PHYSICAL REVIEW C VOLUME 59, NUMBER 4 APRIL 1999

Watson’s theorem for low-energyp-d radiative capture

L. D. Knutson
Physics Department, University of Wisconsin, Madison, Wisconsin 53706
(Received 28 October 1998

The use of Watson’s theorem in the analysispefl radiative capture measurements at low energies is
discussed. The principle of Watson’s theorem is outlined, and a detailed description of how the theorem can be
used in a matrix element analysis of radiative capture data is presented. It is shown that with Watson’s theorem
it is possible to reduce the number of unknown parameters in a matrix element analysis by essentially a factor
of 2. This is done by employing a representation in which the capture matrix elements are all real. The phase
information needed to construct the reaction amplitudes is then obtained from a separate phase shift analysis of
elastic scattering data. Details concerning the extension of Watson’s theorem to situations in which there is
mixing between angular momentum states are given. The paper presents a consistent formulation which
facilitates the simultaneous analysis of the elastic scattering and radiative capture channels.
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PACS numbd(s): 25.20—x, 25.10+s

[. INTRODUCTION the number of unknown parameters in a matrix analysis can
be reduced by essentially a factor of 2 if the reaction is
The radiative capture reactign+ d—>He+ y is of inter-  carried out at energies below the threshold for deuteron
est for a number of reasons. It is known, for example, thabreakup. The essential idea is contained in a paper published
the deuteron tensor analyzing powers are sensitii2-state by Watson in 19548]. Watson’s theorem, when applied to
components in théHe wave functiorf1], and measurements radiative capture reactions, essentially says that the complex
of these quantities have often been used in the past to extraghases of the matrix elements are related in a simple way to
D-state informatiorf2—4]. There has also been a substantialthe phase shifts for elastic scattering. This result follows
amount of interest in obtaining information about thEl  from the fact that the expectation values of the multipole
contributions to the reaction proce&ee for example Refs. operators are fundamentally real quantitigsthe appropri-
[5,6]). This interest arises in part from the desire to under-ate representationprovided that time reversal invariance
stand the role of meson exchange processes. Finallyp-the holds. The matrix elements acquire a phase because the elas-
capture reaction is of special importance since it is one of théic scattering wave function for a given angular momentum
basic processes that can be studied in the three-nucleon systate is required to satisfy the elastic scattering boundary
tem. Recent theoretical and computational advances hawwnditions, and this fixes the phases of the scattering states.
made it possible to carry calculations in the=3 system Watson’s theorem applies only to situations in which
which are quantum mechanically exact, and as a regtdt, there are no open reaction channels other than radiative cap-
capture measurements have taken on added importance sirtoee, and one of the central assumptions is that the capture
they can now be used to test, at a rather fundamental levedymplitude is small enough to be calculated in perturbation
our understanding of the nuclear three-body problem. theory. Equivalently, the assumption one makes is that the
In radiative capture reactions, one can often learn muclull wave function of the system is, to a good approximation,
from measurements of cross sections or analyzing powers atpure elastic scattering wave function in the asymptotic re-
only a few angles. However, it is well understood that infor-gion. Since they+3He wave function amplitudes are very
mation of a more fundamental nature can be obtained if onemall compared to the elastic amplitudes, these conditions
has a data set sufficiently complete to allow the extraction ore well satisfied fop-d radiative capture at energies below
individual reaction matrix elements. For capture reactionghe deuteron breakup threshold.
that have a simple spin-parity structure, the determination of In principle then, Watson’s theorem allows one to reduce
the matrix elements can be relatively straightforward. How-the number of unknown parameters in a matrix analysis by
ever, forp-d capture this is not the case. For this reactionessentially a factor of 2, provided that the phase shifts are
there are 1 matrix elements, 81 matrix elements and 6 known or can be determined from measurements of the elas-
E2 matrix elements. Since one knows ti&t, M1 andE2  tic scattering. Since phenomenological phase shift analyses
all play important roles at energies of a few MdV], a  of p-d scattering have been successful in the past few years
complete matrix element analysis in this energy range wouldsee for example Ref9]) it seems possible that a complete
involve 31 parameters—16 complex matrix elements withmatrix element analysis gi-d radiative capture might now
one irrelevant overall phase. Because the number of paranbe feasible with the aid of Watson'’s theorem.
eters is so large, complete matrix element analyses have not The goal of the present paper is to establish the detailed
been possible in the past, although some restricted analysé&smalism which one would use in such an analysis. In the
have been reporteld]. simplest systems the implementation of Watson'’s theorem is
The main point of the present paper is to demonstrate thaklatively straightforward. However, the details become
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more complicated when the spin structure is such that mixingvhere the components of are the Pauli matrices. The quan-
between angular momentum states is allowed in the elastiity g,, takes on the values 0 and 1 for neutrons and protons,
scattering channel. Nevertheless, as we shall demonstratespectively, while the corresponding values @f, are

the basic principle of the Watson theorem still holds, pro-—3.826 and 5.585.

vided that one defines the matrix elements appropriately. Since the coupling between the initial and final states of

The application of Watson’s theorem to radiative capturethe system is weak, the transition rates may be calculated in
is essentially equivalent to carrying out a simultaneougime-dependent perturbation theory. As seen in the following
partial-wave analysis of the elastic scattering and reactiosection, this allows us to find the connection between the
channels. As such, it is clear that one must be exceedinglyphatrix elements ofH;,, and the radiative capture observ-
careful about phase conventions, coupling schemes for angables.
lar momenta, and so on. For this reason, the discussion that
follows is quite detailed, with clear and rigorous definitions
presented for all relevant quantities.

