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Pion electromagnetic current in a light-front model
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The electromagnetic form factor of the pion is calculated in a pseudoscalar field theoretical model with
constituent quarks. We extract the form factor using the”“and “ —” components of the electromagnetic
current on the light front. For comparison, we also compute the form factor in the covariant framework. It is
shown that the pair terms do not contribute to the ™ component of the electromagnetic current; however,
they affect the “~"" component of the electromagnetic curreffs0556-281®9)05503-X]

PACS numbes): 14.40.Aq, 11.10.Ef, 13.40.Gp, 24.8%

The pion, as quark-antiquark bound state, is an appropri- m. _— .
ate system to study aspects of QCD in low and intermediate Li=—1mqy’mq, 1)
energies regions. In the nonperturbative regime of QCD, the m

pion has indeed received much attention, e.g., using the cofuharem denotes the constituent quark mass &pdhe pion

;tituent quark quel on the Ii_ght froﬁ1.—5]. In these stud- decay constant. The electromagnetic field is coupled in the
ies, where the pion is described by light-front wave func'usual minimal way, ensuring gauge invariance. The light-
tions, the electromagnetic form factor has been calculated fqi;om coordinates are defined &8 =K+ k3 k- =k0— K3

low and highg? and a fairly good agreement with experi- andk, = (k!,k?). For the electromagnetic current of the ,

ment has been obtained. However, in several I!ght—front ?t“%e get an expression corresponding to the Feynman triangle
ies [6,7], the importance of the so-called pair terms, i.e.

- o . : 'diagram:
particle-antiparticle pair creation by the photon, has been ex-
tensively discussed for nonvanishimg =q°+q>. In Ref. 2 4
X . . > : ) m k
[7], we studied pair terms in an explicit computation of the jh=— |2e—2ch ——T[S(k) v*S(k—P")
electromagnetic current of scalar and vector mesons. It was fo T

shown that these pair terms are essential for retaining full
covariance. Recentl§8], we also demonstrated in a boson
model the relevance of pair terms for the Ward-Takahashi )
identity, which expresses local gauge invariance (off-  With S(p)=1/(p—m+1¢€). Here N.=3 is the number of
shel) Green'’s functions. The pair terms are the contributionc@lors and the factor of 2 stems from isospin algebra. We
of the zero-mode longitudinal momentum to the current. Wil workiin the Breit frame, where the momentum transfer

In this Brief Report we calculate the pion form factor in a 9°=—(d,)?P°=P °and P{ = —P, =q,/2. The function
similar light-front model as i3], however carefully adress- A (k,p)=(2m)2C/[(p—k)2—m3+1€] is our choice for
ing the issue of pair terms and zero modes in the on-sheliegularizing the divergent integral. The normalization con-
matrix elements of "=j°+j% andj =j%—j3 for q* =0. stantC is found by imposing the conditioR .(0)=1 on the

As in earlier applicationg3], we use an effective La- pion form factor.
grangian approach with pion and quark degrees of freedom. Rewriting Eq.(2) for the “+" component of the current
We choose pseudoscalar coupling: in light-front coordinates yields

X y*S(k—=P)y°A(k,P")A(k,P)], @

j*——2|em2C2 J‘dzkldk+dk —4k~ (kT =P")2+4(K2+m?) (k" —2P")—kTg?
- 2 ¢ 2 fi—le
m 2 4 2 —
k" (PT—k*)%(P —k*) (k - "
1
X , 3
p- k* f2_|6 P,* k* f3_|E p- k* f4_|€ P’* k* f5_|€ ( )
P*—k* Pkt PT—k* p Kt

wheref;=k>+m?, f,=(P—k)>+m?, f3=(P'—k)?+m?, f,=(P—k)>+m3, andfs=(P’—k)?+m3.
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We now separate the terms proportionakiq i.e., the light-front energy, in the loop integral. Therefore we define the trace
Trid=—4k (k*—P")2 (4)

For the other terms, only momenta in the intervat 0" <P* contribute to the Cauchy integration; this means that the
spectator particle is on mass shell and the pole contribution stemskfrentk, + m?)/k*. We also construct thA term for
the pion current matrix elements:

A*(q2)=—ifd2kidk+dk k™ (kT—P™)?
2

’ fi—
kH(PT—k")(P +_k+)2( K~ —— IE)

k+
1
X . 5)
-~ _ f2_|6 ’ -~ f3_|€ -~ -~ f4_|6 r _ f5_|6
P =K ————| P =k~ P =K ————|| P =k~
PT™—k p Kt P™—k p' Kkt
This integral has contributions in two nonzero intervals:

(ho<k*<P™,

(IHP*<kt<P'*,

whereP *=P* + 5. Note that in the Breit fram@* =P, which implies that there appear coinciding poles in &j. As in
[8], we have dislocated them by shiﬂi®'+with 8. The interval(l) corresponds to a spectator particle on mass shell. The

other interval(ll) corresponds to a pair term contribution Fidj). Eventually, we take the limié—0, i.e., P'*=P*, and the
exact kinematics of the Breit frame is recovered.

