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Practical method for treating the Coulomb force in momentum space

Kazumi Kume and Kenji Kume
Department of Physics, Nara Women’s University, Nara 630-8506, Japan

~Received 17 September 1998!

We propose a practical numerical method for treating the Coulomb interaction in momentum space. The
Coulomb potential is regularized by expanding its inner partr<R as the superposition of the Gaussian
functions. This smooth-cutoff Coulomb potential decreases rapidly in momentum space without oscillation. In
addition, the partial-wave decomposition can be done analytically without numerical integration. First, the
phase shifts are calculated with the regularized Coulomb plus short-range strong potentials. Then, the correct
phase shifts or the wave functions can be reconstructed with the aid of coordinate-space calculation from the
asymptotic region inward toR. Another possibility is to calculate the logarithmic derivative atR directly by the
Fourier transform, which is matched to the point-Coulomb wave functionsFL and GL . This method is
examined for calculating the phase shifts of proton-nucleus elastic scattering and found to be accurate over
wide energy regions.@S0556-2813~99!01904-4#

PACS number~s!: 24.10.2i, 02.60.Nm, 25.40.2h, 25.70.2z
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I. INTRODUCTION

A momentum-space method for solving wave equatio
such as Schro¨dinger, Dirac or Klein-Gordon equations ha
been extensively used for scattering or bound-state proble
When the scattering phenomena are precisely describe
nonlocal interaction often appears, for example, in pio
nucleus and proton-nucleus elastic scatterings, or heavy
collisions. In such cases, it is natural and advantageou
solve the wave equation in momentum space. In
momentum-space calculation, however, the singularity a
ciated with the long-range Coulomb force causes numer
difficulty. There have been various attempts to avoid this@1#.
Approximately 25 years ago, Vincent and Phatak~VP! pro-
posed a procedure to treat the Coulomb interaction in m
mentum space@1# whereby the long-range Coulomb pote
tial is regularized by cutting it off at radiusR, where short-
range interaction is negligible and the Coulomb poten
takes its point valueZ1Z2e2/r . From the phase shiftsdL

(0) ,
the coordinate-space wave function can be calculated a
dius R, which is smoothly matched to the Coulomb wa
function reproducing the correct phase shiftsdL . This pro-
cedure has been extensively applied to the calculation
scattering-state@2,3# and to solving bound-state problems@4#
in momentum space. The VP procedure was originally
veloped to treat the Coulomb interaction in the pion-nucle
scattering at intermediate energy. To be used on pro
nucleus elastic scattering, where large momentum transf
involved, the VP procedure needs to be improved to achi
better accuracy. Recently, several modifications and/or
proximations of the VP procedure have been examined c
cerning the study of proton-nucleus elastic scattering. Cre
and Tostevin@5# and Picklesimeret al. @6# suggested the
approximate algorithms to reduce the numerical errors. A
lano et al. @7# used a somewhat simplified nuclear char
distribution @8# to obtain the accurate Coulomb matrix el
ments. In addition, the Coulomb force in the multiple sc
tering @9# or angular-momentum states coupled by an opt
potential@10# have been studied.

Even though the original VP prescription is correct,
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principle, it is difficult to obtain satisfactory accuracy wit
this method, especially for the proton-nucleus scattering
which the high-q Coulomb matrix element plays an impo
tant role. There are mainly two reasons for this. First,
sharp-cutoff Coulomb potential, which rapidly oscillates
momentum space, involves a large high-q component which
brings numerical errors when solving the integral equati
Second, the partial wave decomposition of the momentu
space Coulomb potential is numerically difficult due to rap
oscillation as a function of momentum transferq. To avoid
these difficulties, Ottensteinet al. @11,12# proposed an im-
proved method in which the Coulomb potential is shield
by introducing the Gaussian-type charged shell outside
range of the strong potential. Though their regularized C
lomb potential decreases rapidly in momentum space, th
still remains a small but non-negligible rapidly oscillatin
component. In addition, the partial-wave decomposition
to be carried out numerically, possibly causing numeri
errors.