We begin in Sec. Il by defining the transition matrix for ~ Our goal is to find the transition matrik;; for the radia-
the radiative capture reaction, introducing the multipole extive capture process. Gively;, it is straightforward to ob-
pansion of the interaction Hamiltonian, and defining thetain the reaction observables by employing the density ma-
phase conventions for the angular momentum states. In Sel¢ix formalism. If the initial spin state is described by a
Il we introduce the elastic scattering wave function anddensity matrixp; then the final state density matrpy is
demonstrate Watson’s theorem for the simple case of no cou- N
pling between angular momentum states. The generalization pt=TpiT". 2.7
of Watson'’s theorem to situations in which angular momen- ) o _ )
tum mixing is allowed is presented in Sec. IV. Section v The reaction cross section is then simply the trace of the final
presents a discussion of a few subtle points, and the fingtate density matrix
conclusions are given in Sec. VI.

B. The transition matrix

do
— =1rp;. 2.8
Il. THE RADIATIVE CAPTURE REACTION dQ Pt 2.8

A. The starting point . . .
To obtainT;; we use Fermi’s golden rule, according to
The radiative capture reaction is described as a process #hich the transition ratev from statei to statef is given by
which transitions between the initial state and the final
stateu, are induced by the electromagnetic interactiap, . -
The initial and final states are eigenstates of a Hamiltonian w= 7p(E)|<f|Him|i>|2. (2.9
Hg, and the full Hamiltonian of the system is

H=Hy+Hiy. (2.1 In the capture reaction the initial state, which we desig-

nate byy, is a full solution to the-d scattering problem for
The interaction Hamiltonian is given by the usual expressiorthe HamiltonianH, which satisfies the usual boundary con-
ditions for elastic scattering. Thus, in the asymptotic region,

B 3 x consists of an incoming plane wave plus outgoing spheri-
Hin=—2 | I(N)-A(Nd’r, (2.2) " cal waves. The final staté, consists of a nuclear bound state
w plus a photon of momentura and polarizatiore.
where J(r) is the current density ané(r) is the vector To obtain the reaction cross section we find the transition
potential. rate Aw to states in which the photon momentukn,is con-
In a nuclear systentl,, takes the forn{10] tained in the solid angla Q. The result is
eh QNQ)Z ~
Hine=— 2mC; [291nPn- A(ry) +0spsh- H(ry) 1, (2.3 Aw= W|<M;(ky€)|Hint|X>|2AQ! (2.10

where wherefiw is the photon energy ard, is the normalization

volume.

We may now determing&j; by requiring that the reaction
rates implied by Eq92.8) and(2.10 must be equal. Assum-
ing that y is normalized for one projectile and one target in
the volume(},,, we obtain

H(r)=V XA(r). (2.4

In Eq. (2.3) the sum is over all nucleons, and the operafors
ands have the definitions

p=—iV (2.5 O ma? 12
i -
and Tfi:E ki(hC)S </~L;(k1€)|Hin’[|X>1 (211)
1 o Sitiad )
=50, 2.6 wherek; is the wave number for the initigl-d state anduy;

is the p-d reduced mass.
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C. Reduction of Hy,

- 1 . .
The first step in obtaining the multipole expansion of the €= E(XHY) (2.173
matrix element in Eq(2.11 is to simplify H;,. Strictly
speaking, the quantities(r) andH(r) in Eq.(2.3) should be ;0:2 (2.17h

treated as field operators. However, for present purposes it is
preferable to adopt the semiclassical approach and refer the ) 1 . .
reader to Ref[10] for a discussion of the more subtle aspects €_1=—=(X—1y). (2.179
of the full quantum treatment. V2

In the semiclassical approach the electromagnetic wave i)g

. ; t this point it is also useful to adopt a coordinate frame in
described by a vector potential of the form b P

which the z-axis is chosen to be along the photon momen-
tum, k. In this frame photons are emitted into only the
=1 and\=—1 polarization states. In addition, the quanti-

Ag w0 ties ee'*" that appear in Eq(2.14 take on a relatively
:7[ee|(k<r wt) L gx gi(ker wt)]_ (2.12 simple form,

A(r,t)=AoRd ee' kT~ oV]

