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Integral equation approach to relativistic Coulomb excitation
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We develop a formalism describing Coulomb excitation in relativistic heavy-ion collisions as a general
coupled-channel problem. The Sctiger equation for the target nucleus is expressed as a set of coupled
integral equations for &(w) matrix, whose on-shell matrix elements give the excitation amplitudes. The
method of Kowalsky and Noyes is used to regularize the kernels of these integral equations, making the
equations amenable to numerical solution. An application of the method is made to the study of the population
of a model state representing b2 giant resonance ii°Ca at an excitation energy of 20 MeV, due to the
electromagnetic field of 3%Pb projectile with kinetic energy per nucleon up to 100 GeV. The results of the
numerical solution of the regularized coupled integral equations are compared to results obtained from the
Born series, and from the long-wavelength approximation. These approximations are found to be adequate up
to bombarding energies per nucleon of 3 GeV. We investigate the reasons for failure of these approximations
at higher bombarding energy. Due to the finite travel time of the electromagnetic pulse across the target
nucleus, the sudden approximation is found to be inapplicable to the excitation of the giant resonance. Thus the
method of numerical solution of the regularized coupled integral equations seems to be the most suitable
approach to the study of very high-energy Coulomb excitation of giant resond86&&6-28139)03404-4

PACS numbgs): 25.70.De, 13.46-f, 24.10.Jv, 25.75:q

[. INTRODUCTION rather complicated, and until now it has been necessary to
add a long-wavelength approximation in order to do actual

Most of the analyses of low-energy Coulomb excitationcalculations.
data have been based upon a classical time-dependent de-If we use the frequency domain, the amplitudes of the
scription of the relative motion of the colliding nuclei, with a various channels are expressed as functions.dthe Schre
guantum-mechanical description of the excitation of theselinger equation is expressed as a set of coujiéegral
nuclei as they proceed along their classical Coulombequations for these functions, with as the independent
dominated orbits. A comprehensive discussion of this nonvariable. In this approach, the retarded interaction potential
relativistic theory is presented in the books of Alder andenters the integral equations in terms of the Fourier trans-
Winther [1], and of Biedenharn and Brussaf@]. The form of its time-dependent expression. A convenient multi-
method is applicable, in principle, whenever the deBrogliepole expansion of this Fourier transform was given by Alder
wavelength associated with the relative motion is sufficientlyand Winther[10]. It turns out that this multipole expansion
small compared with the other important lengths in the probhas a simpler, more compact structure than the multipole
lem. expansion of thé-dependent interaction.

A topic of major interest in current research in nuclear Until now, only the first few terms of the perturbation
physics is Coulomb excitation in intermediate- and high-expansion of the excitation amplitude have been considered
energy collisions between heavy nucleee, e.g., Refs. in the literature(see, e.g., Refl] for the difficulties arising
[3-8)). In this energy range, the high relative velocity of the in developing further termys This is equivalent to consider-
colliding nuclei implies that the retardation of the electro-ing the first terms of the iterative solution of the integral
magnetic interaction between them plays an important roleequation in thew variable. The first term is simply the on-
As a consequence of this retardation, the collision is mor&hell interaction matrix element, i.e., the Fourier transform of
“sudden,” which enhances the direct and/or multistep exci-the interaction, evaluated at the frequency corresponding to
tation of high-energy states. Furthermore, at these energiethe energy difference between initial and final states. The
one benefits from the circumstance that the ratio between theecond-order Born approximation has been used to account
resonance cross section and the background cross sectionfis the excitation of states that cannot be reached from the
drastically improved9]. ground-state by a single-step procésse, e.g., Refl1]). It

The detailed quantitative analysis of the Coulomb excita-also provides an important correction to the first-order matrix
tion process can be performed in either the time domain oelement in the situation in which highnuclei collide at low
the frequency ¢ domain. In the former, the time-dependent relative speed§12]. The analyses available in the literature
Schralinger equation for the internal motion of the colliding are mainly concerned with bombarding energy not exceeding
nuclei is expressed as a set of couplitfiferential equations, 1 GeV per nucleon.
which are numerically integrated. This approach requires a Analyses that use the first few terms of the perturbative
multipole expansion of the retarded interaction potential, exseries implicitly assume that this series converges. However,
pressed as a function bf Expressions for this expansion are for a highly relativistic projectile, the convergence of the
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Born series is made questionable by the strong retardation tfiese can be characterized completely by standard electric
the interaction. We will see below that as the projectile speednd magnetic multipole operators. However, a more com-
v approachex, and y=1/J1—v?/c? becomes large, the plete analysigSec. Ill) of the integral equations requires the
magnitudes of some of the matrix elements of the retardeihclusion of off-shell matrix elements. We show that electric
interaction potential diverge as W) Furthermore, the and magnetic multipole operators are not sufficient to calcu-
greater projectile speed implies a more sudden impulsdate these off-shell matrix elements. An additional term is
which broadens the» range over which the Fourier trans- required, which vanishes on-shell.
form of the interaction is non-negligible. Both these effects In order to solve the coupled system of integral equations,
work against the convergence of the Born series at very higive use the regularization method of Kowalski and Noyes
projectile velocity. (Sec. IVA) to remove the singularities in the kernels, and
In order to test the reliability of various approximations to then we replace the regularized integral equations by an ap-
highly relativistic Coulomb excitatiofbombarding energy proximately equivalent set of simultaneous linear equations,
up to 100 GeV per nuclednwe have attempted a non- Which we solve exactlySec. IVB). We also develop an
perturbative solution of the coupled integral equationsin iterative solution of the integral equatiof®orn expansion,
We first adapt the regularization procedure of Kowalski andSec. IV Q. The sudden approximation is discussed in Sec.
Noyes[13] to remove the difficulties associated with the sin- 1V D.
gular kernels of the integral equations. This makes the equa- The physical model is discussed in Sec. VA. The com-
tions amenable to an approximate treatment, in which th@arison between the exact excitation amplitudes and those
continuous variablev is replaced by a discrete index, calculated using various approximations is given in the fol-
and the coupled integral equations are replaced by a large séwing subsections.
of linear simultaneous equations, which can be solved ex- In Sec. VI we show how the integral equation formulation
actly. The results are then compared with solutions based ofay be modified if some of the excited states have finite
approximations such as truncation of the Born series, or thwidths. We also explore the connection between the integral
long-wavelength approximation, or the sudden approximagguation approach to Coulomb excitation and the eikonal
tion. approximation. Some conclusions are drawn in Sec. VII.
The semirealistic example we have chosen to illustrate the
main features of our approach is the excitation oftagtant
resonance irf’Ca. This excited level is assumed to have a Il. THE EXCITATION AMPLITUDE
small permanent quadrupole distortion. The coupled-channel
problem associated with this model provides an interesting
study of reorientation effects. The small anharmonicities in Our aim is to determine the amplitudes for the population
the giant resonance in our simple model will affect the finalof excited states of projectile and target nuclei after they
population of the differenM states. More generally, anhar- have been involved in a collision. We will use the standard
monicities can have relevant effects on the values of multipleéemiclassical description, in which we take advantage of the
phonon cross sectiond4,8], although the spacing of the short de Broglie wavelength associated with the relative mo-
levels is only slightly modified. tion to justify a classical description of the orbit of the pro-
When nuclei collide at high relative kinetic energy, andjectile as it moves past the target. The projectile and target
with impact parameters greater the the sum of the nucleagxperience a mutual time-dependent interaction during the
radii, Coulomb excitation is not the only process that cancollision, which is added to the Hamiltonian describing their
occur. For example, the pion-production cross section can bi@ternal degrees of freedom. This Hamiltonian is now explic-
appreciable at projectile energies of the order of 15-20 Ge\tly time dependent, and leads to a time-dependent Schro
per nucleon, depending upon the nuclei being considered. Atinger equation, which governs the time evolution of the
somewhat higher energy<(50 GeV per nucleon electron-  internal degrees of freedom. Quantum effects are fully taken
positron pair creation can also be significant. Our goal is thénto account in the description of the internal motion of the
more modest one of investigating the adequacy of varioughteracting projectile and target.
approximation methods for the study of pure high-energy In order to simplify the following discussion, we will as-
Coulomb excitation. This seems to be a reasonable first stegume that the projectile remains in its ground state through-
on the way to a complete description of high-energy colli-out the collision. We ignore the internal degrees of freedom
sions at large impact parameter. Several studies of Coulom®f the projectile, and usé to represent all the internal de-
excitation at bombarding energies up to 100 GeV pemgrees of freedom of the targeéiy(¢) is the part of the inter-
nucleon have been developed without reference to pair creaction referring only to these internal target degrees of free-
ation and/or pion productiofsee, e.g., Ref$3,15]). dom, and does not depend explicitly on time. The time-
In Sec. Il, we first discuss the difficulties associated withindependent eigenfunctions and eigenvaluesigfare ¢,
the multipole expansion of the time-dependent Lienard-and E,, respectively. We assume that the relative motion
Wiechert retarded potential. Then the amplitidg, for ex-  has already been given in terms of a classical trajectory, from
citation of a final statd starting with initial statei, is ex- which we obtainV({,t), the operator responsible for the
pressed in terms of &(w) matrix, which is shown to satisfy projectile-target interaction. Thus the Sctiimger equation
a system of coupled integral equatidis. for the internal motion of the target can be written
In first-order treatments of the integral equatidiB®rn 5
approximation, the interaction responsible for Coulomb ex- 2 9 _
citation enters only via its on-shell matrix elements, and (Iﬁﬁt Ho)w(g,t)—V(g,t)w(g,t). @D

