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Watson’s theorem for low-energyp-d radiative capture

L. D. Knutson
Physics Department, University of Wisconsin, Madison, Wisconsin 53706

~Received 28 October 1998!

The use of Watson’s theorem in the analysis ofp-d radiative capture measurements at low energies is
discussed. The principle of Watson’s theorem is outlined, and a detailed description of how the theorem can be
used in a matrix element analysis of radiative capture data is presented. It is shown that with Watson’s theorem
it is possible to reduce the number of unknown parameters in a matrix element analysis by essentially a factor
of 2. This is done by employing a representation in which the capture matrix elements are all real. The phase
information needed to construct the reaction amplitudes is then obtained from a separate phase shift analysis of
elastic scattering data. Details concerning the extension of Watson’s theorem to situations in which there is
mixing between angular momentum states are given. The paper presents a consistent formulation which
facilitates the simultaneous analysis of the elastic scattering and radiative capture channels.
@S0556-2813~99!01304-7#

PACS number~s!: 25.20.2x, 25.10.1s
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I. INTRODUCTION

The radiative capture reactionp1d→3He1g is of inter-
est for a number of reasons. It is known, for example, t
the deuteron tensor analyzing powers are sensitive toD-state
components in the3He wave function@1#, and measurement
of these quantities have often been used in the past to ex
D-state information@2–4#. There has also been a substant
amount of interest in obtaining information about theM1
contributions to the reaction process~see for example Refs
@5,6#!. This interest arises in part from the desire to und
stand the role of meson exchange processes. Finally, thep-d
capture reaction is of special importance since it is one of
basic processes that can be studied in the three-nucleon
tem. Recent theoretical and computational advances h
made it possible to carry calculations in theA53 system
which are quantum mechanically exact, and as a result,p-d
capture measurements have taken on added importance
they can now be used to test, at a rather fundamental le
our understanding of the nuclear three-body problem.

In radiative capture reactions, one can often learn m
from measurements of cross sections or analyzing powe
only a few angles. However, it is well understood that info
mation of a more fundamental nature can be obtained if
has a data set sufficiently complete to allow the extraction
individual reaction matrix elements. For capture reactio
that have a simple spin-parity structure, the determination
the matrix elements can be relatively straightforward. Ho
ever, for p-d capture this is not the case. For this reacti
there are 5E1 matrix elements, 5M1 matrix elements and 6
E2 matrix elements. Since one knows thatE1, M1 andE2
all play important roles at energies of a few MeV@7#, a
complete matrix element analysis in this energy range wo
involve 31 parameters—16 complex matrix elements w
one irrelevant overall phase. Because the number of par
eters is so large, complete matrix element analyses have
been possible in the past, although some restricted ana
have been reported@7#.

The main point of the present paper is to demonstrate
PRC 590556-2813/99/59~4!/2152~10!/$15.00
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the number of unknown parameters in a matrix analysis
be reduced by essentially a factor of 2 if the reaction
carried out at energies below the threshold for deute
breakup. The essential idea is contained in a paper publis
by Watson in 1954@8#. Watson’s theorem, when applied t
radiative capture reactions, essentially says that the com
phases of the matrix elements are related in a simple wa
the phase shifts for elastic scattering. This result follo
from the fact that the expectation values of the multipo
operators are fundamentally real quantities~in the appropri-
ate representation! provided that time reversal invarianc
holds. The matrix elements acquire a phase because the
tic scattering wave function for a given angular momentu
state is required to satisfy the elastic scattering bound
conditions, and this fixes the phases of the scattering sta

Watson’s theorem applies only to situations in whi
there are no open reaction channels other than radiative
ture, and one of the central assumptions is that the cap
amplitude is small enough to be calculated in perturbat
theory. Equivalently, the assumption one makes is that
full wave function of the system is, to a good approximatio
a pure elastic scattering wave function in the asymptotic
gion. Since theg13He wave function amplitudes are ver
small compared to the elastic amplitudes, these conditi
are well satisfied forp-d radiative capture at energies belo
the deuteron breakup threshold.

In principle then, Watson’s theorem allows one to redu
the number of unknown parameters in a matrix analysis
essentially a factor of 2, provided that the phase shifts
known or can be determined from measurements of the e
tic scattering. Since phenomenological phase shift analy
of p-d scattering have been successful in the past few ye
~see for example Ref.@9#! it seems possible that a comple
matrix element analysis ofp-d radiative capture might now
be feasible with the aid of Watson’s theorem.

The goal of the present paper is to establish the deta
formalism which one would use in such an analysis. In
simplest systems the implementation of Watson’s theorem
relatively straightforward. However, the details becom
2152 ©1999 The American Physical Society
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PRC 59 2153WATSON’S THEOREM FOR LOW-ENERGYp-d . . .
more complicated when the spin structure is such that mix
between angular momentum states is allowed in the ela
scattering channel. Nevertheless, as we shall demonst
the basic principle of the Watson theorem still holds, p
vided that one defines the matrix elements appropriately

The application of Watson’s theorem to radiative capt
is essentially equivalent to carrying out a simultaneo
partial-wave analysis of the elastic scattering and reac
channels. As such, it is clear that one must be exceedi
careful about phase conventions, coupling schemes for a
lar momenta, and so on. For this reason, the discussion
follows is quite detailed, with clear and rigorous definitio
presented for all relevant quantities.

