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Practical method for treating the Coulomb force in momentum space

Kazumi Kume and Kenji Kume
Department of Physics, Nara Women'’s University, Nara 630-8506, Japan
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We propose a practical numerical method for treating the Coulomb interaction in momentum space. The
Coulomb potential is regularized by expanding its inner pasR as the superposition of the Gaussian
functions. This smooth-cutoff Coulomb potential decreases rapidly in momentum space without oscillation. In
addition, the partial-wave decomposition can be done analytically without numerical integration. First, the
phase shifts are calculated with the regularized Coulomb plus short-range strong potentials. Then, the correct
phase shifts or the wave functions can be reconstructed with the aid of coordinate-space calculation from the
asymptotic region inward tB. Another possibility is to calculate the logarithmic derivativéRatirectly by the
Fourier transform, which is matched to the point-Coulomb wave funct®nsand G, . This method is
examined for calculating the phase shifts of proton-nucleus elastic scattering and found to be accurate over
wide energy regiond.S0556-28189)01904-4

PACS numbe(s): 24.10—i, 02.60.Nm, 25.40-h, 25.70-z

I. INTRODUCTION principle, it is difficult to obtain satisfactory accuracy with
this method, especially for the proton-nucleus scattering, in
A momentum-space method for solving wave equationsvhich the highg Coulomb matrix element plays an impor-
such as Schudinger, Dirac or Klein-Gordon equations has tant role. There are mainly two reasons for this. First, the
been extensively used for scattering or bound-state problemsharp-cutoff Coulomb potential, which rapidly oscillates in
When the scattering phenomena are precisely described,momentum space, involves a large higltomponent which
nonlocal interaction often appears, for example, in pionfrings numerical errors when solving the integral equation.
nucleus and proton-nucleus elastic scatterings, or heavy-ioBecond, the partial wave decomposition of the momentum-
collisions. In such cases, it is natural and advantageous tepace Coulomb potential is numerically difficult due to rapid
solve the wave equation in momentum space. In thescillation as a function of momentum transtgrTo avoid
momentum-space calculation, however, the singularity assahese difficulties, Ottensteiat al. [11,12 proposed an im-
ciated with the long-range Coulomb force causes numericgbroved method in which the Coulomb potential is shielded
difficulty. There have been various attempts to avoidfthis by introducing the Gaussian-type charged shell outside the
Approximately 25 years ago, Vincent and Phatal) pro-  range of the strong potential. Though their regularized Cou-
posed a procedure to treat the Coulomb interaction in molomb potential decreases rapidly in momentum space, there
mentum spac¢l] whereby the long-range Coulomb poten- still remains a small but non-negligible rapidly oscillating
tial is regularized by cutting it off at radiuR, where short- component. In addition, the partial-wave decomposition has
range interaction is negligible and the Coulomb potentialto be carried out numerically, possibly causing numerical
takes its point valu&,Z,e%/r. From the phase shifts”’,  errors.
the coordinate-space wave function can be calculated at ra- An alternative method using the point Coulomb function
dius R, which is smoothly matched to the Coulomb waveas the basis set has also been consid¢t&il4. In that
function reproducing the correct phase shifts. This pro- method, however, the matrix elements of the short-range
cedure has been extensively applied to the calculation diorce has to be calculated with respect to the Coulomb wave
scattering-statf2,3] and to solving bound-state problefidd  function. These matrix elements are not easy to calculate
in momentum space. The VP procedure was originally debecause the short-range force is often given in the momen-
veloped to treat the Coulomb interaction in the pion-nucleusum representation. Another method using screened Cou-
scattering at intermediate energy. To be used on protorfemb interaction is proposed and used in the context of few-
nucleus elastic scattering, where large momentum transfer lody physicd15,16.
involved, the VP procedure needs to be improved to achieve In the present paper, we propose a simple and accurate
better accuracy. Recently, several modifications and/or apnethod to treat the Coulomb interaction in momentum space
proximations of the VP procedure have been examined corwhich is free from the above difficulties in the VP method.
cerning the study of proton-nucleus elastic scattering. Cresp@ur method is basically a modification of the VP procedure.
and Tostevin[5] and Picklesimeret al. [6] suggested the By expanding the inner region of the Coulomb potential (
approximate algorithms to reduce the numerical errors. Arel<R) as a superposition of the Gaussian functions with vari-
lano et al. [7] used a somewhat simplified nuclear chargeous ranges, we can smoothly regularize the Coulomb poten-
distribution [8] to obtain the accurate Coulomb matrix ele- tial. Being represented as the sum of Gaussian functions, the
ments. In addition, the Coulomb force in the multiple scat-partial-wave decomposition can be done analytically. In ad-
tering[9] or angular-momentum states coupled by an opticabition, the oscillatory higlg component is eliminated. The
potential[10] have been studied. correct phase shifts or wave function can be reconstructed
Even though the original VP prescription is correct, inwith the aid of coordinate-space calculation from the
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asymptotic region inward t®, as in the method of Otten- second term itself decreases rapidly. We should take the pa-
steinet al.[11,12, or by directly calculating the logarithmic rametersRy, and ag, such that the negatively charged shell
derivative atR by the Fourier transform, which is matched to does not overlap with the short-range potential. This requires
the Coulomb wave function. Our method overcomes thehat the strong potential be negligible @t Ry~ 4ag,. We
above mentioned difficulties inherent in the original VP pro-should also take a sufficiently largg,, value. Otherwise, the
cedure and yields accurate numerical results. When tested foscillating second term in Eq6) dominates, and the regu-
proton-nucleus elastic scattering, the algorithm proves to btarized Coulomb potential exhibits highly oscillatory behav-