An alternative method using the point Coulomb functi
as the basis set has also been considered@13,14#. In that
method, however, the matrix elements of the short-ra
force has to be calculated with respect to the Coulomb w
function. These matrix elements are not easy to calcu
because the short-range force is often given in the mom
tum representation. Another method using screened C
lomb interaction is proposed and used in the context of fe
body physics@15,16#.

In the present paper, we propose a simple and accu
method to treat the Coulomb interaction in momentum sp
which is free from the above difficulties in the VP metho
Our method is basically a modification of the VP procedu
By expanding the inner region of the Coulomb potentialr
<R) as a superposition of the Gaussian functions with va
ous ranges, we can smoothly regularize the Coulomb po
tial. Being represented as the sum of Gaussian functions
partial-wave decomposition can be done analytically. In
dition, the oscillatory high-q component is eliminated. The
correct phase shifts or wave function can be reconstruc
with the aid of coordinate-space calculation from t
2167 ©1999 The American Physical Society
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2168 PRC 59KAZUMI KUME AND KENJI KUME
asymptotic region inward toR, as in the method of Otten
steinet al. @11,12#, or by directly calculating the logarithmic
derivative atR by the Fourier transform, which is matched
the Coulomb wave function. Our method overcomes
above mentioned difficulties inherent in the original VP pr
cedure and yields accurate numerical results. When teste
proton-nucleus elastic scattering, the algorithm proves to
accurate over the wide energy region.

II. ALGORITHM AND RESULTS

To explain our method, we restricted ourselves to the c
of the nonrelativistic Schro¨dinger equation for proton
nucleus elastic scattering

~k0
22k2!c~k!52ME @U~k,k8!1V~k,k8!#c~k8!dk8,

~1!

where U(k,k8) is the short-range strong potential an
V(k,k8) is the proton-nucleus Coulomb potential in mome
tum representation. This equation should be solved with
appropriate scattering boundary condition. The Coulomb
tential is given as

V~k,k8!5
Ze2

2p2

r~q!

q2 ~2!

with

q5k2k8, ~3!

where Ze is the nuclear charge. The nuclear charge fo
factor r(q) is normalized tor(0)51. The original VP pro-
cedure is to regularize the Coulomb potential by cutting it
sharply at radiusR. Then it becomes

Ze2

2p2

r~q!2 cosqR

q2
. ~4!

Because of the factor cosqR in above equation, this potentia
rapidly oscillates and slowly decreases at the high-q region.
To avoid this, Ottensteinet al. @11,12# introduced the nega
tively charged shell outside the nucleus, which smoot
shields the long-range Coulomb potential. They used
Gaussian-type charged shell located aroundRsh

r~r !5r0 expF2S r 2Rsh

ash
D 2G ~5!

with r052Ze/@4p3/2ash(ash
2 /21Rsh

2 )#. Then the shielded
Coulomb potential becomes

1

2p2

Ze2

q2 H r~q!2
1

11bS cosqRsh1b
sinqRsh

qRsh
D

3expF2
ash

2 q2

4 G J ~6!

with b52(Rsh/ash)
2. In this potential, the second term st

oscillates very rapidly because of factors cosqRsh or
sinqRsh. Due to the exponential factor exp@2ash

2 q2/4#, the
e
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-
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second term itself decreases rapidly. We should take the
rametersRsh and ash such that the negatively charged sh
does not overlap with the short-range potential. This requ
that the strong potential be negligible atr>Rsh24ash. We
should also take a sufficiently largeash value. Otherwise, the
oscillating second term in Eq.~6! dominates, and the regu
larized Coulomb potential exhibits highly oscillatory beha
ior. In the practical calculation, the second term is no
negligible. Moreover, the partial-wave decomposition of th
shielded potential has to be carried out with care.

