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We formulate a theory for the transfer of energy from collective degrees of freedom to internal degrees of
freedom when the former belong to the adiabatic large-amplitude regime. The framework is that of an extended
mean-field theory including dissipation, with the following salient featuf@sThe Born-Oppenheimer ap-
proximation is extended to finite excitation energy by the introduction of the concept of thermal state, that is
pure with respect to collective coordinates an¢square root ofa) density matrix with respect to internal
coordinates(ii) By assuming that these states form an approximate complete set for application of the Kerman-
Klein method, the self-consistent theory of large amplitude collective motion is extended to finite excitation
energy.(iii) The mean-field limit is taken, and further study is carried out in the basis of natural orbitals that
diagonalizes the one-particle density matrix. In the approximation maintained uniformly in this work, the
equations of motion for the orbitals are shown to be of Hamiltonian form; to these are conjoined the master
equations for the time rate of change of the occupation numbers. The latter are studied in two extreme limits.
In the collisionless limit, dissipation still arises from the response of the mean field to the collective motion
(one-body friction. At the opposite extreme, collisions are assumed to be so effective as to force the system
always to be in a state of locétonstrainey equilibrium. (iv) We review a procedure by which the noncol-
lective variables in the Hamiltonian may be eliminated, leading to equations of motion for the collective
variables with dissipative terms that in general depend on the history of the system. The limit of instantaneous
friction can be justified in an adiabatic approximatiow. A decoupling procedure is developed for deriving
the form of these equations of motion from the mean-field theory, with the ultimate aim of obtaining the
macroscopic parameters that appear in the classical equations of motion for the collective variables. This
procedure generalizes that developed in extensive previous work on large amplitude collective motion at zero
temperature(vi) Associating the dissipative equations of motion for the collective variables with one of the
assumptions concerning the rates of change of the occupation numbers provides a description of the relaxation
of a system initially perturbed from a state of dynamic equilibrifi80556-28189)05204-§