. . . o 1
Following Ref.[10] we may then divideH;,; into two parts, & elk7=— E; [AS, +AAT ], (218

whereA?, andA["\ are appropriately defined vector spheri-
cal harmonicg10].

where Upon substituting this expression into EG.14) one can
obtain the familiar multipole expansion formula

Ao . .
Hin= [Ha(k ©)e™ "'+ Ho(k )", (2.13

eh “ ~
- _ L Zalker . ik-r ~ , ,
Ha= ~ o [20p- e+ 0.5 Vx e ], Hatkie) =~ [af(Quut Q) +hal(Muy+M{y)].
(2.19 2.19
and whereH,, is the Hermitian conjugate df, . The definitions of operatoi®, , , Q/, , M, andM/, and of
In time dependent perturbation theofy, is responsible  the complex coefficienta| and " are given in Ref[10].
for the absorption of photons, whilel, gives rise to the The main focus of the present work is to demonstrate that

process of stimulated emission. Since we are interested heygth Watson’s theorem one can obtain information about the
in radiative capture reactions, the process which concerns hases of the matrix elements of the multipole operators. As
is spontaneous emission. As is well known, this process i# turns out, these phase relationships take on a relatively
not described in the semiclassical treatment of electromagsimple form if one replaces the multipole operators of Eq.
netic radiation. However, as demonstrated in R&@], the  (2.19 with quantities that Rose and Brink refer to as “inter-
radiative capture amplitude can be determined by using thaction multipole operators.” These quantities are defined ac-
semiclassical theory to calculate the amplitudes for the incording to

verse process, photon absorption Btte. One may then use . . ,

detailed balance to relate the two processes. The result, de- D= a (Qu+QLy) (2.20
rived in Ref.[10], is

and
~ ' 12 ~ m _ m M + M/ 22
<“;(k’€)'H‘m'X>:{m} (XIHa(k,€)|)*. = ar MM, (2.2D
N (2.15 and so we have
Combining Egs(2.11) and(2.15 we then obtain our work- Ha(kie)=—> [TE+ATR . (2.22
ing equation, T
wiwQy 1M _ E. The time reversal operator
Tn= 2mh2ck; (x[Ha(k &))" (216 The phase relations that we shall obtain follow from the

transformation properties of the multipole operators and of
the angular momentum states under the operation of time
D. The multipole expansion reversal. We follow the commonly used convention and de-
One of the advantages of the approach outlined in théine the time reversal operatafy, as
preceeding section is that it allows one to employ the stan- _ e imS I 50
dard multipole expansion of the operatdy . In making the Or=e 0 (2.23
multipole expansion we follow the notation and conventionsyhereK, means complex conjugation, and wh@gis the
of Ref. [10]. i operator for the/-component of the total spin.
For the unit vectorse, that specify the photon polariza- Since #¢ is an antiunitary operator, the matrix element of
tion states we employ the usual spherical tensors any operatoB must have the propertyl0]
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(o|Bly)=(0r¢| 0BT 6ryp)*. (2.24  specify the initial spin projections of the proton and deuteron
respectively. Thus in the asymptotic region—o) y is of
We now apply this formula to the matrix element®f,  the form
taken between two eigenstates of the total angular momen-

tum. One can easily demonstrate that the electric and the . 1 [ et Yecal (3.1)
magnetic multipole operators both transform according to the X NS ’
rule
where
6T 071 =(—)" T ). 2.2 . .
T =(—) LA (2.29 l//inc:elki'rfﬁppﬁbdd' (3.2

Let us assume that for the angular momentum states we : . .
. . nd wher consists of outgoing spherical waves only. In
adopt phase conventions so that the time reversal transfo & scat going sp y

mation is Eq. (3.2 the quantitygb;p is the proton spin wave function

while g{)gd represents the internal wave function of the deu-
O7lj,my=(=)"mj,—m). (2.26  teron.
We now expand};, in partial waves. Since the relative

With our definition of operato®; this equation is satisfied phases of the various partial wave states depend on the cou-
by the conventional spin angular momentum eigenstates. Fqling scheme, it is important to adopt a clear and consistent
eigenstates of orbital angular momentum E2j26) will be  convention for the coupling order. We shall use the conven-
satisfied if we take tions of Seyler and Welldr], in which the channel-spiB is

given by

[1,my=i'y", (2.27
S=S,+%, 3.3

where Y[" is a spherical harmonic defined with the usual\, ile the coupling order for the total angular momentiiis

phase conventiofll]. Finally we note that if/j,,m;) and

lj»,m,) satisfy Eq.(2.26), then J=L+S. (3.9
_ . _ ' _ _ Our generalized spin-angle functiopsare therefore defined
|j,m)= > lismp)lj2,m2)(j1my,jomoljm) as
mq,my
(2.28