We begin in Sec. II by defining the transition matrix fo
the radiative capture reaction, introducing the multipole
pansion of the interaction Hamiltonian, and defining t
phase conventions for the angular momentum states. In
III we introduce the elastic scattering wave function a
demonstrate Watson’s theorem for the simple case of no
pling between angular momentum states. The generaliza
of Watson’s theorem to situations in which angular mom
tum mixing is allowed is presented in Sec. IV. Section
presents a discussion of a few subtle points, and the fi
conclusions are given in Sec. VI.

II. THE RADIATIVE CAPTURE REACTION

A. The starting point

The radiative capture reaction is described as a proce
which transitions between the initial statex, and the final
statem, are induced by the electromagnetic interaction,H int .
The initial and final states are eigenstates of a Hamilton
H0 , and the full Hamiltonian of the system is

H5H01H int . ~2.1!

The interaction Hamiltonian is given by the usual express

H int52
1

cE J~r !•A~r !d3r , ~2.2!

where J(r ) is the current density andA(r ) is the vector
potential.

In a nuclear system,H int takes the form@10#

H int52
e\

2mc(n
@2glnpn•A~r n!1gsnsn•H~r n!#, ~2.3!

where

H~r ![“3A~r !. ~2.4!

In Eq. ~2.3! the sum is over all nucleons, and the operatorp
ands have the definitions

p52 i“ ~2.5!

and

s5
1

2
s, ~2.6!
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where the components ofs are the Pauli matrices. The quan
tity gln takes on the values 0 and 1 for neutrons and proto
respectively, while the corresponding values ofgsn are
23.826 and 5.585.

Since the coupling between the initial and final states
the system is weak, the transition rates may be calculate
time-dependent perturbation theory. As seen in the follow
section, this allows us to find the connection between
matrix elements ofH int and the radiative capture obser
ables.

B. The transition matrix

Our goal is to find the transition matrixTf i for the radia-
tive capture process. GivenTf i , it is straightforward to ob-
tain the reaction observables by employing the density m
trix formalism. If the initial spin state is described by
density matrixr i then the final state density matrixr f is

r f5Tr iT
†. ~2.7!

The reaction cross section is then simply the trace of the fi
state density matrix

ds

dV
5tr r f . ~2.8!

To obtainTf i we use Fermi’s golden rule, according
which the transition ratew from statei to statef is given by

w5
2p

\
r~E!u^ f uH intu i &u2. ~2.9!

In the capture reaction the initial state, which we des
nate byx, is a full solution to thep-d scattering problem for
the HamiltonianH0 which satisfies the usual boundary co
ditions for elastic scattering. Thus, in the asymptotic regi
x consists of an incoming plane wave plus outgoing sph
cal waves. The final state,f, consists of a nuclear bound sta
m plus a photon of momentumk and polarizationê.

To obtain the reaction cross section we find the transit
rateDw to states in which the photon momentum,k, is con-
tained in the solid angleDV. The result is

Dw5
VNv2

4p2\2c3u^m;~k,ê!uH intux&u2DV, ~2.10!

where\v is the photon energy andVN is the normalization
volume.

We may now determineTf i by requiring that the reaction
rates implied by Eqs.~2.8! and~2.10! must be equal. Assum
ing thatx is normalized for one projectile and one target
the volumeVN , we obtain

Tf i5
VN

2p F m iv
2

ki~\c!3G1/2

^m;~k,ê!uH intux&, ~2.11!

whereki is the wave number for the initialp-d state andm i
is thep-d reduced mass.
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2154 PRC 59L. D. KNUTSON
C. Reduction of H int

The first step in obtaining the multipole expansion of t
matrix element in Eq.~2.11! is to simplify H int . Strictly
speaking, the quantitiesA(r ) andH(r ) in Eq. ~2.3! should be
treated as field operators. However, for present purposes
preferable to adopt the semiclassical approach and refe
reader to Ref.@10# for a discussion of the more subtle aspe
of the full quantum treatment.

In the semiclassical approach the electromagnetic wav
described by a vector potential of the form

A~r ,t !5A0Re@ êei ~k•r2vt !#

5
A0

2
@ êei ~k•r2vt !1 ê* e2 i ~k•r2vt !#. ~2.12!

Following Ref.@10# we may then divideH int into two parts,

H int5
A0

2
@Ha~k,ê!e2 ivt1He~k,ê!eivt#, ~2.13!

where

Ha52
e\

2mc(n
@2glp• êeik•r1gss•“3 êeik•r#,

~2.14!

and whereHe is the Hermitian conjugate ofHa .
In time dependent perturbation theory,Ha is responsible

for the absorption of photons, whileHe gives rise to the
process of stimulated emission. Since we are interested
in radiative capture reactions, the process which concern
is spontaneous emission. As is well known, this proces
not described in the semiclassical treatment of electrom
netic radiation. However, as demonstrated in Ref.@10#, the
radiative capture amplitude can be determined by using
semiclassical theory to calculate the amplitudes for the
verse process, photon absorption on3He. One may then use
detailed balance to relate the two processes. The result
rived in Ref.@10#, is

^m;~k,ê!uH intux&5F2p\c

VNk G1/2

^xuHa~k,ê!um&* .

~2.15!