PACS numbgs): 21.60.Ev, 21.60.Jz, 05.606k, 05.70.Ln

[. INTRODUCTION extended one-body approximation that, minimally, included
dissipation. More recently, powerful algorithms designed to
In the past, writers and their collaborators have developetreat one and two-body correlations on an equal footing have
a self-consistent theory of large amplitude collective motionbeen formulated and applied, using either a density matrix,
(LACM) that was based on the assumptions, first, that thée., one-time formalisni6—8] or a real-time Green’s func-
degrees of freedom of a many-particle system could be deion approacti9—11]. This work, however, is not yet capable
composed into two subsets, collectitgow, relevant and  of dealing with problems of large amplitude collective mo-
noncollective(fast, irrelevant, and second, that we were at tion.
zero temperature, in the sense that excitation energy, if any, In this paper, we shall make no effort to provide yet an-
remained concentrated in the collective degrees of freedorather general version of transport theory. Rather, we are in-
[1-4]. (Essentially complete references to the work of otherterested in developing the formalism for the case that the
authors, as well as to the other work of the authors quotedexchange of energy between the collective and noncollective
will be found in the papers citedIn this paper we wish to degrees of freedom can be described in a Born-Oppenheimer
show how the previous theory can be generalized to a situgBO) approximation. The work that follows is most closely
tion where the excitation energy is sufficiently high that theconnected in aim with a previous paper involving one of us
exchange of energy between the two subsystems is inevj12], but differs markedly from that work in concept and in
table. This is a difficult problem with a long history which it execution. Selected papers that bear some relation to the sub-
would be completely out of place to attempt to review hereject of self-consistent LACM at finite excitation energy are
Early work may be traced from Rd]. In broad terms, this [13-18. It is also appropriate to mention several micro-
work dealt with general quantum or semiclassical formula-scopic approaches, not fully self-consistent in our sense, but
tions of transport theory from which one sought to extract arextensively worked out and with a track record of successful
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applications. We refer to the linear response method of Hoffmost a few canonical pairs approximately decoupled from
man and associatd49] and dissipative diabatic dynamics the remaining space, but there was no apparent way of se-
due to Naenberg and collaboratof20,21]. It would be par- lecting a subset of the occupation numbers, and this rendered
ticularly interesting to try to incorporate some of the latterthe formalism too complicated to apply. Our original goal
ideas into our work, but this will not be attempted here.  was to construct a formalism in which we would replace all
The way in which the extension of the BO approximationthe occupation numbers by temperature or entropy.
to finite excitation energy is carried out is described in Sec. Though this aim is achievable only in special cases, as we
[I. There we introduce the idea of thermal state, which needhall learn, it served the purpose of leading us to the concept
not be a state of thermal equilibrium, but naturally includesof thermal state, introduced in Sec. Il, followed in Sec. Il by
the latter as a subclass. Application of this concept within théts application to thelquantum equations of motion, thus
framework of the Kerman-Klein methd@2,23, in Sec. lll,  providing us with a basis for a quantum theory of transport.
followed by a passage to a semiclassical approximationin this paper, however, this theory is utilized only as a con-
leads to the general dynamical equations that underlie theenient way of passing to a classical description for the dy-
remainder of the development. Not surprisingly we comenamical variables. The firgfamiliar) climax of these con-
down to a mean-field description extended to include two=siderations is Eq(3.4), which is the standard mean-field
particle collisions. In this work, however, we confine our equation for the one-particle density matrix plig®-far un-
efforts to an approximation in which the basic element re-specified corrections that describe dynamical correlations.
mains the one-particle density matrix. In Sec. IV, we study The next step in understanding how to deal with this
this object in the basis of natural orbitals, namely, the repreequation was to study, in Sec. IV, the Hermitian one-patrticle
sentation in which it is diagonal, and identify the indepen-density matrix in its diagonal form, namely in the basis of
dent dynamical elements of the problem. We also describaatural orbitals, Eq4.1). Though the matrix itself is diago-
the special limits that allow us to deal simply with the prob- nal, its time derivative is not. We first considered the off-
lem of collisions. diagonal equations of motions. It is well knowsee[13] and
The endgame of our exercise is to derive classical “mac+eferences therejrthat off-diagonal correlation terms are the
roscopic” equations describing the thermalization of a syssource of dissipation of the mean-field energy due to two-
tem initially excited into collective motion. Thus we must particle interactions. By choosing to drop this term, we find
specify a set of classical equations that is consistent in fornthat the remaining equations have the structure of Hamilton's
with the microscopic structure of the theory as well as proclassical equations of motion. This allows us to apply the
vide a method for the determination of the parameters thatheory of canonical transformations in order to introduce a
occur in these equations. The former discussion is carried ouepresentation in which the variables separate into collective
in Sec. V, where the central issue addressed is the derivatiand noncollective sets, using the machinery describgd]in
of the equations of motion for the collective submanifold The details of this procedure are, however, postponed until
including dissipation, starting from a classical HamiltonianSec. VI.
for the total system. The microscopic basis for the starting The question that one may legitimately ask at this point is
equations of Sec. V is given in Sec. VI, which contains anwhether we would be stymied if we were to reinstate some
outline of the calculations that actually have to be done tapproximation to the discarded two-body dissipation, be-
implement the theory. The procedure put forth generalizesause if this were the case, the value of the current work
the previously developed self-consistent theory of LACM,would be seriously compromised. Our answer is that we
valid for zero temperature. Section VII contains a summarycould still carry out a transformation, leading to a modified
of our work that highlights the essential steps in the derivaform of the Hamiltonian equations of motidb.4)—(5.7), of
tion of the final transport equations, reviews briefly how towhich the first two sets refer to the collective variables and
utilize the resulting equations, and suggests further exterthe last two to the non-collective variables. In these equa-
sions of the formalism. tions there is naturally no overt sign of dissipation. The bur-
Further discussion of thermal states can be found in Apden of Sec. V is to show how friction arises when the non-
pendix A. In Appendix B, we describe another argument thatollective variables are eliminated from these equations,
generalizes the Kerman-Klein method to finite temperatureleading to a conventional Newton’s equation with friction,
applicable as given only to the case of thermal equilibriumEq. (5.41), for the collective variablegThis is the so-called
and in Appendix C, we record a few details concerning somene-body friction having its origin in a “time-dependent”
of the results of Sec. VI. mean-field). If we were to retain the two-body friction term,
Before beginning the detailed exposition, it may be help-Egs. (5.4 —(5.7) would at this stage contain explicit dissipa-
ful to augment the preceding brief statement of the contenttive terms, which would be part of the final result.
of this paper by providing an account of how we reached the The results of this paper can be used to study the follow-
shape and content of the material that follows. The originaing problem: Given a set of initial conditions specified by the
impetus was to try to simplify the self-consistent theory of collective coordinates and velocities and by a set of occupa-
nonequilibrium processes developed in HaR]. There the tion numbers, which are the diagonal elements of the density
variables used to describe a system were pairs of canonicatatrix, how does the system relax to equilibrium? The dis-
variables, equivalent to the ones that will be introduced insipative motion can be studied with the help of the Newton
this work in Sec. Il by applying a Wigner transform to a equation of motior(5.41). In this equation the quantities that
guantum transition amplitude; in addition one encounters &nter, the mass matrix, the conservative forces, and the fric-
set of occupation numbers of single-particle states. Just as ibn tensor are all functions not only of the instantaneous
zero temperature, the problem is simplified by focusing on avalues of the collective coordinates, but also of the set of
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occupation numbers. The equations of motion for the latterexcitation energies, we may assume thaepresents quan-
the so-called master equations are the content of the diagonaim numbers of a collective band and tHais an ordering
elements of the equations of motion. number for these bands that is associated with the state of
This brings us to what still remains the most serious pracexcitation of the fastnoncollective system. For higher ex-
tical difficulty facing a self-consistent theory of transport citation energies, we shall continue to use the same designa-
such as formulated in this paper. The elements in the finaion, but its physical meaning is perhaps less clear, except
Newton equation are to be calculated by the method dewhen a simple spectruifsuch as a set of harmonic oscilla-
scribed in Sec. VI. This requires the solution of a nonlineartors) may be associated with the noncollective spectrum. We
problem, the so-called local harmonic approximation, over aepresent the statés, f) in the form
multidimensional manifold which is the direct product of the

