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The semiclassical distorted way8CDW) model is extended to include three-step process in multistep
direct (MSD) processes in nucleon-induced preequilibrium nucleon-emission reactions. The extended SCDW
model is applied to analyses of MSD processe&i(p,p’x),%°Zr(p,p’x),%°Zr(p,nx), and 2°Bi(p,p’x) in
the incident energy range of 62—-160 MeV. SCDW calculations with no adjustable parameter give overall good
agreement with experimental double differential cross sections, except at very small and large angles. The
nonlocality of distorting potentials is taken into account in terms of the Perey factor, and is found to be
essential for reproducing the absolute magnitude of the cross sections. Effects of the density and momentum
distributions of target nucleons and the use of in-medNiiN cross sections on the SCDW calculation are
discussed. Comparison with other models is made, in particular regarding the contributions of individual
multistep processes to the calculated cross sections. Validity of the local semiclassical approximation to
distorted waves, which is essential to SCDW is discussed on the basis of a numerical test.
[S0556-28189)00904-9

PACS numbses): 24.60.Gv, 24.10.Eq, 25.40.Ep, 25.40.Kv

[. INTRODUCTION of one-, two-, and three-step processes are expressed in the
simple closed forms of Eq$13), (16), and(17) in Sec. I,

Studies of multistep dire¢MSD) processes are important respectively, in terms of the distorted waves, the nucleon-
for understanding preequilibrium processes in nucleonnucleon scattering cross sections, and the nucleon density
induced reactions at intermediate energies. Various modeldistribution. Since those quantities can be determined either
have been proposed and applied to analyses of experimentanpirically or theoretically, no free adjustable parameter is
data[1]: the intranuclear cascad&NC) model[2], several involved in the SCDW model. Furthermore, the expressions
versions of the exciton mode]l], statistical quantum- for the cross sections allow a simple intuitive interpretation
mechanicalSQM) models of Feshbach, Kerman, and Koo- that the reaction proceeds via successive nucleon-nucleon
nin (FKK) [3], Tamura, Udagawa, and Lensk€UL) [4], collisions at different points in the nucleus, which is one of
and Nishioka, Weidenniier, and YoshidaNWY) [5], and, the basic assumptions of the INC model. In this sense, the
more recently, microscopic simulation methods based o®CDW model has a possibility of bridging the SQM models
qguantum molecular dynamic®MD) [6] and antisymme- and the microscopic simulation methods of INC, QMD, and
trized molecular dynamicéAMD) [7]. AMD.

The SQM models mentioned above are all based on dis- Calculations of the one-step(p’x) cross sections with
torted wave Born approximatio(DWBA) series expansion the SCDW model were previously carried out in the incident
of the T-matrix element, with different statistical assump- energy range of 62—200 Mep,11]. The calculated double
tions in obtaining energy-averaged cross secti@sThey differential inclusive p,p’x) cross sections agreed with ex-
all contain some adjustable parameters, such as the strengihrimental data at forward, though not extremely forward,
V, of effective nucleon-nucleon interactions, for fitting the angles and relatively high emission energies. Agreement in
calculated results with experimental data. The semiclassicdhe absolute magnitude was significant because of no free
distorted wavegSCDW) model[9—11] that we discuss in the parameter in the model. However, the calculated one-step
present paper is based on the DWBA series expansion of theoss sections were much smaller than the experimental data
T-matrix element, the local semiclassical approximation toat large angles and/or low emission energies that correspond
distorted waves, the eikonal approximation to intermediatdo large momentum transfers. This clearly indicates the im-
state Green functions, and the local density Fermi gas modglortance of multistep processes in such cases. Extension of
for the nuclear states. The double differential cross sectionthhe SCDW model to two-step processes was made in Ref.

[10] in which an explicit formula for the double differential
cross section of two-step processes was derived.
*Present address: Department of Advanced Energy Engineering In the present work, we extend the analysis including up
Science, Kyushu University, Fukuoka, Japan. to three-step processes, and present the results of numerical
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calculations for p,p’x) and (p,nx) at energies ranging from 32aN) w? kg

62 MeV to 160 MeV. The results are compared with experi- E.a0. a2k

mental data and with calculations by other models. We show Rt !

the contribution of individual multistep processes to the

cross section and the effect of the nonlocality of distorting X2 [ OV(GVINTY Doy )2
potentials, the density and momentum distributions of target n

nucleons, and the use of in-mediuNtN scattering cross

sections on the SCDW cross sections. We also discuss the X o(ep—€g0— ) 4
validity of the local semiclassical approximation to distorting

otentials that is the most essential approximation in the ) . .
gCDW model. PP is the cross section df-step process. Since the differédis

