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Integral equation approach to relativistic Coulomb excitation
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We develop a formalism describing Coulomb excitation in relativistic heavy-ion collisions as a general
coupled-channel problem. The Schro¨dinger equation for the target nucleus is expressed as a set of coupled
integral equations for aT(v) matrix, whose on-shell matrix elements give the excitation amplitudes. The
method of Kowalsky and Noyes is used to regularize the kernels of these integral equations, making the
equations amenable to numerical solution. An application of the method is made to the study of the population
of a model state representing anL521 giant resonance in40Ca at an excitation energy of 20 MeV, due to the
electromagnetic field of a208Pb projectile with kinetic energy per nucleon up to 100 GeV. The results of the
numerical solution of the regularized coupled integral equations are compared to results obtained from the
Born series, and from the long-wavelength approximation. These approximations are found to be adequate up
to bombarding energies per nucleon of 3 GeV. We investigate the reasons for failure of these approximations
at higher bombarding energy. Due to the finite travel time of the electromagnetic pulse across the target
nucleus, the sudden approximation is found to be inapplicable to the excitation of the giant resonance. Thus the
method of numerical solution of the regularized coupled integral equations seems to be the most suitable
approach to the study of very high-energy Coulomb excitation of giant resonances.@S0556-2813~99!03404-4#

PACS number~s!: 25.70.De, 13.40.2f, 24.10.Jv, 25.75.2q
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I. INTRODUCTION

Most of the analyses of low-energy Coulomb excitati
data have been based upon a classical time-dependen
scription of the relative motion of the colliding nuclei, with
quantum-mechanical description of the excitation of th
nuclei as they proceed along their classical Coulom
dominated orbits. A comprehensive discussion of this n
relativistic theory is presented in the books of Alder a
Winther @1#, and of Biedenharn and Brussard@2#. The
method is applicable, in principle, whenever the deBrog
wavelength associated with the relative motion is sufficien
small compared with the other important lengths in the pr
lem.

A topic of major interest in current research in nucle
physics is Coulomb excitation in intermediate- and hig
energy collisions between heavy nuclei~see, e.g., Refs
@3–8#!. In this energy range, the high relative velocity of t
colliding nuclei implies that the retardation of the electr
magnetic interaction between them plays an important r
As a consequence of this retardation, the collision is m
‘‘sudden,’’ which enhances the direct and/or multistep ex
tation of high-energy states. Furthermore, at these ener
one benefits from the circumstance that the ratio between
resonance cross section and the background cross sect
drastically improved@9#.

The detailed quantitative analysis of the Coulomb exc
tion process can be performed in either the time domain
the frequency (v domain!. In the former, the time-dependen
Schrödinger equation for the internal motion of the collidin
nuclei is expressed as a set of coupleddifferentialequations,
which are numerically integrated. This approach require
multipole expansion of the retarded interaction potential,
pressed as a function oft. Expressions for this expansion a
PRC 590556-2813/99/59~4!/2189~20!/$15.00
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rather complicated, and until now it has been necessar
add a long-wavelength approximation in order to do act
calculations.

If we use the frequency domain, the amplitudes of t
various channels are expressed as functions ofv. The Schro¨-
dinger equation is expressed as a set of coupledintegral
equations for these functions, withv as the independen
variable. In this approach, the retarded interaction poten
enters the integral equations in terms of the Fourier tra
form of its time-dependent expression. A convenient mu
pole expansion of this Fourier transform was given by Ald
and Winther@10#. It turns out that this multipole expansio
has a simpler, more compact structure than the multip
expansion of thet-dependent interaction.

Until now, only the first few terms of the perturbatio
expansion of the excitation amplitude have been conside
in the literature~see, e.g., Ref.@1# for the difficulties arising
in developing further terms!. This is equivalent to consider
ing the first terms of the iterative solution of the integr
equation in thev variable. The first term is simply the on
shell interaction matrix element, i.e., the Fourier transform
the interaction, evaluated at the frequency correspondin
the energy difference between initial and final states. T
second-order Born approximation has been used to acc
for the excitation of states that cannot be reached from
ground-state by a single-step process~see, e.g., Ref.@11#!. It
also provides an important correction to the first-order ma
element in the situation in which high-Z nuclei collide at low
relative speeds@12#. The analyses available in the literatu
are mainly concerned with bombarding energy not exceed
1 GeV per nucleon.

Analyses that use the first few terms of the perturbat
series implicitly assume that this series converges. Howe
for a highly relativistic projectile, the convergence of th
2189 ©1999 The American Physical Society
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2190 PRC 59B. F. BAYMAN AND F. ZARDI
Born series is made questionable by the strong retardatio
the interaction. We will see below that as the projectile sp
v approachesc, and g[1/A12v2/c2 becomes large, the
magnitudes of some of the matrix elements of the retar
interaction potential diverge as ln(g). Furthermore, the
greater projectile speed implies a more sudden impu
which broadens thev range over which the Fourier trans
form of the interaction is non-negligible. Both these effe
work against the convergence of the Born series at very h
projectile velocity.

In order to test the reliability of various approximations
highly relativistic Coulomb excitation~bombarding energy
up to 100 GeV per nucleon!, we have attempted a non
perturbative solution of the coupled integral equations inv.
We first adapt the regularization procedure of Kowalski a
Noyes@13# to remove the difficulties associated with the s
gular kernels of the integral equations. This makes the eq
tions amenable to an approximate treatment, in which
continuous variablev is replaced by a discrete indexv i ,
and the coupled integral equations are replaced by a larg
of linear simultaneous equations, which can be solved
actly. The results are then compared with solutions base
approximations such as truncation of the Born series, or
long-wavelength approximation, or the sudden approxim
tion.

The semirealistic example we have chosen to illustrate
main features of our approach is the excitation of a 21 giant
resonance in40Ca. This excited level is assumed to have
small permanent quadrupole distortion. The coupled-chan
problem associated with this model provides an interes
study of reorientation effects. The small anharmonicities
the giant resonance in our simple model will affect the fin
population of the differentM states. More generally, anha
monicities can have relevant effects on the values of mult
phonon cross sections@14,8#, although the spacing of th
levels is only slightly modified.

When nuclei collide at high relative kinetic energy, a
with impact parameters greater the the sum of the nuc
radii, Coulomb excitation is not the only process that c
occur. For example, the pion-production cross section ca
appreciable at projectile energies of the order of 15–20 G
per nucleon, depending upon the nuclei being considered
somewhat higher energy (;50 GeV per nucleon!, electron-
positron pair creation can also be significant. Our goal is
more modest one of investigating the adequacy of vari
approximation methods for the study of pure high-ene
Coulomb excitation. This seems to be a reasonable first
on the way to a complete description of high-energy co
sions at large impact parameter. Several studies of Coul
excitation at bombarding energies up to 100 GeV
nucleon have been developed without reference to pair
ation and/or pion production~see, e.g., Refs.@3,15#!.

In Sec. II, we first discuss the difficulties associated w
the multipole expansion of the time-dependent Liena
Wiechert retarded potential. Then the amplitudeaf i , for ex-
citation of a final statef starting with initial statei , is ex-
pressed in terms of aT(v) matrix, which is shown to satisfy
a system of coupled integral equations@1#.

In first-order treatments of the integral equations~Born
approximation!, the interaction responsible for Coulomb e
citation enters only via its on-shell matrix elements, a
of
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these can be characterized completely by standard ele
and magnetic multipole operators. However, a more co
plete analysis~Sec. III! of the integral equations requires th
inclusion of off-shell matrix elements. We show that elect
and magnetic multipole operators are not sufficient to cal
late these off-shell matrix elements. An additional term
required, which vanishes on-shell.

In order to solve the coupled system of integral equatio
we use the regularization method of Kowalski and Noy
~Sec. IV A! to remove the singularities in the kernels, a
then we replace the regularized integral equations by an
proximately equivalent set of simultaneous linear equatio
which we solve exactly~Sec. IV B!. We also develop an
iterative solution of the integral equations~Born expansion,
Sec. IV C!. The sudden approximation is discussed in S
IV D.

The physical model is discussed in Sec. V A. The co
parison between the exact excitation amplitudes and th
calculated using various approximations is given in the f
lowing subsections.

In Sec. VI we show how the integral equation formulatio
may be modified if some of the excited states have fin
widths. We also explore the connection between the inte
equation approach to Coulomb excitation and the eiko
approximation. Some conclusions are drawn in Sec. VII.

II. THE EXCITATION AMPLITUDE

A. The differential form of the Schrödinger equation

Our aim is to determine the amplitudes for the populat
of excited states of projectile and target nuclei after th
have been involved in a collision. We will use the standa
semiclassical description, in which we take advantage of
short de Broglie wavelength associated with the relative m
tion to justify a classical description of the orbit of the pr
jectile as it moves past the target. The projectile and tar
experience a mutual time-dependent interaction during
collision, which is added to the Hamiltonian describing th
internal degrees of freedom. This Hamiltonian is now expl
itly time dependent, and leads to a time-dependent Sc¨-
dinger equation, which governs the time evolution of t
internal degrees of freedom. Quantum effects are fully ta
into account in the description of the internal motion of t
interacting projectile and target.

In order to simplify the following discussion, we will as
sume that the projectile remains in its ground state throu
out the collision. We ignore the internal degrees of freed
of the projectile, and usez to represent all the internal de
grees of freedom of the target.H0(z) is the part of the inter-
action referring only to these internal target degrees of fr
dom, and does not depend explicitly on time. The tim
independent eigenfunctions and eigenvalues ofH0 are fa
and Ea , respectively. We assume that the relative mot
has already been given in terms of a classical trajectory, fr
which we obtainV(z,t), the operator responsible for th
projectile-target interaction. Thus the Schro¨dinger equation
for the internal motion of the target can be written

S i\
]

]t
2H0Dc~z,t !5V~z,t !c~z,t !. ~2.1!
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In the standard method for solving this problem, the wa
function is expanded in terms of the eigenstates ofH0,

c~z,t !5 (
a50

N

faaa~ t !e2 ivat,

where va[Ea /\. If this expansion is substituted into th
Schrödinger equation~2.1!, it is found that the amplitudes
aa(t) satisfy the set of coupled differential equations

i\ȧa~ t !5(
b

^fauV~ t !ufb&ei ~va2vb!tab~ t !. ~2.2!