To overcome these difficulties, we propose to expand
Coulomb potential approximately with the Gaussian fun
tions within radiusR

V~r !.(
i 51

N

ci exp@2l i r
2# ~0<r<R!, ~7!

where the radiusR is chosen such that the short-range pote
tial is negligible and the Coulomb potential takes its po
value atr>R. Then, the resulting regularized potential

V̄~r !5(
i 51

N

ci exp@2l i r
2# ~0<r ,`!, ~8!

smoothly decreases at the high-q region without oscillation
in momentum space. To see this, we examined typical ca
for 12C and 208Pb nuclei. We assumed the charge distrib
tion for 12C as

r~r !5
2Ze

p3/2a3~213b!
F11bS r

aD 2GexpF2S r

aD 2G , ~9!

then the Coulomb potential is given by

V~r !5
8Ze2

Apa3~213b!
H 2

ba2

4
expF2S r

aD 2G
1

Apa3

4 S 11
3b

2 Derf~r /a!

r J , ~10!

with a51.66 fm andb51.33 fm. For the case of208Pb, we
assumed the charge distribution

r~r !5r0 Y H 11 expF r 2c

t G J . ~11!

We used the parametersc56.46 fm andt50.542 fm. These
Coulomb potentials are expanded as in Eq.~7! in terms of
the Gaussian functions. We used the radius parameterR57
fm for 12C andR513 fm for 208Pb, respectively. The opti
mal parametersci andl i were searched, and the expansio
with N55 andN57 terms were found to be sufficient fo
12C and208Pb, respectively. In Fig. 1, we show the Coulom
potential and the regularized oneV̄(r ) represented by the
superposition of the Gaussian functions as in Eq.~8!. As
seen, the Coulomb potential at the regionr<R is well de-
scribed as the superposition of the Gaussian functions,
viding us with a smooth-cutoff Coulomb potential. The d
ference betweenV(r ) andV̄(r ) at r<R are, at most, 0.27%
for 12C and 0.12% for208Pb, respectively. These are acc
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PRC 59 2169PRACTICAL METHOD FOR TREATING THE COULOMB . . .
rate enough for our present purpose. If more accuracy w
needed, the number of Gaussian terms could be increa
To demonstrate the behavior in momentum space, we s
the Fourier transform of the Coulomb potential for12C in
Fig. 2. The Fourier transform of the regularized Coulom
potential corresponds to the solid line, decreasing rap
without oscillation. For comparison, we show the sha
cutoff Coulomb potential by VP procedure as well as t
shielded potential used by Ottensteinet al. @11,12# with pa-
rametersRsh514 fm andash52 fm. As previously indicated
the sharp-cutoff Coulomb potential oscillates rapidly and
creases slowly as 1/q2, giving large high-q components. On
the other hand, the shielded Coulomb potential by Ottens
et al. @11,12# decreases rapidly due to the exponential fact
in Eq. ~6! and is similar to the Fourier transform of ou

potentialV̄(r ). In the shielded potential by Ottensteinet al.
@11,12#, however, there are small but non-negligible oscill
ing components coming from the second term in Eq.~6! and,
for this reason, the partial-wave decomposition has to
done carefully to avoid the cancellation of the integrand.
Ref. @12#, this decomposition was carried out by numeric
integration of 192 Gaussian points.

It should be stressed that there are no oscillatory com
nents in our regularized Coulomb potential. Moreover,
partial-wave decomposition can be done analytically as

FIG. 1. The dashed lines represent the Coulomb potential fo~a!
proton-12C and ~b! proton-208Pb, respectively. The solid lines ar

the regularized Coulomb potentialV̄(r ) described in the text.
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V̄L~k,k8!5
1

2Ap
(
i 51

N

ci /l i
3/2expF2

k21k82

4l i
G i LS kk8

2l i
D ,

~12!

wherei L(x) is the modified spherical Bessel function. To te
our algorithm, we used the simplified proton-nucleus opti
potential of the following form:

U~r !5V0F11cs S r

ds
D 2GexpF2S r

ds
D 2G , ~13!

with the parameterscs51.33 andds51.57 fm for 12C and
cs51.98 andds53.94 fm for 208Pb. We adopt the potentia
depthsV05250, 215, and25 MeV for incident energies
Tp550, 150, and 250 MeV, respectively. These are close
the values of the global nucleon-nucleus optical poten
@17–19#. The imaginary parts are neglected. Even thou
these parameters do not describe the realistic proton-nuc
elastic scattering precisely, their major purpose is to exam
the validity of the numerical algorithm, and we thus chose
use these parameters throughout. The Lippmann-Schwi
integral equation in each partial wave

~k0
22k2!cL~k!52ME

0

`

@UL~k,k8!