A. The differential form of the Schrodinger equation
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In the standard method for solving this problem, the wave If the projectile moves with speed at impact parameter

function is expanded in terms of the eigenstateslgf b, then
N b
)= a,(t)e '@, ~—
W(L,1) EO ba,(1) Tpuls€ Yo
where w,=E_ /f. If this expansion is substituted into the
Schralinger equation(2.1), it is found that the amplitudes and
a,(t) satisfy the set of coupled differential equations

. : 2R
iﬁaa(t)=% <¢a|v(t)|¢/3>el(w"7w5)taﬁ(t)- 2.2 7'sweep'V_T-

Since the target states, are angular momentum eigen-
states, the evaluation of the matrix elements in B2  Thus the conditionrgyees Tpuise 0CCUrS wWhen
requires a multipole expansion ®f(t), based on the target
origin. The strong retardation effect associated with the high 2R;
projectile speed makes this difficult. More specifically, sup- b
poseTpyseis the duration of the electromagnetic pulse expe-
rienced at any point in the target angeepis the time re-
quired for this pulse to sweep across the targetrglfee, For a grazing collision, with Rr~b, this is equivalent to
> Thuser different points in the target will feel the electro- y>1. In this situation, the evaluation (()fz)a|V(t)|¢ﬂ> be-
magnetic pulse at markedly different times. Conversely, atomes difficult, and it has so far not been possible to develop
any given time, the spatial dependence of the projectilea scheme for the exact evaluation of this matrix element.
target electromagnetic interaction will vary in a complicated In appropriate circumstances, one can use an approximate
way within the target, and will not be susceptible to a con-treatment of(¢a|V(t)|¢B) based on the smallness of the
venient multipole expansion. ratio

y>1.

target dimensions
dominant wavelength associated with the electromagnetic pulse

This is analogous to the long-wavelength approximation, faadvantage of this approach is the simpler and more exact
miliar from the theory of photon absorption and emission.representation of the Fourier transform of the interaction.
However, in that situation, the smallness of the above ratio iThe disadvantage is that the solution of the coupled integral
guaranteed by the weakness of the electromagnetic couplingguations is computationally more demanding than the solu-
constante?/#c. In the problem of relativistic Coulomb exci- tion of the original set of coupled differential equations.
tation, we do not know what to use for the denominator inHowever, we will see that the use of a regularization proce-
this ratio until we have solved the Schlinger equation. dure makes the set of coupled integral equations readily ame-
Thus the application of the long-wavelength approximationnable to numerical solution.

in this context may be dangerous. One of the goals of this We begin by rewriting the differential equatig2.l) in
work is to test the long-wavelength approximations in somethe form

cases in which we can solve the Safirger equation ex-
actly. At relatively low energie$0.6—1 GeV per nuclegn
good results have been obtained, e.g., in Rdf§,17).

eli/)Hot

J_ .
Sl D]= —— V(D). (29

B. The integral form of the Schrodinger equation This can be immediately integrated, to yield an integral

Although retardation makes it difficult to work directly equation

with (¢,|V(t)|#s), the Fourier transform of this time-
dependent matrix element has a simpler, better convergent, y (¢ t)=e (/" Ealgp
structure. This was first demonstrated by Alder and Winther

. A . t !
ElO], who gave a full multipole expansion of the Fourier +f (?I—te’(”ﬁ)Ho(t*t')V(g,t’)z//a(g,t’)
ransform. In the quoted monograph], Alder and Winther _ih
had already demonstrated how the Coulomb excitation prob-
lem could be expressed entirely in terms of the Fourier trans- 2.4
form of the interaction. This involves replacing the set of
coupled differential equations ihby an equivalent set of whose solution satisfies the ScHinger equatior(2.1), cor-
coupled integral equations in the conjugate variableThe  responding to the initial internal wave functiafy, .
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It is convenient to express the time-ordering implicit in then Eq.(2.9 can be rewritten as
Eqg. (2.4) in terms of the step functio® (t—1t'),

lpa(gat):ei(i/h) Eatd)a T:Bﬂ’(wﬁ_wa)zi[alga_5ﬁa],

aﬁa=5ﬁa—iTﬂa(wB—wa), (21@

and we see that the excitation amplituggs, will be deter-
mined once we know the “on-shell” quantitie$z,(wg
XV(L ) oL 1) —wy).

It is shown in Appendix B thatz,=a,g, and thus Eq.
10 implies that the on-shell matrix is also symmetric.

+ f"c ﬂ@(t_t/)e—(i/ﬁ) Ho(t—t")
if

— oo

and then to use the Fourier transform of the step function @.
The unitarity of thea matrix is an expression of conservation

@(t—t’)=i. fx el t_)dw (2.5 of pr_obapility, which follows from the Hermiticity of the
2w ) w—id Hamiltonian.
) ] . The effect of a gauge transformation generated by a gauge
to rewrite the integral equation as function y is to multiply every wave function for a system of
. 1 (= ai(o—Ho /)t chargeq by the phase
Yol ) =e W Ep, - o— _do— gilax/ic)

~ dt’ Ci(o—Hq At , , This operation will have no effect on any of the scalar prod-
X 70076 TNV (). ucts in Eq.(2.8). Thus we see that the functiofig,(w), and
the excitation amplitudesg,, given by Eq.(2.10, are invari-
(2.6)  ant with respect to a gauge transformation.
We can express the integral equation for the wave func-
tion as an integral equation fdrs,(w) by taking the scalar

product of Eq.(2.6) with €'(“*@a'( 4| V:

To find the amplitude for the system to end up in thg
eigenstatap,, we consider the quantity

7 dt i(w+w,)t
Tpalw;7)= ReT (DplVIha). (2.7) Tpa(@)=Vp,(w)
1 \% +0 )T, (— o'
Here 7 is a finite time, which we will allow to become infi- ~ o > f do’ ﬁ"‘(/w 1) Thal . @ ),
nite. Sincey,, satisfies the Schdinger equation2.1), we LY o' to,—w,~16

can replaceV|#,) in Eq. (2.7 by [i%(d/dt)—Hgl|¥,). .11
Then an integration of by parts yields
where we have defined the Fourier transform of the matrix

Tpal@;7)=(0+ 0 _wﬁ)ff ﬂeuwma)t((ﬁﬂw ) elements of the interaction potential by
a ’ a —Th «
dt
HL(E gy, () Vpulwr= [ FeNaVOI0). (212
—(e TG gl g (— 7). 29

Equation(2.11) has a mathematical structure similar to
the Lippmann-Schwinger equation of scattering theory.
Note, however, that it is related to a response function, not to

Es—E, a cross section. Our goal is to solve this equation for the
WTWT W= Ty Tgo(w), and then to use the “on-shellTg, (wg—w,) to
determine the excitation amplitudes.

For the particulaw value given by

we have
) _ Ill. ON- AND OFF-SHELL MATRIX ELEMENTS
Tpalwp— @y ;7)=—i[(e B dglthy(7)) OF THE ELECTROMAGNETIC INTERACTION
—(¢' BT gl iho(—T))]. (2.9 A. The retarded potentials
Now let 7— o, for which i,(— 7)—€®«"¢,, and We now restrict our considerations to the excitation of a
' “ “ target nucleus as a result of its electromagnetic interaction
ag,=lim <e““’ﬁ7¢ﬁ|¢a( 7)) with a spherically symmetric projectile of char@%e. We
T— 0

know that the electromagnetic field of the projectile outside

roaches th mototic amplitude for lating the t ri_ts charge distribution is the same as that of a point charge
approaches the asymplotic ampiitude for popuiating the 1ar7 o ot jis center. Since we are only interested in the projec-
get stateg, if the initial target state isp, . If we define P

T () by tile field at points outside its charge distribution, we will use
Ba this point charge as the source of the projectile electromag-
Tpa(@)=lIM T go(w;7), netic field. We assume that the projectile center moves along
s a trajectory given by
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r=b+otz, (3.1) (xglp(r' Dl xa) =exz(r',txa(r',b),
whereb is the impact parameter vector perpendiculazto L,
andv is the constant projectile speed. Orali(r' Dlxa) = 2m|[XB(r VX1
The scalar and vector potentials due to this projectile at ) .
the pointr’ of the target at time are given by the Lienard- =X OV XE(r D]

Wiechert expressiond 8,1 . N
P "t 9 The conservation of target charge implies that

Z ey

P ﬁp
e(r' )= : Vj(r' )+ —(r',)=0,
C \/(X_X1)2+(y_yr)2+,y2(vt_zr)2 (32 ot
2 whose matrix elements with respect to the unperturbed
v ) eigenstates are
A’Ce‘(r’,t)= Egp’ce‘(r’,t)z. (3.3

(EB_EQ) ' H ' H ’
A pﬁa(r ):V'Jﬁa(r )+Iwﬁap,8a(r )

Vojpalr')+i
Note that, because of the factgf which multiplies @t
—2')2, this potential is not spherically symmetric. —0
B. The interaction
If the nonrelativistic target Hamiltonian is written C. The Fourier transform of the interaction

1 The Fourier transform o¥ z,(t) required in Eq(2.11) is
Ho(£)=2 0Py P+ WIL), at
V,Ba(w): f %e ¢ V,Ba(t)
then we include the effect of the external electromagnetic
potentials with f e

Ia)t

pﬁa(r )(PI’EI(r t)

L e o)
H D=2 5o pj— AR 1
' —EJ,;C,(r')-Age'(r',t)}
+ejes{r'; ,H+W(Y),
=f d3r'[pﬂa(r'>go§‘<r’,w>

so that the one-photon-exchange part of the perturbation is

V(r’,t)=—2 (3.6)

1
2mC[pJ ATy ,t) — clpalr ) AP, w)
+AC D -pl ey ). (34 with ¢e(r',w) and A®(r’,w) the Fourier transforms of
e’ t) and A®(r’ t) The relation between the electric
Heree; = 1 or 0 depending upon whether the nucleon is af|e|d and the potent|a|s
proton or a neutron, respectively. The matrix elemen¥/of
between unperturbed eigenstates, ¢ is 1 aAfe‘(r 1)
Ere‘(r )= —Vgore‘(r t)— -

ot
<¢B|V(t)|¢a>:<¢ﬁ 2 ZmC[p] Are{(r j 1t) i i i i
implies that the Fourier transform & is related to the Fou-
rier transforms of the potentialsp(A) by
+AC 0 -pl el ¢ >

E*(r' w)=—Ve™{(r’ w)+i—wAre[(r’ w) (3.7
C L @c ) C C 7 .