The formulation of the SCDW model including three-stepCO”eSpond to different final states, the cross terms between

processes is briefly described in Sec. II. The results of thém do not exist in Eq(3). In Eq. (4), u is the reduced
calculations are presented and compared with experimentd1@SS: ki (k) is the incident (outgoing wave number,
data in Secs. Il A and Il B. Discussions are given on the€o (&n) is the nuclear energy in the initiéinal) state, and
validity of the local semiclassical approximation to distorted®=Ei~Es+Q whereQ is zero for p,p’x) and Q is the
waves, the effects of the nonlocality corrections, the quasiground stateQ value for (p,nx). The summation is made
elastic scattering, the nucleon density and momentum distrPver all the finaln states. Thes function ensures energy
butions, and the use of in-mediuM-N cross sections on Cconservation. .
SCDW calculations in Secs. Ill C—Ill H. Comparisons with I €ach step of the MSD process, a target nucleon collides

other models are discussed in Sec. Illl. A summary andVith the leading particle 0 and is excited from a single par-
conclusions are given in Sec. IV. ticle stateg,, ate, below the Fermi levelf, to a statep at

& g aboveF. For a one-step cross section, then, the right-hand
side (RHYS) of Eq. (4) becomes a sum over and 8 of the
squared modulus of the transition matrix element for the
As the past SQM models already mentioned, the SCDWransitiona— g which is a twofold integral over the coordi-
model is based on DWBA series expansion of Thmatrix =~ hate of the leading particles,, and that of the struck
element nucleon,r. On expanding the squared modulus, one has a
four-fold integral ovemq,rg,r, andr’ as below:

IIl. FORMULATION

Tro=(xt '@ [V+HVGV+VGVGV+ - - - [Doxi™)), (1)

. L o't 4p? ks B
where®, (®,) is the nuclear wave function in the ground = — _f drdr’drodr(’,X§ * (1)
(the nth excited final state, x{*) (x{7)) is the distorted IE19Qy  (27h7)° ki
wave in the initial(final) channel )V is the interaction poten-
tial between the leading particle 0 and the nuclauand the Xv(re,Nxi (ro)
G’s are the Green functions for the motion of 0 relativeAto
in the intermediate states. We assume the single particle Xxt o g, r )X HKr ), (5)

model for the nuclear states, and the sum of the two-nucleon
interaction potentials between 0 and individual target nucle-

ons,i, for V: where the nonlocal kern&(r,r’) is given by
A
V=2, v(ro=r), @ KL= 2 3 ¢a(D)* dolD)dglr)
B>F a<F
wherer, andr; are the coordinates of the incident and target % ¢Z(r')5(8ﬁ—8a— ). ©6)

nucleons, respectively is assumed to be spin and isospin
independent, for the moment, for the sake of simplicity of

explanation. The_dependence is includeq in the actu'all calciBecause of the closure property of theit is easy to see that
lations reported in the subsequent sections. In addition, Wg(r r’) is only appreciable wher~r' unless the number of
introduce the “never come back” assumptiph?] that the ¢ states is too small. Because of this and the short range of
number of excited particle-hole pairs increases with the nume potential, the integrand of the four-fold integral in Eq.
ber of steps of the reaction process. Using these assumptions, is only appreciable when~r’~ro~r}.

we arrive at the expression for the inclusive double differen- ~ynder these circumstances. the following two approxima-
tial cross section of emission of a nucleon at enegyand  tjons are introduced in the SCDW model. The first one is the

into direction{}; at incident energy; : local semi-classical approximatidhSCA) for the distorted
5 2 ) waves, x.(ro), in the distorting potential&).(ry) of which
JI°o JI°o 3 the spin-orbit coupling is neglected:

JE0Q; 4§ 9E.Q;’

where Xe(To) =~ xe(ro)eke0 (=10 (c=j,f), (7)
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2
for ry within a small cell centered at, in which U, £5—e —w=ﬁ—(k2—k2)—{(Ei—Ef)+(S -S)},
changes little. In EQq.(7), k¢(ro)=—iVxc(ro)/xc(ro) is “ TR poe
the local wave number vector with(ro)={2u/hE, 1D
—U(ro) 1}*2, which is approximately real and proportional
to the flux if the imaginary part dfl . is small compared with
the local kinetic energy at the pointy. We neglect the
imaginary part ofk.(rq):k:(rg)=~Rdk¢(ro)]. The validity
of the LSCA in the SCDW model will be discussed in Sec.
nc.

since Q=S;— S, whereS,(y=a,p) is the separation en-
ergy of the struck target nucleon. The conservation of the
total kinetic energy of the two-nucleon system, therefore,
does not hold. Strictly speaking, off-the-energy-shell matrix
elements ofN-N scattering are needed. We assume, how-
. . . ever, that the squared modulus of the matrix element isf
The second assumption which greatly facilitates the SUbétill proportional to the fredN-N scattering cross section for

sequent calculations is the local density Fermi ¢aSG) the two-body c.m. energy corresponding to the initial relative

model for the nuclear states. Within a small cell centered aﬂwomenturrw—(k (ro) —K,)/2 and the scattering angle equal
~r ; ; =Killo @
r~r’, the ¢ are approximated by plane waves with theto the angle betweer and the final relative momentum,

Fermi level at the Fermi momentukg, which is related to ' _ .
the nucleon density(r) atr: K =[Ki(ro) —kpl/2:
( ao) (mi2)? 2
NN

