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Reaction cross section calculations for deformed nuclei
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~Received 11 December 1998!

Optical limit Glauber theory calculations of reaction cross sections, used to deduce nuclear sizes from high
energy data, are studied in the case of a deformed projectile~or target!. We show that a previously applied
formula, used to adjust the root-mean-squared radius deduced assuming spherical projectiles, is consistent with
results which treat the projectile deformation explicitly within the reaction calculation. The correct interpreta-
tion of this formula in studies of reaction cross sections is clarified.@S0556-2813~99!04304-6#

PACS number~s!: 21.10.Gv, 11.80.Fv, 25.10.1s, 27.20.1n
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The optical limit ~OL! approximation to Glauber theor
@1,2# has been used frequently in analyses to extract em
cal root-mean-squared~rms! matter radii of nuclei from in-
termediate energy reaction and interaction cross section m
surements@3–5#. The inputs to this model are the projecti
and target nucleus one-body densities. Their geometric o
lap at a given impact parameter, when multiplied by an
propriate nucleon-nucleon (NN) reaction cross section, de
termines the calculated projectile-target reaction cr
section. This is then compared with the measurements.
approach works very well for localized nuclei where nuc
ons occupy a well-defined volume@3#. For nuclei with
weakly bound and delocalized nucleons, recent theore
analyses@6–8# have shown that projectile excitation an
breakup effects are important. Then a more explicit fe
body treatment is necessary for quantitative calculations
the reaction cross sections. This weak binding effect al
~increases! the transparency of the collision at larger impa
parameters, reducing the reaction cross section for a g
projectile rms size.

Our interest here is the reaction cross section of an
sumed localized quadrupole-deformed projectile with def
mation parameterb. At high energy, in the sudden or adia
batic approximation limit, and in a given collision, th
deformed projectile nucleus will traverse the target nucl
with a fixed orientationV̂ ~Fig. 1!. The transparency of the
collision and cross section for a givenV̂ will depend sensi-
tively on this projectile orientation, particularly for nea
grazing-impact parametersb. The physical cross section, fo
an assumed unpolarized incident projectile beam, is then
average of such cross sections over all orientations@9#.

To date, even when the projectile nuclei are deform
OL reaction calculations have been carried out for spher
densities, e.g.,@10,11#. For nuclei with quadrupole deforma
tion b, the effects of deformation were then discussed us
the mean-squared radius formula

^r 2&b'S 11
5

4p
b2D ^r 2&b50 , ~1!

carried over from other applications, such as the analysi
energy shifts in muonic atom data@12#, where the nuclear
density is also required. In Ref.@11#, ^r 2&b was interpreted as
the mean-squared radius of the deformed projectile dedu
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directly from cross section data using a spherical density
reaction calculation. Equation~1! was then used tosubtract
the effects of the projectile deformation through a chain
isotopes to yield a spherical part of the nuclear rad
^r 2&b50. In @10# the onset of deformation, going from spher
cal to deformed Hartree-Fock calculations, was shown
lead to an increased rms size for the projectile, consis
with Eq. ~1!. This increased rms size then enhanced the cr
section obtained using a spherical density OL calculation

Within the reaction cross section calculation, the d
formed density function enters the nuclear transparency~see
below! in the argument of an exponential function. It is n
clear therefore to what extent the cross section compu
using a spherical angle average of the deformed densit
this exponent will yield an accurate deduced matter rad
In this Brief Report we therefore calculate the reaction cr
section, taking explicit account of the effects of the project
~or target! deformation in the collision. We show that Eq
~1!, interpreted appropriately, can be used to provide an
curate estimate of these effects.

The projectile nucleus, denoted~1!, will be assumed to be
quadrupole deformed with deformationb[b2. The orienta-
tion of the symmetry axis is denotedV̂. The target nucleus
denoted~2!, will be assumed to be spherical. We consid
for simplicity only, a zero-range underlyingNN interaction.
Figure 1 shows the coordinates used in our model calc
tions whereR, the projectile-target separation, has cylind
cal coordinates,R[(b,Z), with respect to the beam directio
as theZ axis. The optical limit reaction cross section for
fixedorientation of the incident projectile is then@9#

sR~b,V̂!52pE
0

`

db b@12T~b,V̂!#. ~2!

FIG. 1. Schematic representation of the collision of the d
formed projectile and spherical target nuclei at an impact param
b. The cylindrical coordinates used are shown.
2309 ©1999 The American Physical Society
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The transparency of the collision at center of mass~c.m.!
impact parameterb is

T~b,V̂!5exp@2sNNX~b,V̂!#, ~3!

wheresNN is the isospin average of the freenn andnp cross
sections appropriate for the specific projectile and target.
Z-integrated overlap of the projectile and target ground s
densities,r ( i ) ( i 51,2), is

X~b,V̂!5E
2`

`

dZE drr~1!~r,V̂!r~2!~ uR1ru!. ~4!