1V̄L~k,k8!#cL~k8!k82dk8, ~14!

can be solved by discretizing the integral equation and us
the matrix inversion method@20#. In the above equation
V̄(r ) is the partial-wave component of the regularized Co
lomb potential in Eq.~12!. In order to calculate the phas
shifts from Eq.~14!, we used two algorithms:

FIG. 2. The Fourier transform of the Coulomb potential for12C.
The long-dashed curve corresponds to the sharp-cutoff Coul
potential which is used by Vincent and Phatak@1#. The short-
dashed curve is the shielded Coulomb potential~6! which was used
by Ottensteinet al. @11,12# with the parametersRsh514 fm and
ash52 fm. The solid line is the regularized Coulomb potential e
panded as the superposition of the Gaussian functions used in
present work.
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TABLE I. The phase shiftsdL for proton-12C elastic scattering at incident energyTp . The results
calculated in coordinate space (r space! and momentum space (k space! are compared. For the momentum
space calculation, two methods~I! and ~II ! are used which are described in the text.

dL~degree! dL~degree!
Tp L r space k space k space L r space k space k space

~I! ~II ! ~I! ~II !

50.0 MeV 0 278.614 278.609 278.609 4 14.896 14.904 14.904
1 88.760 88.763 88.763 5 3.861 3.877 3.877
2 73.806 73.814 73.814 6 0.902 0.901 0.901
3 44.442 44.433 44.434 7 0.190 0.190 0.191

150.0 MeV 0 26.545 26.546 26.546 5 8.060 8.061 8.061
1 21.843 21.847 21.847 6 4.913 4.910 4.911
2 18.740 18.742 18.742 7 2.682 2.684 2.684
3 15.478 15.483 15.483 8 1.325 1.332 1.332
4 11.785 11.784 11.784 9 0.598 0.603 0.603

250.0 MeV 0 12.367 12.369 12.369 6 2.788 2.787 2.787
1 8.929 8.930 8.930 7 1.966 1.966 1.966
2 7.162 7.165 7.165 8 1.304 1.302 1.303
3 5.877 5.878 5.879 9 0.813 0.814 0.815
4 4.765 4.767 4.767 10 0.476 0.479 0.479
5 3.734 3.734 3.734 11 0.263 0.266 0.266
a

-

e
c-
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-
e

m
at

,
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e
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~I! The radius parameterRm is denoted such thatV̄(r )
;0 for r>Rm . First, we calculate the phase shiftsdL

(0) from
Eq. ~14!. Starting from the coordinate-space wave function
r>Rm ,

FL~k0r ,h50!1tandL
~0!GL~k0r ,h50!, ~15!

the coordinate space wave equation with the potentialV̄(r )
is solved inward toR. Subsequently, the logarithmic deriva
tive at r 5R is matched with

FL~k0r ,h!1tandLGL~k0r ,h!, ~16!

and the correct phase shiftsdL are obtained. Here,FL andGL
are the regular and irregular Coulomb wave functions@21#.
This procedure is similar to that used by Ottensteinet al.
@11,12#.

~II ! From Eq. ~14!, we obtain momentum-space wav
functioncL(k), from which the coordinate-space wave fun
tion is calculated by the Fourier transform. Then the log
rithmic derivative atr 5R is directly matched to the Cou
lomb wave function~16! to reproduce the correct phas
shifts dL .

To carry out the practical calculation, the momentu
space grid points and weights have to be selected adequ
to discretize the integral in Eq.~14!. Since our regularized
Coulomb interactionV̄(r ) has a long tail, as shown in Fig. 1
its Fourier transform exhibits a narrow peak aroundk0 in
momentum space, especially for the case of208Pb. Consid-
ering the behavior of the potential matrix elements, we
vide the whole integral interval 0,k,` into four parts and
adopt the following mappings with Gaussian points21
,xi,1 and weightswi :
t

-

-
ely

i-

~a! 0<k<(12«)k0 ,

ki5
12«

2
k0~11xi !, ~17!

zi5
12«

2
k0wi .