= ‘ 7iq(r )‘P
&QK (27Tﬁ2)2‘ f dpv(p)e 0 ’

(12

47 K3(r)
P(f)—4?(277)3-

8
wherem is the nucleon mass. Inserting E42) into Eq.(9)
and replacingry by r, one obtains the final expression of
As a resultK(r,r') given by Eq.(6) is a function ofx=|r one-step double differential cross section:
—r’|, i.e.,, K=K(x). Explicit calculation[9] shows that the

range ofK(x) is indeed short, much shorter than the diam- s [ A )Zf rkf/kf(r)| (H)(r)2
eter of the medium-heavy nuclei of our present interest. JE;0Q; \A+1 k; /k;(r) Xi
Using the two approximations, the one-step cross section 2
becomes (=)(p)]2 T
X
|Xf (r)| (aEfan)rp(r)’ (13)
o'V 4u? ks

f dfo|X§_)(fo)|2|)(-(+)(fo)|2 where A is the target mass number, and the local average
' differential cross section dil-N scattering at the point is
now given by

IE;0Q; (2mhd)2 k; (2m)°

2
X dk,dk fd gldlro)p 2
ffka<kp(ro)<kﬁ B’ po(p) ( o ) _ Apuke(r)
B0/, 1 2;i(r)(4m/3)ke(r)®
X5(k'3_ka+kf(ro)_ki(ro))ﬁ(&)ﬂ_ga_(v), f f ( [?0_>
X dk,dk
9) Ko <Kp(r)<kg PloQ, NN

X 6(Kg—K,+Ki(r)—ki(r))d(eg—e,— o),
wherep=r—rq, andq(ry) is the local momentum transfer, 14
Ki(ro) —k¢(rg). The first function in Eq.(9) ensures mo- (14

mentum conservation and the second one energy conservghich involves the approximate treatment of the off-shell

tion. In the previous SCDW calculations ab,p’x) [9-11,  matrix element oty already mentioned. The Pauli blocking
the energy delta function was approximated by repla@ng effect is taken into account in E414) by the limits of the
by the difference in the local kinetic energies of the incidentintegrations overk, and k;. The local kinetic energy

and the outgoing nucleons. Thus, in the LFG model, E¢(r)=%2K(r)%/2 and the direction of emissiorf)(r)
72 =I2f(r), correspond tde; and(); at infinity, respectively.
Ep— €, O~ ﬂ[kz—ki—ki(fo)er ki(rg)?2].  (10) In the calculation of two- and three-step cross sections,

the eikonal approximation is made to the intermediate Green

functi itional o :
This approximation is only good if the distorting potentials unction as an additional approximatioo]

in the initial and the final channels); andU;, respectively, 1 w o expikplra—rq))
are nearly equalJ;~U;, and the ground stat® value is L E kU xin" )~ " 22 r—r ,
zero as in p,p’'x) or negligibly small. The delta function m m7 4 Iro=r4l 15)

implies conservation of the total kinetic energy of the collid-
ing two nucleons, i.e., “on-the-energy-shelN-N scatter- wherer; (r,) is the first(second collision point, andk,,

ing. In general, however, the approximatidg~=U; may not  =[(2u/%?)(Ey—U)1Y%=km+iym is the complex local
be as good, and th@ value may not be negligible imp(nx) wave number in the intermediate state.
reactions. Thenw should be taken exactly and ELO0) The final form of the two-step SCDW cross section is

should be replaced by given, in agreement with Ref10], by
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#o'? A\ k¢ 7Kg (r2) Po
= | e 2| () 2
e\ ae1] | 9] on ] ers v i e (—aefmf)r p(r2)
2
exXp~2ynlro—ral)| o |
=t \Emiy rlp( L

where Em=ﬁ2/<ﬁq/2,u and ), is the direction ofr,—r;. The local average cross sections are given by #d4) with
appropriate substitutions of coordinates and momenta. Again, the off-shell matrix elementdNelthellisions are approxi-

mately treated. The extension to higher step processes is straightforward and the following expression for the three-step cross
section is obtained:
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FIG. 1. Comparison between theoretical and measured double differential cross sectignpfoy &nd (p,nx) on °°Zr at 160 MeV for
three emission energies of 120 MeV, 80 MeV, and 40 MeV. The[taght] panel corresponds t@(p’x)[(p,nx)]. The cross sections of
one-step, two-step, and three-step processes are represented by the short-dashed, the dash-dotted, and the long-dashed curves, respective
The solid curves are their sum. The experimental data are taken froni2Z3gfor (p,p’x) and Ref.[26] for (p,nX).
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i L ke/Ki(rs)
i ey TV ST () 21, (+) 2
JE10Q; |A+1 demlj dEme drlJ dr2f Iray Tk X )l (ra)l
X( P o ) (r exq—Zym2|r3—r2|]/ i o ) (r )eXF[—Zym1|r2—l’1|]/ o t)
IE 34y r3p s [rg—rol® | EmadQ rzp 2 [rp—rqf? | Em1dQm ,1p v
17