Combining Eqs.~2.11! and ~2.15! we then obtain our work-
ing equation,

Tf i5F m ivVN

2p\2cki
G1/2

^xuHa~k,ê!um&* . ~2.16!

D. The multipole expansion

One of the advantages of the approach outlined in
preceeding section is that it allows one to employ the st
dard multipole expansion of the operatorHa . In making the
multipole expansion we follow the notation and conventio
of Ref. @10#.

For the unit vectors,ê, that specify the photon polariza
tion states we employ the usual spherical tensors
is
he
s

is

re
us
is
g-

e
-

e-

e
-

s

ê152
1

A2
~ x̂1 i ŷ! ~2.17a!

ê05 ẑ ~2.17b!

ê215
1

A2
~ x̂2 i ŷ!. ~2.17c!

At this point it is also useful to adopt a coordinate frame
which thez-axis is chosen to be along the photon mome
tum, k. In this frame photons are emitted into only thel
51 andl521 polarization states. In addition, the quan
ties êeik•r that appear in Eq.~2.14! take on a relatively
simple form,

êleikz52
1

A2
(
L

@ALl
e 1lALl

m #, ~2.18!

whereALl
e andALl

m are appropriately defined vector sphe
cal harmonics@10#.

Upon substituting this expression into Eq.~2.14! one can
obtain the familiar multipole expansion formula

Ha~k; êl!52(
L

@aL
e~QLl1QLl8 !1laL

m~MLl1MLl8 !#.

~2.19!

The definitions of operatorsQLl , QLl8 , MLl andMLl8 and of
the complex coefficientsaL

e andaL
m are given in Ref.@10#.

The main focus of the present work is to demonstrate t
with Watson’s theorem one can obtain information about
phases of the matrix elements of the multipole operators.
it turns out, these phase relationships take on a relativ
simple form if one replaces the multipole operators of E
~2.19! with quantities that Rose and Brink refer to as ‘‘inte
action multipole operators.’’ These quantities are defined
cording to

TLl
e 5aL

e~QLl1QLl8 ! ~2.20!

and

TLl
m 5aL

m~MLl1MLl8 !, ~2.21!

and so we have

Ha~k; êl!52(
L

@TLl
e 1lTLl

m #. ~2.22!

E. The time reversal operator

The phase relations that we shall obtain follow from t
transformation properties of the multipole operators and
the angular momentum states under the operation of t
reversal. We follow the commonly used convention and
fine the time reversal operator,uT , as

uT5e2 ipSy /\K0 , ~2.23!

whereK0 means complex conjugation, and whereSy is the
operator for they-component of the total spin.

SinceuT is an antiunitary operator, the matrix element
any operatorB must have the property@10#
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^fuBuc&5^uTfuuTBuT
21uuTc&* . ~2.24!

We now apply this formula to the matrix element ofTLl

taken between two eigenstates of the total angular mom
tum. One can easily demonstrate that the electric and
magnetic multipole operators both transform according to
rule

uTTLluT
215~2 !L2lTL2l . ~2.25!

Let us assume that for the angular momentum states
adopt phase conventions so that the time reversal tran
mation is

uTu j ,m&5~2 ! j 2mu j ,2m&. ~2.26!

With our definition of operatoruT this equation is satisfied
by the conventional spin angular momentum eigenstates.
eigenstates of orbital angular momentum Eq.~2.26! will be
satisfied if we take

u l ,m&[ i lYl
m , ~2.27!

where Yl
m is a spherical harmonic defined with the usu

phase convention@11#. Finally we note that ifu j 1 ,m1& and
u j 2 ,m2& satisfy Eq.~2.26!, then

u j ,m&5 (
m1 ,m2

u j 1 ,m1&u j 2 ,m2&^ j 1m1 , j 2m2u jm&

~2.28!

does also.
It is now straightforward to demonstrate that matrix e

ments of the operatorsTLl between angular momentum
states that satisfy Eq.~2.26! must be real. To see this w
substitute Eqs.~2.25! and ~2.26! into Eq. ~2.24! to obtain

^ j 1 ,m1uTLlu j 2 ,m2&5~2 ! j 12m11 j 22m21L2l

3^ j 1 ,2m1uTL2lu j 2 ,2m2&* .

~2.29!

Since the operatorsTLl are spherical tensors, we may use t
Wigner-Eckart theorem to express the matrix elements in
~2.29! in terms of Clebsch-Gordon coefficients and a redu
matrix element^ j 1uuTLuu j 2&. The Clebsch-Gordon coeffi
cients may then be eliminated by employing the appropr
symmetry relations and one obtains the result

^ j 1uuTLuu j 2&5^ j 1uuTLuu j 2&* . ~2.30!

We therefore conclude that the matrix elements ofTLl are
real provided that the statesu j ,m& satisfy Eq.~2.26!.