Since the target statesfa are angular momentum eigen
states, the evaluation of the matrix elements in Eq.~2.2!
requires a multipole expansion ofV(t), based on the targe
origin. The strong retardation effect associated with the h
projectile speed makes this difficult. More specifically, su
posetpulse is the duration of the electromagnetic pulse exp
rienced at any point in the target andtsweep is the time re-
quired for this pulse to sweep across the target. Iftsweep
@tpulse, different points in the target will feel the electro
magnetic pulse at markedly different times. Conversely
any given time, the spatial dependence of the project
target electromagnetic interaction will vary in a complicat
way within the target, and will not be susceptible to a co
venient multipole expansion.
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If the projectile moves with speedv at impact paramete
b, then

tpulse;
b

gv

and

tsweep;
2RT

v
.

Thus the conditiontsweep@tpulse occurs when

2RT

b
g@1.

For a grazing collision, with 2RT;b, this is equivalent to
g@1. In this situation, the evaluation of^fauV(t)ufb& be-
comes difficult, and it has so far not been possible to deve
a scheme for the exact evaluation of this matrix element

In appropriate circumstances, one can use an approxim
treatment of^fauV(t)ufb& based on the smallness of th
ratio
target dimensions

dominant wavelength associated with the electromagnetic pulse
.
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on.
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This is analogous to the long-wavelength approximation,
miliar from the theory of photon absorption and emissio
However, in that situation, the smallness of the above rati
guaranteed by the weakness of the electromagnetic coup
constante2/\c. In the problem of relativistic Coulomb exci
tation, we do not know what to use for the denominator
this ratio until we have solved the Schro¨dinger equation.
Thus the application of the long-wavelength approximat
in this context may be dangerous. One of the goals of
work is to test the long-wavelength approximations in so
cases in which we can solve the Schro¨dinger equation ex-
actly. At relatively low energies~0.6–1 GeV per nucleon!
good results have been obtained, e.g., in Refs.@16,17#.

B. The integral form of the Schrödinger equation

Although retardation makes it difficult to work directl
with ^fauV(t)ufb&, the Fourier transform of this time
dependent matrix element has a simpler, better converg
structure. This was first demonstrated by Alder and Wint
@10#, who gave a full multipole expansion of the Fouri
transform. In the quoted monograph@1#, Alder and Winther
had already demonstrated how the Coulomb excitation p
lem could be expressed entirely in terms of the Fourier tra
form of the interaction. This involves replacing the set
coupled differential equations int by an equivalent set o
coupled integral equations in the conjugate variablev. The
-
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advantage of this approach is the simpler and more e
representation of the Fourier transform of the interacti
The disadvantage is that the solution of the coupled inte
equations is computationally more demanding than the s
tion of the original set of coupled differential equation
However, we will see that the use of a regularization pro
dure makes the set of coupled integral equations readily a
nable to numerical solution.

We begin by rewriting the differential equation~2.1! in
the form

]

]t
@e~ i /\!H0tc~z,t !#5

e~ i /\!H0t

i\
V~z,t !c~z,t !. ~2.3!

This can be immediately integrated, to yield an integ
equation

ca~z,t !5e2~ i /\! Eatfa

1E
2`

t dt8

i\
e2~ i /\! H0~ t2t8!V~z,t8!ca~z,t8!

~2.4!

whose solution satisfies the Schro¨dinger equation~2.1!, cor-
responding to the initial internal wave functionfa .
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It is convenient to express the time-ordering implicit
Eq. ~2.4! in terms of the step functionQ(t2t8),

ca~z,t !5e2~ i /\! Eatfa

1E
2`

` dt8

i\
Q~ t2t8!e2~ i /\! H0~ t2t8!

3V~z,t8!ca~z,t8!

and then to use the Fourier transform of the step functio

Q~ t2t8!5
1

2p i E2`

` eiv~ t2t8!dv

v2 id
~2.5!

to rewrite the integral equation as

ca~z,t !5e2~ i /\! Eatfa2
1

2pE2`

`

dv
ei ~v2H0 /\!t

v2 id

3E
2`

` dt8

\
e2 i ~v2H0 /\!t8V~z,t8!ca~z,t8!.

~2.6!

To find the amplitude for the system to end up in theH0
eigenstatefb , we consider the quantity

Tba~v;t![E
2t

t dt

\
ei ~v1va!t^fbuVuca&. ~2.7!

Heret is a finite time, which we will allow to become infi
nite. Sinceca satisfies the Schro¨dinger equation~2.1!, we
can replaceVuca& in Eq. ~2.7! by @ i\(]/]t)2H0#uca&.
Then an integration oft by parts yields

Tba~v;t!5~v1va2vb!E
2t

t dt

\
ei ~v1va!t^fbuca&

1 i @^e2 i ~v1va!tfbuca~t!&

2^ei ~v1va!tfbuca~2t!&#. ~2.8!

For the particularv value given by

v5vb2va5
Eb2Ea

\
,

we have

Tba~vb2va ;t!52 i @^e2 ivbtfbuca~t!&

2^eivbtfbuca~2t!&#. ~2.9!

Now let t→`, for which ca(2t)→eivatfa , and

aba[ lim
t→`

^e2 ivbtfbuca~t!&

approaches the asymptotic amplitude for populating the
get statefb if the initial target state isfa . If we define
Tba(v) by

Tba~v![ lim
t→`

Tba~v;t!,
r-

then Eq.~2.9! can be rewritten as

Tba~vb2va!5 i @aba2dba#,

aba5dba2 iTba~vb2va!, ~2.10!

and we see that the excitation amplitudesaba will be deter-
mined once we know the ‘‘on-shell’’ quantitiesTba(vb
2va).

It is shown in Appendix B thataba5aab , and thus Eq.
~2.10! implies that the on-shellT matrix is also symmetric.
The unitarity of thea matrix is an expression of conservatio
of probability, which follows from the Hermiticity of the
Hamiltonian.

The effect of a gauge transformation generated by a ga
functionx is to multiply every wave function for a system o
chargeq by the phase

ei ~qx/\c!.

This operation will have no effect on any of the scalar pro
ucts in Eq.~2.8!. Thus we see that the functionsTba(v), and
the excitation amplitudesaba given by Eq.~2.10!, are invari-
ant with respect to a gauge transformation.

We can express the integral equation for the wave fu
tion as an integral equation forTba(v) by taking the scalar
product of Eq.~2.6! with ei (v1va)t^fbuV:

Tba~v!5Vba~v!

2
1

2p (
l
E dv8

Vb,l~v1v8!Tla~2v8!

v81vl2va2 id
,

~2.11!

where we have defined the Fourier transform of the ma
elements of the interaction potential by

Vba~v![E dt

\
eivt^fbuV~ t !ufa&. ~2.12!

Equation ~2.11! has a mathematical structure similar
the Lippmann-Schwinger equation of scattering theo
Note, however, that it is related to a response function, no
a cross section. Our goal is to solve this equation for
Tba(v), and then to use the ‘‘on-shell’’Tba(vb2va) to
determine the excitation amplitudes.

III. ON- AND OFF-SHELL MATRIX ELEMENTS
OF THE ELECTROMAGNETIC INTERACTION

A. The retarded potentials

We now restrict our considerations to the excitation o
target nucleus as a result of its electromagnetic interac
with a spherically symmetric projectile of chargeZ

P
e. We

know that the electromagnetic field of the projectile outs
its charge distribution is the same as that of a point cha
Z

P
e at its center. Since we are only interested in the proj

tile field at points outside its charge distribution, we will u
this point charge as the source of the projectile electrom
netic field. We assume that the projectile center moves al
a trajectory given by
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r5b1vt ẑ, ~3.1!

whereb is the impact parameter vector perpendicular toẑ
andv is the constant projectile speed.

The scalar and vector potentials due to this projectile
the pointr 8 of the target at timet are given by the Lienard
Wiechert expressions@18,10#

w
C

ret~r 8,t !5
Z

P
eg

A~x2x8!21~y2y8!21g2~vt2z8!2
,

~3.2!

A
C

ret~r 8,t !5
v
c

w
C

ret~r 8,t !ẑ. ~3.3!

Note that, because of the factorg2 which multiplies (vt
2z8)2, this potential is not spherically symmetric.

B. The interaction

If the nonrelativistic target Hamiltonian is written

H0~z!5(
j

1

2m
pj•pj1W~z!,

then we include the effect of the external electromagn
potentials with

H~z,t !5(
j

1

2mS pj2
ej

c
A

C

ret~r 8j ,t ! D 2

1ejwC

ret~r 8j ,t !1W~z!,

so that the one-photon-exchange part of the perturbation

V~r 8,t !52(
j

ej

2mc
@pj•A

C

ret~r 8j ,t !

1A
C

ret~r 8j ,t !•pj #1ejwC

ret~r 8j ,t !. ~3.4!

Hereej 5 1 or 0 depending upon whether the nucleon is
proton or a neutron, respectively. The matrix element oV
between unperturbed eigenstatesfa ,fb is

^fbuV~ t !ufa&5K fbU2(
j

ej

2mc
@pj•A

C

ret~r 8j ,t !

1A
C

ret~r 8j ,t !•pj #1ejwC

retUfaL
5E d3r 8Frba~r 8!w

C

ret~r 8,t !

2
1

c
jba~r 8!•A

C

ret~r 8,t !G , ~3.5!

where rba(r 8) and jba(r 8) are matrix elements of the
charge-density and current-density operators, respectiv
These are single-particle operators, defined by their sin
particle matrix elements as
t

ic

s

a

ly.
e-

^xbur~r 8,t !uxa&5exb* ~r 8,t !xa~r 8,t !,

^xbu j ~r 8,t !uxa&5
e\

2mi
@xb* ~r 8,t !“xa~r 8,t !

2xa~r 8,t !“xb* ~r 8,t !#.

The conservation of target charge implies that

“• j ~r 8,t !1
]r

]t
~r 8,t !50,

whose matrix elements with respect to the unperturb
eigenstates are

“• jba~r 8!1 i
~Eb2Ea!