In the case of |p,p’x) reactions, there are two types of functions in the Fermi gas model because of the normaliza-
two-step processesp(p”)(p”,p’) and (@,n)(n,p’), with  tion. In addition, we multiply the Green function ,(r;)
either a proton or a neutron in the intermediate state. SimandF,,(r,) on either side of it in Eq(15).
ilarly, a three-step process consists of four different reac-
tion paths: 60,p")(p",p")(P".,p").(p,p")(P",N)(n,p"),

(p.n)(n,p")(p".p’), and (,n)(n,n")(n’,p"). lll. RESULTS AND DISCUSSIONS
The empirical local optical potentials that we use for the _ _
distorting potentials should be regarded as the equivalent lo- A. Input data for numerical calculations

cal potentials of the “true” nonlocal optical potentials. Asis  As seen in Egs(13), (16), and (17), the input data for
well known, the amplitude of a distorted wave in the nonlo-scpw calculations aréa) the distorting potentials(b) the
cal optical potential is less than that in the local optical po-two-nucleon scattering cross sections, anplthe nucleon
tential by the Perey factor with the nonlocality ran8¢13],  density distribution. We use basically the same input data as
) 1 in Ref.[11].
1 uBUg(r) (18) As for (a), we adopted the global optical potentials of
242 ' Walter and Gus$14] for energies less than 80 MeV and
those of Schwandet al. [15] for energies above 80 MeV.
multiplying the wave functions of all the particles in the For neutrons, however, the real part of the optical potential
continuum, namely, the leading particles in the initial andparameters of Ref15] was modified by means of Madland’s
final channels and the struck target nucleon in staten the  method[16]. The range of nonlocalityg, in Eq. (18) was
continuum. The Perey factor is unity for bound state wavetaken to be 0.85 fmi13].

Fc(r):
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FIG. 2. The same as in Fig. 1, but fgu,p’x) and (p,nx) on °°Zr at 120 MeV for two emission energies of 100 MeV and 40 MeV. The
experimental data are taken from RE#4] for (p,p’x) and Ref.[26] for (p,nX).
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FIG. 3. The same as in Fig. 1, but fop,p’x) and (p,nx) on %%Zr at 80 MeV for two emission energies of 60 MeV and 40 MeV. The
experimental data are taken from RE#4] for (p,p’x) and Ref.[25] for (p,nX).

As for (b), either two-nucleon scattering cross sections indifferential cross sections ofp(p’x) and (p,nx) on 907y

free space or those in nuclear medium were used. For th®3_24. The contributions of individual multistep processes
free N-N cross sections, we used the same empirical formulae piotted to show their variation with emission energy and
as in Ref.[ll], i.e., the parametrized total and differential scattering angle; the short-dashed, the dash-dotted, and the
cross sections taken from Refl8] and Ref.[19], respec- |50 qashed lines represent cross sections of one-, two-, and
tively. For the in-mediuN-N cross sections, we employed three-step processes, respectively. The solid lines represent

the.nonrelat.lwstl.c BrueckneG-matrix calculated with the their sum. The SCDW calculations, with no free adjustable
Paris potential given by Kohnet al.[20]. In both cases, the ; . .
parameter, are in overall good agreement with the experi-

parameters were given as a function of the energy oRtte mental data except at very small and large angles, for both

system in the laboratory frame. We took for it the kinetic , : S
energy of relative motion in the initial channel. (p.px) and (p,nx). For the highest emission energy shown
in the figures, however, the SCDW cross section has a peak

As for (c), we used the nucleon density distributip(r) . : ;
of the Woods-Saxon shape with Negele's geometrical paz_around 20° and is larger than the experimental data by a

rameterg17], and assumed that the proton and the neutrorgactor of about 2. Similar pee}ks in the.angular distributions
densities are proportional to their numbetand N, p(r), are also seen at other emission energies, although the peaks
=(ZIA)p(r) andp(r),=(N/A)p(r), respectively. The local bec(:)ome broadertﬁstprot?n emission energy de;:reases. .
Fermi momentunkg(r) necessary for the calculation of Eq. ne can see that proton €mISSIon via one-step process Is

(14) was obtained from Eq(8), for both protons and neu- dominant in the intermediate angular region. Contributions
trons - of two- and three-step processes become appreciable with

decreasing emission energies and increasing angles. It is
found, however, that the higher-step MSD components can-
not compensate the discrepancy between the one-step cross
Using a Monte Carlo integration method with quasiran-sections and the experimental data at backward angles. As
dom numberd21,27, we have carried out SCDW calcula- will be discussed later, one of the reasons for this is probably
tions including up to three-step processes of the double difthat in the LFG model that we assumed, the nucleons can
ferential cross sections dfZr(p,p’x) and (p,nx) reactions only have momenta up to the Fermi momentum. Another
at 80, 120, and 160 MeV>Ni(p,p’'x) at 120 MeV, and possibility might be that MSD contributions from higher
209Bi(p,p’x) at 62 MeV. The freeN-N scattering cross sec- steps are not included in the present calculation. At very
tions have been used in the calculations. forward angles, the one-step cross sections fall off steeply
Figures 1-3 show the calculated and experimental doubleoward 0° at all outgoing energies, as was already seen in