= f d3r'[pﬁa<r'><pf;‘(r',t> _
and Eq.(3.6) can be written

1
__l a(r,)'Aret(r,!t)} (35) I IR ’ ’

c b ¢ Vﬁa(w): Zf d3r J,Ba(r )Ercet(r rw)
where pg,(r') and jg,(r') are matrix elements of the wp
charge-density and current-density operators, respectively. + 1——“)[d3r’p5a(f’)¢rcet(r’,w).
These are single-particle operators, defined by their single- @
particle matrix elements as (3.8
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In particular, the on-shell matrix elemelts,(wg,) is ex- Since the nuclear states used in the calculation of the tran-
pressed entirely in terms of the electric fiﬁfcft. SinceEgst sition current density have well-defined parity and angular

is invariant under a gauge transformation of the potentialsomentum, it is convenient to express the vector fields ap-
we see that on-shell matrix elements of the interaction ar@earing in Eq(3.9) in terms of vector spherical harmonics.
gauge-invariant, but off-shell matrix elements generally ard-0r @ given radial dependengg(«r’), there are three lin-
not. Furthermore, the electric field that appears in @  €arly independent vector fields with rotational transformation
has the projectile as its source, so that its divergence is zefyoperties §,u). The choices usually made are

outside the projectile. Ib is large enough so that the projec-
tile and target do not overlap, th&h E’Ce‘(r’,w) will be zero
throughout the range of thé integration. We will see below
that this leads to a simplification in the expressions for the
on-shell matrix elements. (VXL)j(ar YA, 3.13

H ’ N/or h ’ H ’ N/or
Lin(xr )Y (r) = — (X V)j(sr)Y,(r"), (3.12

D. Multipole expansion of the interaction matrix element ij(Kr')Y;:(F’). (3.14

The transition charge and current densities in EJ6)
will be determined by the model we use to describe the targethe fields(3.12 and (3.13 are solenoidal, i.e., they have
states. To evaluate the integrals in E8.6), it is useful to  zero divergence. Fiel@3.14 is irrotational, i.e., it has zero
have expansions 0p*(r',») and A¥(r',w) in terms of curl. i
multipoles defined relative to the target center. Such expan- If ij(Kr')YZ(F') is expressed in terms of the multipole
sions were first given by Alder and WinthigtQ]. Their result  fields (3.12—(3.14), the multipole expansion of 5, can be

can be expressed as written
ZZpe i (|w|b
= —ipd ki 2Zpe o |w|b
Vial@) TU% e KL Ty Vialw)=— ; e "‘%KM(W
<3 gwf &' | ppalr’) X 3 DB XM+ X6
=|u
(3.19
Ny
c2 Jpa e prAT T where
3.9 .
( ) N |U g)\_lvﬂ )\Z_MZ
Herer’, ', and¢’ are the spherical polar coordinatesr 6f Xu(E)= chol N (2N +1)(2r—1)
defined relative to a target-centered origin, ahgl is the
angle between the-z plane and the reaction plane. The co- Ori1p (AN+1)2—pu?
efficient G, , has the explicit expression N (2r+1)(27+3)
i)\+,u ® A—pu c A o
- | — — — | | . : ’ o ’
g)\”u (29)" <|w|> (U) \/47T(2)\+1)()\ )TN+ w)! Xj]ﬂa'(VXL)JA(Er Y;\L(r )d3r ,
1 (3.1
xz . (3.10
n (29)2"(n+w)!'nl (A —p—2n)!
. . ] X)\( ):_U_,LL g)\”u i -Li gr/ Y)\(FI)dSrl
It can also be expressed in terms of solid harmonics or Ge- “» c2h MA+1) Jga =D g w ’
genbauer polynomials (3.17
st ][5l o w :
=j — — —,0, a " ' o ’
M el ) Vo) ey XL(G)=[1—7£ me ppalr )JA(EV )Y,i(r )dr”.
AN—pf oo\ el N — I (3.18
=ikﬂ(i) —) \/477(2“1)%
|l v (N [u)! In deriving Egs.(3.16—(3.18), we have used the relation
c
x(2|ﬂ|—1)!!cL“'*M1,’2(;). (3.11) iv A= u?
[ O
Ml V(1) (2a—1) e

In Appendix A we give an alternative derivation of the ex- ——
pansion(3.9), which we believe is somewhat more direct S Y
than the original derivation of Alder and Winther. (2N +1)(2n+3) 7 FLw
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which follows when Eq.(3.11) is applied to the familiar ties in scattering problems. In this section, we will adapt the

spherical harmonic relation Kowalski-Noyes approach to our equation fg,(w).
The general method will be clearer if we first consider a
- - one-channel example of E2.11):
VOV =3 (1nopliw) xample of E¢2.11

1 V(io+ o )T(—w')
3(2a+1) . T(w)=V(w)—EJ do’ — . (4D
X(17\00||0) mY’u(r) o' =1

It was pointed out above that for on-shell matrix elements!n particular, thew=0 version of this equation is
whenw=wg,, the electromagnetic field seen by the target is
solenoidal. This is confirmed by Eqé3.16—(3.18, where 1
we see that the on-shell matrix elements involve only inte- T(0)=V(0)— ﬂf do’
grals ofjg, with Lj,Y), and (VXL)j,Y},. These integrals
can be expressed in terms of the usual multipole matrix ele-
mentsM(MX, ) and M(E, ), using the definition§19]  If we multiply Eq. (4.2) by V(w)/V(0) and subtract it from

Eq. (4.2), we get

VIT(=0) 4y
w' —id

fd3r'j (r')-Lj <2r’)Y>‘(F’)
Ba A c %

T(w):T(O)M—i do’
__<w>khc(>\+1)M "~ 219 V(0) 2w
') (M), (319 V(o+ ') = V(o )[V(0)/V(0)]
X : T(—w')
3,7 ’ H w Noor w' =18
J d°r"jga(r')- VXLjy Er You(r') _TOV(w)_ 1J'd ’
L[S e 2 “TON@© 2]
¢/ @y | Vo+o) V(e V@NOT_
Thus we see that althought(MX\,x) and M(E\,u) are w' (=e’).
sufficient to determine the interaction matrix elements in 43

first-order perturbation theory, where only on-shell matrix
elements are needed, in a more complete calculation we will

also need the integral Qf,gahw . If the long-wavelength We can omit the—ié in 'the last denomina'tor of Ed4.3
approximation is applicable, in l\;vhich because the corresponding numerator vanishes wtierD.

Equivalently,

w

E Rtarget< 1, (3.21 1
INw)=U(w)— 7
then we may use

\ V(iw+o")—V(eo)U(w)
B N NP (wlc) Xde' - I'—w'),
P )In| S Yl )yd°r ”mM(E?\,M)- w
(3.22 (4.9
_It IS sh(?wn-m ApAperjdlx B thatvﬁ‘f(w) is real if the where we have introduced the ratios
trajectory lies in they—z plane, and if the phases of the
target states are chosen so that the effect of complex conju- Vv T
gation onegy, is to change it into £ 1)0"Mg? | Itis also U(w)= (_w) ()= (_w)
shown that the hermiticity of/(¢,t) implies that V(0) T(0)
Vio(@) =[Vap(— 0)]* =V,5(— o). Once we have solved the nonsingular E44), we can sub-

stitute its solution into the integral in E4.2) to get
IV. METHODS OF SOLUTION OF THE COUPLED
INTEGRAL EQUATIONS 0T (—w')

1 \
T(O):V(O)_Zf do’ ( T(0),

A. Removing singularities of the kernel

o' —id

If we attempt a direct numerical solution of the integral
Eq. (2.11), we will be faced with difficulties associated with V(0
its singular kernel. Kowalski and Noyésee, e.g., Ref13]) T(0)= (9) ,
have devised a very effective method for removing singulari- 1+ (1/27) [do'[V(o )T (—o') (o'—i6)]
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I'(w)
T(w)= ——V(0)
1+ (1/27) [de'[V(e )T (— o' ) (o' —i8)]
B I'w)
14 (12m)Pf(de’le’) V(e )T (- o' )+ (i/12)V(0)

XV(0). (4.5

Although we still have a principal-value integral to perform
in the final step of Eq(4.5), the singularity has been re-
moved from the integral equatidd.4).
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1 do’
Fpa(@)=Uga(0) = 5 2 fw,mh
Y
XVp(o,+o') Ty (o), (4.9

which generalizes Ed4.4). Finally, the solution of Eq(4.9)
is used, together with Eq4.7) in the on-shell version of Eq.

