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Reaction cross section calculations for deformed nuclei
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Optical limit Glauber theory calculations of reaction cross sections, used to deduce nuclear sizes from high
energy data, are studied in the case of a deformed projdotileargej. We show that a previously applied
formula, used to adjust the root-mean-squared radius deduced assuming spherical projectiles, is consistent with
results which treat the projectile deformation explicitly within the reaction calculation. The correct interpreta-
tion of this formula in studies of reaction cross sections is clarifi60556-28189)04304-9

PACS numbegs): 21.10.Gv, 11.80.Fv, 25.18s, 27.20+n

The optical limit (OL) approximation to Glauber theory directly from cross section data using a spherical density OL
[1,2] has been used frequently in analyses to extract empiriFeaction calculation. Equatiofi) was then used teubtract
cal root-mean-square@ms) matter radii of nuclei from in- the effects of the projectile deformation through a chain of
termediate energy reaction and interaction cross section meigotopes to yield a spherical part of the nuclear radius
surement$3-5]. The inputs to this model are the projectile (r?)s=o. In [10] the onset of deformation, going from spheri-
and target nucleus one-body densities. Their geometric ovefal to deformed Hartree-Fock calculations, was shown to
lap at a given impact parameter, when multiplied by an aplead to an increased rms size for the projectile, consistent
propriate nucleon-nucleorN(N) reaction cross section, de- W|th_Eq.(1). '_I'hls mc_reased rms size ther_l enhanced the_ cross
termines the calculated projectile-target reaction crosSECtion obtained using a spherical density OL calculation.
section. This is then compared with the measurements. This Within the reaction cross section calculation, the de-
approach works very well for localized nuclei where nucle-formed density function enters the nuclear transparéseg
ons occupy a well-defined volumgs]. For nuclei with below) in the argument of an exponential function. It is not

weakly bound and delocalized nucleons, recent theoretic&l€ar therefore to what extent the cross section computed

analyses[6—8] have shown that projectile excitation and using a spherical angle average of the deformed density in

breakup effects are important. Then a more explicit few-this exponent will yield an accurate deduced matter radius.

body treatment is necessary for quantitative calculations of? this Brief Report we therefore calculate the reaction cross
the reaction cross sections. This weak binding effect aIter?eCt'On’ taking explicit account of the effects of the projectile
(increasesthe transparency of the collision at larger impact (OF targe} deformation in the collision. We show that Eq.

parameters, reducing the reaction cross section for a givef})> interpreted appropriately, can be used to provide an ac-

projectile rms size. curate esti!'nat.e of these effects. _

Our interest here is the reaction cross section of an as- 'N€ Projectile nucleus, denotet), will be assumed to be
sumed localized quadrupole-deformed projectile with deforduadrupole deformed with deformatigv= B,. The orienta-
mation parameteB. At high energy, in the sudden or adia- tion of the symmetry axis is denot&d. The target nucleus,
batic approximation limit, and in a given collision, the denoted(2), will be assumed to be spherical. We consider,
deformed projectile nucleus will traverse the target nucleugor simplicity only, a zero-range underlyingN interaction.
with a fixed orientatior€) (Fig. 1). The transparency of the Figure 1 shows the coordinates used in our model calcula-

- . oA . tions whereR, the projectile-target separation, has cylindri-
collision and cross section for a givéd will depend sensi-

. . S o . ; . cal coordinatesR=(b,Z), with respect to the beam direction
tively on this projectile orientation, particularly for near-

razing-impact parameteks The phvsical cross section. for &5 theZ axis. The optical limit reaction cross section for a
9 g-impact p pny ' fixed orientation of the incident projectile is théf)]

an assumed unpolarized incident projectile beam, is then the
average of such cross sections over all orientatj@hs . o .

To date, even when the projectile nuclei are deformed, UR(,B,Q)IZWJO dbb1-T(b,Q)]. 2
OL reaction calculations have been carried out for spherical
densities, e.9[,10,11]. For nuclei with quadrupole deforma- P=(1)
tion B, the effects of deformation were then discussed using
the mean-squared radius formula g -

R \
4 U T=(2)
carried over from other applications, such as the analysis of

energy shifts in muonic atom dafa2], where the nuclear FIG. 1. Schematic representation of the collision of the de-
density is also required. In RéfL1], (r?) g was interpreted as  formed projectile and spherical target nuclei at an impact parameter
the mean-squared radius of the deformed projectile deduced The cylindrical coordinates used are shown.