III. THE ELASTIC SCATTERING STATES

A. Boundary conditions

We now focus on the properties of the elastic scatter
statex. As indicated earlier, this wave function is the fu
solution to thep-d scattering problem subject to the usu
elastic scattering boundary conditions. The wave funct
depends on the magnetic quantum numbersnp andnd which
n-
he
e

e
r-

or

l

-

q.
d

te

g

l
n

specify the initial spin projections of the proton and deuter
respectively. Thus in the asymptotic region (r→`)x is of
the form

x→
1

AVN

@c inc1cscat#, ~3.1!

where

c inc5eiki•rfp
npfd

nd , ~3.2!

and wherecscatconsists of outgoing spherical waves only.
Eq. ~3.2! the quantityfp

np is the proton spin wave function

while fd
nd represents the internal wave function of the de

teron.
We now expandc inc in partial waves. Since the relativ

phases of the various partial wave states depend on the
pling scheme, it is important to adopt a clear and consis
convention for the coupling order. We shall use the conv
tions of Seyler and Weller@1#, in which the channel-spinS is
given by

S5Sp1Sd , ~3.3!

while the coupling order for the total angular momentumJ is

J5L1S. ~3.4!

Our generalized spin-angle functionsY are therefore defined
as

Y Jls
M 5 (

np ,nd ,n,m
^spnp ,sdndusn&^ lm,snuJM&

3 i lYl
m~ r̂ !fp

npfd
nd . ~3.5!

It follows from Eqs. ~2.27! and ~2.28! that these functions
obey the time reversal relation Eq.~2.26!.

The expansion ofc inc in terms of the spin-angle function
is readily obtained by employing the symmetry properties
the Clebsch-Gordon coefficients. The result is

c inc54p (
J,l ,s

M ,n,m

^spnp ,sdndusn&^ lm,snuJM&

3 j l~kir !Y Jls
M Yl

m* ~ k̂i !. ~3.6!

The asymptotic form of the incident wave may then be se
by substituting into Eq.~3.6! the familiar expression forj l at
large r :

j l~kir !→
1

2ik i r
@ei [ki r 2 l ~p/2!]2e2 i [ki r 2 l ~p/2!] #. ~3.7!

Thus, if there were no scattering, the wave functionx at
large r would be of the form prescribed by Eqs.~3.6! and
~3.7!. In general, however, the scattering modifiesx giving
rise to additional outgoing spherical waves.

B. The simple case—no angular momentum mixing

To incorporate the effects of scattering it is helpful
begin with the simple case in which there is no mixing b
tween angular momentum states. We will return shortly
the more general case, but for now we assume that the s
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tions to the Schro¨dinger equation are eigenfunctions ofL2

andS2, so thatl ands are good quantum numbers. In add
tion we assume throughout that there are no open reac
channels. It follows that the most general solution of t
Schrödinger equation in a given angular momentum st
will consist of ingoing and outgoing spherical waves in t
asymptotic region. In other words the solutions at larger will
be characterized by radial wave functions that can be wri
in the form

gl~r !→
1

2ik i r
@bei [ki r 2 l ~p/2!]2ae2 i [ki r 2 l ~p/2!] #, ~3.8!

wherea and b are constants. The notation we adopt in E
~3.8! and in the following discussion is that of Blatt an
Biedenharn@12#.

Since the outgoing wave evolves from the ingoing wa
it follows that the outgoing wave amplitudeb must be a
function of the ingoing wave amplitudea. Then, since the
Schrödinger equation is linear, we conclude thata and b
must be related by an equation of the form

b5Sa, ~3.9!

where the proportionality constantS is theS-matrix element
for the angular momentum state in question. If there are
open reaction channels then flux conservation requiresuau
5ubu and we may write

S5e2id, ~3.10!

where the phase shiftd is real.
Now to obtain the full elastic scattering wave functio

cnp ,nd, we need to satisfy the boundary conditions impli
by Eq.~3.1!. Thus the constantsa must be chosen so that th
full wave function has ingoing waves that match those of E
~3.6!. Defining

cnp ,nd5AVNx ~3.11!

we conclude thatcnp ,nd must have the asymptotic form

cnp ,nd→4p (
J,l ,s

M ,n,m

^spnp ,sdndusn&^ lm,snuJM&S 1

2ik i r
D

3@e2idJ
ls
ei [ki r 2 l ~p/2!]2e2 i [ki r 2 l ~p/2!] #Y Jls

M Yl
m* ~ k̂i !.

~3.12!

At this point we wish to express the scattering wave fu
tion in a form that allows us to readily make use of the res
given in Eq. ~2.30!. For this purpose one needs to wri
cnp ,nd as an expansion over angular momentum eigenst
that satisfy Eq.~2.26!. To accomplish this we first rewrite
Eq. ~3.12! in the form

cnp ,nd→4p (
J,l ,s

M ,n,m

^spnp ,sdndusn&^ lm,snuJM&

3eidJ
lsS 1

kir
D sinS kir 2 l

p

2
1dJ

lsDY Jls
M Yl

m* ~ k̂i !.

~3.13!
on
e
e

n
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o
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This result suggests that it is useful to introduce a new se
scattering eigenstates,u ls;JM&. These wave functions ar
defined to be full solutions to the Schro¨dinger equation in a
given angular momentum state having the asymptotic fo

u ls;JM&→S 1

kir
D sinS kir 2 l

p

2
1dJ

lsDY Jls
M . ~3.14!

The full wave function is then given in terms of the scatte
ing eigenstates by the expansion

cnp ,nd54p (
J,l ,s

M ,n,m

^spnp ,sdndusn&^ lm,snuJM&

3eidJ
ls
u ls;JM&Yl

m* ~ k̂i !. ~3.15!

Since the statesu ls;JM& are full solutions to the Schro¨dinger
equation, this last result is valid in all space.