accurate over the wide energy region. ior. In the practical calculation, the second term is non-
negligible. Moreover, the partial-wave decomposition of this
II. ALGORITHM AND RESULTS shielded potential has to be carried out with care.

To overcome these difficulties, we propose to expand the

To explain our method, we restricted ourselves to the casgoulomb potential approximately with the Gaussian func-
of the nonrelativistic Schudinger equation for proton- tions within radiusk

nucleus elastic scattering

N
(G—K2u(k)=2M [ [U(K) VKD TPk K V=2 erexd-Ar] (0<r=R). (D

@ where the radiuf is chosen such that the short-range poten-

where U(k,k’) is the short-range strong potential and tial is negligible and the Coulomb potential takes its point
V(k,k’) is the proton-nucleus Coulomb potential in momen-Vvalue atr=R. Then, the resulting regularized potential

tum representation. This equation should be solved with an N

appropriate scattering boundary condition. The Coulomb po- v

tepnF;ialpis given as ’ g P V(r):izzl ciexd —Ar?] (0sr<e), ®)

V(kk')= 2_92 @ @ smoothly decreases at the highregion without oscillation
Tt 2wt gt in momentum space. To see this, we examined typical cases
for ¥2C and 2°%Pb nuclei. We assumed the charge distribu-
with tion for *2C as
q=k—K', ® |2 )2
_ p(N=—p 3 +b(—) exr{—(—) } 9)
where Ze is the nuclear charge. The nuclear charge form m7a’*(2+3b) a a

factor p(q) is normalized togp(0)=1. The original VP pro- o
cedure is to regularize the Coulomb potential by cutting it offthen the Coulomb potential is given by
sharply at radiusR. Then it becomes

vir) 8z¢? ba? 4 r\2
NN=————————¢exg —|=
Z¢& p(q) - cosqR @ Jmad(2+3b)[ 4 a
272 2 '
4 q . Jmrad . 3b erf(r/a)} -
Because of the factor codR in above equation, this potential 4 2 '

rapidly oscillates and slowly decreases at the tggtegion. .
To avoid this, Ottensteiet al. [11,17 introduced the nega- With a=1.66 fm andb=1.33 fm. For the case P, we

tively charged shell outside the nucleus, which smoothly@ssumed the charge distribution

shields the long-range Coulomb potential. They used the r—c
Gaussian-type charged shell located arobkgg p(r)=po / 1+ eXF{T”' (12)
r— RSh 2
p(r)=poexpg —| — - (5  We used the parameters- 6.46 fm andt=0.542 fm. These
S