W= 2 (Spvp,Sevalsy)(Im,sv|IM)
does also. CRCHOL
It is now straightforward to demonstrate that matrix ele- My SN gV 4V
X P Y. .
ments of the operator3d,, between angular momentum i (r)¢P P @9
states that satisfy E¢(2.26 must be real. To see this we |t follows from Egs.(2.27 and (2.28 that these functions
substitute Eqs(223 and (22@ Into Eq (224) to obtain obey the time reversal relation E@ZG)
) ) _ f1-mytip—mpt L) The expansion o, in terms of the spin-angle functions
(J1:m[Tialj2.mg) = () is readily obtained by employing the symmetry properties of
X (=M Ty ]2, —mMo)*. the Clebsch-Gordon coefficients. The result is

2.2

( 9) lﬂinc:4ﬂ' ;S <Spr,SdVd|SV><|m,SV|J M>
Since the operatorE, , are spherical tensors, we may use the M,v,m
Wigner-Eckart theorem to express the matrix elements in Eq. , M M
(2.29 in terms of Clebsch-Gordon coefficients and a reduced XJi(kiNY3sY1 ™ (Kp). (3.6

matrix element(j,||T,||j2). The Clebsch-Gordon coeffi- The asymptotic form of the incident wave may then be seen
cients may then be eliminated by employing the appropriatgy, sypstituting into Eq(3.6) the familiar expression fof; at

symmetry relations and one obtains the result larger:
. N o
Gall Tl =l Tulli2)* (230 ji(kir)— Z'i [ellkir=1(m/2)] _g=ilkir=I(=/2]]  (37)
We therefore conclude that the matrix elementsTpf are i
real provided that the statégm) satisfy Eq.(2.26). Thus, if there were no scattering, the wave functjprat
larger would be of the form prescribed by Eg8.6) and
Il. THE ELASTIC SCATTERING STATES (3.7). In general, however, the scattering modifjegiving

- rise to additional outgoing spherical waves.
A. Boundary conditions

We now focus on the properties of the elastic scattering ~ B- The simple case—no angular momentum mixing

statey. As indicated earlier, this wave function is the full  To incorporate the effects of scattering it is helpful to
solution to thep-d scattering problem subject to the usual begin with the simple case in which there is no mixing be-
elastic scattering boundary conditions. The wave functionween angular momentum states. We will return shortly to
depends on the magnetic quantum numbgrand vy which  the more general case, but for now we assume that the solu-
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tions to the Schidinger equation are eigenfunctions lof ~ This result suggests that it is useful to introduce a new set of
and S?, so thatl ands are good quantum numbers. In addi- scattering eigenstatefis;JM). These wave functions are
tion we assume throughout that there are no open reactiotefined to be full solutions to the Scliiager equation in a
channels. It follows that the most general solution of thegiven angular momentum state having the asymptotic form
Schralinger equation in a given angular momentum state
will consist of ingoing and outgoing spherical waves in the

asymptotic region. In other words the solutions at largell Is:IM (_) sin( Kr—| — + &'s| pM 31
be characterized by radial wave functions that can be written [15:IM)— kir ! 2 Vis: (314
in the form

1 1ol 1ol The full wave function is then given in terms of the scatter-
g'(r)_)_Zik-r[bel[ (2] _gemlkr=lm21] - (3.8)  ing eigenstates by the expansion
1

wherea andb are constants. The notation we adopt in Eq.

(3.8) and in the following discussion is that of Blatt and Y vd=4g 2 (Spvp,SdVd|SV><|m,SV|JM)
Biedenharr12]. Nflvsm

Since the outgoing wave evolves from the ingoing wave, .
it follows that the outgoing wave amplitude must be a ><ei5'JS||3;J M)Y,m*(Ri). (3.15

function of the ingoing wave amplituda Then, since the
Schralinger equation is linear, we conclude thatand b .
must be related by an equation of the form Since the statel$s; JM) are full solutions to the Schdinger

equation, this last result is valid in all space.
b=Sa (3.9

where the proportionality consta8tis the Smatrix element C. Watson’s theorem
for the angular momentum state in question. If there are no
open reaction channels then flux conservation reqyiags
=|b| and we may write

The value of this particular form of the scattering wave
function is that it allows us to express the capture amplitude
in terms of a set of real matrix elememts. This is because the

S=g?i% (3.10  scattering eigenstatéks; JM) satisfy Eq.(2.26. To see this
is the case, recall that these eigenstates are solutions to the
where the phase shiff is real. Schralinger equationHg|ls;JM)=E|ls;JM). We assume

Now to obtain the full elastic scattering wave function, thatH, is invariant under time reversal, and it follows that
J'vvd, we need to satisfy the boundary conditions implied61|ls;JM) must also solve the Schiimger equation. The
by Eq.(3.1). Thus the constansmust be chosen so that the properties of this solution are apparent from E2j14). Ac-
full wave function has ingoing waves that match those of Eqcording to this formulajls;JM) in the asymptotic region is

