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Time development of vacuum structure in chiral phase transitions
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The conditions for the restoration of chiral symmetry and the subsequent formation of the disoriented chiral
condensates in ultrarelativistic nucleus-nucleus collisions are studied by using thedimeadel. A rapid
increase of temperature in the initial thermalization stage is parametrized so as to simulate the result of the
parton cascade model. The subsequent decrease of temperature in the cooling stage is described in terms of the
one- or three-dimensional scaling hydrodynamics. The effective potential at each temperature is calculated in
the massless free particle approximation. Those ingredients are used to solve numerically the equation of
motion for the chiral condensates. In general, solutions exhibit characteristic damped oscillations of which
patterns are very sensitive to the maximum temperafyy@and the time when the maximum temperature is
attained. In particular, it is found that the maximum temperature must be much higher than the critical
temperaturd . in order that the chiral symmetry is restored temporarily, 8.9 175 MeV forT,~123 MeV
with longitudinal expansion. Moreover, it is suggested that the disoriented chiral condensates will be formed
most easily in the- o direction.[S0556-28139)02404-9

PACS numbgs): 25.75-q, 11.30.Rd, 12.38.Mh

I. INTRODUCTION circle would be realized with equal probabilities if the effect
due to the explicit symmetry breaking is ignored. This has
Quantum chromodynamics predicts that a hadronic sysbeen an explicit or an implicit assumption made often in
tem will undergo a phase transition into quark gluon plasmaprevious works on the disoriented chiral condenséesC)
(QGP when the temperaturgis larger than a critical value [1,2]. It is, however, very questionable if such a supposition
T.. Ultrarelativistic nucleus-nucleus collisions have thus at-s realistic. An initial condition for the rolldown which car-
tracted much attention because the colliding system magies information on the earlier stage of the collision process
evolve into a hot matter with the maximum temperatlife ~ may easily change the scenario of DCC formation. Again it
which is larger thanT.. However, the conditionl =T, is necessary to study the time development of the vacuum
does not necessarily guarantee the occurrence of phase tratructure using a plausible equation of motion for the chiral
sition in a time-dependent collision process because theondensates with plausible initial conditions appropriate for
change of the vacuum structure that characterizes the phagérarelativistic heavy-ion collisions.
transition(e.g., melting of the chiral condensatakes a fi- The purpose of this pap¢8] is to study the time devel-
nite relaxation time. The system cannot undergo a phasepment of the chiral condensates in ultrarelativistic nucleus-
transition instantaneously everlifexceeds ... It could hap-  nucleus collisions by using the linearmodel and the effec-
pen that the system does not undergo the phase transitidive potential evaluated within the massless free particle
even if the temperature becomes much higher fhaif the ~ approximatior{1]. The maximum temperature for which the
system expands and cools down very rapidly. In such a casghiral symmetry is restored is estimated. The possibility of
there might not be enough time for the vacuum to rearrang®CC formation subsequent to the chiral symmetry restora-
itself. Nevertheless, little attention has been given to the betion is also discussed.
havior of chiral condensates in the initial thermalization In Sec. Il, an equation of motion for the chiral condensate
stage. It is thus necessary to study the time development ¢$ derived and is applied to the case where the system heats
the vacuum structure under the environment which may bé&p with the time-dependent temperature which simulates the
realized in the entire stage of ultrarelativistic heavy-ion col-result of the parton-cascade model and then cools down fol-
lisions lowing the one- or three-dimensional scaling solution of rela-
It is expected that the chiral symmetry of the vacuum will tivistic_hydrodynamics. Numerical results for some typical
be restored in the QGP phase. It is signaled by the vanishinghoices of the initial conditions are given in Sec. Ill. The
chiral condensates. If the vacuum stays near the origin of thgossibilities of the chiral symmetry restoration and of the
chiral space for a while and then starts to roll down toward &2CC formation are examined. Conclusions and discussions
point on the chiral circle regenerated due to the cooling, thé&re given in Sec. IV.
location of the point will distribute at random event by event
or domain by domain. The location of the regenerated con- Il. THE LINEAR o MODEL AND EQUATION
densate will in general be different from that of the physical OF MOTION

vacuum atT=0. Condensates at any point on the chiral ) S
The linearec model Lagrangian is given by
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where Ho is the explicit breaking term ands=(o,7)  The equation of motion fo , becomes