We now apply an analogous procedure to the many{2.11) to obtain the desired on-shé&ltmatrix elements

channel coupled integral equatio(&11). We use the sym-
bol Vg, without the argumend, to represent the on-shell
interaction matrix

VaBEVaﬁ(wa— (I)B)

Similarly, T, without the argumend, is used to represent
the on-shellT matrix

TaﬁETaB(wa—wB).
Then the matriXxJ (w) is defined by

umm)z§ Va(o— o)V, (4.6)

from which we see that
Ugy(wp)= ; Vi (wg— wx)[V_l]M: ; VBA[V_l]Ay

= 6ﬁ’)’ .
Similarly, the matrixI'(w) is defined by

rﬁywzg To(0—w [T ,,, (4.7)

from which it follows that
Lg(wg)=dp,.

Then by taking a linear combination of E(R.11) and the
version of Eq.(2.1) with B=y andw=w,— w,, we find

that

Vpr(o+ w')—Ey Ug (ot o,)

Y

1 do’
Toa(@)=2 Uploto )T~ 5= | ————
p Y by 727 o' t+tw,—w,

X

XV (w,—w, o) [T (—o). (4.8

We are again able to omit thei § from the denominator in

Tﬁa: 2 [M 7l]ﬁyvya1 (410
Y
1 Vaolwgt o )T\ (—w')
BB Ay
Mg, =685,+ — f do'=46
By~ 9By 27,.; W+, —i0 W = 9py

1

1)
|
277; o' +ow

i
+ 52;, VI 0)) =84,

gl

VB)\((I)B"' (l),)r)\,y(_(l)’)
A

dw

o'+

=

om = )\Vﬁ)\(wﬁ-l-w')r)\y(—w’)

w

[
+ —

5Vey-

(4.1)
This generalizes Eq4.5).

We see from Eq(4.11) that the imaginary part aM is
completely defined by the on-shell interaction matrix. The
solutionI"(w) of the integral equatiof¥.9) only contributes
to M by its presence in the integrand of the principal-value
integral.

The method described above is only applicable in situa-
tions in which the on-shell matrix is nonsingular. If itvere
singular, it follows from Eq(2.10 that thea matrix would
have an eigenvalue of unity. In this situation, there would
exist a set of initial amplitudes of the target states which are
such that they are also the final amplitudes remaining after
the interaction with the projectile has occurred. While this is
a conceivable situation, we imagine that it must be very un-
likely in a system of reasonable complexity, and thus we
believe that the nonsingularity of the matrix is a safe as-
sumption. Similarly, a singular on-shéll matrix would im-
ply that there exists a set of initial target-state amplitudes
that are unaffected by the interaction in first order, which is
also unlikely in a reasonably complex system.

B. Solution of the integral equation by matrix inversion

The most direct approach to numerical solution of a set of
coupled linear integral equations is to approximate them by a

the integrand, because the linear combination within squarset of coupled linear algebraic equations. The continuous

brackets has been constructed so that it vanishes witien
=w,— w, . If we replacew in this equation byw—w,, and
multiply from the right byT %, we get the nonsingular set

variable w is replaced by a discrete variable; (i
=1,2,...), and thew' integral in Eq.(4.9) is approximated
by a sum ovei. Equation(4.9) is thereby approximated by
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the following set of simultaneous linear algebraic equationgquate by seeing if the calculatdt;,(w;) are negligibly

for the unknown numberE 4. (w;):
%: Aginilha(@)) =Ugy(w)),
with

A,Bi Aj = 5,5)\ 5wi —w

J

pr=pen AZNCREY
—;lumwmvwww—m>, (4.12

whose solution is
F&xwo=;§[A—thMuxaumy (4.13

Here A is the grid spacing,wi,;— ;. The numbers
I'5.(w;) determined from Eq(4.13 are used for the calcu-
lation of the principal-value integrals in E.11), and then
the on-shelll matrix is calculated using Ed4.10.

Note that the matrix of coefficientgA] defined in Eq.
(4.12 is independent ofv. I'g.(w;), for different values of
a, are obtained by changing the valueambn the right-hand
side of Eq.(4.13, using the same matrpA]. If our grid size
and range determine that we haMevalues ofw;, and we

choose to coupla target states, then the dimension of the

matrix [A] will be Nn.
The grid spacing should be small compared to the

small whenw; approaches the limits of the chosen range or
by testing the sensitivity of the calculated excitation prob-
abilities to changes in this range.

C. The Born series for the on-shellT matrix

The Born series is an expansion of the on-sfiethatrix
in powers of the interactioW

Heret, represents all the terms containingroducts ofV.
A corresponding expansion d¥ of Eq. (4.11) in powers of
Vis

M=my+my+my+---, (4.15
with my=1. Then Eq.(4.10 implies that
M-T=V,
(1+m1+m2+m3+')(t1+t2+t3+):V
(4.1

Identifying terms on the left-hand side of E@.17) corre-
sponding ton powers ofV, we get

t1=V,

n—-1
t,=—2> m,_t (N=2,34...). (4.17)
r=1

interval over which th&/,(w) change appreciably, and also The first few terms of Eq(4.17) imply that

small compared to the differences between the on-shell val-

uesw, . If the electromagnetic pulse lasts for timg,eep

then theV,(w) can be expected to vary significantly when

o changes by an amountrj.e, For relativistic projectiles
and typical nuclear dimensions,

1 1 fic

100 MeV fm
Tsweep (2R)/C 2RA )

R#:

For excitation of nuclear giant resonances, dhedifferences
are of the order of 10—20 Me¥! These considerations in-
dicate that a choice oA of a few MeVF should be an
adequate approximation to the continuous variahland we
have used this choice in our numerical calculations.

If Vg,(t) varies appreciably over a time interv@r, then
the Vg, (w) will be significant over afw| range up to about

1/8T. For the sharp electromagnetic pulse associated with al Ba

relativistic projectile 5T will be of the order of magnitude of

the time it takes for the pulse to move across significant
features of the nuclear density, such as the nuclear skin

thickness. This leads to an estimate of a taialidth of

MeV

1 fic 00
05fmic 05fma 4007

It will be seen in our numerical examples thdg,(w) is
very small outside theav range of —400 MeVA<w<400

t2: - m1t1= - m1V,
tg=— Moty —Myt,=(—Mmy+m?)V,

and so forth. We can obtain the coefficiems_, we need in
Eqg. (4.17 by combining the definitiori4.11) for M with an
expansion of'(— ") in powers ofV:
M(—w)=TO(—w)+T V(- )+TPD(—w')+---.
(4.18

If this expansion is substituted into the integral equation for
I' [Eq. (4.9], and then terms af powers ofV are identified,

one finds that
f do’
o'+ o,

vm(ahuw')—E7 Ugy(@)V (0, +0")

(@)= 53

277)\

X

XTW(—w').

This recursion relation can be solved for th&"(w), start-

ing with T'(®(w)=U(w), and these (M (w) can be used
together with Eqs(4.18 and(4.11) to obtain the coefficients
m,_, needed in Eq(4.17). Thus we have a well-defined

MeV/h. Of course, we can check whether this choice is adprocedure for determining successive terms of the Born ex-



2198 B. F. BAYMAN AND F. ZARDI PRC 59

pansion of the on-shell matrix. The relationship between The solution of this equation, corresponding to initial condi-
this expansion and the perturbative expansion of Alder antion ¢(Z,—«)=¢,({), is
Winther[1] is discussed in Appendix C.

We illustrate this procedure by calculatihg the second- W (t):ef‘,m<dt'/ih>V(t'>¢ _
order contribution to the on-shéllmatrix. This requiresn,, “ “
the first-order contribution to\1 of Eq. (4.12), If this solution is substituted into the definitio.7) of

Tgo(®), the result is

(M) gy +127>f 4"\ (opto))
my) g, == — — .
VUpy—o ¥By" o = o'+, p\wgT ® Tﬁa(w):J‘ dtei“’t<¢B|V(t)|ef1w(dt'/ih>v(t/>¢a>.

XTI (- ') (4.20
i 1 do’ ) It can be verified that Eq(4.20 satisfies the sudden-
= §Vﬂy+ E; P o'+, Ver(wgt ') approximation integral equatio@.19.

The excitation amplitudes are obtained, according to Eq.
XUy (—w"). (2.10, from the on-shell values of z,(w). In the sudden-
approximation limit, on-shell implie®=0. Thus we need
Then

T 0= d V(t)|elt(dtin) vit')
(t2) ga=(—Mity) go=(—MyV) g, pa(0) f_w gl V(D)]e b

= — I_E V V — LE ’]D *° d t I ’
24 BAVa 274 :f dta<¢3|ef*”(dt lih) V(t )|¢a>
v S
o't o ot o)V, (-0 —w,) :<¢B|efﬂ(dt lif) V(t )|¢a>_5ﬂa_
1 Var(0pt 0" )V o — 0’ —o,) If this .resu_lt is u_seq in Eq(?.lO), we get the sudden-
=—— dw'E - approximation excitation amplitudes
277 A (l)"‘l_(l))\_l(s

, , Apa=0pa—iT ga(0),
V(= 04+ 0 )WVyo(— o) pa= Tha TR

1
-] 'S

o' +oy—w,—1d :<¢ﬁ|ef7m(dt’/iﬁ)V(t/)|¢a>_

This agrees with the second-order term one can obtain froffhis formula has a strong similarity with a corresponding
the Born expansion of the integral equatid@.1l) for  expression for the multichannel eikonal approximation. This
Tgalwg—w,). is not surprising since, as will be demonstrated in Sec. VI,
there is a close correspondence between Coulomb excitation
D. Sudden approximation theory and the multichannel eikonal approximation.