B. Comparison with the experimental angular distributions
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02 b . AN —_ Figures 3 and 5 show the SCDW results forg’x) and
0 30 60 90 120 150 180 (p,nx) on °°Zr at 80 MeV and p,p’x) on 2%Bi at 62 MeV,
Angle(deg) respectively, to indicate the applicability of the SCDW

model to lower incident energies. The SCDW model repro-
FIG. 4. Comparison between theoretical and measured doublduces well the experimental data at forward, though not very

differential cross sections for the reactidfNi(p,p’x) at 120 MeV  forward, angles where the one-step process is dominant. The
for three emission energies @) 100 MeV, (b) 60 MeV, and(c) 40  cross sections of the higher-order steps are only small frac-
MeV. The cross sections of one-step, two-step, and three-step préfons of the total, even at backward angles, and the summed
cesses are represented by the short-dashed, the dash-dotted, anddfgss sections are much smaller than the experimental ones
Iong-dashgd curves, respectively. The solid curves are their sumyt large angles. Another feature is that the one-step cross
The experimental data are taken from Ref7]. sections do not fall so steeply toward 0° as in the cases of

higher incident energies. This is due to the deeper real part of
our previous calculatiofil1]. In contrast, the two-step and the distorting potentials which causes stronger refraction of
three_step cross sections have maxima at 0°. The broad peﬁ]@ entrance and the exit channel distorted waves than at the
structures seen in the summed cross sections are due to tRgher incident energies. In fact, if one neglects the distorting
characteristic shape of one-step angular distributions. ThRotentials, the one-step angular distributions drop more
peak angles are nearly at the quasielastic scattéQES steeply toward 0° and reach zero at an angle near 0°.
peaks. The influence of QES on the one-step process will be
discussed in a later subsection. C. Validity of the local semiclassical approximation

Figure 4 shows the calculated angular distributions of to distorted waves

Ni(p,p’x) at 120 MeV compared with the experimental ~ For the SCDW model, it is important to verify the LSCA
data[27]. Agreement is very similar to the case &%zr; to distorted waves, Eq7). We have carried out a numerical
there are some discrepancies at small and large angles atest of the LSCA for two incident energies, 26 and 120 MeV,
underestimation at the lowest emission energy. for the case of the+ °®Ni reaction. We compared an “ex-
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act” distorted wave)(ﬁxactré), a numerical solution of the only slightly less than the ranges of the two-nucleon interac-
Schrainger equation for a distorting potentidl,, with the ~ tion and the nonlocal kerné{(r,r’).

corresponding “LSCA” distorted wavey->“A(r{) calcu- o o
lated from the RHS of Eq(7), using they®{r,) under the D. Quasielastic scattering in one-step process

condition that the directions af, andr, coincide. Two cases ~ All the one-step SCDW cross sections have peaks at

were considereda) variation ofs=|r,—r| at a fixed polar angles that correspond to QES as already mentioned. In or-
. . der to see the reason for this, we have examined where in the
angle ofry, 8, and(b) variation of 8, at a fixed values o$.

. . nucleus the first collision mainly takes place. The result is
ForU., the global optical potential of Walter and GUdsl] ¢} 5\wn in Fig. 9 for®%zr(p,p’) at 120 MeV. Each line cor-
was used for 26 MeV and that of Schwaredtal. [15] for

responds to the one-step calculation with a given pair of
120 MeV. lower and upper limits of radial integration in EAL3). The

The results for the cas@) atry=2 fm and 4 fm atd, limits are varied in steps of 2 fm. It is seen that the contri-
=60° are shown in Figs. 6 and 7, respectively, and the rebution of the peripheral region of the nucleus corresponding
sults for the casdb) with ro=4 fm ands=+2 fm are tor=4-6 fm is predominant over a wide angular range,
shown in F|g 8. The real and the imaginary parts of theWhI'E the Contribu_tio_n of the r!uclear interior tends_ to_in-
distorted waves are plotted in each figure, in the upper angréase as the emission angle increases. The contribution of

lower panels, respectively. The solid lines represent thd€ regionr=6 fm provides the characteristic angular dis-
Xﬁxactré)- The XIESCA(r(;)) calculated with only the real part tribution with a peak at the QES angle. The reason for this is

: ber fok he RHS of Ea(7 h b that the Fermi momentum is low there because the nucleon
of wave number fok. on the of Eq(7) are shown by jonqiy s low. As a consequence, the incident proton inter-

the long-dashed line& SCA-I) and those calculated with the ;5 ith target nucleons with small momenta. The peak seen

complex wave numbers are shown by the short-dashed lingg the one-step SCDW cross section is slightly shifted from
(LSCA-II). One can see from Figs. 6-8 that the LSCA isthe QES angle toward small angles. One reason for it is the
quite good at 120 MeV around thig considered. In particu-  contribution of the inner region where the Fermi motion of
lar, it is noteworthy that the LSCA is still good a%  the target nucleons is not small. Another reason is the refrac-
=4 fm which is near the nuclear surface where the variationjon of the projectile and ejectile by the distorting potentials.
of U¢ with rg is not so small. Also, LSCA-I and LSCA-Il  However, these effects are not large enough to compensate
almost coincide over a wide range of. This justifies the the sharp fall of the cross section at very small angles.