~b! (12«)k0<k<(11«)k0 ,

ki5~11«xi !k0 , ~18!

zi5«k0wi .

~c! (11«)k0<k<2k0 ,

ki5
12«

2
k0xi1

31«

2
k0 , ~19!

zi5
12«

2
k0wi .

~d! 2k0<k<`,

ki5
2~31xi !

12xi
k0 , ~20!

zi5
8k0

~12ki !
2 wi .

Interval~b! corresponds to the large Fourier component co
ing from the long-range regularized Coulomb potential. W
adjust the parameter« (0,«,1) to accommodate the Fou
rier component around the on-shell valuek0 . For the case of
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TABLE II. The same as those in Table I but for208Pb.

dL~degree! dL~degree!
Tp L r space k space k space L r space k space k space

~I! ~II ! ~I! ~II !

50.0 MeV 0 275.811 275.816 275.814 10 47.301 47.255 47.25
1 42.979 42.975 42.977 11 22.204 22.238 22.2
2 20.256 20.268 20.267 12 10.647 10.671 10.67
3 234.770 234.761 234.759 13 5.142 5.134 5.136
4 266.028 266.028 266.026 14 2.443 2.426 2.428
5 82.541 82.555 82.557 15 1.113 1.102 1.10
6 48.770 48.760 48.761 16 0.474 0.470 0.47
7 10.700 10.662 10.663 17 0.186 0.185 0.18
8 232.811 232.786 232.785 18 0.066 0.065 0.067
9 285.089 285.074 285.073 19 0.021 0.020 0.022

150.0 MeV 0 25.908 25.905 25.909 10 46.795 46.773 46.7
1 220.416 220.427 220.419 11 40.051 40.042 40.04
2 247.758 247.765 247.761 12 33.738 33.742 33.74
3 266.521 266.532 266.525 13 27.945 27.957 27.96
4 280.681 280.684 280.679 14 22.752 22.768 22.77
5 87.876 87.875 87.882 15 18.208 18.204 18.2
6 78.120 78.123 78.128 16 14.327 14.309 14.3
7 69.431 69.430 69.436 17 11.083 11.058 11.0
8 61.435 61.423 61.429 18 8.426 8.394 8.40
9 53.922 53.907 53.912 19 6.298 6.275 6.28

250.0 MeV 0 231.835 231.841 231.835 10 25.915 25.905 25.91
1 271.039 271.048 271.041 11 22.492 22.480 22.48
2 86.953 86.944 86.950 12 19.445 19.430 19.4
3 72.077 72.066 72.074 13 16.728 16.711 16.7
4 61.013 61.004 61.010 14 14.308 14.298 14.3
5 52.311 52.305 52.312 15 12.158 12.152 12.1
6 45.211 45.207 45.214 16 10.263 10.266 10.2
7 39.266 39.267 39.273 17 8.605 8.615 8.62
8 34.187 34.184 34.192 18 7.170 7.176 7.18
9 29.782 29.780 29.786 19 5.938 5.944 5.94
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12C, the results of the momentum-space calculation
rather insensitive to the choice of the parameter«. On the
other hand, the results are fairly dependent on the choice«
for 208Pb. This is because the regularized Coulomb poten
for 208Pb has a long tail reaching to about 40 fm, whi
brings a narrow peak structure to the momentum-space C
lomb matrix element. We use the parameter«50.2 through-
out the present work for both12C and 208Pb.