We assume a Woods-Saxon form factor with
quadrupole-deformed radius parameter for the density
projectile nucleus~1!, of massA1. Thus

r~1!~r,V̂!5r0
~1!
„11exp$@r 2R~V̂!#/a%…21,

R~V̂!5R0@11b2Y20~V̂!#, ~5!

with multipole expansion

r~1!~r,V̂!54p(
kq

rk
~1!~r !

~2k11!
Ykq~ r̂!Ykq* ~V̂!

5(
k

rk
~1!~r !Pk~ r̂•V̂!. ~6!

These multipole form factorsrk
(1)(r ) have been expresse

analytically~to orderb2
3) by Fäldt and Glauber, Appendix B

of Ref. @9#. The overall strength parameterr0
(1) and radial

size parameterR0 of the Woods-Saxon form factor are d
termined by the required volume integral and the projec
rms radius~assuming a fixed value for the diffusenessa),
i.e.,

A154pE
0

`

dr r 2r0
~1!~r !, ^r 2&A1

5
4p

A1
E

0

`

dr r 4r0
~1!~r !.

~7!

We assume a spherical Gaussian density for the ta
nucleus~2!, of massA2,

r~2!~x!5r0
~2!exp~2gx2!, ~8!

with a strengthr0
(2) and inverse rangeg determined byA2

and the target rms radius,

A25r0
~2!~p/g!3/2, ^r 2&A2

53/~2g!. ~9!

Upon substituting forx25uR1ru2, then, in Eq.~4! we have

r~2!~ uR1ru!5r0
~2! exp~2g@R21r 2# !4p

3(
kq

i kj k~2igRr!Ykq~R̂!Ykq* ~ r̂!. ~10!

It follows, combining these results and the properties of
spherical harmonics, that theZ-integrated density overlap in
Eq. ~4! can be written
e
te

of

e

et

e

X~b,V̂!54p exp~2gb2!(
k
E

2`

`

dZOk~b,Z!Pk~R̂•V̂!,

~11!

where, withR5Ab21Z2,

Ok~b,Z!5r0
~2! exp~2gZ2!E

0

`

dr r 2rk
~1!~r !

3exp~2gr 2!i k j k~2igRr!. ~12!

If V̂ is expressed using spherical polar angles (u,f), with
respect to theZ axis in the projectile beam direction andX
axis along the c.m. impact parameterb ~Fig. 2!, then

R̂•V̂5@b sinu cosf1Z cosu#/R. ~13!

Assuming the projectile beam is unpolarized, we must av
age over all orientationsV̂, and

sR~b!5
1

4pE0

2p

dfE
0

p

sinu du sR~b,V̂!. ~14!

As typical, we consider the reaction cross section for17N
scattering from 12C at a laboratory energy of 700 MeV
nucleon. This system was studied in some detail by K
gawaet al. @10# in the case of spherical density reaction c
culations. At this energy, for a12C target, the isospin-
averagedNN cross section issNN54.087 fm2, based on
experimental data@10#. We assume a spherical Gaussi
density for the12C target with a point nucleon rms matte
radius of 2.32 fm, consistent with the charge radius dedu
from electron scattering. For the projectile density we
sume a Woods-Saxon form factor with a quadrupo
deformed radius. Multipoles withk50, 2, and 4 are in-
cluded in Eq.~11!. The diffuseness parameter is kept fixed
the valuea50.564 fm throughout.

We first consider the density for17N from the spherical
Hartree-Fock calculation. This yields a calculated17N rms
matter radius of 2.682 fm, taken from Table 1 of Ref.@10#.
Assuming a spherical Woods-Saxon form factor for this d
sity, with volume integralA1517 and rms radius 2.682 fm
we obtain the parameters

FIG. 2. Spherical polar coordinates used for the description
the orientation of the symmetry axis of the deformed projectile. T
projectile c.m. and the target c.m. lie in theX-Z plane.



n

s
s
th
ic
m

in

d

tile

cu
s
he

n
,
on
te
r

er
o
th
ize

er

ig

t a
a

rms
the
fer
ac-

cal
eri-
n as
rms

the
sity,
e-
ms
on

lue.
dii
on
de-

ich
are
cit
an
OL
with

cal-

the
s
t
l

sec-
ll,
rela-
f-

efs.
nt
ca-
ld be

ng

.

PRC 59 2311BRIEF REPORTS
r0
~1!50.240 103 fm23, R052.161 21 fm, b250.

The calculated~spherical! optical limit reaction cross sectio
is sR(0)51065.7 mb.