. ) Unfortunately, the sudden approximation is of little use in
Suppose that the external impulse experienced by the tafne investigation of reactions in which states in the giant

get is of much shorter duration than the characteristic oscilogonance region are excited, for which we encounter,
Ia}tmn mgges ofihe/ta_rgeEt. '”zthl's case, E)he mtelrla:ccuon matrix. ,, — u,~10-20 MeV#. At relativistic projectile speeds,
elementsV, (0 + ') in Eq. (2.1 vary by small fractions ¢ quration of the excitation pulse is of the order &/,

of themselves in the range defined by the differences. 4 the applicability of the sudden approximation would re-
—w, in the denominator of Eq(2.11). Then we can get a quire that

useful approximation to Eq2.11) by ignoring these differ-

encesw, — w,, So that Eq(2.11) is replaced by 2R 1
_<—’
T pa( @)=V ga( @) c A, MeVit
1 Vi (ot o')T), (—o') hc 200 MeV fm
, VB Na
- d . < ~ ~10- )
o ; « o _io RS Mev ™ A, Mev ~10-20fm

(4.19 This criterion would be satisfied only for the lightest target
nuclei, and would not be satisfied for a medium-weight tar-
get such as calcium. However, if we were interested in the
population of low-energy rotational levels, for which,

5 1 —w,~0.1 MeV/, the criterion for the validity of the sud-
o _ = den approximation in a peripheral relativistic collision would
gt MED=FVEDPELY. be satisfied by all nuclei

This is equivalent to ignoring the presenceedt®) "ot in the
time-dependent Schdinger equation(2.3), leading to
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V. EXAMPLES OF NUMERICAL RESULTS AND

Since the operatorKfL involve the creation or annihila-
EXPLORATORY STUDIES

tion of a vibrational quantum, they vyield zero matrix ele-
ments between the different magnetic substates of the 2

) ] ) ) level. Since these substates are degenerate,
To illustrate the methods described in the previous sec-

tions, we will analyze a simple semirealistic example of rela-
tivistic Coulomb excitation. We consider the excitation of a
27 level of “%Ca at 20 MeV, exhausting 100% of the EWSR, For simplicity, we calculate these “reorientation” matrix el-
which amounts to a reduced transition probabiB¢E2,0  ements by making the further assumption fhgt=0, so that
—2)=450 e?fm*. To this 2" level, we ascribe a static only the contribution(3.18 survives, which we calculate us-
quadrupole momen®, of 15 e fm? The occurrence of a ing
static quadrupole moment implies the presence of anhar-
monic terms in the nuclear Hamiltonian. According to Eq.
(6-240 of Ref.[19], anharmonic effects that can yield this
value of Qg can also yield “reorientation reduced transition

A. The physical model

©ga=0=V-j(r").

p(r)=po(r) 2 QAOIAY2(1)]* (5.3
M

probabilities” of about 75e*fm* between one-phonon in Eq. (3.18, and normalize the reduced matrix element of
states. These are about 1/6 of the reduced transition probabtbi(g) in terms of the static quadrupole moment of the ex-

ity for the allowed An=1,0"—2") transition. The excita-

cited level. Thew-grid spacing was chosen to allow the sig-

tion of these states is due to the electromagnetic field of @jficant » range to be divided in 801 points. This yielded

relativistic 2°%Pb nucleus, moving parallel to tfzeaxis in the

z-y plane.

Aw=1 MeV/h at Ep/A=1 GeV, andAw=2.5 MeVh at
Ep/A=100 GeV.

We approximate the transition current and charge densi- Since the trajectory of the projectile is in tzey plane,
ties needed in Eq$3.16—(3.18 by using the Tassie model the only target states that are connected to the ground state
[20], which describes the 2 resonance as a one-quantum by the interaction are those that are symmetric with respect

vibrational oscillation of an incompressible irrotational fluid. 1 3 reflection across the-y plane. Thus we only need to

This leads to expressions of the form

J(r)=po(r); KMOM YN A DOED)*,  (5.)
M
i
p(1)= 4 -V-i(1)
—I A A—=1_7 A A2
= o Vet P2 KDY,
(5.2

where pq is the equilibrium proton density, aridf,g(g) are

operators that act on the target degrees of freedonhe %,lL
are unit vectors defined by

1

&=(F1) ﬁ[%rw,

S
§o=2.

In the present application we have=2 and wg,=20

MeV/h. The operatorsKi are normalized in terms of the

value of
B(E2J,—Jdp)= > [(é1f |M(E2u)| ¢l )2,
Mg.u B “

calculated using Eq5.1). We follow Suzuki and Rowg21]
in using

po(r)= —4773/2b3

r4
40+ 32?) e (*%%) (h=1.887fm).

include the four states
_ 40"
do= g (ground statp

_ 42"
P1=¢g |

1 + +
@EE(d)f - %)),

1 ot ot
$3= E(% t¢Z,). (5.4

This requires the calculation and inversion of a 3208204
real matrix, which can be done without difficulty on a mod-
ern computer workstation.

B. General characteristics of the interaction matrix elements

Many of the features of our numerical results for excita-
tion probabilities depend upon the general characteristics of
the interaction matrix element4y,(w) (a¢=1,2,3) connect-
ing the ground state and the states of thel@vel. Figures
1(a)—1(c) show plots ofVy,(w) as a function ok for vari-
ous bombarding energies. It is immediately apparent that for
very high projectile energiesye>1), theAM=*+1,£2 ma-
trix elements are very nearly independent of projectile en-
ergy, whereas th&a M =0 matrix element continues to in-
crease. It is shown in Appendix A that these behaviors are a
consequence of the high-energy asymptotic form of the elec-
tromagnetic pulse. ThAM =0 matrix element also exhibits
interesting behavior at the on-shell value®{20 MeV#: in
the present exampleThere is some indication in Fig.(d)
that this matrix element is very small on-shell, and we now
show that this is indeed the case.
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FIG. 1. (a) The Fourier transform of the matrix element of the electromagnetic interaction between the ground $i@& amd the
component.=2%, M=0 of our model state at 20 MeV. The interaction is with®®Pb projectile, at an impact parameter of 10 fm, and with
kinetic energy per nucleon of 1, 50, or 100 Ge¥) The same as fofa), except that the excited state #iCa is the reflection-symmetric
linear combination ¢2— ¢2,)/\/2. (c) The same as fofa), except that the excited state 6fCa is the reflection-symmetric linear
combination g2+ ¢2,)/2.

~According to Eq.(3.8), the on-shell value o¥/g,(w) is  Since the only spatial dependence is in the faetbt?'/*), it
given by follows that

i :
Viulwga)= o | i) N ). (59 v A
Vo(r',w)=i — X o"(r",w)z
C v C
Using Egs.(3.7) and(3.3), we have
so that theM =0 part of E'Ce‘(r’,w) is approximately given

E*r',w)=—Ve"™Y{(r’ w)-l—i—wAret(r' ) b
c ! ch ! c C ! y
i wv A :
_ ret; s ety (0] lwv ~ (0] ~
= Vq;C‘(r o)+ 2 QDCI(I' 0)Z. (—i;-ﬁ-? (Pget(rr’w)zz_iv_yz(péet(rr,w)z
Now let us use for theM =0 part of gpf‘(r’,w) the simple o 2Zpe
approximate expressioi\17), valid whenyv/w >b, =1 v_~y2 )

Pe(r’ w)=

/47Tei(wz’/v)><
1%

blw|\ .
_ ' 0/ g1 ’ ) Al(wz' )
In(ml)Yo(a,gb)}. XIn vy)e .
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TABLE |. Excitation probabilities of the states of tHe=2" level. Comparison between the Born
approximation and the exact result for values of bombarding energies of the projectile ranging from 1 to 100
GeV per nucleon. In this and in the following tables we use the notatibn+3, e.g., for the multiplicative
factors 101, 1073.

b Ep/A M=0 M==*1 M=+2
(fm) (GeV) Born Exact Born Exact Born Exact
1 0.722-3 0.744-3 0.461-2 0.470-2 0.122-1 0.119-1
5 0.219-4 0.104-3 0.287-2 0.314-2 0.109-1 0.101-1
10 0.310-5 0.122-2 0.279-2 0.341-2 0.108-1 0.896-2
10 15 0.894-6 0.269-2 0.278-2 0.364-2 0.108-1 0.803-2
20 0.357-6 0.358-2 0.277-2 0.364-2 0.108-1 0.730-2
50 0.165-7 0.251-3 0.277-2 0.132-2 0.108-1 0.481-2
100 0.146-8 0.445-1 0.277-2 0.241-2 0.108-1 0.293-2
20 100 0.106-8 0.896-3 0.692-3 0.313-3 0.675-3 0.324-3

This vanishes in thes/— o limit, which implies that the on- strongly atEp/A=1 GeV, theM =0 state is populated most
shell AM =0 interaction matrix element will become very strongly at 100 GeV/nucleon.
small at sufficiently high bombarding energy. It is shown in  The last line of Table | shows excitation probabilities at
Appendix A that the off-shelAM =0 matrix element di- E,/A=100 GeV at an impact parameter of 20 fm. Although
verges at high bombarding energy in proportion toy)n( the excitation probabilities are weaker than they were at the
grazing impact parameter of 10 fm, the ratios of the different
. N . _ matrix elements are comparable. In particular, the Born ap-
C. Comparison of Born approximation with exact excitation . . . .
proximation to the population of the=2, M=0 state is
probabilities .
o . many orders of magnitude smaller than the exact value.
Table | shows excitation probabilities for thé=0 state The differences between the Born and exact excitation
of theL =2 level, and for the reflection-symmetdd=*1  propabilities shown in Table | are due to the inclusion in the
andM=+2 combinations of states, at various bombardingexact calculation of the effect of the off-shell values wf
energies per nucleon between 1 and 100 GeV. Comparison Ktought in by the integral equatid@.11), and to the inclu-

made between the exact results and those obtained by meays,, of reorientation couplings between the differént 2

of the f|r_st Born _apprOX|mat|on, n Wh'_Ch the_ on—she_ll states. To disentangle these two effects, we did a series of
Tgalwg,) is approximated by the on-shell interaction matrix

calculations in which theL=0, M=0 ground state was
elementVgq(®ga). separately coupled to each of the=2 states, with no reori-
Itis seen that whekp/A=1 GeV, the Born approxima- entation couplings. These results are show'n in Table II. Now
tion gives a very good representation of the excitation prob;[ diff b .t the B d t val ' d
abilities. However, as the bombarding energy increases, th(l.Je ierences between e borm and exact values are due
fit between the Born approximation and the exact values deiny t_o_the mclusmn_ of off-shelbs values in the latter. Not .
teriorates. This is especially true in the case of the excitation urpr;smgly, thg s¢ d|ffer_ences are not as great as when reori-
of theL=2, M=0 state. As explained in the previous sec- (in(t)ann_ co_uplmgsbaggl_mc_lu%ed. dNever]EheIess_, tze exbct
tion, the on-shell interaction matrix element is expected to_h eﬁcnatlon prlo ability 'E orgers o ma_gmtu € greater
become very small at high bombarding energy, leading to an the Bon value d@/A=100 GeV, showing the impor-

very small Born approximation prediction for the=2, M ance of off-shelks values in this case.