\
rba~r 8!5“• jba~r 8!1 ivbarba~r 8!

50.

C. The Fourier transform of the interaction

The Fourier transform ofVba(t) required in Eq.~2.11! is

Vba~v!5E dt

\
eivtVba~ t !

5E d3r 8
dt

\
eivtFrba~r 8!w

C

ret~r 8,t !

2
1

c
jba~r 8!•A

C

ret~r 8,t !G
5E d3r 8Frba~r 8!w

C

ret~r 8,v!

2
1

c
jba~r 8!•A

C

ret~r 8,v!G ~3.6!

with w
C

ret(r 8,v) and A
C

ret(r 8,v) the Fourier transforms o

w
C

ret(r 8,t) and A
C

ret(r 8,t). The relation between the electri
field and the potentials

E
C

ret~r 8,t !52¹w
C

ret~r 8,t !2
1

c

]A
C

ret~r 8,t !

]t

implies that the Fourier transform ofE is related to the Fou-
rier transforms of the potentials (f,A) by

E
C

ret~r 8,v!52¹w
C

ret~r 8,v!1
iv

c
A

C

ret~r 8,v! ~3.7!

and Eq.~3.6! can be written

Vba~v!5
i

vE d3r 8jba~r 8!•E
C

ret~r 8,v!

1S 12
vba

v D E d3r 8rba~r 8!w
C

ret~r 8,v!.

~3.8!
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In particular, the on-shell matrix elementVba(vba) is ex-
pressed entirely in terms of the electric fieldE

C

ret. SinceE
C

ret

is invariant under a gauge transformation of the potenti
we see that on-shell matrix elements of the interaction
gauge-invariant, but off-shell matrix elements generally
not. Furthermore, the electric field that appears in Eq.~3.8!
has the projectile as its source, so that its divergence is
outside the projectile. Ifb is large enough so that the proje
tile and target do not overlap, then“•E

C

ret(r 8,v) will be zero

throughout the range of ther 8 integration. We will see below
that this leads to a simplification in the expressions for
on-shell matrix elements.

D. Multipole expansion of the interaction matrix element

The transition charge and current densities in Eq.~3.6!
will be determined by the model we use to describe the ta
states. To evaluate the integrals in Eq.~3.6!, it is useful to
have expansions ofw

C

ret(r 8,v) and A
C

ret(r 8,v) in terms of
multipoles defined relative to the target center. Such exp
sions were first given by Alder and Winther@10#. Their result
can be expressed as

Vba~v!5
2ZPe
\v (

m
e2 imfbKmS uvub

vg D

3 (
l5umu

`

G lmE d3r 8.Frba~r 8!

2
v

c2
ẑ• jba~r 8!G j lS uvu

c r 8 DYm
l ~u8,f8!.

~3.9!

Herer 8, u8, andf8 are the spherical polar coordinates ofr 8
defined relative to a target-centered origin, andfb is the
angle between thex̂- ẑ plane and the reaction plane. The c
efficientGlm has the explicit expression

Gl,m5
i l1m

~2g!m S v

uvu D
l2mS c

v D l

A4p~2l11!~l2m!! ~l1m!!

3(
n

1

~2g!2n~n1m!!n! ~l2m22n!!
. ~3.10!

It can also be expressed in terms of solid harmonics or
genbauer polynomials

Gl,m5 i l4pS v

uvu D
l2mS c

v D l

Y m
l S 1

ig
,0,1D

5 i l2mS v

uvu D
l2mS c

gv D umuA4p~2l11!
~l2umu!!
~l1umu!!

3~2umu21!!! Cl2umu
umu11/2S c

v D . ~3.11!

In Appendix A we give an alternative derivation of the e
pansion~3.9!, which we believe is somewhat more dire
than the original derivation of Alder and Winther.
s,
re
e

ro

e

et

n-

e-

Since the nuclear states used in the calculation of the t
sition current density have well-defined parity and angu
momentum, it is convenient to express the vector fields
pearing in Eq.~3.9! in terms of vector spherical harmonic
For a given radial dependencej l(kr 8), there are three lin-
early independent vector fields with rotational transformat
properties (l,m). The choices usually made are

L j l~kr 8!Ym
l ~ r̂ 8!5

\

i
~r 83¹! j l~kr 8!Ym

l ~ r̂ 8!, ~3.12!

~¹3L ! j l~kr 8!Ym
l ~ r̂ 8!, ~3.13!

¹ j l~kr 8!Ym
l ~ r̂ 8!. ~3.14!

The fields ~3.12! and ~3.13! are solenoidal, i.e., they hav
zero divergence. Field~3.14! is irrotational, i.e., it has zero
curl.

If ẑj l(kr 8)Ym
l ( r̂ 8) is expressed in terms of the multipo

fields ~3.12!–~3.14!, the multipole expansion ofVba can be
written

Vba~v!5
2ZPe

\v (
m

e2 imfbKmS uvub
vg D

3 (
l5umu

`

@Xm
l ~E!1Xm

l ~M !1Xm
l ~G!#,

~3.15!

where

Xm
l ~E!5

iv

c\v
FGl21,m

l
A l22m2

~2l11!~2l21!

1
Gl11,m

l11
A ~l11!22m2

~2l11!~2l13!
G

3E jba•~¹3L ! j lS v

c
r 8DYm

l ~ r̂ 8!d3r 8,

~3.16!

Xm
l ~M !52

vm

c2\

Gl,m

l~l11!
E jba•L j lS v

c
r 8DYm

l ~ r̂ 8!d3r 8,

~3.17!

Xm
l ~G!5F12

vba

v GGlmE rba~r 8! j lS v

c
r 8DYm

l ~ r̂ 8!d3r 8.

~3.18!

In deriving Eqs.~3.16!–~3.18!, we have used the relation

Glm5
iv
c FA l22m2

~2l11!~2l21!
Gl21,m

2A ~l11!22m2

~2l11!~2l13!
Gl11,mG ,
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which follows when Eq.~3.11! is applied to the familiar
spherical harmonic relation

Y0
1~ r̂ !Ym

l ~ r̂ !5(
l

~1l0mu lm!

3~1l00u l0!A 3~2l11!

4p~2l 11!
Ym

l ~ r̂ !.

It was pointed out above that for on-shell matrix elemen
whenv5vba , the electromagnetic field seen by the targe
solenoidal. This is confirmed by Eqs.~3.16!–~3.18!, where
we see that the on-shell matrix elements involve only in
grals of jba with L j lYm

l and (¹3L ) j lYm
l . These integrals

can be expressed in terms of the usual multipole matrix
mentsM(Ml,m) andM(El,m), using the definitions@19#

E d3r 8jba~r 8!•L j lS v

c
r 8DYm

l ~ r̂ 8!

5 i S v

c D l \c~l11!

~2l11!!!
M~Ml,m!, ~3.19!

E d3r 8jba~r 8!•¹3L j lS v

c
r DYm

l ~ r̂ 8!

5S v

c D l11 \c~l11!

~2l11!!!
M~El,m!. ~3.20!

Thus we see that althoughM(Ml,m) andM(El,m) are
sufficient to determine the interaction matrix elements
first-order perturbation theory, where only on-shell mat
elements are needed, in a more complete calculation we
also need the integral ofrba j lYm

l . If the long-wavelength
approximation is applicable, in which

v

c
Rtarget!1, ~3.21!

then we may use

E rba~r 8! j lS v

c
r 8DYm

l ~ r̂ 8!d3r 8;
~v/c!l

~2l11!!!
M~El,m!.

~3.22!

It is shown in Appendix B thatVba(v) is real if the
trajectory lies in theŷ2 ẑ plane, and if the phases of th
target states are chosen so that the effect of complex co
gation onfM

J is to change it into (21)(J2M )f2M
J . It is also

shown that the hermiticity ofV(z,t) implies that

Vba~v!5@Vab~2v!#* 5Vab~2v!.

IV. METHODS OF SOLUTION OF THE COUPLED
INTEGRAL EQUATIONS

A. Removing singularities of the kernel

If we attempt a direct numerical solution of the integr
Eq. ~2.11!, we will be faced with difficulties associated wit
its singular kernel. Kowalski and Noyes~see, e.g., Ref.@13#!
have devised a very effective method for removing singul
,
s

-

e-

ill

ju-

l

i-

ties in scattering problems. In this section, we will adapt
Kowalski-Noyes approach to our equation forTba(v).

The general method will be clearer if we first consider
one-channel example of Eq.~2.11!:

T~v!5V~v!2
1

2pE dv8
V~v1v8!T~2v8!

v82 id
. ~4.1!

In particular, thev50 version of this equation is

T~0!5V~0!2
1

2pE dv8
V~v8!T~2v8!

v82 id
. ~4.2!

If we multiply Eq. ~4.2! by V(v)/V(0) and subtract it from
Eq. ~4.1!, we get

T~v!5T~0!
V~v!

V~0!
2

1

2pE dv8

3
V~v1v8!2V~v8!@V~v!/V~0!#

v82 id
T~2v8!

5T~0!
V~v!

V~0!
2

1

2pE dv8

3
V~v1v8!2V~v8!@V~v!/V~0!#

v8
T~2v8!.

~4.3!

We can omit the2 id in the last denominator of Eq.~4.3!
because the corresponding numerator vanishes whenv850.
Equivalently,

G~v!5U~v!2
1

2p

3E dv8
V~v1v8!2V~v8!U~v!

v8
G~2v8!,

~4.4!

where we have introduced the ratios

U~v![
V~v!

V~0!
, G~v![

T~v!

T~0!
.

Once we have solved the nonsingular Eq.~4.4!, we can sub-
stitute its solution into the integral in Eq.~4.2! to get

T~0!5V~0!2
1

2pE dv8
V~v8!G~2v8!

v82 id
T~0!,

T~0!5
V~0!

11 ~1/2p!*dv8@V~v8!G~2v8!/~v82 id!#
,
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T~v!5
G~v!

11 ~1/2p! *dv8@V~v8!G~2v8!/~v82 id!#
V~0!

5
G~v!

11~1/2p!P*~dv8/v8! V~v8!G~2v8!1~ i /2!V~0!

3V~0!. ~4.5!

Although we still have a principal-value integral to perfor
in the final step of Eq.~4.5!, the singularity has been re
moved from the integral equation~4.4!.