1+ g
anP

<r2>ﬁ” <r2>,8=Ov (1) b
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The transparency of the collision at center of méssn,) J
impact parameteb is | b=X

T(b,©) = exif — oAb, ©)], 3 Q

whereoyy is the isospin average of the fra@ andnp cross :
sections appropriate for the specific projectile and target. The | 0

Z-integrated overlap of the projectile and target ground state }/
Y

densitiesp (i=1,2), is Z

X(b,ﬂ)zfx dzf drp®P(r, Q) p?(|R+r1]). (4 Q

We assume a Woods-Saxon form factor W'th 2 FG. 2. Spherical polar coordinates used for the description of
qugdru_pole-deformed radius parameter for the density the orientation of the symmetry axis of the deformed projectile. The
projectile nucleugl), of massA;. Thus projectile c.m. and the target c.m. lie in theZ plane.

pM(r,Q)=pP (1 +exp[r—R(Q)]/a}) 2, N ” R. O
X(b,9)=4wexq—yb2);f dZO(b,Z)P(R- ),

R(Q)=Ro[1+B,Y2o( D], (5 11
with multipole expansion where, withR= b2+ Z2
(1)
A pi (1) Ak A oc
PO =4m o oy Vi DY) Ob2)=pff exit =422 | dr )
=; PN P(T- ). 6) X exp(— yr?)i%j(2i yRr). (12

) 1) If O is expressed using spherical polar anglésg), with
These multipole form factorp’(r) have been expressed (egpect to thez axis in the projectile beam direction ajd

analytically (to order33) by Fadt and Glauber, Appendix B axis along the c.m. impact paramete(Fig. 2), then

of Ref. [9]. The overall strength parametpf" and radial

size parameteR, of the Woods-Saxon form factor are de- R-Q=[bsiné cos¢+Z cosb]/R. (13
termined by the required volume integral and the projectile

rms radius(assuming a fixed value for the diffusenems  Assuming the projectile beam is unpolarized, we must aver-

€., age over all orientation§, and

0 47T o0
_ 2 (1) 2y _ " 4 (1) 1 (2= - .
A1—47TJO drropg’(r), (r >A1_ A, jo drrpgs”(r). ‘TR(B):E ) d‘ﬁjo singdo og(B.0). (14)
()
We assume a spherical Gaussian density for the target AS typical, we consider the reaction cross section'fipt
nucleus(2), of massA scattering from1?C at a laboratory energy of 700 MeV/
' 2 nucleon. This system was studied in some detail by Kita-
p@(x) = pPexp(— yx?), (8  9awaetal.[10] in the case of spherical density reaction cal-
culations. At this energy, for a?C target, the isospin-
with a strengthp® and inverse range determined bya, ~ averagedNN cross section isryy=4.087 fnf, based on

and the target rms radius, experimental datd10]. We assume a spherical Gaussian
density for the!?C target with a point nucleon rms matter
Azngz)(qr/ )32 <f2>A2=3/(27)- (9) radius of 2.32 fm, consistent with the charge radius deduced

from electron scattering. For the projectile density we as-
2 then, in Eq.(4) we have Sume a Woods-Saxon form factor with a quadrupole-

deformed radius. Multipoles witkk=0, 2, and 4 are in-
p<2)(|R+ r|):p52) exp(— [ R2+r2])4n cluded in Eq(11). The diffuseness parameter is kept fixed at
the valuea=0.564 fm throughout.

We first consider the density fol’N from the spherical
Hartree-Fock calculation. This yields a calculatét rms
matter radius of 2.682 fm, taken from Table 1 of Réf0].

It follows, combining these results and the properties of theAssuming a spherical Woods-Saxon form factor for this den-
spherical harmonics, that theintegrated density overlap in sity, with volume integralA;=17 and rms radius 2.682 fm,
Eq. (4) can be written we obtain the parameters

Upon substituting fox?=|R+r

X qu i(2i YRN) Yig(R Yi(D).  (10)
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pg)1>:0_240 103 fm3, Ry=2.16121 fm, B,=0. In practice, the QL reaction theory is used to extract a
value for the rms size of the projectile nucleus by fitting a
given experimental cross section datum, rather than the rms
radius being known. The question is therefore, how do the
) ) radii deduced by fitting a given cross section value differ
The deformed Hartree-Fock calculations [a0] give a  \yhen ysing the spherical and deformed versions of the reac-
prolate deformation parameter 6f +0.218, corresponding tjon theory? By varying the rms matter radius of a spherical
to aB=,=0.2289. For comparison with the spherical case\oods-Saxon density we are able to find an effective spheri-
above, and to clarify the effect of deformation, we now as-c5| gensity that reproduces the same reaction cross section as
sume a quadrupole-deformed Woods-Saxon density with thig\e geformed case. The required spherical density has a rms