=(¢g,P1,02,d3). Since we are interested in the condensa- B
tion of the field ¢, it is divided into the condensation O®,+(Aat A Pu—HB,0=0, ®

part ®=(d,,®,,P,,®3) and the fluctuation partd  \where
=(do.b1.b2.,93). The tilde fields have the propertye,,)
=0, where the expectation values refer to the vacuum with Ag(P)=N(DP2—0v?), (9a)
the condensationb. The normal ordered Lagrangian be-
comes ~ ~ 1 ~ °
. Ath,,u:)\(<:¢2:>+2<:¢M2:>):E)\Tzi (;ZSZZE ¢V2'
L:=:Lo+  Linear: +: LIP: +: £indep. (2a) v=0
(9b)
where The suffix cl means the classical contribution and th im-
1 A plies the thermal contributioh.
L= E&Md)ﬁ“d)— Z(q>2—v2)2+ Hd,, (2b) The next task is to solve ES) in A-A collision cases. In
A-A collisions, the system expands initially along the colli-
sion axis and then the expansion along the transverse direc-
: Llinear: =(9M<I>(9“ES+ Ho—\(®%—0v?) E D, |, tion also becomes appreciable afterwards. We consider first
: the one-dimensional expansion. Convenient variables are the
(29 proper time 7=(t?—2%)¥2 and the rapidity 7=0.5 I (t
+2)/(t—2)]. For simplicity, the scaling case
> qpiggi)?p% (#n-independent cageés considered herfgd]. Then the equa-
i tion of motion depends on only the variabteThe tempera-
1 ture T as a function ofr is taken as follows.
+_q>2;3,2;}, (2d) The parameter, is introduced to represent the time de-
2 pendence of the temperature. The temperature becomes
maximum whenr= 7, (thermalization timg Then we use a
.ﬁindep.:.la Do P— f{(az)z_zvzaz}. (2¢) scaled proper timex=7/7,. The time dependence of the
itttk 4 B temperature aftek=1 is determined by scaling hydrody-

o ] _ nhamics. Since the system expands one dimensioriglk), is
Here, the normal ordering is defined for the vacuum W'thproportional tox~Y3'for x=1. The temperature may not be

2
B

L= {(Z @,

condensationb. Note that £iii*": does not depend o ell-defined for the nonequilibrium thermalization stage
explicitly. _ where O<x=<1. Thermalization may be achieved st x,
Taking the thermal average f@¥, we have where O=x;<1. Nevertheless, we treat the system as if it is
in a thermal equilibrium for &x<1 in order to parametrize
(:Liinear:) =0, 3 conveniently the time development of the quant®y, , .

1 Some trial functions ofT(x) are considered to check the
pdep.y — DU D2+ — P2 B2 (4 sensitivity of the results on the choice Bfx) for x<1.
(Linc") (EI o) 2 EI Goiog. @ First, we assume an exponential behavior fer0<1:

X

0(1—x)+Tx Y30(x—1), (10a

Tm

T;

. 1 - - A ~ ~
<:£:2§‘ep:>=<:5&maﬂ¢:> — Z{C@2) 20332}, T0=T,

5
~ where @ is the step function. This form for9x=<1 is cho-
The expectaion values of the cubic termsdinvanish auto- sen to simulate the result of the parton-cascade midel
matically in the massless free particle approximation. Thig=or comparison, we consider also two other choices for 0

approximation for the fluctuation fields; gives[1] =x=1,
— > T2 TX)=(T, = T)X+T;, (10b)
(i) =Triexp(—Ho/T): ¢} 1= 15, (6)
Too= T T )T (100
whereT is the temperature arid, is the free part of Hamil- 0= In2 nix+ 1)+ T, ¢

tonian. It should be noted thdt-dependent normal ordering

may affect the equation of motion through-dependent and Eq.(8) is now rewritten as

mass. However, the effects can be neglected in the massless

free particle approximation. The ternl I"%°P:) is indepen-

dent of & because of the above approximation. One can ihe effects of back reaction are ignored in our calculation. How-

write the effective potential as ever, it is expected that the effects do not change the main results

because the energy of the environment is much larger than that of
V(D , D )=£(<D2—v2)2+ E)\Tzq)z_ Hd ) the condensates in the thermalization stage and also in the cooling
efft =07y 4 0 stage before freeze-out.
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FIG. 1. Finite-temperature effective potential withda and
with (b) the explicit breaking term at various temperatures.
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where