We now apply an analogous procedure to the ma
channel coupled integral equations~2.11!. We use the sym-
bol Vab , without the argumentv, to represent the on-she
interaction matrix

Vab[Vab~va2vb!.

Similarly, Tab , without the argumentv, is used to represen
the on-shellT matrix

Tab[Tab~va2vb!.

Then the matrixU(v) is defined by

Ubg~v![(
l

Vbl~v2vl!@V21#lg , ~4.6!

from which we see that

Ubg~vb!5(
l

Vbl~vb2vl!@V21#lg5(
l

Vbl@V21#lg

5dbg .

Similarly, the matrixG(v) is defined by

Gbg~v![(
l

Tbl~v2vl!@T21#lg , ~4.7!

from which it follows that

Gbg~vb!5dbg .

Then by taking a linear combination of Eq.~2.11! and the
version of Eq.~2.11! with b5g and v5vg2va , we find
that

Tba~v!5(
g

Ubg~v1va!Tga2
1

2p(
l
E dv8

v81vl2va

3FVbl~v1v8!2(
g

Ubg~v1va!

3Vgl~vg2va1v8!GTla~2v8!. ~4.8!

We are again able to omit the2 id from the denominator in
the integrand, because the linear combination within squ
brackets has been constructed so that it vanishes whenv8
5va2vl . If we replacev in this equation byv2va , and
multiply from the right byT21, we get the nonsingular set
-

re

Gba~v!5Uba~v!2
1

2p (
l
E dv8

v81vl

3FVbl~v1v8!2(
g

Ubg~v!

3Vgl~vg1v8!GGla~2v8!, ~4.9!

which generalizes Eq.~4.4!. Finally, the solution of Eq.~4.9!
is used, together with Eq.~4.7! in the on-shell version of Eq
~2.11! to obtain the desired on-shellT-matrix elements

Tba5(
g

@M21#bgVga , ~4.10!

Mbg5dbg1
1

2p(
l
E Vbl~vb1v8!Glg~2v8!

v81vl2 id
dv85dbg

1
1

2p(
l
PE dv8

v81vl

Vbl~vb1v8!Glg~2v8!

1
i

2(l
VblGlg~vl!5dbg

1
1

2p(
l
PE dv8

v81vl

Vbl~vb1v8!Glg~2v8!

1
i

2
Vbg . ~4.11!

This generalizes Eq.~4.5!.
We see from Eq.~4.11! that the imaginary part ofM is

completely defined by the on-shell interaction matrix. T
solutionG(v) of the integral equation~4.9! only contributes
toM by its presence in the integrand of the principal-val
integral.

The method described above is only applicable in sit
tions in which the on-shellT matrix is nonsingular. If itwere
singular, it follows from Eq.~2.10! that thea matrix would
have an eigenvalue of unity. In this situation, there wou
exist a set of initial amplitudes of the target states which
such that they are also the final amplitudes remaining a
the interaction with the projectile has occurred. While this
a conceivable situation, we imagine that it must be very
likely in a system of reasonable complexity, and thus
believe that the nonsingularity of theT matrix is a safe as-
sumption. Similarly, a singular on-shellV matrix would im-
ply that there exists a set of initial target-state amplitud
that are unaffected by the interaction in first order, which
also unlikely in a reasonably complex system.

B. Solution of the integral equation by matrix inversion

The most direct approach to numerical solution of a se
coupled linear integral equations is to approximate them b
set of coupled linear algebraic equations. The continu
variable v is replaced by a discrete variablev i ( i
51,2,. . . ), and thev8 integral in Eq.~4.9! is approximated
by a sum overi . Equation~4.9! is thereby approximated by
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the following set of simultaneous linear algebraic equatio
for the unknown numbersGba(v i):

(
l j

Ab i ,l jGla~v j !5Uba~v i !,

with

Ab i ,l j[dbldv i2v j

1
D

2p~vl2v j !
FVbl~v i2v j !

2(
g

Ubg~v i !Vgl~vg2v j !G , ~4.12!

whose solution is

Gba~v i !5(
l j

@A21#b i ,l jUla~v j !. ~4.13!

Here D is the grid spacing,v i 112v i . The numbers
Gba(v i) determined from Eq.~4.13! are used for the calcu
lation of the principal-value integrals in Eq.~4.11!, and then
the on-shellT matrix is calculated using Eq.~4.10!.

Note that the matrix of coefficients@A# defined in Eq.
~4.12! is independent ofa. Gba(v i), for different values of
a, are obtained by changing the value ofa on the right-hand
side of Eq.~4.13!, using the same matrix@A#. If our grid size
and range determine that we haveN values ofv i , and we
choose to couplen target states, then the dimension of t
matrix @A# will be Nn.

The grid spacingD should be small compared to thev
interval over which theVba(v) change appreciably, and als
small compared to the differences between the on-shell
uesvl . If the electromagnetic pulse lasts for timetsweep,
then theVba(v) can be expected to vary significantly whe
v changes by an amount 1/tsweep. For relativistic projectiles
and typical nuclear dimensions,

1

tsweep
;

1

~2R!/c
;

\c

2R\
;

100 MeV fm

R\
.

For excitation of nuclear giant resonances, thevl differences
are of the order of 10–20 MeV/\. These considerations in
dicate that a choice ofD of a few MeV/\ should be an
adequate approximation to the continuous variablev, and we
have used this choice in our numerical calculations.

If Vba(t) varies appreciably over a time intervaldT, then
theVba(v) will be significant over anuvu range up to abou
1/dT. For the sharp electromagnetic pulse associated wi
relativistic projectile,dT will be of the order of magnitude o
the time it takes for the pulse to move across signific
features of the nuclear density, such as the nuclear
thickness. This leads to an estimate of a totalv width of

1

0.5 fm/c
;

\c

0.5 fm\
;400

MeV

\
.

It will be seen in our numerical examples thatVba(v) is
very small outside thev range of2400 MeV/\,v,400
MeV/\. Of course, we can check whether this choice is
s

l-

a

t
in

-

equate by seeing if the calculatedGba(v i) are negligibly
small whenv i approaches the limits of the chosen range
by testing the sensitivity of the calculated excitation pro
abilities to changes in this range.

C. The Born series for the on-shellT matrix

The Born series is an expansion of the on-shellT matrix
in powers of the interactionV

T5t11t21t31••• . ~4.14!

Here tn represents all the terms containingn products ofV.
A corresponding expansion ofM of Eq. ~4.11! in powers of
V is

M5m01m11m21•••, ~4.15!

with m051. Then Eq.~4.10! implies that

M•T5V,

~11m11m21m31••• !•~ t11t21t31••• !5V.
~4.16!

Identifying terms on the left-hand side of Eq.~4.17! corre-
sponding ton powers ofV, we get

t15V,

tn52 (
r 51

n21

mn2r t r ~n52,3,4, . . . !. ~4.17!

The first few terms of Eq.~4.17! imply that

t252m1t152m1V,

t352m2t12m1t25~2m21m1
2!V,

and so forth. We can obtain the coefficientsmn2r we need in
Eq. ~4.17! by combining the definition~4.11! forM with an
expansion ofG(2v8) in powers ofV:

G~2v8!5G~0!~2v8!1G~1!~2v8!1G~2!~2v8!1••• .

~4.18!

If this expansion is substituted into the integral equation
G @Eq. ~4.9!#, and then terms ofn powers ofV are identified,
one finds that

Gba
~n11!~v!52

1

2p(
l
E dv8

v81vl

3FVbl~v1v8!2(
g

Ubg~v!Vgl~vg1v8!G
3Gla

~n!~2v8!.

This recursion relation can be solved for theG (n)(v), start-
ing with G (0)(v)5U(v), and theseG (n)(v) can be used
together with Eqs.~4.18! and~4.11! to obtain the coefficients
mn2r needed in Eq.~4.17!. Thus we have a well-defined
procedure for determining successive terms of the Born
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pansion of the on-shellT matrix. The relationship betwee
this expansion and the perturbative expansion of Alder
Winther @1# is discussed in Appendix C.

We illustrate this procedure by calculatingt2, the second-
order contribution to the on-shellT matrix. This requiresm1,
the first-order contribution toM of Eq. ~4.11!,

~m1!bg5
i

2
Vbg1

1

2p(
l
PE dv8

v81vl

Vbl~vb1v8!

3Glg
~0!~2v8!

5
i

2
Vbg1

1

2p(
l
PE dv8

v81vl

Vbl~vb1v8!

3Ulg~2v8!.

Then

~ t2!ba5~2m1t1!ba5~2m1V!ba

52
i

2(l
VblVla2

1

2p(
l
P

3E dv8

v81vl

Vbl~vb1v8!Vla~2v82va!

52
1

2pE dv8(
l

Vbl~vb1v8!Vla~2v82va!

v81vl2 id

52
1

2pE dv8(
l

Vbl~vb2va1v8!Vla~2v8!

v81vl2va2 id
.

This agrees with the second-order term one can obtain f
the Born expansion of the integral equation~2.11! for
Tba(vb2va).

D. Sudden approximation

Suppose that the external impulse experienced by the
get is of much shorter duration than the characteristic os
lation modes of the target. In this case, the interaction ma
elementsVbl(v1v8) in Eq. ~2.11! vary by small fractions
of themselves in thev range defined by the differencesvl

2va in the denominator of Eq.~2.11!. Then we can get a
useful approximation to Eq.~2.11! by ignoring these differ-
encesvl2va , so that Eq.~2.11! is replaced by

Tba~v!5Vba~v!

2
1

2p (
l
E dv8

Vb,l~v1v8!Tla~2v8!

v82 id
.

~4.19!

This is equivalent to ignoring the presence ofe( i /\) H0t in the
time-dependent Schro¨dinger equation~2.3!, leading to

]

]t
c~z,t !5

1

i\
V~z,t !c~z,t !.
d

m

r-
il-
ix

The solution of this equation, corresponding to initial con
tion c(z,2`)5fa(z), is

ca~ t !5e*2`
t

~dt8/ i\!V~ t8!fa .