Coulomb potentials are expanded as in Ef.in terms of
with pe=—Zel[4732a.(a2/2+R2)1. Then the shielded the Gaussian functions. We used the radius paranfeter
ho L sl 2+ Rey)] fm for °C andR=13 fm for 2°%b, respectively. The opti-

Coulomb potential becomes _
mal parameters; and\; were searched, and the expansions

1 7e? 1 singRq, with N=5 andN=7 terms were found to be sufficient for
52 ?{ p(q)— 153 cosqRy+ B aRe ) 12C and?%%pb, respectively. In Fig. 1, we show the Coulomb
potential and the regularized ongr) represented by the
aihq2 superposition of the Gaussian functions as in B). As
Xexp -4 (6)  seen, the Coulomb potential at the regioaR is well de-

scribed as the superposition of the Gaussian functions, pro-
with B=2(Rqn/agy?. In this potential, the second term still viding us with a smooth-cutoff Coulomb potential. The dif-
oscillates very rapidly because of factors qé%, or ference betweel(r) andV(r) atr<R are, at most, 0.27%
singRy,. Due to the exponential factor dxpaZg?/4], the  for *2C and 0.12% for?°®b, respectively. These are accu-
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FIG. 2. The Fourier transform of the Coulomb potential 14E.
The long-dashed curve corresponds to the sharp-cutoff Coulomb
potential which is used by Vincent and Phatd. The short-
dashed curve is the shielded Coulomb poterialvhich was used
by Ottensteinet al. [11,12] with the parameterf,,=14 fm and
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wherei | (X) is the modified spherical Bessel function. To test
FIG. 1. The dashed lines represent the Coulomb potentighfor our algorithm, we used the simplified proton-nucleus optical
proton-2C and (b) proton°®Pb, respectively. The solid lines are potential of the following form:
the regularized Coulomb potentis(r) described in the text.
r 2 r 2
i la-lal] e
needed, the number of Gaussian terms could be increased. ° °
To demonstrate the behavior in momentum space, we show, 1
the Fourier transform of the Coulomb potential f&C in ~ With the parameters,=1.33 andds=1.57 fm for ““C and
: : : cs=1.98 andd,=3.94 fm for 2°%Pb. We adopt the potential
Fig. 2. The Fourier transform of the regularized CoulombC®s s aop poten
potential corresponds to the solid line, decreasing rapidi/€PthsVo=—50, —15, and—5 MeV for incident energies
without oscillation. For comparison, we show the sharp- p="50, 150, and 250 MeV, respectively. These are close to

: the values of the global nucleon-nucleus optical potential
cutoff Coulomb potential by VP procedure as well as the[17_1q. The imaginary parts are neglected. Even though

shielded potential used by Ottenstainhal.[11,12 with pa- . S

rameterR.— 14 fim anda.— 2 fm. As previously indicated these parameters do not describe the realistic proton-nucleus

the sh Sh_t # Coul Bh_t t'. | p_” ‘ y il d’d elastic scattering precisely, their major purpose is to examine
€ sharp-cutolt Loulomb potential oscillates rapidly and déy,q validity of the numerical algorithm, and we thus chose to

creases slowly as #if, giving large highg components. On  qe these parameters throughout. The Lippmann-Schwinger
the other hand, the shielded Coulomb potential by Ottenstelmtegra| equation in each partial wave

et al.[11,12 decreases rapidly due to the exponential factors
in Eq. (6) and is similar to the Fourier transform of our .
potentialV(r). In the shielded potential by Ottenstegtal. (kg_kZ) lpL(k)zzmj [UL(k,k")
[11,12, however, there are small but non-negligible oscillat- 0
ing components coming from the second term in @&gand,
for this reason, the partial-wave decomposition has to be
done carefully to avoid the cancellation of the integrand. In
Ref. [12], this decomposition was carried out by numericalcan be solved by discretizing the integral equation and using
integration of 192 Gaussian points. the matrix inversion method20]. In the above equation,