(3.6). Defining the product of a real function and a quanti}; that satis-
fies Eq. (2.26, and it follows that 6;|/ls;JM) has the
Prerd=NQnx (3.1)  asymptotic form

we conclude thaty”r-”d must have the asymptotic form 1 T
07/1s;IM)—(—)I™M o s kir =1 5 + 65 AT
i

) (3.1

va,Vdg)47T JEI <Sp1}p,SdVd|SV><|m,SV|J M>(
,1,S

M,r,m

2ik;r

Except for an overall sign, we see th@g/Is;JM) matches
the function|ls;J—M) in the asymptotic region, and since
(3.12 the Schrdinger equation allows only one solution with this

) ) . ) particular asymptotic form, we conclude that
At this point we wish to express the scattering wave func-

tion in a form that allows us to readily make use of the result
given in Eq.(2.30. For this purpose one needs to write O7|1s;IMY=(—)?"M|Is;3—M). (3.17
Y¥p¥d as an expansion over angular momentum eigenstates

that satisfy Eq.(2.26. To accomplish this we first rewrite ) o ] )
Eqg. (3.12 in the form At this point it is useful to combine results to obtain an

expression for the transition amplitude for radiative capture.
We want the transition amplitude for a reaction proceeding

X[ezm'fei[kir—uw/zn _ e—i[kir—l(wlzn]yms\({n* (|A<i)-

yreri— A le"s (Sp¥p,Savdlsv)(Im,sv[IM) from an initial state characterized by quantum numbeys
M,v,m and v4 to a final state in which the photon has circular po-
| - larization\ and the residuafHe nucleus has spin projection
Xe“st(H) sin( kir—1 5+ gjs)ygf:sypﬁ*(ki)_ o. This quantity, which we now designate §§U'vad’ is
I

obtained by substituting Eqg2.22 and (3.15 into Eq.
(3.13 (2.16. With the help of Eq(3.11) we have
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wio |M? by = Sp1a1+ S8, + Si83,
T}\U,vad: — 44 mzc—k i <Spr ,SdVd|SV>
YoMom bo=Sa1+ S0a,+ Syzas,
. ds
x{Im,sv|IM)e'% b= S318;+ S3.8,+ Sgaa3, (4.2

X (15;IM|TE, +ATM |l * Y™ (ki), (3.18  or in matrix form

where ¢y is the *He bound state wave function, which we b=Sa 4.3
assume to be defined in accordance with the phase conven- . . , )
tion Eq. (2.26). Now for elastic scattering with no open reaction channels,
We now further simplify this result by employing the theSmatrix must be unitary and symmetric. It followsee
Wigner-Eckart theorem. Writing for example Ref[13]) thatScan be diagonalized by a matrix
transformation that has the form of a generalized Blatt-
(I8;IM|T | %) =(L\,5ca| IMY(Is; || T || o) Biedenharn “rotation.” Equivalently, thesmatrix can be
(3.19 written in the form
wheres, is the He spin, we obtain S=u"su, (4.4
[ pio |2 2 whereS, is a diagonal, unitary matrix
T =—47n|\ 5> SpVp,SqVd|S
Ny T thzcki ‘,3A|5#]< p¥p dVd| V) 02151 0 0
o _ 2i5
x(Im,sv|IMY(LN, .0 IM) S=| 0 e 0. (4.9

0 0 e2i53
x e (18:9] TEl| b | |
The phase shifts§, that appear in Eq4.5) are real param-
NS T e * TY ™ (k). (3.20  eters, commonly referred to as the eigenphaseshifts.
The mixing matrixu that appears in Eq4.4) is both real
The reader will note at this point that the complex conju-and orthonormal. For two-state mixing this matrix is usually
gation symbols associated with the various matrix elementparametrized in terms of a single mixing parameter
have been carried along through Ed8.18 and (3.20.
However, these complex conjugations are superfluous since
the matrix elements are necessarily real by virtue of the re-
sults of Sec. Il E. EquatiofB.20 can thus be viewed as the
statement of Watson’s theorem for thed radiative capture For the case of three-state mixing, three “mixing param-
reaction for the case of no angular momentum mixing. In thisters” are required. One possible choice for the matrir
special situation, the phase associated with each matrix eléhis case is given in Ref13]; however, for our purposes
ment is simply the corresponding elastic scattering phasadoption of a specific parametrization of the matriis not
shift. required.