use of real local wave numbers in ET). These numerical One of the reasons for the failure of the present SCDW
tests show the validity of the LSCA at 120 MeV. The LSCA calculations at very forward angles is that the most important
is worse at 26 MeV as expected. It should be noted, howevetontribution to the cross section there is due to collisions
that it is still acceptable within a range~1 fm which is  with large impact parameters, i.e., in the far out nuclear sur-
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FIG. 9. Dependence of the SCDW one-step cross section on the FIQ. 10. Comparls_on of SCDW cross sectlon_s wahlid lineg
. . . . . and without(dashed linesthe nonlocality correction for the reac-
location of N-N scattering in the nucleus. The reaction is

g , . .
56Ni( p,p’x) at 120 MeV. The emission energies dae 100 MeV tion **Ni(p,p’x) at 120 MeV and two emission energiéy 100

and (b) 40 MeV. Each curve corresponds to the one-step crosyev and(b) 40 MeV. The thin lines represent individual stepwise

sections calculated with the lower and upper limits in the radialContribUtions and the thick line represents their sum. The experi-
integration of Eq(13) denoted in the figure. The thick lines are the mental data are taken from R¢27].

total SCDW one-step cross sections. . ) ) ) .
plained in terms of simpleN-N scattering in the nuclear

face region where the nucleon density is very low. The LFGFermi gas only if the effective mass is used for the nucleons.
model is obviously inappropriate there. Nucleons in that re-One of the reasons for use of the effective mass is the non-
gion are mostly in the exponential tails of bound state wavdocality of the nuclear mean field. In the present SCDW cal-
functions as assumed, e.g., by Esbensen and Bdi2§th culations, the leading particle and the target nucleons excited
into the continuum move in phenomenological optical poten-
E. Effect of the nonlocality of distorting potentials tials which can be regarded as the equivalent local potentials
of the “true,” nonlocal optical potentials. Instead of the ef-

In the SCDW calculations, the nonlocality correction t0 o tive k mass of Ref[30], we made the nonlocality correc-
distorted waves is made by means of the Perey fddt8k iy by means of the Perey factft3].

Calculated cross sections without the nonlocality correction
are shown in Fig. 10 foP®Ni(p,p’x) at 120 MeV. Overes-
timation of the magnitude of the cross sections is obvious,
although the shape of angular distributions is not much dif- We investigated the sensitivity of SCDW calculations to
ferent from those with the nonlocality correction. The effectthe nucleon density distribution. As an alternative to that
increases as the proton emission energy decreases and tiged in Figs. 1-5, we calculated the proton and the neutron
number of steps increases. The latter is because the numbgensity distributions by means of the spherical Skyrme-
of the intermediate Green functions, each carrying two Peretlartree-Fock SHF) theory[31,32 with the Z, potential of
factors, increases. For instance, three-step cross sectioRgiedrich and ReinharfB1]. The densities oP%r are shown
without the nonlocality correction are an order of magnitudein Fig. 11 together with the Woods-Saxon one used in Figs.
larger than those with the correction in Fig.(h0 Thus, the 1-5. The two densities are almost identical in the peripheral
nonlocality correction in SCDW calculations is crucial to the region, from 4 to 6 fm, some differences appearing in the
agreement with experimental data in the absolute magnitudeuclear interior.
of cross sections, particularly at low emission energies. In Fig. 12, the calculated double differential cross sections
The importance of the nonlocality correction was alreadyof one-step process iA°Zr(p,p’x) at 160 MeV are shown
mentioned by Negele and Yazdld0] who showed that em- for the Wood-Saxson density distribution with Negele's pa-
pirical values of the nucleon mean free path could be exframeters(dashed lings and the SHF density distribution

F. Sensitivity to the nucleon density distribution
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FIG. 11. The calculated nucleon density distributions®%r. FIG. 13. The momentum distribution of target nucleons. The

The solid and dashed lines represent the density distribution of theolid and dotted curves represent the momentum distributions based
Woods-Saxon shape with Negele’s geometrical parameters and thai the local Fermi gad_FG) model and the infinite Fermi g¢G)
calculated with the Skyrme-Hartree-Fo¢BHPF) theory, respec- model. The result of QMD plotted by the dash-dotted histogram is
tively. taken from Ref[6].