C. Watson’s theorem

The value of this particular form of the scattering wa
function is that it allows us to express the capture amplitu
in terms of a set of real matrix elememts. This is because
scattering eigenstatesu ls;JM& satisfy Eq.~2.26!. To see this
is the case, recall that these eigenstates are solutions t
Schrödinger equationH0u ls;JM&5Eu ls;JM&. We assume
that H0 is invariant under time reversal, and it follows th
uTu ls;JM& must also solve the Schro¨dinger equation. The
properties of this solution are apparent from Eq.~3.14!. Ac-
cording to this formula,u ls;JM& in the asymptotic region is
the product of a real function and a quantityY Jls

M that satis-
fies Eq. ~2.26!, and it follows that uTu ls;JM& has the
asymptotic form

uTu ls;JM&→~2 !J2MS 1

kir
D sinS kir 2 l

p

2
1dJ

lsDY Jls
2M .

~3.16!

Except for an overall sign, we see thatuTu ls;JM& matches
the functionu ls;J2M & in the asymptotic region, and sinc
the Schro¨dinger equation allows only one solution with th
particular asymptotic form, we conclude that

uTu ls;JM&5~2 !J2Mu ls;J2M &. ~3.17!

At this point it is useful to combine results to obtain a
expression for the transition amplitude for radiative captu
We want the transition amplitude for a reaction proceed
from an initial state characterized by quantum numbersnp
and nd to a final state in which the photon has circular p
larizationl and the residual3He nucleus has spin projectio
s. This quantity, which we now designate asTls,npnd

, is
obtained by substituting Eqs.~2.22! and ~3.15! into Eq.
~2.16!. With the help of Eq.~3.11! we have
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Tls,npnd
524pF m iv

2p\2cki
G1/2

(
J,l ,s,L
M ,n,m

^spnp ,sdndusn&

3^ lm,snuJM&eidJ
ls

3^ ls;JMuTLl
e 1lTLl

m ufHe
s &* Yl

m* ~ k̂i !, ~3.18!

wherefHe is the 3He bound state wave function, which w
assume to be defined in accordance with the phase con
tion Eq. ~2.26!.

We now further simplify this result by employing th
Wigner-Eckart theorem. Writing

^ ls;JMuTLlufHe
s &5^Ll,scsuJM&^ ls;JuuTLuufHe&,

~3.19!

wheresc is the 3He spin, we obtain

Tls,npnd
524pF m iv

2p\2cki
G1/2

(
J,l ,s,L
M ,n,m

^spnp ,sdndusn&

3^ lm,snuJM&^Ll,scsuJM&

3eidJ
ls
@^ ls;JuuTL

euufHe&*

1l^ ls;JuuTL
muufHe&* #Yl

m* ~ k̂i !. ~3.20!

The reader will note at this point that the complex con
gation symbols associated with the various matrix eleme
have been carried along through Eqs.~3.18! and ~3.20!.
However, these complex conjugations are superfluous s
the matrix elements are necessarily real by virtue of the
sults of Sec. II E. Equation~3.20! can thus be viewed as th
statement of Watson’s theorem for thep-d radiative capture
reaction for the case of no angular momentum mixing. In t
special situation, the phase associated with each matrix
ment is simply the corresponding elastic scattering ph
shift.

IV. THE GENERALIZED WATSON THEOREM

A. The elasticS-matrix

We now proceed to the general case in which mix
between angular momentum states is permitted. In this c
the solutions to the Schro¨dinger equation are eigenfunction
of J2 andJz , but l ands are no longer good quantum num
bers. If we focus on a particularJ and parity, the most gen
eral solutions to the Schro¨dinger equation,fJ

M , will involve
sums of ingoing and outgoing waves:

fJ
M→(

a

1

2ik i r
@baei [ki r 2 l a~p/2!]2aae2 i [ki r 2 l a~p/2!] #YJlasa

M ,

~4.1!

where the sum now runs over alll -s combinations that are
consistent with the specifiedJp value. Forp-d scattering this
sum involves 2 terms whenJ5 1

2 and 3 terms for all higherJ.
Following Blatt and Biedenharn@12#, we argue that since

all the states are coupled, eachba coefficient must now be a
function of all thea’s. Thus for the case of 3-state mixin
one would have
en-

-
ts

ce
-

s
le-
e

se

b15S11a11S12a21S13a3,

b25S21a11S22a21S23a3,

b35S31a11S32a21S33a3, ~4.2!

or in matrix form

b5Sa. ~4.3!

Now for elastic scattering with no open reaction channe
the S-matrix must be unitary and symmetric. It follows~see
for example Ref.@13#! thatScan be diagonalized by a matri
transformation that has the form of a generalized Bla
Biedenharn ‘‘rotation.’’ Equivalently, theS-matrix can be
written in the form

S5u†S0u, ~4.4!

whereS0 is a diagonal, unitary matrix

S05F e2id1 0 0

0 e2id2 0

0 0 e2id3

G . ~4.5!

The phase shifts,da that appear in Eq.~4.5! are real param-
eters, commonly referred to as the eigenphaseshifts.

The mixing matrixu that appears in Eq.~4.4! is both real
and orthonormal. For two-state mixing this matrix is usua
parametrized in terms of a single mixing parametere,

u5F cose sine

2sine coseG . ~4.6!