COSe  Sine

. (4.9

—sSine COSe

IV. THE GENERALIZED WATSON THEOREM B. The eigenstates o

A. The elastic S-matrix To obtain the generalized version of Watson’s theorem,
we would like to write the scattering wave function in terms

We now proceed to the general case in which mixingyt 5 set of scattering states that satisfy E226. As we
between angular momentum states is permitted. In this cas§,5|| see below, the functions we want are the so-called

the golutions to the Scheinger equation are eigenfunctions gjgenstates of scattering matfi2]. To define these states
of % andJ,, butl ands are no longer good quantum num- e inroduce a shorthand notation for the ingoing and out-
bers. If we focus on a particuldrand parity, the most gen- going waves in a given partial wave state

eral solutions to the Schdinger equationg}', will involve

sums of ingoing and outgoing waves: in 1 i
= _ —i[kir =1 (m/2)]AM
1 Xa ™\ 2ikr)® M, @D
M ikir =1, (m/2)] _ —i[kir=1 (m/2)]7yM
P2 gigribae e P and
(4.2
out__ i[kir =1 ,(7/2)]yM
where the sum now runs over &Hs combinations that are Xa (Zikir)e leaSa' (4.8

consistent with the specifiell” value. Forp-d scattering this
sum involves 2 terms wheh= 3 and 3 terms for all highei. ~ The general wave function of E¢4.1) may then be written

Following Blatt and Biedenharfl2], we argue that since as
all the states are coupled, edah coefficient must now be a

function of all thea’s. Thus for the case of 3-state mixing ¢_)2 out
B

one would have
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Let us now define a set of three functiors, in which  where summation over thg is meant to imply summation
the ingoing-wave amplitudess; are defined according to the over all |I-s values associated with each particullr. To
rule proceed we now construct the full scattering wave function
by making a superposition of scattering eigenstates in which
ag=Uup (4.10  the ingoing waves match those ¢f,.. Starting from Eq.

(4.12 one readily obtains
so that

. 2 Unpba— X5+ 2 Supx2" (4.17
¢a_>% UapX B+ 2 Spylla,x 3| (4.11 @ @
Y

and so the full elastic scattering wave function can be written
Then by making use of Eq4.4) and by recalling thatiis  in the form
real and unitary and th&, is diagonal, one may easily re-
write these functions in the form
va”dz47rj2ﬁ (Sp¥pSavalssv)(l gm,szv|IM)
M,v,m

¢a—>§ uaBXE‘F ezig‘l% uaﬁX%m. (412
X

> uam)vrg*(ki). (4.18
From this last result one can see why these particular ¢
functions are referred to as the eigenstates of the scattering
matrix. If we prepare an ingoing-wave state made up of thetai
particular linear combination of partial wave amplitudes
specified in Eq(4.10, then the resulting outgoing wave is
just an overall phase?'%«, times the same linear combina-
tion of outgoing partial wave amplitudes.

For our purposes, the importance of this result can be se
by inserting the definitions of'™ and x°!! into Eq. (4.12.
After some manipulation one obtains

The generalized form of Watson's theorem is then ob-
ned by substituting this result into E®.16. We replace
the scattering eigenstates, with quantities| «;JM) defined

in Eq. (4.14 and thus our expression for the transition am-
plitude involves matrix elements of the form
e%a;JM|T,_)}|¢‘,§e>. We then introduce reduced matrix ele-
ments defined by the formula

(@ IM[Tia e = (LN Seo | IMN (@ || Ty | pre). (419

A 1 - . : '
¢a_>e'5a2 Ugp —) sin kir+5a_|ﬁz) ygfl' S, - Combining the various formulas we then obtain the final
B kir 2)77 result
(4.13
Lo 12
Recalling once again that the elements of the matrare Trowyrg™ —4w[m > (Sp¥p+SavalSsv)
real, we see that the wave functiogsg have a well defined ! ,f;,\’jl"‘fjiﬁq
behavior under the operation of time reversal. We introduce
states|a;JM) defined by the equation X(1 gm,sgv[IM)(LN,s.0]IM)
|a;IM)=€""%xgp,,, (4.14 XU g€ 2 (a;J]| TE|| o)

where§,, is the appropriate eigenphaseshift. Then, according n . m *TyM ([
to the arguments of Sec. Il C, these states must obey the MaiJl[ Tl bre) ]YIB (ki), (4.29

time-reversal transformation . L.
where, by virtue of Eq(4.19, it is seen that the reduced

O a;IMY= (=) M| a;0— M). (4.15 matrix elements must once again be real.

C. The generalized theorem V. DISCUSSION

Since we have now succeeded in identifying states that e have now reached the goal of obtaining a single for-
transform according to the rul@.26), we can readily obtain Mula which can be used as the basis of a matrix-element
the Watson theorem formula for the general case. To do s@nalysis ofp-d radiative capture data obtained at energies
we simply need to express the full scattering wave functiorPelow the deuteron breakup threshold. As we have outlined

in terms of the scattering eigenstates. previously, the approach one uses in such an analysis is to
From Egs.(3.6) and(3.7) the incident plane wave can be ftreat the reduced matrix elements as parameters and deter-
written in the form mine these quantities by fitting measurements.