(solid lines. In these calculations, separate Fermi momentaasily understood because the dominant contribution comes
kE(r) andkg(r) were used for protons and neutrons, insteadrom the surface region of the nucleus as shown in Fig. 9
of the average Fermi momentum. We confirmed, howeverwhere the two density distributions are almost identical as
that the difference between the calculations with the separathown in Fig. 11. Also, for two- and three-step processes, the
and the average Fermi momenta is negligible. Figure 12lifference in the nucleon density distribution causes negli-
shows that there is no appreciable difference between thgible effect on the corresponding cross sections. Thus, the
two calculations with the two density distributions. This is sensitivity of SCDW calculations to the nucleon distributions

is very weak.
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G. Sensitivity to the nucleon momentum distribution 10" e ——— — 5

As shown in 'Sec.lll B, the SCDW model fails to repro- F e 120 MeV *Ni(p,p'x) (a)]
duce cross sections at very small and large angles. Since the . 10° ¢ Ep'= 60MeV 3
differential cross section at a fixed emission energy is a func- 2 E
tion of momentum transfer, the angular distribution must de- £ 44+ 3
pend on the momentum distribution of the target nucleons. EE’
We investigated the dependence by calculating one-step & 102 ]
cross sections under different assumptions of the momentum @ E
distribution. Figure 13 shows the nucleon momentum distri- & Free NN
bution of %zr in three different models: the infinite Fermi ~ ° 10" F| ----- In-medium NN E
gas(FG) model, the local density Fermi gdsFG) model, i * Forschetal
and guantum molecular dynami@@MD) [6]. The FG model 10“‘0 30 80 90 120 150 180
gives a uniform distribution up to the Fermi momentim. 10" — . T T T T T 3
The LFG momentum distribution has a large fraction of P 65 MeV *Ni . (b)§

: . Wz . eV “Ni(p,p'x)

nucleons with smalk, and becomes infinite &=0. The - 10° W) 1step Ep'=43 MeV 5
differences between QMD and the LFG model appears at g Ff == ) E
momenta less than 0.5 fm and at momenta larger than 2 ok 2step Q i
ke=1.37 fm %, the Fermi momentum for the normal ié S .
nuclear density. S .l ) ¢

In Fig. 14, the one-step SCDW cross sections for F 107 F 3step E
9Zr(p,p’) at 120 MeV calculated with the LFG and FG = % i Free NN
models are compared. The solid and dashed curves represent™ 10° & ____. In-medium NN Sk E
the SCDW calculations with the LFG and FG models, re- E e Sakaietal. ]
spectively. Figures 13 and 14 show that the nucleon momen- 10* L . L e
tum distribution strongly affects the shape of the one-step 0 30 60 Angle9?deg) 120 150 180

angular distribution. The increase in high-momentum com-

ponents in the nuclear momentum distribution leads to an ) ) ]

enhancement of the cross sections at large angles, and de-FIG. 15. Comparisons of SCDW cross sections calculated with

crease in low-momentum components results in a shift of th@ft?iﬂ'“TN'% ﬁoss SeCt'onf of EeEIfOL (?O“d fl'ne?h and thtc.’se

QES peak toward smaller angles. This suggests that use lﬁ@ . e, reeN-N cross sectiongdashed linegfor the reaction
- . . . . . Ni(p,p’x) at (a) 120 MeV and(b) 65 MeV. The experimental

realistic single particle wave functions in a finite potential data are taken from Refi27] and|[33]

rather than the LFG model will improve the SCDW cross '

sections at large and small angles.

good, although the SCDW three-step cross sections are
H. Use of in-mediumN-N cross sections somewhat smaller than the AMD ones. It is noticeable that

We recently calculateti-N cross sections in the nuclear e AMD one-step cross sections also show peaks near the
medium by means of the non-relativistic Brueck@matrix ~ QES angles, though slightly shifted forward. Such peaks do
based on the Paris potential, and parametrized them as ¢t @appear in the cross sections in QMD. _
function of incident energy and nucleon dengigo]. The _ Second, the SCDW model and QMD are compared in
in-mediumN-N cross sections calculated with the parameter19S- 16 and 17. One sees some differences in one-step an-
set given in Table Il of Ref.20] were used for th&-N cross gular distributions, in particular at backward gnd very for-
section. Figure 15 shows the result of the calculations fo?"’ard angles. The QMD one-step crossosectlo_ns shovy for-
58Ni(p,p’x) reactions at 120 and 65 MeV together with the ward peaks without the_stegp fa!l near 0° that is seen in the
ones obtained with the frel-N cross sections. No appre- SCPW ones. It was maintained in R¢6] that the behavior
ciable difference is found between the two calculations, eveQ! QMD one-step cross sections near 0° was strongly af-
at 65 MeV at which the in-medium cross sections at thaected by the rgfractlon of the incident and outgoing particles
normal nuclear density, are much reduced from the free PY the mean field. However, the SCDW calculations also

ones. This is because the one-step process occurs mainlytﬁﬁOk account of the refraction by the distorting potentials,
the surface region of the nucleus where the density is low, agnd the effect was small. The difference at backward angles

discussed in Sec. Il D, so that the in-medium cross section$ dué mainly to the difference in the momentum distribution
are not much different from the free ones of target nucleons as already mentioned. As shown in Fig.

