5(21)l c1 l d), and find it to be rather small in
most cases.

Further insight into the pairing comes by considering
agonal elements of the pair matrix before and after diago
ization. The presence of a pair condensate in a correla
ground state will be signaled by the largest eigenvalue fo
givenJ being much greater than any of the others. Shown
Fig. 7 are the diagonal matrix elements of theJ50 pair
matrix for 40,44S before~left panel! and after~right panel!
diagonalization. We see from the left panel that adding fo

FIG. 6. The number of pairs present in the SMMC calculatio
for the JpT5011: ~a! the Tz50(pn) channel,~b! the Tz51(pp)
channel, and~c! the Tz521(nn) channel.
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neutrons to the system increases thef 5/2-shell neutron matrix
elements, while rearranging thesd-shell elements slightly.
From the occupation numbers we know that the neutrons
filling p f-shell orbitals, and therefore we expect little mov
ment in thesd shell. The proton matrix elements are slight
affected by the addition of the neutrons, although there
some movement of protons out of thef 7/2.

The largest eigenvalue of the neutron-neutron pair mat
as shown in the right panel in Fig. 7, is about 1.5 times t
of the next largest eigenvalue. However, the remaining
genvalues are significant. Thus it is unlikely that there ex
a pure pair condensate in the neutrons. As a further chec
this conclusion, we have diagonalized the 333 pairing ma-
trix resulting from only thesd-shell neutrons in these tw
nuclei. We find that the three eigenvalues are all of sim
size and significantly smaller than the largest eigenva
from the full sd-p f diagonalization. Thus, what neutron pa
condensate does exist is a phenomenon which involves
entire model space, not just thesd shell. In the proton secto
we see a similar level of pair condensation. Since the prot
occupy mainly thesd shell, only three eigenvalues are larg
enough to be represented in the figure.

C. Discussion

The aim of a nuclear structure calculation is to comp
with, or predict, experimental results. In the present case,
comparison with other calculations is at least of equal in
est. The reason comes from the problems created by tru
tions, in particular the~012!\v ‘‘catastrophe’’ @6#, discov-
ered long ago in a 0\v context@29#. Calling f the f 7/2 shell
and r its p f partners generically, anf n calculation can pro-
duce very sensible results;f n1 f n21r improves them consid
erably, but f n1 f n21r 1 f n22r 2 is invariably disastrous, be
cause thef n configuration is strongly pushed down b
pairing with f n22r 2, while f n21r does not benefit from a
similar push fromf n23r 2. The remarkable thing is that whe

FIG. 7. Left panel: the diagonal elements of theJ50pp andnn
pair matrix before diagonalization. Note that proton pairing do
not play a significant role in thep f shell. Right panel: the eigen
values of the pair matrix shown in decreasing size. After diago
ization the protons have only three nonzero eigenvalues.
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this last configuration is included, the results are not
different from the originalf n1 f n21r . If the space is ex-
panded, there is an attenuated 4\v catastrophe. The proces
continues in increasingly attenuated form until the ex
( f r )n space is reached. This is a general problem with tr
cations, and for nuclei such as32Mg with a (p f)2(sd)n22

ground state, where the calculations demand also the p
ence of (sd)n states, the adopted solution has been simply
ignore the mixing between the two configurations. It wor
very well. But is it true? Could it not be possible that high
excitations play an important role? Fortunately, we can
that the present calculations confirm the basic validity
previous work. In all the cases we analyzed, the ‘‘dressin
process, whereby a dominant configuration becomes the
act ground state, does not seem to affect strongly its b
properties. Does it mean that exact calculations are unne
sary? Not exactly. For one thing, they have no parame
other than those ofHm and therefore demonstrate the validi
of the monopole correctedG matrices. And then they go —
for the first time in a shell-model context — to the heart
the problem of cross-shell correlations. At present, we kn
little about these problems, except that they are hidden
well that they are difficult to detect. Still, they can be se
through effects ~such as quenching of Gamow-Telle
strength! that tell us that they are important. The availab
evidence points to a much reduced discontinuity at the Fe
level with respect to the naive shell model@49–51#. In Table
IV we find nearly normal occupancies for highT, but strong
effects for T50 ground states, in particular for44Ti — a
truly interesting case. A conventional (p f)4 calculation
yields aB(E2) of 514.7e2fm4 ~virtually identical to that of
KB3!. In Table II the result is at least 20% larger. This is
good example of the way correlations may be hidden.
doubt this nucleus is abona fidemember of thep f space,
and the correlation effects can be overcome by the exp
mental error, but it is not always the case. The region
plagued withB(E2) transitions which are systematically to
large for the 0\v calculations to explain, particularly for th
Ca isotopes, which should be the simplest nuclei, but are
most complicated. In44Ti we have a first example of what
complete calculation could do.

Binding energies are no doubt one of the best ways
shed light on the matter. In Sec. III C we mentioned t
cross-shell gap around40Ca, which should be increased b
about 2 MeV, which means that the correlation ener
should be much larger. And since we know now that we c
trust SMMC calculations with a good interaction to within
MeV, probably it will not take long before we know mor
about this supposedly closed nucleus that is not so close

V. CONCLUSION

This paper was meant as a feasibility study of SMM
calculations in multi-\v spaces. Two general issues had
be tackled: translational invariance and the definition of
interaction. Concerning the first, it was shown that t
trouble caused by center-of-mass excitations can be succ
fully mitigated by a judicious application of ideas in@23#,
and a possible variational approach to the problem was s
gested. The interaction chosen was aG matrix derived from
a modern potential, renormalized according to state-of-t
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art techniques, and monopole corrected for the bad satura
properties of the existingNN potentials. The only parameter
entering the calculations are the six ‘‘universal’’ consta
specifying the monopole Hamiltonian, which was shown
explain quite naturally the shell formation properties of hi
isospin nuclei in theA530–50 region.

The feasibility test was passed satisfactorily. Binding e
ergies,B(E2) rates, and Gamow-Teller strengths were o
tained that are in reasonable agreement with observati
and the possible origin of the remaining discrepancies
been identified.

The calculations support the validity of previous work
the region, and open the way to the study of the elusive d
correlations at the origin of Gamow-Teller quenching.
particular it provides an example, in44Ti, of an extremely
correlated system whose behavior is quite similar to tha
the uncorrelated one. The possibility to obtain orbit occup
cies should help in advancing the study of the discontinu
at the Fermi surface — one of the most difficult problems
nuclear physics.

Interest was focused on neutron-rich nuclei aroundN
520,28 ~a region of current interest!, where new data have
become available and many calculations have been
formed. Having established the reliability of our method
other exotic, or not so exotic, studies can be contemplat

Most calculations presented here were performed on
512-node Paragon at the Oak Ridge Center for Comp
l.
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tional Science~CCS! and the T3E at the National Energ
Research Scientific Computing Center~NERSC!. Thesd-p f
model space effectively used all of the available memory
the Paragon~32 Mbytes per node! and, hence, larger space
were not feasible there. With the advent of a new genera
of massively parallel computers that are much faster
have far more memory, much more ambitious calculatio
are possible.
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