If this solution is substituted into the definition~2.7! of
Tba(v), the result is

Tba~v!5E
2`

`

dteivt^fbuV(t)ue*2`
t

~dt8/ i\!V~ t8!fa&.

~4.20!

It can be verified that Eq.~4.20! satisfies the sudden
approximation integral equation~4.19!.

The excitation amplitudes are obtained, according to
~2.10!, from the on-shell values ofTba(v). In the sudden-
approximation limit, on-shell impliesv50. Thus we need

Tba~0!5E
2`

`

dt^fbuV~ t !ue*2`
t

~dt8/ i\! V~ t8!fa&

5E
2`

`

dt
d

dt
^fbue*2`

t
~dt8/ i\! V~ t8!ufa&

5^fbue*2`
`

~dt8/ i\! V~ t8!ufa&2dba .

If this result is used in Eq.~2.10!, we get the sudden
approximation excitation amplitudes

aba5dba2 iTba~0!,

5^fbue*2`
`

~dt8/ i\! V~ t8!ufa&.

This formula has a strong similarity with a correspondi
expression for the multichannel eikonal approximation. T
is not surprising since, as will be demonstrated in Sec.
there is a close correspondence between Coulomb excita
theory and the multichannel eikonal approximation.

Unfortunately, the sudden approximation is of little use
the investigation of reactions in which states in the gia
resonance region are excited, for which we encounterDl,a
5vl2va;10– 20 MeV/\. At relativistic projectile speeds
the duration of the excitation pulse is of the order of 2R/c,
so the applicability of the sudden approximation would
quire that

2R

c
!

1

Dl,aMeV/\
,

2R!
\c

Dl,a MeV
;

200 MeV fm

Dl,a MeV
;10220 fm.

This criterion would be satisfied only for the lightest targ
nuclei, and would not be satisfied for a medium-weight t
get such as calcium. However, if we were interested in
population of low-energy rotational levels, for whichvl

2va;0.1 MeV/\, the criterion for the validity of the sud
den approximation in a peripheral relativistic collision wou
be satisfied by all nuclei.
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V. EXAMPLES OF NUMERICAL RESULTS AND
EXPLORATORY STUDIES

A. The physical model

To illustrate the methods described in the previous s
tions, we will analyze a simple semirealistic example of re
tivistic Coulomb excitation. We consider the excitation of
21 level of 40Ca at 20 MeV, exhausting 100% of the EWS
which amounts to a reduced transition probabilityB(E2,0
→2)5450 e2 fm4. To this 21 level, we ascribe a static
quadrupole momentQ0 of 15 e fm2. The occurrence of a
static quadrupole moment implies the presence of an
monic terms in the nuclear Hamiltonian. According to E
~6-240! of Ref. @19#, anharmonic effects that can yield th
value ofQ0 can also yield ‘‘reorientation reduced transitio
probabilities’’ of about 75 e2 fm4 between one-phonon
states. These are about 1/6 of the reduced transition prob
ity for the allowed (Dn51,01→21) transition. The excita-
tion of these states is due to the electromagnetic field o
relativistic 208Pb nucleus, moving parallel to theẑ axis in the
ẑ- ŷ plane.

We approximate the transition current and charge de
ties needed in Eqs.~3.16!–~3.18! by using the Tassie mode
@20#, which describes the 21 resonance as a one-quantu
vibrational oscillation of an incompressible irrotational flui
This leads to expressions of the form

j ~r !5r0~r !(
l,m

Km
l ~z!r l21~@Yl21~ r̂ !ĵ1#m

l !* , ~5.1!

r~r !5
i

vba
¹• j ~r !

5
i

vba
A l

2l11
r l21r08~r !(

m
Km

l ~z!Ym
l ~ r̂ !,

~5.2!

wherer0 is the equilibrium proton density, andKm
l (z) are

operators that act on the target degrees of freedomz. The ĵm
1

are unit vectors defined by

ĵ61
1 5~71!

1

A2
@ x̂6 ŷ#,

ĵ0
15 ẑ.

In the present application we havel52 and vba520
MeV/\. The operatorsKm

2 are normalized in terms of th
value of

B~E2,Ja→Jb![ (
Mb ,m

u^fMb

Jb uM~E2,m!ufMa

Ja &u2,

calculated using Eq.~5.1!. We follow Suzuki and Rowe@21#
in using

r0~r !5
1

4p3/2b3S 40132
r 4

b4De2~r 2/b2! ~b51.887 fm!.
c-
-

r-
.

il-

a

i-

Since the operatorsKm
2 involve the creation or annihila

tion of a vibrational quantum, they yield zero matrix el
ments between the different magnetic substates of the1

level. Since these substates are degenerate,

vba505¹• j ~r 8!.

For simplicity, we calculate these ‘‘reorientation’’ matrix e
ements by making the further assumption thatjba50, so that
only the contribution~3.18! survives, which we calculate us
ing

r~r !5r0~r !(
m

Qm
2 ~z!r 2@Ym

2 ~ r̂ !#* ~5.3!

in Eq. ~3.18!, and normalize the reduced matrix element
Qm

2 (z) in terms of the static quadrupole moment of the e
cited level. Thev-grid spacing was chosen to allow the si
nificant v range to be divided in 801 points. This yielde
Dv51 MeV/\ at EP /A51 GeV, andDv52.5 MeV/\ at
EP /A5100 GeV.

Since the trajectory of the projectile is in theẑ- ŷ plane,
the only target states that are connected to the ground
by the interaction are those that are symmetric with resp
to a reflection across theẑ2 ŷ plane. Thus we only need to
include the four states

f0[f0
01

~ground state!,

f1[f0
21

,

f2[
1

A2
~f1

21
2f21

21

!,

f3[
1

A2
~f2

21
1f22

21

!. ~5.4!

This requires the calculation and inversion of a 32043 3204
real matrix, which can be done without difficulty on a mo
ern computer workstation.

B. General characteristics of the interaction matrix elements

Many of the features of our numerical results for exci
tion probabilities depend upon the general characteristic
the interaction matrix elementsV0a(v) (a51,2,3) connect-
ing the ground state and the states of the 21 level. Figures
1~a!–1~c! show plots ofV0a(v) as a function ofv for vari-
ous bombarding energies. It is immediately apparent that
very high projectile energies (g@1), theDM561,62 ma-
trix elements are very nearly independent of projectile
ergy, whereas theDM50 matrix element continues to in
crease. It is shown in Appendix A that these behaviors a
consequence of the high-energy asymptotic form of the e
tromagnetic pulse. TheDM50 matrix element also exhibits
interesting behavior at the on-shell value ofv ~20 MeV/\ in
the present example!. There is some indication in Fig. 1~a!
that this matrix element is very small on-shell, and we n
show that this is indeed the case.
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FIG. 1. ~a! The Fourier transform of the matrix element of the electromagnetic interaction between the ground state in40Ca and the
componentL521, M50 of our model state at 20 MeV. The interaction is with a208Pb projectile, at an impact parameter of 10 fm, and w
kinetic energy per nucleon of 1, 50, or 100 GeV.~b! The same as for~a!, except that the excited state of40Ca is the reflection-symmetric
linear combination (f1

22f21
2 )/A2. ~c! The same as for~a!, except that the excited state of40Ca is the reflection-symmetric linea

combination (f2
21f22

2 )/A2.
According to Eq.~3.8!, the on-shell value ofVba(v) is
given by

Vba~vba!5
i

vE d3r 8jba~r 8!•E
C

ret~r 8,vba!. ~5.5!

Using Eqs.~3.7! and ~3.3!, we have

E
C

ret~r 8,v!52¹w
C

ret~r 8,v!1
iv

c
A

C

ret~r 8,v!

52¹w
C

ret~r 8,v!1
ivv

c2
w

C

ret~r 8,v!ẑ.

Now let us use for theM50 part of w
C

ret(r 8,v) the simple

approximate expression~A17!, valid whengv/v @b,

w
C

ret~r 8,v!5
2ZPe

\v
A4pei ~vz8/v !3F2 lnS buvu

vg DY0
0~u8,f8!G .
Since the only spatial dependence is in the factorei (vz8/v), it
follows that

¹w
C

ret~r 8,v!5 i
v

v
3w

C

ret~r 8,v!ẑ

so that theM50 part of E
C

ret(r 8,v) is approximately given
by

S 2 i
v

v
1

ivv

c2 D w
C

ret~r 8,v!ẑ52 i
v

vg2
w

C

ret~r 8,v!ẑ

5 i
v

vg2

2ZPe

\v

3 lnS buvu
vg Dei ~vz8/v !.
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TABLE I. Excitation probabilities of the states of theL521 level. Comparison between the Bor
approximation and the exact result for values of bombarding energies of the projectile ranging from 1
GeV per nucleon. In this and in the following tables we use the notation21, 13, e.g., for the multiplicative
factors 1021, 1013.

b EP /A M50 M561 M562
~fm! ~GeV! Born Exact Born Exact Born Exact

1 0.722-3 0.744-3 0.461-2 0.470-2 0.122-1 0.119-1
5 0.219-4 0.104-3 0.287-2 0.314-2 0.109-1 0.101-1
10 0.310-5 0.122-2 0.279-2 0.341-2 0.108-1 0.896-2

10 15 0.894-6 0.269-2 0.278-2 0.364-2 0.108-1 0.803-2
20 0.357-6 0.358-2 0.277-2 0.364-2 0.108-1 0.730-2
50 0.165-7 0.251-3 0.277-2 0.132-2 0.108-1 0.481-2
100 0.146-8 0.445-1 0.277-2 0.241-2 0.108-1 0.293-2

20 100 0.106-8 0.896-3 0.692-3 0.313-3 0.675-3 0.324-3
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This vanishes in theg→` limit, which implies that the on-
shell DM50 interaction matrix element will become ver
small at sufficiently high bombarding energy. It is shown
Appendix A that the off-shellDM50 matrix element di-
verges at high bombarding energy in proportion to ln(g).

C. Comparison of Born approximation with exact excitation
probabilities

Table I shows excitation probabilities for theM50 state
of the L52 level, and for the reflection-symmetricM561
and M562 combinations of states, at various bombard
energies per nucleon between 1 and 100 GeV. Comparis
made between the exact results and those obtained by m
of the first Born approximation, in which the on-she
Tba(vba) is approximated by the on-shell interaction mat
elementVba(vba).