1
Ag=N(DP>—v?)— A, AchE)\TZ(T).

The factor A, comes from the derivativeg?/9x? and
9%/ 9y?. However, we neglech,, since we consider the case
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FIG. 2. Time evolution of chiral condensate for various maxi-

mum temperatures withy,=0.5 fm andT;=1.0 MeV in the one-
dimensional expansion.

wherer= (t?—x?—y?—2z%)'2 The time dependence of tem-
perature is taken as

T(X)=T; (13

Tm>x Tm
T_i 0(1—x)+ 70(x—1).

Ill. NUMERICAL RESULTS

In this section, the results of numerical calculations are
presented. Equations of motighl) and(12) are solved nu-
merically for given initial conditions. The linear model has
three parameters, v, andH which are determined by the
pion mass, thes mass, and the pion decay constdnt
~92.5 MeV. The physical vacuum is located at the mini-
mum of the potential, ®,/v,®/v)=(f,/v,0).

Pion ando meson masses are taken as 135 and 600 MeV,
respectively. Then, one has=20.0,v=87.4 MeV, andH
=(119 MeV)’. These values ok andv with H=0 yield
the critical temperature for chiral symmetry restoratibn
~123 MeV [see Fig. 1a)]. In the realistic case, the critical
temperature cannot be determined exactly siHces non-
zero. However, one can estimate the temperaflife at

' ~ which one(false minimum disappears. It is given by
where the system is homogeneous along the transverse direc-
tion, that is, we neglect the effect of a finite transverse size of

the colliding system.

For comparison, we consider also the three-dimensional

expansior{1]. The equation of motion is

1
(©?=0?)+ SAT? |0, —HJ, 0=0,
(12)

1/2

T*_

C

V2

3
o

H 2/3
2213 _)

- (14

This temperature is about 90 Md¥ee Fig. 1b)], which is
considerably smaller than, .

The initial condition is taken to beb=(f_,0) and
d®/dr=0. As an order of magnitude guess, we assume that
(dq)M/dT)Zz(dCDM/dt)ZZC(dZZ'SM/dt)Z:):
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FIG. 3. Time evolution of sigma and pionrf) condensates in

one-dimensional expansion fdr,,=175
T,=1 MeV.

7TTi2 ’7TTi2 7TTi2 'n'Ti2

80 100

MeV, 7,=0.5 fm, and

15 20 25 30

'C/Tth

FIG. 5. Time development of the condensate for various ther-
malization functions withry,= 0.5 fm andT,,=250 MeV.

where we takel;=1 MeV and r,=0.5 fm. The condensa-

dd, dd; dd, dd,
dr ' d7 "dr ' dr

Here, the sign is chosen arbitrarily.

The time dependence of the condensation for varibys

in the one-dimensional expansion

,zi(‘ J30' 3030’ y30,

(19

tion value gives us the information on chiral symmetry res-
toration. Vanishing condensation implies chiral symmetry
restoration. It is found that the condensation ofcannot
reach zero even wheh,,=160 MeV>T.. Temporal resto-

ration occurs fofT,,=175 MeV. It should be noted that the

case is shown in Fig. 2
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condensation does not exactly follow the minimum of the
effective potential. This is due to a dynamical retardation
effect. In the case wheh,,=175 MeV, the vacuum stays at
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FIG. 4. Time evolution of chiral condensate for various maxi-

mum temperatures withry,=0.5 fm andT;=1.0 MeV in three-

dimensional expansion.
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FIG. 6. Time development of the condensate for various initial

temperatures with,=0.5 fm andT,,=200 MeV.
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the minimum (really a saddle point®,=(—f,,0) for a 12 ' ' '

while and then comes back to the true minimum. This be-
havior is distinctly different from the other cases. The long
stay at the false minimum implies just DCC formation.