It should be stressed that there are no oscillatory compov/(r) is the partial-wave component of the regularized Cou-
nents in our regularized Coulomb potential. Moreover, thdomb potential in Eq.12). In order to calculate the phase
partial-wave decomposition can be done analytically as  shifts from Eq.(14), we used two algorithms:

rate enough for our present purpose. If more accuracy were U(r)=Vo|1+cs

+V (K K) Ty (kDK 2dk',  (14)
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TABLE |. The phase shiftss, for proton°C elastic scattering at incident enerdy . The results
calculated in coordinate space gpace and momentum spacé Epacé are compared. For the momentum-
space calculation, two methods and(ll) are used which are described in the text.

S, (degree o, (degree
To L r space k space k space L r space k space k space
0] (I 0] (m

50.0 MeV 0 —78.614 —78.609 —78.609 4 14.896 14.904 14.904
1 88.760 88.763 88.763 5 3.861 3.877 3.877
2 73.806 73.814 73.814 6 0.902 0.901 0.901
3 44,442 44.433 44,434 7 0.190 0.190 0.191

150.0 MeV 0 26.545 26.546 26.546 5 8.060 8.061 8.061
1 21.843 21.847 21.847 6 4,913 4,910 4,911
2 18.740 18.742 18.742 7 2.682 2.684 2.684
3 15.478 15.483 15.483 8 1.325 1.332 1.332
4 11.785 11.784 11.784 9 0.598 0.603 0.603

250.0 MeV 0 12.367 12.369 12.369 6 2.788 2.787 2.787
1 8.929 8.930 8.930 7 1.966 1.966 1.966
2 7.162 7.165 7.165 8 1.304 1.302 1.303
3 5.877 5.878 5.879 9 0.813 0.814 0.815
4 4.765 4,767 4.767 10 0.476 0.479 0.479
5 3.734 3.734 3.734 11 0.263 0.266 0.266

(I) The radius parameteR,, is denoted such thag(r) (@ Osks(1-¢e)ko,
~0 forr=R,,. First, we calculate the phase shifi$’ from 1
Eq.é14). Starting from the coordinate-space wave function at K; :Tsko(lﬂ(i), (17)
r=R,,

FL(kor, 7=0)+1tans{”G (ko , 7=0), (19 zi=—1;£ KoWw; .
the coordinate space wave equation with the poteﬁ(ab b) (1—e)kn<k=(1+e)k
is solved inward tdR. Subsequently, the logarithmic deriva- (b) (1~e)ko (1+ &)k,

tive atr =R is matched with ki=(1+ex;)ko, (18
FL(kOrvn)+tan5LGL(kOrr77)1 (16) ZizskoWi .

and the correct phase shiffs are obtained. Heré;, andG, (0 (1+e&)kosk=2ko,
are the regular and irregular Coulomb wave functif@].

i s simi 1-¢ 3+e
E’lhllyslg.rocedure is similar to that used by Ottensteiral. k= 5 KoX; + . Ko, (19)
(1) From Eg. (14), we obtain momentum-space wave
function ¢ (k), from which the coordinate-space wave func- 1-¢
tion is calculated by the Fourier transform. Then the loga- 4= Kow; -
rithmic derivative atr=R is directly matched to the Cou-
lomb wave function(16) to reproduce the correct phase (d) 2ky<k=o»,
shifts &, .
To carry out the practical calculation, the momentum- _2(3+Xx)
space grid points and weights have to be selected adequately ki= 1-x (20
to discretize the integral in Eq14). Since our regularized
Coulomb interactioV(r) has a long tail, as shown in Fig. 1, 8ko
its Fourier transform exhibits a narrow peak arouggdin A= 1—k)2

momentum space, especially for the cas€¥Pb. Consid-

ering the behavior of the potential matrix elements, we di-Interval(b) corresponds to the large Fourier component com-
vide the whole integral interval€@k<o into four parts and ing from the long-range regularized Coulomb potential. We
adopt the following mappings with Gaussian pointsl adjust the parameter (0<<e<1) to accommodate the Fou-
<x;<1 and weightsw; : rier component around the on-shell vakie For the case of
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TABLE II. The same as those in Table | but f8¥Pb.