It is seen that whenEP /A51 GeV, the Born approxima
tion gives a very good representation of the excitation pr
abilities. However, as the bombarding energy increases,
fit between the Born approximation and the exact values
teriorates. This is especially true in the case of the excita
of the L52, M50 state. As explained in the previous se
tion, the on-shell interaction matrix element is expected
become very small at high bombarding energy, leading t
very small Born approximation prediction for theL52, M
50 excitation probability. However, the exact calculation
this excitation probability involves off-shell matrix elemen
of the interaction potential, and indirect transitions to theL
52, M50 state via theL52, M561 and L52, M562
states. Therefore the weakness of the directL50, M50
→L52, M50 on-shell matrix element does not prevent t
exact calculation from yielding a relatively large excitatio
probability. The constancy, with increasing bombarding
ergy, of the Born predictions for theM561 andM562
excitation probabilities is a consequence of the constanc
the corresponding on-shell matrix elementsVba(vba), as
explained in Appendix A. This constancy isnot exhibited by
the exact values of theM561,62 excitation probabilities,
because the latter are affected by the strong variation w
bombarding energy of theM50 matrix element. It is seen
from Table I that whereas theM562 state is excited mos
g
is

ans

-
he
e-
n

-
o
a

f

-

of

th

strongly atEP /A51 GeV, theM50 state is populated mos
strongly at 100 GeV/nucleon.

The last line of Table I shows excitation probabilities
EP /A5100 GeV at an impact parameter of 20 fm. Althoug
the excitation probabilities are weaker than they were at
grazing impact parameter of 10 fm, the ratios of the differe
matrix elements are comparable. In particular, the Born
proximation to the population of theL52, M50 state is
many orders of magnitude smaller than the exact value.

The differences between the Born and exact excitat
probabilities shown in Table I are due to the inclusion in t
exact calculation of the effect of the off-shell values ofv,
brought in by the integral equation~2.11!, and to the inclu-
sion of reorientation couplings between the differentL52
states. To disentangle these two effects, we did a serie
calculations in which theL50, M50 ground state was
separately coupled to each of theL52 states, with no reori-
entation couplings. These results are shown in Table II. N
the differences between the Born and exact values are
only to the inclusion of off-shellv values in the latter. Not
surprisingly, these differences are not as great as when re
entation couplings are included. Nevertheless, the exacM
50 excitation probability is 5 orders of magnitude grea
than the Born value atEP /A5100 GeV, showing the impor-
tance of off-shellv values in this case.

D. The convergence of the Born series

In Sec. IV C it was shown how the full Born series cou
be calculated from an iterative solution of theG-matrix equa-
tion. Table III summarizes some results for the converge
of the Born series at bombarding energies per nucleon o
3, 10, and 100 GeV. It is seen that atEP /A51 and 3 GeV,
the convergence to the exact values is smooth and rapid
EP /A510 GeV, the series approximation improves as
proceed from the first Born approximation to the inclusion
the first five terms of the Born series. At this stage we
within a few percent of the exact values. However, as furt
terms of the Born series are included, the approximation
the exact values deteriorates, and by the 12th iteration
series is wildly divergent. Similar behavior is observed
bombarding energy per nucleon from 10 to 15 GeV.
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TABLE II. Excitation probabilities of the states of theL521 level, without any re-orientation transition
among theM states. The impact parameter is 10 fm. The Born approximation and the exact solutio
compared.

M50 M561 M562
EP /A Born Exact Born Exact Born Exact

1 0.722-3 0.727-3 0.461-2 0.462-2 0.122-1 0.122-1
5 0.219-4 0.594-4 0.287-2 0.293-2 0.109-1 0.109-1

20 0.357-6 0.443-2 0.277-2 0.288-2 0.108-1 0.108-1
50 0.165-7 0.408-2 0.277-2 0.288-2 0.108-1 0.108-1
70 0.513-8 0.153-2 0.277-2 0.289-2 0.108-1 0.108-1

100 0.146-8 0.184-3 0.277-2 0.289-2 0.108-1 0.107-1
n
th

dt
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higher bombarding energies, there is no stage of iteratio
which the Born series gives a good approximation to
exact values.

The tentative convergence, and then divergence,
EP /A510 GeV can be interpreted in terms of the Schmi
Weinberg method for the solution of integral equations@22#.
In this approach, the solution is separated into a converg
series, plus a finite term which is associated with one
more eigenvalues of the resolvent which are greater t
unity. If the coefficient of this finite term is small, it plays
very minor role at the early stages of the iteration proce
However, eventually it grows exponentially and overwhel
the convergent part of the solution. It is evident from Tab
III that even in a situation in which the Born series even
ally diverges, it is possible to get a very good approximat
to the exact solution by stopping the iteration at the app
priate place. In our situation we can see where that plac
since we know the exact result. Unfortunately, in the abse
of an exact solution, it is difficult to extract reliable informa
tion from a divergent series.

The divergence of the Born series at high bombard
energies is associated with the divergence of theM50 in-
teraction matrix element. This is shown by comparing Ta
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III with Table IV where we include only separate coupling
of the ground state with eachL52 state, with no reorienta
tion couplings. It is seen that the Born series converges in
(L50, M50↔L52, M561) and (L50, M50↔L
52, M562) systems at all bombarding energies. In t
(L50, M50↔L52, M50) system we have convergenc
up to EP55 GeV, but divergence atEP57 GeV ~and
above!.

E. The long-wavelength approximation

The long-wavelength approximation~LWL ! is based upon
the substitution

j lS v

c
r 8D;

@~v/c!r 8#l

2~l11!!!

in the evaluation of the matrix elements~3.16!–~3.18!. This
substitution is valid when

v

c
r 8,l,
f
TABLE III. Excitation probabilities of the states of theL521 level, calculated using different orders o
the Born series. The impact parameter is 10 fm.~See the text for more details.!

EP /A M Born 3rd iter. 5th iter. 10th iter. 15th iter. Exact

1 0 0.722-3 0.766-3 0.744-3 0.744-3 0.744-3 0.744-3
GeV 61 0.461-2 0.471-2 0.470-2 0.470-2 0.470-2 0.470-2

62 0.122-1 0.121-1 0.119-1 0.119-1 0.119-1 0.119-1
EP /A M Born 3rd iter. 5th iter. 10th iter. 15th iter. Exact

3 0 0.785-4 0.267-4 0.269-4 0.269-4 0.269-4 0.270-4
GeV 61 0.306-2 0.321-2 0.319-2 0.319-2 0.319-2 0.319-2

62 0.111-1 0.107-1 0.106-1 0.106-1 0.106-1 0.106-1
EP /A M Born 3rd iter. 5th iter. 8th iter. 12th iter. Exact

10 0 0.310-5 0.179-2 0.124-2 0.936-3 0.65811 0.122-2
GeV 61 0.279-2 0.367-2 0.337-2 0.379-2 0.11713 0.341-2

62 0.108-1 0.912-2 0.892-2 0.746-2 0.18913 0.896-2
EP /A M Born 2nd iter. 3rd iter. 5th iter. 7th iter. Exact

100 0 0.146-8 0.17110 0.26710 0.37810 0.22617 0.445-1
GeV 61 0.277-2 0.303-2 0.153-1 0.21010 0.16117 0.241-2

62 0.108-1 0.117-1 0.488-2 0.851-3 0.59714 0.293-2
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TABLE IV. Excitation probabilities of the states of theL521, without any reorientation transition
among theM states, calculated using different orders of the Born series. The impact parameter is 10 fm
details can be found in the text.

M EP /A Born 3rd iter. 5th iter. 10th iter. 15th iter. Exact

0 1 0.722-3 0.727-3 0.727-3 0.727-3 0.727-3 0.727-3
5 0.219-4 0.583-4 0.594-4 0.594-4 0.594-4 0.594-4
7 0.875-5 0.909-4 0.969-4 0.964-4 0.24113 0.931-4

61 1 0.461-2 0.462-2 0.462-2 0.462-2 0.462-2 0.462-2
100 0.277-2 0.289-2 0.289-2 0.289-2 0.289-2 0.289-2

62 1 0.122-1 0.122-1 0.122-1 0.122-1 0.122-1 0.122-1
100 0.108-1 0.108-1 0.108-1 0.108-1 0.108-1 0.107-1
to
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197.3 MeV fm

r 8
l.

For our off-diagonal matrix elements,l52, andr 8 extends
out to about 5 fm. This implies that we can use the LWL
evaluate our matrix elements as long as

\v,;80 MeV.

Thus we can use the LWL for evaluating the on-shell ma
elements~for which \v520 MeV!. However, if the solution
of Eq. ~4.9! depends uponVba(v8) with v8 far off-shell,
then the LWL may not be adequate. It is difficult to asse
the importance of far-off-shellv8 in the integral equation
since thev8 integration can involve cancellation from di
ferent regions of thev8 range. Thus we have calculated o
matrix elements using the exact expression for
j l@(v/c)r 8#, and the LWL, and used both sets of matr
elements in the exact solution of the integral equation. So
examples of this comparison are shown in Table V. It is s
that the LWL does well atEP /A51 GeV. AboveEP /A
53 GeV, the LWL appears to give an inadequate repres
tation of the excitation amplitudes.

VI. FURTHER DEVELOPMENTS

Until now, the giant resonance states included in our c
culations have been treated as if they were normaliza
bound states, although they are really continuum states
this section, we generalize our treatment so as to incl

TABLE V. Test of the use of the long-wavelength approxim
tion, Eq.~5.6!, in the evaluation of the interaction matrix elemen
The impact parameter is 10 fm.

EP /A L,M Exact LWL

1 2,0 0.744-3 0.730-3
GeV 2,61 0.470-2 0.461-2

2,62 0.119-1 0.118-1
3 2,0 0.269-4 0.366-4

GeV 2,61 0.319-2 0.326-2
2,62 0.106-1 0.100-1

5 2,0 0.104-3 0.202-2
GeV 2,61 0.314-2 0.300-2

2,62 0.101-1 0.729-2
x

s

e

e
n

n-

l-
le
In
e

both bound and continuum target states, the latter being u
to describe the actual giant resonance states.