These behaviors of condensation are understood as fol-
lows. One is the case with relatively loW,=T, (the case
with T,,=150 MeV in Fig. 3. In this case, condensation
cannot reach zero since the system cools rapidly. The poten- |
tial becomes a double-well type rapidly enough before con- ~
densation goes through zero and hence the chiral symmetry €
is not restored. It is restored T, is much higher. In this
case(the cases witfT,,,=200 MeV and 250 MeV in Fig. R
the condensation can go through zero and reach near the
opposite side of the chiral circle. Afterwards, it comes back
to zero again and finally stays at the true minimum of the
potential. The last case is DCC formation case. In this case
(the case withT,,= 175 MeV in Fig. 2, condensation cannot
cross zero again because the system cools quickly. The
vacuum stays at the other minimum of the potential for a 08 . . .
long time. It is just DCC. Of course, the vacuum moves 0 5 10 15 20
along the chiral circle and eventually comes back to the true /T
minimum as shown in Fig. 3. The® condensation stays
almost zero and only condensation varies at an early stage.
After the vacuum stays at the false minimyreally a saddle
point) for a while, both the pion and the condensations
start to vary. The vacuum moves along the chiral circle and
makes a damped oscillation. teristic damped oscillations of which patterns are sensitive to

In the same way, the time development of vacuum conboth the maximum temperature and the time when the maxi-
densate was also investigated for the three-dimensional exaum temperature is attained) temporal restoration of chi-
pansion. The result is shown in Fig. 4. Since the decrease ol symmetry can take place only whén, is much larger
temperature is too rapid, there is not enough time for thehanT., and(c) a large domain of DCC may be formed most
chiral symmetry to be restored unleSg, is very high. The easily in the— o direction. The oscillations damp toward the
chiral symmetry is restored only whefi,,=>300 MeV  asymptotic values given by the physical vacuum at zero tem-
>T.~123 MeV. Hereafter, we focus on the one- perature. The point&) and (b) thus imply that the conden-
dimensional expansion case which is more realistic at vergates do not stay near the origin of the chiral space for a long
high energies. time even when the symmetry is restored. It is highly un-

We found that, in most cases, the time development of thékely that the condensates are nearly at rest near the origin.
condensation is insensitive to the choiceTdqix) for 0=x  Therefore, it is not expected that the rolldown towards every
<1. An example ford, is shown in Fig. 5. We also found direction takes place with equal probability. Our result sug-
that the result is insensitive f§ as shown in Fig. 6. Finally, gests that the rolldown toward the o direction is most
we study the dependence on the thermalization time. An exprobable. These phenomenon are caused by the initial con-
ample is shown in Fig. 7. Now the result is sensitiverp dition and the change of environment expected in ultrarela-
The rapid thermalizatioismall 7)) implies that the system tivistic heavy-ion collisions.
starts to cool at an early time. Therefore, a decreasipg In our model, the effective potential changes continuously
with a fixed T, is effectively and approximately equivalent as time goes on while the condensates do not follow the
to a decreasind@ ,, with a fixed r,, as is seen in Fig. 7. minimum of the potential because the potential changes rap-
(Compare it with Fig. 2. idly. In this sense, our scenario is in between a quenching
scenario and an annealing one.

We are aware that the massless free particle approxima-
tion is not necessarily reliable at low temperature. The ef-
We have investigated the time development of the chirafects of finite mass and the frictid] have to be taken into

condensates which may take place in ultrarelativisticaccount in order to improve the theory. The finite volume of
nucleus-nucleus collisions. We have used the linearodel  the colliding system may also give a considerable effect.
with the temperature-dependent effective potential as &lowever, we expect that the qualitative features of our re-
framework to describe effectively the chiral phase transitionsults will be preserved even after such an improvement pro-
in both the thermalization and the cooling stages. The timeided the friction is not very strong. A crucial point is that
dependence of temperature in the thermalization stage wdke time scale of the change of the condensates is comparable
parametrized to simulate the result of the parton-cascad® that of the change of temperature. This is the reason why
model and that in the cooling stage was described in terms afur picture is in between quenching and annealing. We ex-
the one- and three-dimensional hydrodynamical scaling. Ipect that this feature will be retained in an improved theory
was found thata) in general the condensates exhibit charac-which is under investigation.

FIG. 7. Time development of the condensate for various ther-
malization times withT ;=200 MeV andT;=1 MeV.

IV. CONCLUSIONS AND DISCUSSIONS
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