2171

S, (degree S, (degree
T, L r space k space k space L r space k space k space
0 (m 0 ()]

50.0 MeV 0 —75.811 —75.816 —75.814 10 47.301 47.255 47.256
1 42.979 42.975 42.977 11 22.204 22.238 22.240
2 —0.256 —0.268 -0.267 12 10.647 10.671 10.673
3 —34.770 —34.761 —34.759 13 5.142 5.134 5.136
4 —66.028 —66.028 —66.026 14 2.443 2.426 2.428
5 82.541 82.555 82.557 15 1.113 1.102 1.103
6 48.770 48.760 48.761 16 0.474 0.470 0.472
7 10.700 10.662 10.663 17 0.186 0.185 0.187
8 —-32.811 —32.786 —32.785 18 0.066 0.065 0.067
9 —85.089 —85.074 —85.073 19 0.021 0.020 0.022

150.0 MeV 0 25.908 25.905 25.909 10 46.795 46.773 46.780
1 —20.416 —20.427 —20.419 11 40.051 40.042 40.046
2 —47.758 —47.765 —47.761 12 33.738 33.742 33.749
3 —66.521 —66.532 —66.525 13 27.945 27.957 27.964
4 —80.681 —80.684 —80.679 14 22.752 22.768 22.773
5 87.876 87.875 87.882 15 18.208 18.204 18.213
6 78.120 78.123 78.128 16 14.327 14.309 14.314
7 69.431 69.430 69.436 17 11.083 11.058 11.063
8 61.435 61.423 61.429 18 8.426 8.394 8.403
9 53.922 53.907 53.912 19 6.298 6.275 6.282

250.0 MeV 0 —31.835 —31.841 —31.835 10 25.915 25.905 25.913
1 —71.039 —71.048 —71.041 11 22.492 22.480 22.486
2 86.953 86.944 86.950 12 19.445 19.430 19.437
3 72.077 72.066 72.074 13 16.728 16.711 16.718
4 61.013 61.004 61.010 14 14.308 14.298 14.303
5 52.311 52.305 52.312 15 12.158 12.152 12.159
6 45,211 45.207 45.214 16 10.263 10.266 10.272
7 39.266 39.267 39.273 17 8.605 8.615 8.621
8 34.187 34.184 34.192 18 7.170 7.176 7.184
9 29.782 29.780 29.786 19 5.938 5.944 5.949