=0 excitation probability. However, the exact calculation of )

this excitation probability involves off-shell matrix elements D. The convergence of the Born series

of the interaction potential, and indirect transitions to the In Sec. IV C it was shown how the full Born series could

=2,M=0 state via theL.=2,M==*1 andL=2,M==*2  be calculated from an iterative solution of tRematrix equa-
states. Therefore the weakness of the direetO, M=0  tion. Table Ill summarizes some results for the convergence
—L=2,M=0 on-shell matrix element does not prevent theof the Born series at bombarding energies per nucleon of 1,
exact calculation from yielding a relatively large excitation 3, 10, and 100 GeV. It is seen thatB@t/A=1 and 3 GeV,
probability. The constancy, with increasing bombarding enthe convergence to the exact values is smooth and rapid. At
ergy, of the Born predictions for thel==1 andM=+*2  E,/A=10 GeV, the series approximation improves as we
excitation probabilities is a consequence of the constancy giroceed from the first Born approximation to the inclusion of
the corresponding on-shell matrix elemems,(wg,), as  the first five terms of the Born series. At this stage we are
explained in Appendix A. This constancynst exhibited by  within a few percent of the exact values. However, as further
the exact values of thM=*1,+2 excitation probabilities, terms of the Born series are included, the approximation to
because the latter are affected by the strong variation witthe exact values deteriorates, and by the 12th iteration the
bombarding energy of th1=0 matrix element. It is seen series is wildly divergent. Similar behavior is observed at
from Table | that whereas thel = £ 2 state is excited most bombarding energy per nucleon from 10 to 15 GeV. At
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TABLE Il. Excitation probabilities of the states of the=2+ level, without any re-orientation transitions
among theM states. The impact parameter is 10 fm. The Born approximation and the exact solution are

compared.
M=0 M==x1 M==*2
Ep/A Born Exact Born Exact Born Exact

1 0.722-3 0.727-3 0.461-2 0.462-2 0.122-1 0.122-1

5 0.219-4 0.594-4 0.287-2 0.293-2 0.109-1 0.109-1

20 0.357-6 0.443-2 0.277-2 0.288-2 0.108-1 0.108-1

50 0.165-7 0.408-2 0.277-2 0.288-2 0.108-1 0.108-1

70 0.513-8 0.153-2 0.277-2 0.289-2 0.108-1 0.108-1

100 0.146-8 0.184-3 0.277-2 0.289-2 0.108-1 0.107-1

higher bombarding energies, there is no stage of iteration dtl with Table IV where we include only separate couplings
which the Born series gives a good approximation to theof the ground state with eadh=2 state, with no reorienta-
exact values. tion couplings. It is seen that the Born series converges in the

The tentative convergence, and then divergence, gL=0,M=0~L=2,M==*1) and (=0, M=0«L
Ep/A=10 GeV can be interpreted in terms of the Schmidt-=2, M= *2) systems at all bombarding energies. In the
Weinberg method for the solution of integral equatipp®. (L=0,M=0<~L=2, M=0) system we have convergence
In this approach, the solution is separated into a convergenip to E,=5 GeV, but divergence aEp=7 GeV (and
series, plus a finite term which is associated with one ombovg.
more eigenvalues of the resolvent which are greater than
Unity. If the CoeffiCient Of th|S f|n|te term iS Sma”, |t playS a E. The |0ng_Wa\/e|ength approxima’[ion
very minor role at the early stages of the iteration process. N .
H0\)//vever, eventually it grovzs exgonentially and overSVhelms The Iong-yvavelength approximati¢hWL.) is based upon
the convergent part of the solution. It is evident from Tableth® substitution
[l that even in a situation in which the Born series eventu- ® [(wlc)r' T
ally diverges, it is possible to get a very good approximation jx(— ')~
to the exact solution by stopping the iteration at the appro-
priate place. In our situation we can see where that place is,
since we know the exact result. Unfortunately, in the absencg, the evaluation of the matrix element3.16—(3.18. This
of an exact solution, it is difficult to extract reliable informa- gypstitution is valid when
tion from a divergent series.

The divergence of the Born series at high bombarding
energies is associated with the divergence oflkhe 0 in-
teraction matrix element. This is shown by comparing Table

c 200+ D)1

w
—r' <N\,
c

TABLE Ill. Excitation probabilities of the states of tHe=2" level, calculated using different orders of
the Born series. The impact parameter is 10 8ee the text for more details.

Ep/A M Born 3rd iter. 5th iter. 10th iter. 15th iter. Exact
1 0 0.722-3 0.766-3 0.744-3 0.744-3 0.744-3 0.744-3
GeV *1 0.461-2 0.471-2 0.470-2 0.470-2 0.470-2 0.470-2
*2 0.122-1 0.121-1 0.119-1 0.119-1 0.119-1 0.119-1
Ep/A M Born 3rd iter. 5th iter. 10th iter. 15th iter. Exact
3 0 0.785-4 0.267-4 0.269-4 0.269-4 0.269-4 0.270-4
GeV *1 0.306-2 0.321-2 0.319-2 0.319-2 0.319-2 0.319-2
+2 0.111-1 0.107-1 0.106-1 0.106-1 0.106-1 0.106-1
Ep/A M Born 3rd iter. 5th iter. 8th iter. 12th iter. Exact
10 0 0.310-5 0.179-2 0.124-2 0.936-3 0.6588 0.122-2
GeV *1 0.279-2 0.367-2 0.337-2 0.379-2 0.M3 0.341-2
*2 0.108-1 0.912-2 0.892-2 0.746-2 0.183 0.896-2
Ep/A M Born 2nd iter. 3rd iter. 5th iter. 7th iter. Exact
100 0 0.146-8 0.17%0 0.26 40 0.378+0 0.226+7 0.445-1
GeV *1 0.277-2 0.303-2 0.153-1 0.210 0.1617 0.241-2
*2 0.108-1 0.117-1 0.488-2 0.851-3 0.59% 0.293-2
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TABLE IV. Excitation probabilities of the states of the=2", without any reorientation transition
among theM states, calculated using different orders of the Born series. The impact parameter is 10 fm. More
details can be found in the text.

M Er/A Born 3rd iter. 5th iter. 10th iter. 15th iter. Exact
1 0.722-3 0.727-3 0.727-3 0.727-3 0.727-3 0.727-3
5 0.219-4 0.583-4 0.594-4 0.594-4 0.594-4 0.594-4
7 0.875-5 0.909-4 0.969-4 0.964-4 0.243 0.931-4
*1 1 0.461-2 0.462-2 0.462-2 0.462-2 0.462-2 0.462-2
100 0.277-2 0.289-2 0.289-2 0.289-2 0.289-2 0.289-2
*2 1 0.122-1 0.122-1 0.122-1 0.122-1 0.122-1 0.122-1
100 0.108-1 0.108-1 0.108-1 0.108-1 0.108-1 0.107-1

he 197.3 MeV fm both bound and continuum target states, the latter being used
ho<—A=——"""——\. to describe the actual giant resonance states.
r' r' Our derivation of theT-matrix equation(2.11) began by
_ , , premultiplying the integral form of the Schiimger equation
For our off-diagonal matrix elements,=2, andr’ extends 5 4 by v/(t). Then the target-state completeness relation
out to about 5 fm._ This implies that we can use the LWL 10,2 used. We proceed now in a similar manner, but we sepa-
evaluate our matrix elements as long as rate the completeness relation for the target states into dis-

o< ~80MeV. crete and continuum parts:

Thus we can use the LWL for evaluating the on-shell matrix 1=, |\ byl +f deld )P
elementgfor which A w =20 MeV). However, if the solution A
of Eqg. (4.9 depends upoVs,(w') with ' far off-shell,
then the LWL may not be adequate. It is difficult to asses
the importance of far-off-shello’ in the integral equation,
since thew’ integration can involve cancellation from dif-

SThis leads to

V() (g )= (MEdy g

ferent regions of thew’ range. Thus we have calculated our t dt’ )

matrix elements using the exact expression for the + j me_('/ﬁ)E”(t_t V(') éy)
izx[(w/c)r'], and the LWL, and used both sets of matrix Moo

elements in the exact solution of the integral equation. Some X{pyV(t" ) h o (L,1)

examples of this comparison are shown in Table V. It is seen

that the LWL does well aEp/A=1 GeV. AboveEp/A CAY et e

=3 GeV, the LWL appears to give an inadequate represen- +f def,wﬁe V(t)¢e)

tation of the excitation amplitudes.