The results of the calculation for the phase shifts
shown ask space in Tables I and II for the cases of12C and
208Pb, together with the results of the coordinate-space
culation denoted asr space. We have adopted the grid poin
40,30,30,40 for the interval~a!–~d!, respectively. The
coordinate-space calculation has been carried out with
Bulirsh-Stoer method@22#, which is known to be quite accu
rate for solving ordinary differential equations. In th
momentum-space calculation, we adopt the two algorith
described above. As shown in these tables, the momen
space calculations~I! and ~II ! yield almost the same results
For both of the momentum-space methods~I! and ~II !, the
re

al

u-

e

l-

e

s
m-

above-mentioned grid points are enough to obtain accu
results. For the momentum-space method~I!, a smaller num-
ber of grid points are sufficient to obtain accurate resu
This is because the method~II ! is directly related to the
coordinate-space wave function, while only its asympto
behavior~i.e., tandL

(0)) is relevant to method~I!. This indi-
cates that, if accurate wave functions are necessary to ca
late some nuclear matrix elements, enough grid points a
need to be taken in momentum-space calculation. For
case of 12C, the difference between coordinate-space a
momentum-space calculations is less than 0.01 degree.
average differences are about 0.005 degree atTp550 MeV
and 0.002 degree atTp5250 MeV. For 208Pb, the average
difference of the phase shifts betweenr-space andk-space
calculations is about 0.01 degree atTp550 MeV and 0.008
degree atTp5250 MeV. With the method of Ottenstei
et al., the phase shifts calculated inr space andk space typi-
cally agree better than 0.5 degree@12#. The present method is
quite accurate without tedious numerical calculation.
higher energies, we have also calculated the phase shif
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2172 PRC 59KAZUMI KUME AND KENJI KUME
incident energyTp5500 MeV and have checked that we c
obtain similar accuracy.

As mentioned above, there is no subtle numerical integ
tion in our method for the partial-wave decomposition of t
regularized Coulomb potential. It is very easy to obtain
curate Coulomb matrix elements even for largek or k8,
where partial-wave projection has been difficult with t
methods used so far. In the practical calculation, the ex
nential dependence of the modified spherical Bessel func
is extracted as

V̄L~k,k8!5
1

2Ap
(
i 51

N

ci /l i
3/2expF2

~k2k8!2

4l i
G

3FexpS 2
kk8

2l i
D i LS kk8

2l i
D G , ~21!

then, for large x5kk8/2l i , the function @exp(2x)iL(x)#
slowly decreases and can be easily calculated by the s
expansion with respect to 1/x. Thus, the numerical difficul-
ties inherent in the original VP procedure are overcome,
accurate numerical results could be obtained.

III. CONCLUSIONS

We have developed an improved algorithm to treat
Coulomb interaction in momentum space for the scatter
problem. In the original VP procedure, the sharp-cutoff Co
lomb potential is used. It brings an oscillatory high-q com-
ponent to the Coulomb potential which decreases slowly
momentum space. We propose to regularize the Coulo
potential by using the superposition of the Gaussian fu
tions. This method has two advantages, namely that
momentum-space Coulomb potential rapidly decreases w
. C

v

e,

. C

ac

ac
a-

-

o-
n

ies

d

e
g
-

n
b

c-
e

h-

out oscillation, and that the partial-wave decomposition
the Coulomb potential can be done analytically. We exa
ined our algorithm for the typical cases of proton-12C and
proton-208Pb elastic scatterings forTp550–250 MeV. In the
momentum-space calculation, we examined two method

~I! First, the phase shiftsdL
(0) is calculated with the regu

larized Coulomb potential atR. Then, the asymptotic wave
function is obtained in coordinate space at larger, where the
cutoff Coulomb interaction almost vanishesV̄(r );0. Start-
ing from this, the coordinate-space wave equation is sol
with the potentialV̄(r ) inward to R. Then, the logarithmic
derivative atr 5R is matched to the Coulomb wave functio
and the correct phase shiftsdL can be reproduced.

~II ! From the momentum-space wave equation with
potentialUL(k,k8)1V̄L(k,k8), the wave functioncL(k) is
obtained, from which the coordinate-space wave function
calculated by the Fourier transform. Then the logarithm
derivative atr 5R is directly matched to the Coulomb wav
function to reproduce the correct phase shiftsdL .

As a numerical test for our algorithm, we have calculat
the phase shifts for the proton-nucleus elastic scattering w
the optical potential plus Coulomb potential for12C and
208Pb. We have shown that we can obtain accurate res
for both cases over a wide energy region. The numer
difficulties inherent in the original VP procedure having be
thus overcome, and we could easily treat the long-ra
Coulomb force in momentum space.
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