The deformed Hartree-Fock calculations of@10# give a
prolate deformation parameter ofd510.218, corresponding
to ab[b250.2289. For comparison with the spherical ca
above, and to clarify the effect of deformation, we now a
sume a quadrupole-deformed Woods-Saxon density with
b2, but with the same rms matter radius as for the spher
case~2.682 fm!. The required Woods-Saxon density para
eters are

r0
~1!50.249 395 fm23, R052.107 76 fm, b250.2289.

~15!

The deformed projectile OL reaction cross section, after
tegrating over all orientations, is nowsR(b)51057.6 mb.
We note that treating explicitly this deformed structure lea
to a reductionof 0.8% in the calculated cross section com
pared to using the OL calculation for a spherical projec
with the same rms matter radius.

This difference is understood by considering the cal
lated reaction cross sections for several fixed orientation
the projectile. With the polar coordinates of Fig. 2 and t
parameters of Eq.~15!, the reaction cross sectionssR(b,V̂)
for the following fixedV̂[(u,f) orientations are

sR~b,0,0!51023.4 mb,

sRS b,
p

2
,0D51141.9 mb,

sRS b,
p

2
,
p

2 D51006.3 mb.

The largest and smallest cross sections occur foru5p/2 and
f50, p/2, respectively. The calculations at these differe
angular extremes represent very significant changes
17.2% to25.6%, about the spherical result. The orientati
averaging results in only a 0.8% reduction in the calcula
cross section compared to the spherical OL calculation,
flecting the fact that the larger cross sections are encount
in relatively fewer orientations of the elipsoid. Were the pr
jectile produced with any significant degree of alignment,
results above show that the implications for deduced s
could be significant. Use of an oblate deformationb25
20.2289 requires, for the same rms radius, the paramet

r0
~1!50.247 895 fm23, R052.114 32 fm,

b2520.2289.

The angle-averaged cross section issR(b)51058.6 mb,
showing a high degree of symmetry with respect to the s
of b2.
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In practice, the OL reaction theory is used to extrac
value for the rms size of the projectile nucleus by fitting
given experimental cross section datum, rather than the
radius being known. The question is therefore, how do
radii deduced by fitting a given cross section value dif
when using the spherical and deformed versions of the re
tion theory? By varying the rms matter radius of a spheri
Woods-Saxon density we are able to find an effective sph
cal density that reproduces the same reaction cross sectio
the deformed case. The required spherical density has a
radius of 2.654 fm, which calculates asR(0)51057.6 mb,
and has parameters

r0
~1!50.254 776 fm23, R052.103 04 fm, b250.

So a spherical density with rms radius 2.654 fm generates
same OL reaction cross section as does a deformed den
with b250.2289 and larger rms radius 2.682 fm, in a d
formed OL calculation. This difference in these deduced r
radii is a 1.06% effect. The estimate of this effect based
Eq. ~1!,

^r 2&b'S 11
5

4p
b2D ^r 2&b50 ,

is 1.04%, in reasonable agreement with our calculated va
Whereas a naive application of this equation to rms ra
used in spherical calculations will lead to the deformati
driving larger cross sections, this is not the case in the
formed reaction calculations reported here.

The example presented here clarifies the manner in wh
Eq. ~1! should be interpreted in the case of root mean squ
radius deductions for deformed projectiles. Our expli
treatment of the deformed projectile density is shown, for
unpolarized projectile beam, to lead to smaller calculated
cross sections than are obtained for a spherical density
the samerms radius, i.e.,sR(b),sR(0). It follows that a fit
made to cross section data using a spherical density OL
culation will derive a^r 2&b50

1/2 which will underestimate the
actual projectile rms size. We have shown, however, that
prescription given by Eq.~1! accounts reasonably for thi
difference, for physical values ofb. It can be used to adjus
the rms radiuŝ r 2&b50

1/2 extracted from a given experimenta
cross section usingsR(0) to the required valuêr 2&b

1/2 which
would be obtained if one had analyzed the same cross
tion usingsR(b). This example also confirms that, overa
the deformation effects on deduced cross sections are
tively small, compared, for instance, with the few-body e
fects discussed in our introductory comments and in R
@6–8#. Were the projectiles produced with any significa
degree of alignment, our calculations show that the impli
tions for calculated cross sections and deduced sizes cou
much more significant.
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@9# G. Fäldt and R.J. Glauber, Phys. Rev. C42, 395 ~1990!.

@10# H. Kitagawa, N. Tajima, and H. Sagawa, Z. Phys. A358, 381
~1997!.

@11# T. Suzukiet al., Nucl. Phys.A630, 661 ~1998!.
@12# G. Fricke, J. Herberz, Th. Hennemann, G. Mallot, L.

Schaller, L. Schellenberg, C. Pillar, and R. Jacob-Guillarm
Phys. Rev. C45, 80 ~1992!.