The advantage of the present formulation over the con-
D ventional one is that the matrix elements are necessarily real.
l//inc—>47TJ <, (SpvpSavalSpv)(l M, S| IM) Information on the relative phases of the terms that appear in
M,v.m the sum over multipoles and angular momentum states is
i A derived from the elastic scattering channel. The assumption

n out mx
X(xgtXxg )YIB (ki), 418 \ye make is that the eigenphaseshifts and the mixing matrix
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eIem_ents are _known from a separate phase shift analysis of Y™ (R)=Y™ (Gem ) =Y ™(Oem,0). (5.5
elastic scattering.

In a conventional analysis, the matrix elements appearing
in the expansion off;; would be matrix elements of some
multipole operator taken between the bound state and
partial-wave scattering stateb,f\g, 3, defined with the bound-
ary condition that the ingoing asymptotic wave should be
pure angular momentum state involving only a sintle

The next point concerns the calculation of the deuteron
%nalyzing powers. These quantities are normally defined in
accordance with the Madison Conventidaf], in which the

spin operators and observables are referenced to a coordinate
&rame which does not coincide with the frame we are using
N . here. If we adopt the spherical tensor notatidd], the
compmatlon. qu these states _the outgomgl waves ha\_/e adison Convention analyzing power§y,, may be ob-
relatively complicated asymptotic form that, in general, N ained by first calculating the analyzing powers in the photon

voIveg all threg eigenpha;eshifts. As a result the phase of trH‘eame and then transforming to the Madison frame. In the
resulting matrix element is not apparent. In contrast, the m 'hotor,1 frame we have

trix elements used in the present formulation are defined i
terms of the eigenstates of ti&matrix, which have a sim-
pler asymptotic form that involves only a single eigenphase.

Since we use eigenchannel wave functions, we refer to the Thq=t T T TTT, (5.6)
matrix elements of Eq(4.19 as eigenchannel matrix ele-
ments.

where ther,'s are the usual spherical tensor spin operators.

The connection between the eigenchannel matrix eIe'Since the analyzing powers are spherical tensors, we may use

ments and the conventional ones is fairly simple. We definef

. he rotation matrices to transform to the Madison frame. The
a set of matrix element paramet@$- andPM- by the equa-

appropriate transformation is

tions
8,uikia) 12 1
Pit=— JIITE 5.1 k 3
@ [ %2c m<a || L||¢He> (5.0 quZE dq’q(ﬂ-_ 6c.m)qu’ ’ (5.7)
q!
and
where thed-functions are defined, for example, in REE5].
we_ | Bmikiw 21 J— The next point concerns the phase conventions. If one
a T | T2 \/m<a"]||TL |fre), (52 wishes to carry out a matrix element analysis of the kind we

are proposing, care must be taken to ensure that the mixing
and then introduce a set of transformed matrix elements, Matrices are used correctly. This requires careful adherence
to the phase conventions and coupling orders for the angular
, momenta. In particular, it is important to use the same con-
Rp=2, Uqpe %P, . (5.3  ventions in the elastic scattering analysis as in the reaction
“ analysis. It should be noted that many of the published phase

Except for a possible overall phase, these quantities appeSfift analysessee for example Ref9]) employ the coupling

to be identical to th& parameters used by Seyler and WeIIerSCheme of Ref[_13] which differs from .that used in. the
[1]. In terms of these transformed matrix elements, the tranpresent formulation. The effect O.f changing the coupling or-
sition amplitude may be written as der is that some of the off-diagon&-matrix elements

change sign, and the result is that the matrig altered. For

o oL + 1142 purposes of completeness, we have recorded in the Appendix
Tmypyd= o Aa (spvp ,sdvd|sﬁv) the relevant formulas for the elastic scattering amplitudes in
PmpL LT the present coupling scheme.
o Finally we need to make a few comments concerning the
X<|Bm,SBV|JM><L)\,SC0'|JM> treatment of Coulomb effects in the elastic scattering chan-
nel. It will be noted that in the treatment presented above,
X[R[E;L-H\R%L]YF;*(IAQ). (5.4 there is no explicit reference to the Coulomb phase shifts.

The understanding, then, is that tBematrix being referred

While the equations we have obtained for the transitiont0 in Eqs.(4.3 and (4.4 is the complete elastic scattering

. . : matrix.
amplitude may appear to be quite straightforward, there arL§ .
still a few subtle points. The first concerns the choice of Since the Coulomb phases do not converge to zero, the

coordinate frame. Recall that in Sec. Il D we adopted a CO_normal practice in a phase shift analysis is to separate off the

ordinate frame with the-axis along the direction of the pho- Coulomb amphtude and \.NOItk with the _“nu.clear” part &
ton’s momentumk. We shall now refer to this as the “pho- (see Ref[13]). This quantity is then ordinarily parametrized

ton frame.” Let us choose theaxis of this coordinate frame with a_n f:quatlon of the f0rr‘r(_4.4). G'Yeh the _nuclear
to be along the directiork, Xk, wherek; is the proton’s Smatr!x,s, . complete scattering matrig, is obtained by
momentum direction in the c.m. frame. The reaction anglea matrix transformatiosee the Appendjx