For the case of three-state mixing, three ‘‘mixing para
eters’’ are required. One possible choice for the matrixu in
this case is given in Ref.@13#; however, for our purposes
adoption of a specific parametrization of the matrixu is not
required.

B. The eigenstates ofS

To obtain the generalized version of Watson’s theore
we would like to write the scattering wave function in term
of a set of scattering states that satisfy Eq.~2.26!. As we
shall see below, the functions we want are the so-ca
eigenstates of scattering matrix@12#. To define these state
we introduce a shorthand notation for the ingoing and o
going waves in a given partial wave state,

xa
in52S 1

2ik i r
De2 i [ki r 2 l a~p/2!]YJlasa

M ~4.7!

and

xa
out5S 1

2ik i r
Dei [ki r 2 l a~p/2!]YJlasa

M . ~4.8!

The general wave function of Eq.~4.1! may then be written
as

f→(
b

Fabxb
in1(

g
Sbgagxb

outG . ~4.9!
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Let us now define a set of three functions,fa in which
the ingoing-wave amplitudesab are defined according to th
rule

ab5uab ~4.10!

so that

fa→(
b

Fuabxb
in1(

g
Sbguagxb

outG . ~4.11!

Then by making use of Eq.~4.4! and by recalling thatu is
real and unitary and thatS0 is diagonal, one may easily re
write these functions in the form

fa→(
b

uabxb
in1e2ida(

b
uabxb

out. ~4.12!

From this last result one can see why these partic
functions are referred to as the eigenstates of the scatte
matrix. If we prepare an ingoing-wave state made up of
particular linear combination of partial wave amplitud
specified in Eq.~4.10!, then the resulting outgoing wave
just an overall phase,e2ida, times the same linear combina
tion of outgoing partial wave amplitudes.

For our purposes, the importance of this result can be s
by inserting the definitions ofx in and xout into Eq. ~4.12!.
After some manipulation one obtains

fa→eida(
b

uabS 1

kir
D sinS kir 1da2 l b

p

2 DYJlbsb

M .

~4.13!

Recalling once again that the elements of the matrixu are
real, we see that the wave functionsfa have a well defined
behavior under the operation of time reversal. We introd
statesua;JM& defined by the equation

ua;JM&5e2 idafa , ~4.14!

whereda is the appropriate eigenphaseshift. Then, accord
to the arguments of Sec. III C, these states must obey
time-reversal transformation

uTua;JM&5~2 !J2Mua;J2M &. ~4.15!

C. The generalized theorem

Since we have now succeeded in identifying states
transform according to the rule~2.26!, we can readily obtain
the Watson theorem formula for the general case. To do
we simply need to express the full scattering wave funct
in terms of the scattering eigenstates.

From Eqs.~3.6! and~3.7! the incident plane wave can b
written in the form

c inc→4p (
J,p,b
M ,n,m

^spnp ,sdndusbn&^ l bm,sbnuJM&

3~xb
in1xb

out!Yl b
m* ~ k̂i !, ~4.16!
r
ng
e

en

e

g
he

at

o,
n

where summation over theb is meant to imply summation
over all l -s values associated with each particularJp. To
proceed we now construct the full scattering wave funct
by making a superposition of scattering eigenstates in wh
the ingoing waves match those ofc inc . Starting from Eq.
~4.12! one readily obtains

(
a

uabfa→xb
in1(

a
Sabxa

out ~4.17!

and so the full elastic scattering wave function can be writ
in the form

cnp ,nd54p (
J,p,b
M ,n,m

^spnp ,sdndusbn&^ l bm,sbnuJM&

3S (
a

uabfaDYl b
m* ~ k̂i !. ~4.18!

The generalized form of Watson’s theorem is then o
tained by substituting this result into Eq.~2.16!. We replace
the scattering eigenstatesfa with quantitiesua;JM& defined
in Eq. ~4.14! and thus our expression for the transition a
plitude involves matrix elements of the form
^a;JMuTLlufHe

s &. We then introduce reduced matrix ele
ments defined by the formula

^a;JMuTLlufHe
s &5^Ll,scsuJM&^a;JuuTLuufHe&. ~4.19!

Combining the various formulas we then obtain the fin
result

Tls,npnd
524pF m iv

2p\2cki
G1/2

(
J,p,a,b
L,M ,n,m

^spnp ,sdndusbn&

3^ l bm,sbnuJM&^Ll,scsuJM&

3uabeida@^a;JuuTL
euufHe&*

1l^a;JuuTL
muufHe&* #Yl b

m* ~ k̂i !, ~4.20!

where, by virtue of Eq.~4.15!, it is seen that the reduce
matrix elements must once again be real.

V. DISCUSSION

We have now reached the goal of obtaining a single f
mula which can be used as the basis of a matrix-elem
analysis ofp-d radiative capture data obtained at energ
below the deuteron breakup threshold. As we have outli
previously, the approach one uses in such an analysis
treat the reduced matrix elements as parameters and d
mine these quantities by fitting measurements.

The advantage of the present formulation over the c
ventional one is that the matrix elements are necessarily r
Information on the relative phases of the terms that appea
the sum over multipoles and angular momentum state
derived from the elastic scattering channel. The assump
we make is that the eigenphaseshifts and the mixing ma
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elements are known from a separate phase shift analys
elastic scattering.