Let us consider intervalll), P*<k*<P'™ ; after integration ik~ we obtain

) f
dzkldk+( pr——2
"+t
A+(”)(q2):7TJ P k
k+(P'+_k+)2 P'—_ f3 _f_l
Pkt K

(P *—kt)o(kt —P™)

. (6)
fa fa fa fa fa fs
p Kkt P*—k* p Kt P*—k* p Kt PY—k*
The limit to the Breit frame is performed, after the momentum fraction is used as integration vaxiatfle! — P*)/(P'+
—P™). The integration becomes

X

A+<n>(q2):wiJ o2k, dx f a;(x)a(fl—x)f — (7)
( 1-x x/11-x x/{1-x X

which vanishes linearly with5 when the Breit frame is recovered:"(")(q?)—0. Thus we see that in this model, the pair
terms in the “+” component of the electromagnetic current disappear. In other words, the zero modes do not contribute to
A™. As a consequence fgr, one obtains agreement between naive light-front and covariant calculations.

In the same model, the+ " matrix element of the electromagnetic current is calculated from(Bqwhere the trace reads
Tr,=—4k ?k" —4P"(2k? + kTP " +2m?) + k™~ (4k? + 8k P — g%+ 4m?). (8)

In the same way as above, we separatekthéerms in the trac€8) where the other terms do not get contributions of the pair
terms. In this case, however, tiie term acquires pole contributions in two™ intervals. The first one corresponds to a

spectator particle on mass sh@ll and the other one to the pair teih). The A term for this component of the electromag-

netic current is
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o[ dPk dkTdkT —4kT?KkT k(4K + 8K PT —g?+4m?)

k+(P+_k+)2(P'+_ k+)2( k= — fl_le)

k+
1
8 f f f f ' ©
—le , —le —le , —le
P —k ——2 +> Pk —— (P‘—k‘— - +) Pk ——
P™—k P'+_k+ PT—k P/+—k+
|
At this point we use the identity j*=e(P“+P'*)F_(g?). (12
(k™)2k* - - kf+ m> k@n>(kf+m2) If covariance'is respected_ @n a model calculation of the cur-
> (k=P )+P 4+ — o rent, one obviously can utilize each component to extract the
kf—m+ie k k*—m+ie electromagnetic form factor of the pion. We explicitly prove
(10 that, in the case of the =" component of the electromag-
in order to perform conveniently tHe" andk™ integrations. ,:g::g current, it is necessary to include pair term contribu-
The first term on the right-hand side of EG0) is odd under We only use the %" and * —” components of the elec-

the transformation K —P")— —(k™—P7) and conse-

guently its contribution to the integration in E@) vanishes.

Taking the limit6— 0 results in the following pole contribu-
tion in interval (I1):

tromagnetic current. In the first case, the result for the form
factor written in light-front coordinates for this model is ob-
tained integrating Eq(3) overk™ for 0<k™<P™ [interval
(D]. In this way the null-planélight-front) wave function for

92 the — meson appeais3,5,11],
2
m _——

B T2 In(f;) m 1

A (||)(q2)=47T P J’dsziZZ - — (I)(X,kL):Cf_(S’JTNC)lIZ 5 > > =,
I -1 " (1=x)(m?—~Mg)(m7—Mg)
j=2i#] . ( (13

11)

wherex=k*/P™,

The sum of the contributions in interval$) and (ll)
yields the same result for this component of the pion current
as the calculation in the covariant formalism. The residue
associated with the virtual pair creation process by the pho-
ton in the triangle diagram is responsible for keeping covaand the free masM§=M 2(m?,m?). The form factor is
riance in the “=" component of the electromagnetic current
and it corresponds to the contribution of a zero modgto d%k, dx /kf+m2 q?