B2, but with the same rms matter radius as for the sphericalygius of 2.654 fm. which calculatesagx(0)=1057.6 mb
case(2.682 fm. The required Woods-Saxon density param-5,d has paramete;s ’

eters are

The calculatedspherical optical limit reaction cross section
is or(0)=1065.7 mb.

ptV=0.249395 fm3, R,=2.10776 fm, B,=0.2289. pg’=0.254776 fm3, Ry=2.10304 fm, B,=0.
(19

The deformed projectile OL reaction cross section, after inS0 @ Spherical density with rms radius 2.654 fm generates the
tegrating over all orientations, is nowr(3)=1057.6 mb. Same OL reaction cross section as does a deformed density,

We note that treating explicitly this deformed structure leadSVith 82=0.2289 and larger rms radius 2.682 fm, in a de-
to areductionof 0.8% in the calculated cross section com-formed OL calculation. This difference in these deduced rms

pared to using the OL calculation for a spherical projectilerad” is a 1.06% effect. The estimate of this effect based on

with the same rms matter radius. 9. (1),
This difference is understood by considering the calcu-
lated reaction cross sections for several fixed orientations of
the projectile. With the polar coordinates of Fig. 2 and the (r?) 4~
parameters of Eq15), the reaction cross sectiong(3,€2) P

for the following fixedf)z(e, ¢) orientations are

5
1+ EBZ)<TZ>BO,

is 1.04%, in reasonable agreement with our calculated value.
Whereas a naive application of this equation to rms radii
used in spherical calculations will lead to the deformation
driving larger cross sections, this is not the case in the de-

or(8,0,00=1023.4 mb,

a
O'R(,B,E,O) =1141.9 mb, formed reaction calculations reported here.
The example presented here clarifies the manner in which
Eq. (1) should be interpreted in the case of root mean square
T o radius deductions for deformed projectiles. Our explicit
UR( By E) =1006.3 mb. treatment of the deformed projectile density is shown, for an

unpolarized projectile beam, to lead to smaller calculated OL

cross sections than are obtained for a spherical density with
The largest and smallest cross sections occubferr/2 and  the samams radius, i.e.gr(8) <og(0). It follows that a fit
¢=0, /2, respectively. The calculations at these differentmade to cross section data using a spherical density OL cal-
angular extremes represent very significant changes, Qiulation will derive a(r?)32, which will underestimate the
+7.2% t0_56%, about the Sphel’ical result. The Orientationactua| project"e rms size. We have Shown’ however, that the
aVeraging results in Only a 0.8% reduction in the Calculateq)rescription given by Eq(l) accounts reasonab'y for th|s
cross section compared to the spherical OL calculation, regjtference, for physical values ¢. It can be used to adjust
flecting the fact that the larger cross sections are encountergge yms radiuirzﬁg’ﬁ , extracted from a given experimental
in relatively fewer orientations of the elipsoid. Were the pro-

S . oS . cross section usingg(0) to the required valuér2)Y? which
jectile produced with any significant degree of alignment, th%ould be obtained Fi{f one had analyzed the sa>r¢1e Cross sec-
results above show that the implications for deduced siz

S . €fon usingog(B). This example also confirms that, overall,
could be S|gn_|f|cant. Use of an oblate_ deformatifp= the deformation effects on deduced cross sections are rela-
—0.2289 requires, for the same rms radius, the parameterﬁively small, compared, for instance, with the few-body ef-

fects discussed in our introductory comments and in Refs.
pH'=0.247895 fm3, R,=2.11432 fm, [6—8]. Were the projectiles produced with any significant

degree of alignment, our calculations show that the implica-

tions for calculated cross sections and deduced sizes could be

B2=—0.2289. much more significant.

The angle-averaged cross section aig(8)=1058.6 mb, The financial support of the United Kingdom Engineering
showing a high degree of symmetry with respect to the sigrand Physical Sciences Research CoufEIPSRQ in the
of Bs. form of Grant No. GR/J95867 is gratefully acknowledged.
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