Our derivation of theT-matrix equation~2.11! began by
premultiplying the integral form of the Schro¨dinger equation
~2.4! by V(t). Then the target-state completeness relat
was used. We proceed now in a similar manner, but we se
rate the completeness relation for the target states into
crete and continuum parts:

15(
l

ufl&^flu1E deufe&^feu.

This leads to

V~ t !ca~z,t !5e2~ i /\! EatVfa

1(
l
E

2`

t dt8

i\
e2~ i /\!El~ t2t8!V~ t8!fl&

3^flV~ t8!ca~z,t8!

1E deE
2`

t dt8

i\
e2~ i /\!e~ t2t8!V~ t8!fe&

3^feV~ t8!ca~z,t8!. ~6.1!

We now assume that the continuum integration is domina
by a series of ‘‘resonance’’ statesuFm& centered at energie
Em . In the vicinity of Em , we further assume that

^fEm1euV'^fEm1euFm&^FmuV

VufEm1e&'VuFm&^FmufEm1e&,

i.e., we assume thatfEm1e is affected by the interaction only

to the extent to whichfEm1e overlaps withFm . Moreover it

is assumed that the ‘‘strength function’’sm(e), defined by

sm~e![^FmufEm1e&^fEm1euFm&,

can be approximated by a Breit-Wigner form

sm~e!5
1

2p

Gm

e21Gm
2 /4

.

Then the integral

.
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Gm

2pE de
e2~ i /\! e~ t2t8!

e21~Gm/2!2
5e2~Gm/2\! ~ t2t8! ~ t.t8!

allows us to approximate the part of the continuum integ
in Eq. ~6.1! nearEm by

E
2`

t dt8

i\
e2~ i /\!@Em2 i ~Gm/2!#~ t2t8!V~ t !uFm&^FmuV~ t !ca .

~6.2!

Comparison of Eq.~6.2! with the terms in the discrete sum i
Eq. ~6.1! shows that, if the above approximations are va
the continuum region in the vicinity ofEm may be treated as
a single discrete stateFm , with a complex energyEm
2 i (Gm/2). If this is the case, we can incorporate the integ
over e in Eq. ~6.1! into the sum overl, making the replace-
ment

Em⇒Em2 i
Gm

2
andvm⇒vm2 i

Gm

2\

where necessary. This implies that theT-matrix equation
~2.11! is generalized to

Tba~v!5Vba~v!

2
1

2p(
l
E dv8

Vbl~v1v8!Tla~2v8!

v81vl2 i ~Gl/2\!2va2 id
.

~6.3!

The fact that the stateFl is a continuum resonance sta
rather than a discrete state is reflected in the appearance
width Gl in the corresponding energy denominator. A d
scription of the strength function by means of a Loren
form, rather than a Breit-Wigner form, gives similar resul

In the simple case of a two-channel problem in whi
only the ground state and a resonance with energyEm are
coupled, the second-orderT-matrix element for the elastic
channel is given by

T00~v!52
1

2pE dv8
V0m~v1v8!Vm0~2v8!

v81vm2 i ~Gm/2\!2v0
.

This result is directly comparable with Eq.~60! of Ref. @16#,
when that formula is particularized to the this order of a
proximation.

This formalism can be easily extended to the descript
of problems in which there is an escape width, in addition
the spreading width considered above. For a recent dis
sion of this problem, see, e.g., Ref.@23#.

Another approach to nuclear excitation, valid when the
Broglie wavelength associated with the relative motion
small, is the multichannel eikonal approximation@24–27#.
Here one seeks an approximate expression for the full ti
independent Schro¨dinger wave function of the system
c(r ;z)5c(b,z;z), with r5b1zẑ the relative target-
projectile vector. It is shown in Refs.@25–27# that the mul-
tichannel eikonal approximation implies thatc(b,z;z) satis-
fies
l

,

l

f a
-

.

-

n
o
s-

e
s

e-

i\
]

]~z/v !
@e2 iKzc~b,z;z!#

5e2 iKzV~b,z;z!eiKz@e2 iKzc~b,z;z!#, ~6.4!

with the linear momentum operatorK defined by

K[
1

\
A2m~E2H0!,

so that

Kfa~z!5kafa~z!.

Comparison of Eqs.~6.4! and~2.3! shows that there is a ver
close correspondence between the semiclassical and m
channel eikonal approaches, witht and va in the former
replaced byz/v and2ka in the latter. Thus all our work so
far, which has been formulated in terms of the semiclass
approach, can be immediately applied to the multichan
eikonal approach.

The final result of each calculation should be a set
numbers which can be compared with experimental data
the semiclassical method, one calculates

Excitation probability of target statefb

5E d2buaba~Dvbab!u2, ~6.5!

if the intial target state isfa . But the multichannel eikona
approach yields not only excitation probabilities, but al
differential cross sections:

dsba

dV
~q!5U kb

2pE d2beiq–baba~Dkbab!U2

. ~6.6!

Hereq is the tranverse momentum transferred to the proj
tile, and is assumed to be much smaller than the longitud
momentaka ,kb . Thus the multichannel eikonal approac
brings us closer to useful comparison with real experimen
data. At high energy one has

Dk.
Dv

v

so that one can calculate angular distributions using the s
matrix elements as those evaluated in the time-depen
approach.

VII. SUMMARY AND CONCLUSIONS

Our goal has been the study of the various component
a calculation of excitation of a target nucleus due to
electromagnetic field of a relativistic projectile. The strong
retarded interaction points to the description of the proces
terms of frequencyv, rather than timet. We have seen tha
whereas on-shell matrix elements can be expressed pure
terms of solenoidal electromagnetic fields@and so in terms of
multipole matrix elementsM(El,m) andM(Ml,m)], the
off-shell matrix elements also involve nonsolenoidal field
The natural expression of the Schro¨dinger equation in terms
of v-dependent matrix elements is as a set of coupled i
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gral equations, reminiscent of the Lippmann-Schwing
equation. We have used the Kowalski-Noyes regulariza
procedure to remove the singularities from the kernels
these integral equations, which makes them more amen
to numerical solution. By replacing the integrals by sums,
constructed an approximately equivalent set of simultane
linear equations, which could be solved exactly. This yield
a set of ‘‘exact’’ transition amplitudes. In a semirealistic a
plication of these methods, we found that the first Born
proximation yielded a very good approximation to the ex
amplitudes for bombarding energies per nucleon up to ab
1 GeV. At higher bombarding energies, the first Born amp
tude becomes very small forDM50 transitions, because th
on-shell DM50 matrix element becomes small. Howeve
reorientation processes included in the exact calculation
to appreciable indirect population of the excitedM50 state.
Furthermore, for bombarding energies per nucleon up
about 3 GeV, the Born series was found to converge rap
to yield the exact transition amplitudes. However, at bo
barding energies per nucleon above 10 GeV, the first
terms of Born series seemed to be converging towards
exact values, but addition of further terms led to divergen
This behavior could be understood in terms of the Schm
Weinberg analysis of the kernel of the integral equations

Even at ultrarelativistic bombarding energies, the sud
approximation is not applicable to the study of giant re
nances with excitation energies in the 10 to 20 MeV regi
Moreover, the long-wavelength approximation is unrelia
at bombarding energies per nucleon above a few GeV. T
at very high projectile energy, the discretization of t
coupled integral equations appears to be the most promi
approach.

We have seen that the integral equation approach
readily be generalized to include the excitation of giant re
nances in the continuum part of the target spectrum. Mo
over, the entire formalism can be put in correspondence w
the multichannel-eikonal approximation. This suggests t
the formalism can be generalized to include nuclear inte
tions between the projectile and target, using a version of
multichannel Glauber model@24,27#. At relativistic projec-
tile energies, nuclear interactions are likely to manifest the
selves mainly through a smooth cutoff due to absorption

According to the harmonic model, the multiphonon cro
section saturates as the bombarding energy per nucleo
creases to 10–20 GeV, and does not increases as the
barding energy increases further. It would be interesting
see whether this prediction would be borne out by a m
exact treatment, such as we have presented here, in w
anharmonic and retardation effects are taken into accou
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APPENDIX A: MULTIPOLE EXPANSION OF Vba„v…

The source of the potentialw
C

ret can be taken to be a poin

chargeZPe located atr5b1vt ẑ. Thus the charge densit
associated with this source isZPed(r82b)d(z82vt), with
r
n
f

ble
e
us
d
-
-
t
ut
-

,
ad

to
ly
-
w
he
.

t-

n
-
.

e
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ng

an
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e-
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at
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e

-

-
in-
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o
e
ich
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r85x8x̂1y8ŷ. Thenw
C

ret satisfies the d’Alembert equation

F¹22
1

c2

]2

]t2Gw
C

ret~r 8,t,b!524pZPed~r82b!d~z82vt !.

~A1!

We have includedb as an argument ofw
C

ret to emphasize the
dependence of the potential on the projectile orbit. We s
the particular solution of Eq.~A1! in which z8 andt enter in
the combinationz82vt, since that is the way they appear
the source term.

We need the Fourier transform ofw
C

ret,

w
C

ret~r 8,t,b!5
\

2pE2`

`

dve2 ivtw
C

ret~r 8,v,b!

5
\

2pE2`

`

dveiv~z8/v2t !w
C

ret~r8,v,b!.

~A2!

If this is substituted into Eq.~A1!, we find thatw
C

ret(r8,v,b)
satisfies

S ¹r8
2

2
v2

v2 F12
v2

c2G D w
C

ret~r8,v,b!

5S ¹r8
2

2
v2

v2g2D w
C

ret~r8,v,b! ~A3!

52
4p

\v
ZPed~r82b!. ~A4!

In order to reduce Eq.~A4! to a set of ordinary differentia
equations inr8, we expand both sides in Fourier series in t
azimuthal angle differencef82fb :

w
C

ret~r8,v,b!5(
m

wC ,m
ret ~r8,v,b!eim~f82fb!, ~A5!

d~r82b!5
d~r82b!

r8
d~f82fb!

5
d~r82b!

2pr8
(
m

eim~f82fb!. ~A6!

Then Eq.~A4! implies that

S d2

dr82
1

1

r8

d

dr8
2

m2

r82
2

v2

v2g2D wC ,m
ret ~r8,v,b!