12C, the results of the momentum-space calculation ar@bove-mentioned grid points are enough to obtain accurate
rather insensitive to the choice of the parameteiOn the  results. For the momentum-space metkioda smaller num-
other hand, the results are fairly dependent on the choiee of ber of grid points are sufficient to obtain accurate results.
for 2%%b. This is because the regularized Coulomb potentialhis is because the methddl) is directly related to the
for 2°%Pb has a long tail reaching to about 40 fm, which coordinate-space wave function, while only its asymptotic
brings a narrow peak structure to the momentum-space Cotpehavior(i.e., tans{”)) is relevant to methodl). This indi-
lomb matrix element. We use the parameter0.2 through- cates that, if accurate wave functions are necessary to calcu-
out the present work for botf*C and 2°%b. late some nuclear matrix elements, enough grid points also
The results of the calculation for the phase shifts areneed to be taken in momentum-space calculation. For the
shown a space in Tables | and Il for the cases'8€ and  case of '°C, the difference between coordinate-space and
20%ph | together with the results of the coordinate-space camomentum-space calculations is less than 0.01 degree. The
culation denoted asspace. We have adopted the grid pointsaverage differences are about 0.005 degreg,at50 MeV
40,30,30,40 for the interval@—(d), respectively. The and 0.002 degree &t,=250 MeV. For ?°®b, the average
coordinate-space calculation has been carried out with thdifference of the phase shifts betweespace and-space
Bulirsh-Stoer metho@22], which is known to be quite accu- calculations is about 0.01 degreeTat=50 MeV and 0.008
rate for solving ordinary differential equations. In the degree atT,=250 MeV. With the method of Ottenstein
momentum-space calculation, we adopt the two algorithmet al, the phase shifts calculatediirspace and space typi-
described above. As shown in these tables, the momentunsally agree better than 0.5 degfd2]. The present method is
space calculationd) and(ll) yield almost the same results. quite accurate without tedious numerical calculation. At
For both of the momentum-space methgtisand (I1), the  higher energies, we have also calculated the phase shifts at
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incident energyl ,=500 MeV and have checked that we can out oscillation, and that the partial-wave decomposition of
obtain similar accuracy. the Coulomb potential can be done analytically. We exam-
As mentioned above, there is no subtle numerical integrained our algorithm for the typical cases of prot&f€ and
tion in our method for the partial-wave decomposition of theproton-°%b elastic scatterings fdf,=50-250 MeV. In the
regularized Coulomb potential. It is very easy to obtain ac-nomentum-space calculation, we examined two methods:
curate Coulomb matrix elements even for largeor k', (1) First, the phase shifts{) is calculated with the regu-
where partial-wave projection has been difficult with thelarized Coulomb potential & Then, the asymptotic wave
methods used so far. In the practical calculation, the expofunction is obtained in coordinate space at largehere the
nential dependence of the modified spherical Bessel functionutoff Coulomb interaction almost vanish¥ér)~0. Start-

is extracted as ing from this, the coordinate-space wave equation is solved
N o with the potentialV(r) inward to R. Then, the logarithmic
Vi (kk')= 1 S ¢ A Fexd - (k=k’) derivative atr =R is matched to the Coulomb wave function,
L 2\ mi=1 o 4\, and the correct phase shif# can be reproduced.

, , (I) From the momentum-space wave equation with the

exp( B ﬁ)h(ﬁ) (1) PotentialU (k,K')+V,(kK’), the wave functiony, (k) is
2\ 2N/ ) obtained, from which the coordinate-space wave function is
calculated by the Fourier transform. Then the logarithmic

then, for largex=kk'/2\;, the function [exp(-X)iL()]  derivative atr =R is directly matched to the Coulomb wave
slowly decreases and can be easily calculated by the serig$nction to reproduce the correct phase shiits

expansion with respect toX/ Thus, the numerical difficul- As a numerical test for our algorithm, we have calculated
ties inherent in the original VP procedure are overcome, anghe phase shifts for the proton-nucleus elastic scattering with
accurate numerical results could be obtained. the optical potential plus Coulomb potential fdfC and
208K We have shown that we can obtain accurate results

1. CONCLUSIONS for both cases over a wide energy region. The numerical
edifficulties inherent in the original VP procedure having been
hus overcome, and we could easily treat the long-range
oulomb force in momentum space.

X

We have developed an improved algorithm to treat th
Coulomb interaction in momentum space for the scatterin
problem. In the original VP procedure, the sharp-cutoff Cou-
lomb potential is used. It brings an oscillatory highzom-
ponent to the Coulomb potential which decreases slowly in
momentum space. We propose to regularize the Coulomb We would like to thank Professor H. Horiuchi for stimu-
potential by using the superposition of the Gaussian funclating discussions. This work was supported by Grant-in-Aid
tions. This method has two advantages, namely that théor Scientific ResearckNo. 0864037% from Japan Ministry
momentum-space Coulomb potential rapidly decreases withef Education, Science, and Culture.
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