In a conventional analysis, the matrix elements appea
in the expansion ofTf i would be matrix elements of som
multipole operator taken between the bound state an
partial-wave scattering state,f ls,J

M , defined with the bound-
ary condition that the ingoing asymptotic wave should b
pure angular momentum state involving only a singlel -s
combination. For these states the outgoing waves hav
relatively complicated asymptotic form that, in general,
volves all three eigenphaseshifts. As a result the phase o
resulting matrix element is not apparent. In contrast, the
trix elements used in the present formulation are defined
terms of the eigenstates of theS-matrix, which have a sim-
pler asymptotic form that involves only a single eigenpha
Since we use eigenchannel wave functions, we refer to
matrix elements of Eq.~4.19! as eigenchannel matrix ele
ments.

The connection between the eigenchannel matrix
ments and the conventional ones is fairly simple. We de
a set of matrix element parametersPa

EL andPa
ML by the equa-

tions

Pa
EL52F8m ikiv

\2c G1/2 1

A2L11
^a;JuuTL

euufHe& ~5.1!

and

Pa
ML52F8m ikiv

\2c G1/2 1

A2L11
^a;JuuTL

muufHe&, ~5.2!

and then introduce a set of transformed matrix elements

Rb5(
a

uabeidaPa . ~5.3!

Except for a possible overall phase, these quantities ap
to be identical to theR parameters used by Seyler and Wel
@1#. In terms of these transformed matrix elements, the tr
sition amplitude may be written as

Tls,npnd
5

2p

ki
(

J,p,b,L
M ,n,m

F2L11

4p G1/2

^spnp ,sdndusbn&

3^ l bm,sbnuJM&^Ll,scsuJM&

3@Rb
EL1lRb

ML#Yl b
m* ~ k̂i !. ~5.4!

While the equations we have obtained for the transit
amplitude may appear to be quite straightforward, there
still a few subtle points. The first concerns the choice
coordinate frame. Recall that in Sec. II D we adopted a
ordinate frame with thez-axis along the direction of the pho
ton’s momentum,k. We shall now refer to this as the ‘‘pho
ton frame.’’ Let us choose they-axis of this coordinate frame
to be along the directionki3k, where k̂i is the proton’s
momentum direction in the c.m. frame. The reaction an
uc.m. is then taken to be the angle between the incident pro
and the outgoingg-ray ~in the c.m. frame! and it follows that
of

g

a

a

a
-
he
a-
in

.
e

-
e

ar
r
-

n
re
f
-

e
n

Yl
m* ~ k̂i !5Yl

m* ~uc.m.,p!5Yl
2m~uc.m.,0!. ~5.5!

The next point concerns the calculation of the deute
analyzing powers. These quantities are normally defined
accordance with the Madison Convention@14#, in which the
spin operators and observables are referenced to a coord
frame which does not coincide with the frame we are us
here. If we adopt the spherical tensor notation@14#, the
Madison Convention analyzing powers,Tkq , may be ob-
tained by first calculating the analyzing powers in the pho
frame, and then transforming to the Madison frame. In
photon frame we have

T̂kq5tr@TtkqT
†#/tr@TT†#, ~5.6!

where thetkq’s are the usual spherical tensor spin operato
Since the analyzing powers are spherical tensors, we may
the rotation matrices to transform to the Madison frame. T
appropriate transformation is

Tkq5(
q8

dq8q
k

~p2uc.m.!T̂kq8 , ~5.7!

where thed-functions are defined, for example, in Ref.@15#.
The next point concerns the phase conventions. If o

wishes to carry out a matrix element analysis of the kind
are proposing, care must be taken to ensure that the mi
matrices are used correctly. This requires careful adhere
to the phase conventions and coupling orders for the ang
momenta. In particular, it is important to use the same c
ventions in the elastic scattering analysis as in the reac
analysis. It should be noted that many of the published ph
shift analyses~see for example Ref.@9#! employ the coupling
scheme of Ref.@13# which differs from that used in the
present formulation. The effect of changing the coupling
der is that some of the off-diagonalS-matrix elements
change sign, and the result is that the matrixu is altered. For
purposes of completeness, we have recorded in the Appe
the relevant formulas for the elastic scattering amplitudes
the present coupling scheme.

Finally we need to make a few comments concerning
treatment of Coulomb effects in the elastic scattering ch
nel. It will be noted that in the treatment presented abo
there is no explicit reference to the Coulomb phase sh
The understanding, then, is that theS-matrix being referred
to in Eqs.~4.3! and ~4.4! is the complete elastic scatterin
S-matrix.

Since the Coulomb phases do not converge to zero,
normal practice in a phase shift analysis is to separate off
Coulomb amplitude and work with the ‘‘nuclear’’ part ofS
~see Ref.@13#!. This quantity is then ordinarily parametrize
with an equation of the form~4.4!. Given the nuclear
S-matrix, S̃, the complete scattering matrix,S, is obtained by
a matrix transformation~see the Appendix!

S5WS̃W, ~5.8!
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whereW is a diagonal matrix whose elements are the C
lomb phase factorseis l associated with the individual angu
lar momentum states that make upS. The phase parameter
s l , are obtained in the usual way,

s l5argG~ l 111 ih!. ~5.9!