X{h V() iho(L1). (6.0

We now assume that the continuum integration is dominated
Until now, the giant resonance states included in our calby a series of “resonance” stat¢® ) centered at energies

culations have been treated as if they were normalizabl&, . In the vicinity of E,,, we further assume that

bound states, although they are really continuum states. In

this section, we generalize our treatment so as to include <¢EM+E|V~<¢EN+E|<DM)<<I>M|V

VI. FURTHER DEVELOPMENTS

TABLE V. Test of the use of the long-wavelength approxima- Vv ~V|®d WD
tion, Eq.(5.6), in the evaluation of the interaction matrix elements. |¢EM+E> |@,u{(P,l ¢Eﬂ+€>'
The impact parameter is 10 fm.

i.e., we assume tha;ztEM+E is affected by the interaction only
Ep/A LM Exact LWL to the extent to WhiCth#+ < overlaps with® , . Moreover it
is assumed that the “strength functiors,,(¢), defined by

1 2,0 0.744-3 0.730-3
GeV 2x1 0.470-2 0.461-2
— s, (e)=(d b ),
2,42 0.119-1 0.118-1 ,u,( ) < M|¢EH+E><¢EH+E| ,u>
3 2,0 0.269-4 0.366-4 . . .
’ n roxim Breit-Wigner form
GeV 2x1 0.319-2 0.326-2 can be appro ated by a Breit gnerto
2,x2 0.106-1 0.100-1 1 r
5 2,0 0.104-3 0.202-2 S#( €)== S
GeV 21 0.314-2 0.300-2 27 2+4T%/4
2,+2 0.101-1 0.729-2

Then the integral
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1'*’“ e—(i/ﬁ) e(t—t’) (2 ( N iz
_~ e—  —e Uy t—t t>tr 1
2T €2+(FM/2)2 ( ) 0”(2/0)

[e "*2y(b,z;{)]

—_ ik . i —iK .
allows us to approximate the part of the continuum integral =e "V(b.z; e e (b, z 0], 6.4

in Eq. (6.1) nearE,, by with the linear momentum operatét defined by

1
2m(E~Ho),

tdt . ,
f ——e” WMIE, ARV ()| WD, V(1) i, . K

.
(6.2

so that
Comparison of Eq(6.2) with the terms in the discrete sum in
Eq. (6.1) shows that, if the above approximations are valid, K () =Kadba().

the continuum region in the vicinity d&,, may be treated as Comparison of Eqg6.4) and(2.3) shows that there is a very

i.s'li‘gl'g dllfstcr:_etg tsrt]até)w with a (_:omplex tentehrgyEtﬂ IClose correspondence between the semiclassical and multi-
I W ). IS IS the case, we can Incorporate the Integraln gnpe| gjkonal approaches, withand w, in the former
over e in Eq. (6.1) into the sum oveih, making the replace-

replaced byz/v and —k, in the latter. Thus all our work so

ment far, which has been formulated in terms of the semiclassical

I I approach, can be immediately applied to the multichannel
E,=E,—i— andw,=w0,—i 5 eikonal approach. _

2 2h The final result of each calculation should be a set of

numbers which can be compared with experimental data. In
where necessary. This implies that tiiematrix equation  the semiclassical method, one calculates
(2.17) is generalized to
Excitation probability of target staig,

Tpal @)=V, (0)

1 =f d?blag,(Awg,b)|?, (6.5

—EE fdw

Var(o+o')T) (- o’)

o' +o,—i(I'\/2h)~w,~i6 if the intial target state ig, . But the multichannel eikonal
(6.3 approach yields not only excitation probabilities, but also
differential cross sections:

The fact that the statéd, is a continuum resonance state 2
rqther tha_n a discrete state is reflected in the appearance of a d"ﬁa(q): ‘ﬁf deeiq.baﬁa(AkBab) . (6.6)
width T"y in the corresponding energy denominator. A de- dQ

2
scription of the strength function by means of a Lorentz ) )
form, rather than a Breit-Wigner form, gives similar results. Hereq is the tranverse momentum transferred to the projec-
In the simple case of a two-channel problem in whichtile, and is assumed to be much smaller than the longitudinal

only the ground state and a resonance with endigyare =~ Mmomentak, ks. Thus the multichannel eikonal approach
coupled, the second-ordd@rmatrix element for the elastic Prings us closer to useful comparison with real experimental

channel is given by data. At high energy one has
. >——ifd NVou(@+ 0 )V,o(—0') Ak=2¢
o)== 5 ) e e, — (T /2h) —wg” v

Thi Itis direcil ble with E660) of Ref. [16 so that one can calculate angular distributions using the same
Is result Is |recty comparab’e with E(f )0, ef. [16], matrix elements as those evaluated in the time-dependent
when that formula is particularized to the this order of aP-approach

proximation.

This formalism can be easily extended to the description
of problems in which there is an escape width, in addition to
the spreading width considered above. For a recent discus- Qur goal has been the study of the various components of
sion of this problem, see, e.g., Rg23]. a calculation of excitation of a target nucleus due to the

Another approach to nuclear excitation, valid when the deslectromagnetic field of a relativistic projectile. The strongly
Broglie wavelength associated with the relative motion isretarded interaction points to the description of the process in
small, is the multichannel eikonal approximatif®4—27.  terms of frequency, rather than tim¢. We have seen that
Here one seeks an approximate expression for the full imeyhereas on-shell matrix elements can be expressed purely in
independent Schdinger wave function of the system terms of solenoidal electromagnetic fie[dsd so in terms of
P(r;)=y(b,z;0), with r=b+zz the relative target- multipole matrix elements\(E\,u) and M(M\,u)], the
projectile vector. It is shown in Ref§25—27 that the mul-  off-shell matrix elements also involve nonsolenoidal fields.
tichannel eikonal approximation implies thab,z; /) satis-  The natural expression of the ScHinger equation in terms
fies of w-dependent matrix elements is as a set of coupled inte-

VIl. SUMMARY AND CONCLUSIONS
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gral equations, reminiscent of the Lippmann-Schwinger,

: , VINGET, — x'x+y'y. Then¢'™ satisfies the d’Alembert equation
equation. We have used the Kowalski-Noyes regularizatio ¢

procedure to remove the singularities from the kernels of 1 22
these integral equations, which makes them more amenable y2_ == e"(r' t,b)=—4nZped(p’ —b)8(z' —vt).
to numerical solution. By replacing the integrals by sums, we c?ate| ¢

constructed an approximately equivalent set of simultaneous (A1)
linear equations, which could be solved exactly. This yielded _ et )

a set of “exact” transition amplitudes. In a semirealistic ap- W& have included as an argument af * to emphasize the
plication of these methods, we found that the first Born ap-dependence of the potential on the projectile orbit. We seek
proximation yielded a very good approximation to the exacthe particular solution of E¢A1) in which z' andt enter in
amplitudes for bombarding energies per nucleon up to abouhe combinatiorz’ —vt, since that is the way they appear in
1 GeV. At higher bombarding energies, the first Born ampli-the source term.

tude becomes very small fa&rM =0 transitions, because the =~ We need the Fourier transform qﬂft,

on-shellAM =0 matrix element becomes small. However,

reorientation processes included in the exact calculation lead et _h (= it ret .

to appreciable indirect population of the excitéid=0 state. eo(r',t,b)= Zj_md‘”e ¢ (1’ @,b)
Furthermore, for bombarding energies per nucleon up to

about 3 GeV, the Born series was found to converge rapidly h (= (2 fo—1) ety 1

to yield the exact transition amplitudes. However, at bom- - ﬁf_md‘”e ‘Pct(” w,D).
barding energies per nucleon above 10 GeV, the first few

terms of Born series seemed to be converging towards the (A2)

exact values, but addition of further terms led to divergence, . . . . ' rety 1

This behavior could be understood in terms of the Schmidt!! th's_ is substituted into EqAL), we find thate 7(p',,b)

Weinberg analysis of the kernel of the integral equations. Satisfies
Even at ultrarelativistic bombarding energies, the sudden

approximation is not applicable to the study of giant reso- v2 “’_2 1 U_Z o' w,b)
nances with excitation energies in the 10 to 20 MeV region. o 2 c2 PP
Moreover, the long-wavelength approximation is unreliable
at bombarding energies per nucleon above a few GeV. Thus ) w?
at very high projectile energy, the discretization of the =V~ | eli(p' 0,b) (A3)
coupled integral equations appears to be the most promising vy
approach. 4
We have seen that the integral equation approach can :__Trzpeg(p/_b). (A4)
readily be generalized to include the excitation of giant reso- hv

nances in the continuum part of the target spectrum. More- _ . .
over, the entire formalism can be put in correspondence with! ord_er to. re,duce EqA4) to a s_et oflordmary d|ffe_ren.t|al
the multichannel-eikonal approximation. This suggests thafduations irp’, we expand ?Oth sides in Fourier series in the
the formalism can be generalized to include nuclear interac@Zimuthal angle difference’ — ¢y,

tions between the projectile and target, using a version of the

multichannel Glauber modé¢R4,27. At relativistic projec- o (p w,b)=, ot (p',w,b)eH(¢' =% (AB)

tile energies, nuclear interactions are likely to manifest them- ¢ u i

selves mainly through a smooth cutoff due to absorption.