52
2ZPe

\v
d~r82b!

r8
. ~A7!

If r8Þb, the right-hand side of Eq.~A7! is zero and its
solution is a linear combination of the modified Bessel fun
tions I m(vr8/vg) and Km(vr8/vg). If Eq. ~A7! is inte-
grated across an infinitesimalr8 interval containingb, it is
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seen that the derivative ofwC ,m
ret (r8,v,b) with respect tor8

has a discontinuity atr85b equal to2(2ZPe/\vb). Both
these conditions are satisfied by

wC ,m
ret ~r8,v,b!5

2ZPe

\v
I mS uvur8

vg DKmS uvub
vg D whenr8,b

5
2ZPe

\v
I mS uvub

vg DKmS uvur8

vg D whenr8.b.

~A8!

Moreover, Eq.~A8! is continuous atr85b, is regular atr8
50, and vanishes asr8→`, the boundary conditions appro
priate to this problem. Thus we use Eq.~A8! in Eqs. ~A5!
and ~A2!. The result is

w
C

ret~r 8,v,b!5
2ZPe

\v (
m

eim~f82fb!ei ~v/v ! z8

3I mS uvur8

vg DKmS uvub
vg D , ~A9!

A
C

ret~r 8,v,b!5
v
c

ẑw
C

ret~r 8,v,b! ~A10!

whenr8,b.
To express ther 8 dependence of Eq.~A9! in terms of

spherical harmonics, we write the partial-wave expansion
a plane wave

ei k–r85(
l

i l~2l11! j l~ ukr 8u!Pl~ k̂• r̂ 8!

54p(
l ,m

~21!mi l j l~ ukr 8u!Ym
l ~ r̂ 8!Y2m

l ~ k̂ !

54p(
l ,m

~21!mi l
j l~ ukr 8u!

ukul
Ym

l ~ r̂ 8!Y2m
l ~k!.

HereY2m
l (k) is a ‘‘solid harmonic,’’ a homogeneous poly

nomial of degreel in kx ,ky ,kz:

Ym
l ~kx ,ky ,kz!5A2l 11

4p
~ l 1m!! ~ l 2m!!

3(
n

~21!m1n

3
~kx1 iky!m~kx

21ky
2!nkz

l 2m22n

~2n!!! ~2n12m!!! ~ l 2m22n!!
.

Also

j l~kr 8!

kl

is a polynomial inkx , ky , kz . In these polynomials, subst
tute
f

kx5
v

ivg
, ky50, kz5

v

v
.

Then

i k–r85
v

vg
x81 i

v

v
z8,

k2[kx
21ky

21kz
25

v2

v2 F12
1

g2G5
v2

v2 Fv2

c2G5
v2

c2

so that

e~v/vg! x81 i ~v/v ! z85(
l,m
Fl,m j lS uvu

c
r 8DYm

l ~ r̂ 8!

~A11!

with

Fl,m5~21!mi l
4p

ukul
Y2m

l S v

ivg
,0,

v

v D
5~21!mi l4pS c

v
v

uvu D
l

Y2m
l S 1

ig
,0,1D

5 i l4pS c

v
v

uvu D
l

Y m
l S 1

ig
,0,1D . ~A12!

But we can also expand the left-hand side of Eq.~A11! in
cylindrical coordinates

e~v/vg! x81 i ~v/v !z85e~v/vg! r8cosf81 i ~v/v ! z8

5(
m

eimf8I mS vr8

vg Dei ~v/v ! z8

5(
m

eimf8S v

uvu D
m

I mS uvur8

vg Dei ~v/v ! z8.

~A13!

If we identify the coefficients ofeimf8 in Eqs. ~A11! and
~A13!, we get

eimf8I mS uvur8

vg Dei ~v/v ! z85 (
l5umu

` S v

uvu D
2m

3Fl,m j lS uvur 8

c DYm
l ~ r̂ 8!

5 (
l5umu

`

Gl,m j lS uvur 8

c DYm
l ~ r̂ 8!,

~A14!

with

Gl,m5S v

uvu D
2m

Fl,m5 i l4pS v

uvu D
l2mS c

v D l

Y m
l S 1

ig
,0,1D .

~A15!
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If Eq. ~A14! is substituted into Eq.~A9!, we obtain the
multipole expansion of the Fourier transform of the sca
potential

w
C

ret~r 8,v,b!5
2ZPe

\v (
m

e2 imfbKmS uvub
vg D (

l5umu

`

Gl,m

3 j lS uvu
c

r 8DYm
l ~ r̂ 8!. ~A16!

If this expansion and Eq.~A10! are used in Eq.~3.6! the
result is the multipole expansion~3.9! of the Fourier trans-
form of the interaction matrix element.

It is of some interest to focus on the distance param
that determines the rate of variation of the retarded poten
as we move perpendicular to the projectile orbit. It is cle
from Eq. ~A7! that this distance parameter isgv/v. When
this is large compared to the impact parameter and nuc
radius, we can replaceI m(uvur8/vg) and Km(uvub/vg) by
their limiting values for small arguments. If this is done, E
~A9! can be approximated by

w
C

ret~r 8,v,b!5
2ZPe

\v
A4pei ~vz8/v !

3F2 lnS buvu
vg DY0

0~u8,f8!

1 (
m51,2,3, . . .

1

2mS r 8

b D mA ~2m!!!

~2m11!!!

3@Y2m
m ~u8,f8!eimfb

1~21!mYm
m~u8,f8!e2 imfb#G . ~A17!

We will make use of this limiting form at high bombardin
energy, wheng@1 and v;c. It is seen that theDM50
matrix elements ofw

C

ret, which arise from them50 term of
Eq. ~A17!, will diverge logarithmically as projectile energ
~and henceg) increases. On the other hand, the on
r

er
al
r

ar

.

projectile-energy dependence of the matrix elements c
necting states withDMÞ0 comes from the factorei (v/v) z8,
which changes very little with increasing projectile ener
whenv is close toc.

APPENDIX B: SYMMETRIES

We will consider situations in which the projectile an
target are both in 01 states before the collision. We firs
show thatVba(v) defined in Eq.~2.12! is real if the coordi-
nate system is chosen such that the trajectory of the pro
tile ~which is parallel to theẑ axis! lies in theŷ- ẑ plane. In
this situation, we use Eq.~3.2! with x50. It will be conve-
nient to use the symbolIz to represent reflection across th
x̂- ŷ plane,Ix to represent reflection across theŷ- ẑ plane, and
Ry to represent a rotation throughp about theŷ axis.

We have

Vba~v!5E dt

\
eivt

3K fbU ZPeg

Ax821~y2y8!21g2~vt2z8!2UfaL ,

Vba~v!* 5E dt

\
e2 ivt

3K fb*U ZPeg

Ax821~y2y8!21g2~vt2z8!2Ufa* L .

We use ‘‘time-reversal’’ phases, for which the effect of com
plex conjugation on angular momentum eigenstates is gi
by

~cM
J !* 5~21!J2Mc2M

J 5RycM
J . ~B1!

Then
^fMb

Jb uV~v!ufMa

Ja &* 5E dt

\
e2 ivtK RyfMb

Jb U ZPeg

Ax821~y2y8!21g2~vt2z8!2URyfMa

Ja L
5E dt

\
e2 ivtK fMb

Jb URy
21 ZPeg

Ax821~y2y8!21g2~vt2z8!2
RyUfMa

Ja L
5E dt

\
e2 ivtK fMb

Jb U ZPeg

Ax821~y2y8!21g2~vt1z8!2UfMa

Ja L
5E dt

\
eivtK fMb

Jb U ZPeg

Ax821~y2y8!21g2~2vt1z8!2UfMa

Ja L 5^fMb

Jb uV~v!ufMa

Ja &. ~B2!
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ThusVba is real if ‘‘time-reversal’’ phases are used for th
target states, and if the coordinate system is chosen so
the trajectory lies in theŷ- ẑ plane. A similar argument can
be used to show that

Vba~v!5Vab~2v!. ~B3!

To prove the symmetry of thea andT matrices, we intro-
duce the notationab,a(1) to represent the transition ampl
tude from initial statefa to final statefb when the projectile
moves in the1 ẑ direction. This is the quantity that we hav
previously calledaba . Let ab,a(2) represent the transition
amplitude from initial statefa to final statefb when the
projectile moves in the2 ẑ direction. Then

ab,a~1 !5aIza,Izb~2 !5aRyIza,RyIzb~1 !. ~B4!

But sinceRyIz has the same effect asIx , a reflection across
the ŷ- ẑ plane, Eq.~B4! implies that

ab,a~1 !5aIxa,Ixb~1 !. ~B5!

If the projectile trajectory is in theŷ- ẑ plane, the Hamil-
tonian is invariant under the reflectionIx . Since the initial
target state (01) is invariant underIx , the target state will
remain invariant throughout the reaction. Thus it is sufficie
to restrict our attention to target statesfa andfb that satisfy

Ixfa5fa , Ixfb5fb ,

and Eq.~B5! implies that

ab,a~1 !5aa,b~1 !,
cl.

C

a,
v.

r-

ce
hat

t

ab,a5aa,b , ~B6!

and thea matrix is symmetric. From this it follows that th
on-shellT matrix

Tba5 i @aba2dba#
is also symmetric.

APPENDIX C: CONNECTION TO THE K MATRIX

Let us use the symbolP to represent the sum of principa
value integrals in Eq.~3.21!, and define the matrixK by

K[2
1

2
~11P!21V52

1

2
~12P1P 22P 31••• !V. ~C1!

As defined in Sec. IV A, the symbolV, without its argument
v, represents the on-shell interaction matrix. The excitat
amplitude matrixa can be expressed in terms ofK by using

a512 iT512 iM21V5M21~M2 iV !

5S 11P1
i

2
VD 21S 11P2

i

2
VD

5~12 iK !21~11 iK !.

The expansion ofP in powers of the interaction is, apa
from the linear term, the same as the expansion ofM, Eq.
~4.15!,

P5S m12 i
V

2 D1m21m31m41••• .

If this expansion is used in Eq.~C1!, we recover the expan
sion of K in powers of the interaction given in Eq.~II 3.26!
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