: . : onFi(g?)= + — | ®F (x,k )Pi(x,k,)
The issue of the covariance of light-front perturbation ~=(d 2 2 | P GKOPiIXKL),
. M 2x(1—Xx) X

theory and the relation to the zero-mode contribution to the (14)
amplitudes has also been discussed in R&f. This result

also confirms a conclusion ifv,10}; i.e., it is important to  \yhered; is the initial pion wave function and; is the final
include pairs terms for maintaining full covariance of the gpe.

2 . m2 — 102 4 m2
ki+m Jr(P k)L+mR_ )

2 _ 2 2 M2\ —
MR M (m 1mR) X 1_X 1

light-front model. _ _ Extraction of the electromagnetic form factor of the pion
In general the form factor is extracted from the covariantyia the “—* component of the current yields two contribu-
expression tions, corresponding to a spectator particle on mass shell
[interval (I)] and the contribution of the pair ternimterval
, , (I}
| I
| | 2 21,2 2
d<k, dx ki+m
! | F;(I)(q2)=f—lz<P+2x+qz e )
P—k 2x(1—X) xP
f X BT (k) P;(x.Ky), (15
| 1
P k ) P’ 2 2
_ C*m _
: : FW“')(qZ):;f—zNCA M(a?). (16)

FIG. 1. Pair creation diagram f¢i". Note that forj ~ other pair
creation diagrams appear. Adding these results gives
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100 of the partially conserved axial vector curréi(0|Af| ;)
zlmf,fwéij . Following Ref.[3], we takeA{‘zay“yf’riq/Z
and use the interaction Lagrangigl for the pionaq vertex
function. In this way we obtain

(Q2)

w 101

T Py°S(k) y°S(k—P)A(k,P)],
(18

F

P2f me d'k
| 7T:_
f. %) (2m*

and in terms of the model light-front wave function we get

Ne | Y2 d?k, dx
f,=m PEE f ” d(x,k,).

Q2 (GeV?2)

(19

FIG. 2. Pion form factor as a function %= —q?. Covariant
results(solid curve, calculation withj ~ without zero-mode contri-
bution (dashed curve and including it(dot9; experimental data
[12].

Numerically, this yieldsd ;=101 MeV to be compared with
the experimental valug,=93 MeV. Similar discrepancies
were found in Refd.1,3] and appear to be a property of these
models, once the pion radius is fitted.
17 In summary, using a pseudoscalar constituent quark
. L : . model, we calculated the pion form factor in light-front as
i‘l;lhtlﬁesng\r/l\ff;tgre]tfric(z)t dtglaft OI: ;ﬁ ;rr;?(?rgitr;g rtWOO'PfAlédeelechr:)ﬁgS_swe|| as in covariant field theory. The results are in perfect
netic form factor of pseudoscalar particigson)—see also agreement with each other ?nd also desqnbe the experimen-
Fig. 2 tal fpr_m factor well in theq® range co_nS|d_ered. We h_ave
'i'hé remaining integrals are evaluated numerically and th explicity demonstrated that the contribution of the light-
front pair terms vanishes for the+" component of the

results are presented' in Fig. 2. The two free parameters I(glectromagnetic current. The vanishing pair term contribu-
this model, the constituent quark massand the regulator

' - tion in the “+ component of the current is a peculiar prop-
r:gs; 4rgRée\<V/er_?h£')§gn amsargs_v(\)/.ezfgkeGI:;;[g]ljgdGrg\? erty of the model under consideration, which does not justify
Thé regulator.mass is obtained by adjusting tﬁe pion ele.ctrqc-)mIttlng the pair terms in general._ In the case of the
magnetic radius. In this model the form factor calculated in‘.—”gomponent of t_he elect.romagnetlc.current we find con-
the light-front fra.mework agrees with the one obtained in thetrIbUtlonS of the pair term in the matrix elements. This is

4 ) : . shown to be crucial for respecting full covariance in the

covariant formalisn(see also Fig. 2 In the covariant calcu- i

) : . : . . ight-front model.
lation the energy integral, i.e., the® integral, is obtained
analytically via Cauchy’s theorem. Again, the remaining part This work was supported in part by Probral/CAPES/
is computed numerically. Furthermore, in Fig. 2, we com-DAAD project No. 015/95. It was also supported by the
pare the calculated model pion form factors to experimenBrazilian agencies CNPq and FAPE$€ontract No. 97/
[12] and find good agreement. 13902-8(J.P.B.C.M)]. J.P.B.C.M. and T.F. acknowledge the

The pion decay constant is measured in the weak leptonibospitality of the Institute for Theoretical Physics, University

decay of the charged pion and appears in the matrix elemewtf Hannover.

Fo(a)=F,"(a»+F,"(q®)=Fi(g?.
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