0.m.is then taken to be the angle between the incident proton _

and the outgoingy-ray (in the c.m. framgand it follows that S=WSW, (5.8
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whereW is a diagonal matrix whose elements are the Couextracted from the scattering wave function given in Eq.
lomb phase factors'?' associated with the individual angu- (4.18). Using the definition of¢, from Eq. (4.11) one ob-
lar momentum states that make 8pThe phase parameters, tains after some algebra

o), are obtained in the usual way,

o=argl'(l+1+i7p). (5.9

It may be noted, however, that one could use modified Cou-
lomb phases

W= 01— 09, (5.10

wVP,Vd_>4qT E <Spr,SdVd|SV><Im,SV|JM>

31,1788’
M,m,v

X[ 811185 XMsT Srgr 16X o IY™ (k). (AL)

To find the outgoing wave amplitudes we subtract the
incident plane wave, Eq3.6). Using the definitions ofy"

and y°“* from Eqs.(4.7) and(4.8), and inserting the formula

in place of ther,’s in making the transformation of E¢5.8).
The only consequence would be that the elemenSveduld
all be rotated by a common phasearg® which means that
the extracted eigenphases would changerpy and the re-
sulting transition amplitude would thus simply acquire an
additional overall phase.

The need to transform from the nucle@&matrix to the
complete Smatrix introduces some complications. In par-
ticular one finds that there is no simple relationship between

the mixing matrixu that diagonalize~§ and the matrixu that
diagonalizesS. Similarly the eigenphases &fare not related

in any simple way to the eigenphasesé)fThe procedure
one might follow to find the needed parameters would be to

use the elastic phase shift parameters to conséudind S

by the transformatiort5.8), and then rediagonalizéto ob-

tain the new eigenphases and mixing matrix elements.
VI. CONCLUSIONS

The use of Watson'’s theorem for the analysis low-energy

radiative capture reactions has been discussed in detail. Par-

ticular emphasis has been given to the question of how Wat-
son’s theorem can be used in situations in which there is
mixing between angular momentum states. Although the
present work focuses on thped capture reaction, the results
obtained here can be applied to other systems as well. The
main limitation is that Watson’s theorem is valid only in
situations in which there are no open reaction channels that
significantly reduce the flux in the elastic scattering channel.

It is anticipated that the formalism introduced here will be
employed in the near future to carry out a matrix element
analysis of a set op-d radiative capture measurements at
E.m=2MeV obtained recently in experiments at the Univer-.
sity of Wisconsin[16]. The results of this analysis will be
presented in a future publication.

o =
Vde 'Vde k

for spin-angle functions from E@3.5 one obtains the result

—4m > > (Sp¥p:Sqvalsv)(Im,sv|IM)

JLI,s,s! Vé,vé
M,m,m’,v,v’

X(Spvp,Savgls' v’ {I'm’,s"v'|IM)

1
Xﬁ[g/s"m_ 6|,| ! 55,5']

R ;. eikir V, V,
XY™ (k)Y (r)ki—rquPqud. (A2)

One may now read off the outgoing wave amplitude in spin
state v,’),vc’,. Adopting the standard coordinate frame for
elastic scattering in which the-axis is alongk; and the
y-axis is alongk; X ki we have

i7
— > [2|+1]l/2<spvp,sdvd|51/>
i J1l"ss

M,m’,v,v’

X(10,sv|IM)(spvyp,Savgls'v")
X{I'm’,s"v'|IM)

X[ 8111855~ e 1s]Y]T (6,0). (A3)

The formulas needed to incorporate the Coulomb scatter-
ing in an explicit way are found, for example, in REL7].

By using the analytic expression for the Coulomb amplitude
together with the partial wave expansion of the same quan-

tity one obtains the result
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APPENDIX

For completeness we record here the relevant formulas for
the elastic scattering amplitudes. These amplitudes are easily

V/V,.VV
p’d'pid

ﬁ

:eZiUo _0(0)511 V’év v/
P'"p "P'p

+i X [21+1]Y%(s,v, ,sqvglsY)
JI,1",ss
M,m’, v, v’

X(10,sv[IM)(spvy,Sqvgls'v")
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(1 ,m,’S,V,|JM>ei(w,+w|’>[5H,55’5’ We define the nucled®matrix elements to be
_e—i((r|+u'|')${sr Is]YIrT:/(G’O) , (A4) S]rS/’|S:e7|(UI+U|)§r31’|3, (A6)

and in a phase shift analysis the submatrixSdbr eachJ”

whereo, andw, are defined in Eqg5.9) and(5.10, respec-  Value would be parametrized in the form of E4.4),
tively, and whereC(6) is the Coulomb amplitude

S=u'su. (A7)
1 . .
C(6)= —== —L—g~inhlsi(012)] (A5) . . .
VA sinzf In the matrix element analysis of the capture reaction, one
2 then uses Eq5.8) to reconstruct the ful&matrix fromS.
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