13, QMD, unlike the LFG model, includes target nucleons
with momenta higher than the Fermi momentum. As for the
two- and the three-step cross sections, the SCDW and QMD
In this subsection, we compare the SCDW calculationsross sections are similar in shape, although the SCDW
with the results of the other models already mentionedmodel yields smaller cross sections at the highest emission
AMD [7], QMD [6], FKK [6,23,34,3%, and TUL[4], and  energy than QMD.
discuss similarities and differences. Third, a comparison of the SCDW model with the FKK
First, a comparison with AMD[7] is made for model[6] is made in Fig. 17. A considerable difference in
*8Ni(p,p’x) at 120 MeV in Fig. 16. Agreement is generally one-step cross sections is seen between the predictions of the

I. Comparison with other model
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FIG. 16. Comparisons of SCDW calculations with AMD and QMD calculations for the reatidiip,p’x) at 120 MeV. The AMD and
QMD results are taken from Reff7,6] and include multistep components higher than three-step in total cross sections given by the solid
curves. The experimental data are taken from R&f].

two models, although the higher-step cross sections do ngterimental data at the corresponding angular region. The
differ as much. The FKK model gives steeper fall of one-stepQES component is automatically taken into account because
cross sections towards large angles than the SCDW modedxperimentalN-N cross sections which include exchange
The relative contributions of the two- and the three-step proprocess in thé-N scattering are used. For the case of lower
cesses at backward angles are larger in the FKK model thancident energies, one can compare the result for
in the SCDW model. The results shown in Fig. 16 can also®Zr(p,p’x) at 80 MeV in Fig. 3 with the recent FKK analy-

be compared with the FKK analysis 8iNi(p,p’x) by Rich-  sis of Ref.[35]. The FKK calculation shows a slight over-
ter et al. [34]. They showed that at high emission energiesprediction of cross sections at backward angles, while the
such as 100 MeV, the cross sections in the angular regioBCDW considerably underestimates them in the same angu-
from 40° to 70° could not be reproduced by the FKK modellar region as already discussed.

alone. The discrepancy could be removed by the addition of Finally, a comparison of the SCDW model with the TUL

a QES knockout contribution calculated with the DWIA. Our model[4] is shown for the?®®Bi(p,p’x) reaction at 62 MeV
SCDW prediction is in quite good agreement with the ex-in Fig. 18. The results of the SCDW and TUL models are
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FIG. 17. Comparisons of SCDW calculations with FKK and QMD calculations for the reattp,p’x) at 160 MeV. The FKK and
QMD results are taken from R€f6]. The total FKK cross sections include multistep components up to five steps. The experimental data are
taken from Ref[23].

given by the thick and thin curves, respectively. Note that the IV. SUMMARY AND CONCLUSIONS
calculation by the TUL model is restricted to one- and two- .
step processes. The results of the SCDW and TUL models The SCPW mgdel was e.xtende'd to mclyde three-step
are same in the intermediate angular region from 30° to gpeProcesses in multistep d|rec_t inelastic scattering, and to deal
although there are distinct differences at very small and larg¥/ith charge exchange reactions. _
angles. This figure also shows that the one-step process is C?ICUIat'O”S of the C105s sections of MSD processes in
predominant in this reaction. (p.p'x) and (p,nx) on “Zr at 80, 120, and 160 MeV,
From the comparisons of the SCDW model with the other” Ni(p,p’x) at 65 and 120 MeV, and®Bi(p,p'x) at 62

four MSD models, we conclude that the calculated angulaMeV were calculated by means of the extended SCDW
distribution of the one-step process is strongly model depennodel and the results were compared with the experimental
dent, but those of the multistep processes are not. In additiolata. The result shows that the cross sections calculated with
the relative magnitudes of the contributions of individual no free adjustable parameter are in overall good agreement
multisteps are rather similar in all the models compared. with the data, although underpredicted at very small and
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FIG. 18. Comparisons of SCDW calculatioiigick curves
with TUL calculations(thin curves for the reactior?*Bi(p,p’x) at
62 MeV. The TUL result is taken from Ref4]. The experimental
data are taken from Ref28].

depend strongly on the momentum distribution of target
nucleons. The failure of the model at those angles is at least
partly due to the failure of the LFG model in the nuclear
surface region in which the nucleon density is relatively low.
In addition, contributions of four-step and higher-step pro-
cesses might be partly responsible for the underprediction at
backward angles. The nonlocality correction to the distorting
potentials is essential for the reasonable agreement with the
data in the absolute magnitude of cross sections, in particular
at low emission energies. In contrast, use of in-medN+N
cross sections little changes either the shape of angular dis-
tribution or the magnitude of cross sections from those cal-
culated with the freéN-N cross sections.

The comparison of the SCDW calculations with the
AMD, QMD, FKK, and TUL calculations shows that the
shapes of one-step angular distributions are different among
the models, but the multistep components are rather similar
in angular distributions and in the relative magnitude of the
cross sections of individual steps.

In conclusion, the results reported in the present paper are
encouraging enough for further improvements of the SCDW
model, such as the use of more realistic single particle wave
functions, extension of the domain of applications to a wider
range of incident energies and target mass numbers, and in-
clusion of nuclear spins.
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