It may be noted, however, that one could use modified C
lomb phases

v l5s l2s0 , ~5.10!

in place of thes l ’s in making the transformation of Eq.~5.8!.
The only consequence would be that the elements ofSwould
all be rotated by a common phase, 2s0 , which means that
the extracted eigenphases would change bys0 , and the re-
sulting transition amplitude would thus simply acquire
additional overall phase.

The need to transform from the nuclearS-matrix to the
completeS-matrix introduces some complications. In pa
ticular one finds that there is no simple relationship betw

the mixing matrixũ that diagonalizesS̃ and the matrixu that
diagonalizesS. Similarly the eigenphases ofSare not related

in any simple way to the eigenphases ofS̃. The procedure
one might follow to find the needed parameters would be

use the elastic phase shift parameters to constructS̃, find S
by the transformation~5.8!, and then rediagonalizeS to ob-
tain the new eigenphases and mixing matrix elements.

VI. CONCLUSIONS

The use of Watson’s theorem for the analysis low-ene
radiative capture reactions has been discussed in detail.
ticular emphasis has been given to the question of how W
son’s theorem can be used in situations in which there
mixing between angular momentum states. Although
present work focuses on thep-d capture reaction, the result
obtained here can be applied to other systems as well.
main limitation is that Watson’s theorem is valid only
situations in which there are no open reaction channels
significantly reduce the flux in the elastic scattering chann

It is anticipated that the formalism introduced here will
employed in the near future to carry out a matrix elem
analysis of a set ofp-d radiative capture measurements
Ec.m.52MeV obtained recently in experiments at the Unive
sity of Wisconsin@16#. The results of this analysis will be
presented in a future publication.
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APPENDIX

For completeness we record here the relevant formulas
the elastic scattering amplitudes. These amplitudes are e
-

u-

n

o

y
ar-
t-
is
e

he

at
l.

t
t
-

rt
-

or
ily

extracted from the scattering wave function given in E
~4.18!. Using the definition offa from Eq. ~4.11! one ob-
tains after some algebra

cnp ,nd→4p (
J,l ,l 8,s,s8

M ,m,n

^spnp ,sdndusn&^ lm,snuJM&

3@d l ,l 8ds,s8xJls
in 1Sl 8s8,ls

J xJl8s8
out

#Yl
m* ~ k̂i !. ~A1!

To find the outgoing wave amplitudes we subtract t
incident plane wave, Eq.~3.6!. Using the definitions ofx in

andxout from Eqs.~4.7! and~4.8!, and inserting the formula
for spin-angle functions from Eq.~3.5! one obtains the resul

cscat
np ,nd→4p (

J,l ,l 8,s,s8
M ,m,m8,n,n8

(
np8 ,nd8

^spnp ,sdndusn&^ lm,snuJM&

3^spnp8 ,sdnd8us8n8&^ l 8m8,s8n8uJM&

3
1

2i
@Sl 8s8,ls

J
2d l ,l 8ds,s8#

3Yl
m* ~ k̂i !Yl 8

m8~ r̂!
eiki r

ki r
f

p

np8f
d

nd8 . ~A2!

One may now read off the outgoing wave amplitude in s
state np8 ,nd8 . Adopting the standard coordinate frame f
elastic scattering in which thez-axis is alongki and the
y-axis is alongki3kf we have

M n
p8n

d8 ;npnd
5

iAp

ki
(

J,l ,l 8,s,s8
M ,m8,n,n8

@2l 11#1/2^spnp ,sdndusn&

3^ l0,snuJM&^spnp8 ,sdnd8us8n8&

3^ l 8m8,s8n8uJM&

3@d l ,l 8ds,s82Sl 8s8,ls
J

#Yl 8
m8~u,0!. ~A3!

The formulas needed to incorporate the Coulomb scat
ing in an explicit way are found, for example, in Ref.@17#.
By using the analytic expression for the Coulomb amplitu
together with the partial wave expansion of the same qu
tity one obtains the result

M n
p8n

d8 ;npnd
5e2is0

Ap

ki H 2C~u!dnp ,n
p8
dnp ,n

p8

1 i (
J,l ,l 8,s,s8
M ,m8,n,n8

@2l 11#1/2^spnp ,sdndusn&

3^ l0,snuJM&^spnp8 ,sdnd8us8n8&
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3^ l 8m8,s8n8uJM&ei ~v l1v l8!@d l ,l 8ds,s8

2e2 i ~s l1s l8!Sl 8s8,ls
J

#Yl 8
m8~u,0!J , ~A4!

wheres l andv l are defined in Eqs.~5.9! and~5.10!, respec-
tively, and whereC(u) is the Coulomb amplitude

C~u!5
1

A4p

h

sin2
u

2

e2 ih ln[sin2~u/2!] . ~A5!
.

en
y,

.
J.
os

J.

.
ev
We define the nuclearS-matrix elements to be

S̃l 8s8,ls
J

5e2 i ~s l1s l8!Sl 8s8,ls
J , ~A6!

and in a phase shift analysis the submatrix ofS̃ for eachJp

value would be parametrized in the form of Eq.~4.4!,

S̃5ũ†S̃0ũ. ~A7!

In the matrix element analysis of the capture reaction, o
then uses Eq.~5.8! to reconstruct the fullS-matrix from S̃.
v.
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