According to the harmonic model, the multiphonon cross- S(p'—b)
section saturates as the bombarding energy per nucleon in- o(p'—b)=———68(¢"~ ¢p)
creases to 10-20 GeV, and does not increases as the bom- P
barding energy increases further. It would be interesting to 8(p'—b) _
see whether this prediction would be borne out by a more = giu¢' ¢, (AB)
exact treatment, such as we have presented here, in which 2mp’ n

anharmonic and retardation effects are taken into account. o
Then Eq.(A4) implies that
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APPENDIX A: MULTIPOLE EXPANSION OF Vg, (w)

If p’#b, the right-hand side of Eq(A7) is zero and its

- solution is a linear combination of the modified Bessel func-
chargeZpe located atr=b+uvtz. Thus the charge density tions | ,(wp'/vy) and K, (wp'/vy). If Eq. (A7) is inte-
associated with this source Ked(p’'—b)s(z' —vt), with  grated across an infinitesimal interval containingb, it is

The source of the potentiz;i[jet can be taken to be a point



2206

ret

seen that the derivative afc ,(p',w,b) with respect top’
has a discontinuity ap’'=b equal to—(2Zpe/fivb). Both
these conditions are satisfied by

ZZPeI |w|p’
v "\ vy

= I/»L

ret ’ b)= K |w|b h '<b
()DC,/J,(p y W, )_ " vy W enp <

K [olp’ whenp’>b
huv vy | * vy p '
(A8)

Moreover, Eq.(A8) is continuous ap’=b, is regular atp’

=0, and vanishes gs —, the boundary conditions appro-

priate to this problem. Thus we use H@&8) in Egs. (A5)
and(A2). The result is

QDrCEt(r’,(U,b)_ 2§Pez e'l‘-(¢’ ¢b)el(wlv)z
|w|p’ |w|b
XIM( vy K,U' vy ’ (Ag)
U A
ASr w,0)= 261, w,b) (A10)

whenp’'<b.
To express tha' dependence of EqA9) in terms of

spherical harmonics, we write the partial-wave expansion of

a plane wave

e =2 IN2h+ )|k )Py(k-T")
A

=4w% (= DHMa(er DYRED)YY (k)

=473 (- e A  fn .

|«[*

Herey’LM(K) is a “solid harmonic,” a homogeneous poly-

nomial of degreex in «y, Ky, k;:

21+1
)Z \/W(I—Fm)'(l—m)'

X; (_1)m+n

|
ym(KX!KvaZ

(rxtiky) M(k2 +Ky)n |=m=2n
X
2nm!2n+2m)!(l—m—-2n)!"’

Also

in(kr’)

K)\

—n w \MH( ¢
is a polynomial ink,, ky, k,. In these polynomials, substi- gx,,ﬁ(m Fru=] 477(_| v

tute

B. F. BAYMAN AND F. ZARDI

PRC 59
0 w
Kx_ivy’ Ky= ,KZ—U.
Then
- w .w
ikr'=—x'+i—2,
vy v
2 2[..2 2
K2=K2+K +K = 1—% :w_2 U—2 :w_z
y velc c
so that

ro ’ . |(l)| ~
e(w/vy)x +i (wlv) z :)\2 ‘FA,/LJ)\(TI’,)Y;\L(W)
i

(A11)
with
w w
Fyu=(—1)Hi* Wy (Iv’yo’;>
_ wix c w\* N 1
=(-1*"4m v Tal yr, W’O’l
c o\ 1
“477(;@) y;(w,o,l). (A12)

But we can also expand the left-hand side of E4l1) in
cylindrical coordinates

e(a)/v'y)X'+i(w/v)Z/:e(a)/v'y)p'COsd;/-%—i(w/v)Z’
w !
= end| ( p )ei(wlu)z'
“ Moy
_z ing' |w|p gi(wlv) 2/
|w| vy '

(A13)

If we identify the coefficients ok'#?" in Egs. (All) and
(A13), we get

gine lw|p’ il 2 _ i)_“
2 <
oy 22 7ol

(lelry
X Fxudn Y You(r')

)

— H |w|r, e
_x;m QM,J)\< c )Y;\L(r )
(Al14)

with
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If Eq. (A14) is substituted into Eq(A9), we obtain the projectile-energy dependence of the matrix elements con-
multipole expansion of the Fourier transform of the scalamecting states witlAM #0 comes from the factog'(«/*) 2’
potential which changes very little with increasing projectile energy

whenv is close toc.

2Zpe . wlb) <
PR 0, b)= ==, e"”"’bK,L(l) 2, 9
UV ou VY I n=lul APPENDIX B: SYMMETRIES
i Mr’ YA (R (A16) We will consider situations in which the projectile and
I c UL target are both in 0 states before the collision. We first

_ . . show thatV,(w) defined in Eq(2.12) is real if the coordi-
If this expansion and Eq(A10) are used in Eq(3.6) the  nate system is chosen such that the trajectory of the projec-
result is the multipole expansioi8.9) of the Fourier trans- o (which is parallel to the axis) lies in they-2 plane. In

form of the interaction matrix element. this situation, we use Eq3.2) with x=0. It will be conve-

It is of some interest to focus on the distance paramet€fient 1o yse the symbdi, to represent reflection across the
that determines the rate of variation of the retarded potentiad - . oo~
plane,Z, to represent reflection across the plane, and

as we move perpendicular to the projectile orbit. It is clear™Y ) o
from Eq. (A7) that this distance parameter i®/w. When Ry to represent a rotation through about they axis.
this is large compared to the impact parameter and nuclear We have

radius, we can replack,(|w|p’/vy) andK ,(|o|b/vy) by

their limiting values for small arguments. If this is done, Eq.

(A9) can be approximated by Vga(w) = f %eiwt
(Prcet(r',a),b): Zfii,emei(wz’/v) ><< oF \/x’2+(y—yz’)PzeZy2(vt—z’)2 ¢a>,
X —In(M>Y8(0’,¢’)
v Y (a))*zfgei“’t
S [ VAT " ’
=123 .. 2ul b (u+1)!l Zeey
X[Y® (6, ¢ )emo ><<¢)z VX' 2+ (y—y' )+ y*(vt—2')? ¢Z>-

H(—DHYEO', p)e ]| (ALT)

We use “time-reversal” phases, for which the effect of com-
plex conjugation on angular momentum eigenstates is given

We will make use of this limiting form at high bombarding
energy, wheny>1 andv~c. It is seen that theAM=0
H ret H H — _
matrix elements ofp*", which arise from theu=0 term of () =(—1)""My? = Ryl/fﬁn ) (B1)
Eq. (A17), will diverge logarithmically as projectile energy
(and hencey) increases. On the other hand, the onlyThen

dt . Zpey
s |\ Ja *:f_ —iot{ R 48 P R. &
<¢Mﬁ| (w)|¢Ma> % € < yd,MB \/X'2+(y—y')2+y2(vt—2/)2 y¢Ma
dat . Zpey
= [ Ze-iot| 4l |R71 P R | ¢«
5 <¢MB Y W2 (y—y) 2+ P(ot—2')2 y ¢Ma
dt . Zpe'y J
= —eiot{ 4 a
f h <¢M’3 VX2 (y—y") Py (ot + )2 ¢M“>

Zpe'y
VX2 (y =y )+ yH(—ot+2')?

dt .
— __alot Jﬁ
J n e < ¢MB

¢i,.“a>=<¢i,.BE|V(w)|¢ﬂA“a>- (82)
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ThusVg, is real if “time-reversal” phases are used for the g o=a4p, (B6)
target states, and if the coordinate system is chosen so tha’[d H o o E his it foll hat th
the trajectory lies in they-z plane. A similar argument can and thea matrix Is symmetric. From this It follows that the

be used to show that on-shellT matrix _
Tﬁa: ! [aﬂa_ 5Ea:|
Via(@) =V p(— o). (B3) is also symmetric.

To prove the symmetry of the andT matrices, we intro- APPENDIX C: CONNECTION TO THE K MATRIX
duce the notatiomy ,(+) to represent the transition ampli-
tude from initial statep,, to final state¢; when the projectile
moves in the+ z direction. This is the guantity that we have
previously calledas, . Letag ,(—) represent the transition 1 . 1 2 3
amplitude from initial statep, to final state¢; when the K=—5(1+P)"V==2(1=P+P*=P +--)V.  (C]
projectile moves in the- z direction. Then

Let us use the symbd@? to represent the sum of principal-
value integrals in Eq(3.21), and define the matriK by

As defined in Sec. IV A, the symbdl, without its argument
aﬁ,a(“L):aIZa,Izﬁ(_):aRyIza,RyIzﬁ(+)- (B4) w, represents the on-shell interaction matrix. The excitation
amplitude matrixa can be expressed in terms Kfby using
But sinceR,Z, has the same effect &%, a reflection across
y=z ! — T — H —1y/— -1 H
~ o~ . . =1-iT=1-i V= —iV
they-z plane, Eq.B4) implies that a M MM )

[
aB,a(+):aIXa,Ixﬁ(+)- (B5) =|1+P+ E\/

(l-’-'P— EV)

If the projectile trajectory is in the/-z plane, the Hamil- =(1-iK) " Y(1+iK).

tonian is invariant under the reflectiéfy. Since the initial . . ) .

target state (0) is invariant undetZ, , the target state will 1he expansion of? in powers of the interaction is, apart
remain invariant throughout the reaction. Thus it is sufficientTom the linear term, the same as the expansiotv6f Eq.
to restrict our attention to target statég and ¢4 that satisfy 4.19,

\Y,
Lipo=bor Iybpp=dp, P=(m1—i§ +my+my+my+---.
and Eq.(B5) implies that If this expansion is used in EGC1), we recover the expan-
sion of K in powers of the interaction given in EQl 3.26)
aﬁ,a( + ) = aa,ﬁ( + )! of Ref. [1]
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