Lagrangian manifolds associated with the collective coordi- Y , ,

nates and the multidimensional space of the occupation num- In.f)= py dQIQ.f'XQ.f"|n,f), 23
bers. We consider only two tractable limits for the treatment

of the occupation number space. The first is the natural pre- 10,£Y=|Q)|f:Q]=|Q)|f], (2.4

serve of the mean-field approximation in which the occupa-
tion numbers are fixed as we move away from thermal equi-
librium; in this case the entire manifold of occupation |f:Q] :f dq|q][qlf:Q]. (2.5
numbers is replaced by the entropy variable, and there is no

necessity to adjoin a master equation to the Newton equa]_

tion. In the other limit, in which we assume that the system is he expa_nde_zd notationf:Q], which we now SUPPress, 1S
always in a configuration ofconstrainellocal equilibrium, meant to indicate that the states of the fast system adjust to

as we explain in the text, the space of occupation number € jnstaptane_ous positi@l of the slow system, which is the
asic adiabatic assumption. We have

can be replaced by the temperature as the single variabl
The slow change of the temperature with time, as given by Ve ,

Eq. (4.19, is derived from an equation which is a linear (QfIQ".F")=8(Q=-Q") . (2.6
combination of all the master equations, determined by an
approximate condition of conservation of mean-field energy, ,
and the local Fermi distributions. In any event, both in the
general case and in the special cases, we end up with a

Let us, for the moment, focus on the basis veci@d).
T=0 we can associate with it a pure-statéody density

theory that is classical in the treatment of the collective vari- D=|Q)IfILfl(Ql 2.7
ables and quantum in the treatment of the occupation num-
bers. g P (This is to be contrasted with the densjtyf)(fn| that we

would actually use to calculate physical averagés.finite
excitation energy, this is replaced by an incoherent average
in the intrinsic space yielding a mixed state

In our applications, we shall have in mind the nuclear

I. CONCEPT OF THERMAL STATES

many-body problem, described by a general shell-model D= |Q)Z|f]dff,[f’|(Q|,

Hamiltonian of the form fr (2.8
N 1 d
A=h,zala,+ Zvaﬁyﬁalagaﬁay. (2.

The single-particle basis designated by the first few letters o\f\{here the density in the intrinsic subspace has been abbre-

the Greek alphabet refer to an arbitrary choice of such ¥iated asd. This is some arbitrary density at the moment.
single-particle set. The formalism developed below will alsoBelow it will be specialized to a density valid for the char-
apply to the more general case of a given energy functiongicterization of the BO approximation. _
of any order in density, kinetic-energy density, etc., without Our motivation for introducing the constru@.8) is by no
changes in the essence of the construction. The assumptiGi¢ans obvious. It is not meant to be directly useful in the
(2.1) just simplifies the further considerations. standard sense of averaging with operators to provide expec-
We begin with a discussion of the basis of states for thdation values of physical observables. Instead it is recorded
many-body system that will be utilized in the following de- &S a(possibly helpful intermediate step motivating the in-
velopments, leading below to the concept of thermal stateffoduction of its square root, the thermal state, E29).

is, nevertheless, coherent with respect to the collective dy-
1Q,0)=|Q)|ql, (2.2 namics. By coherent we mean that we ¢and shall calcu-

late matrix elements of operators between thermal states with
where Q refers to the collective coordinates agdto the  differentQ, these states sharing, in this respect, the property
noncollective coordinates. Note the use of the angulaof a pure state. Because of this property, the thermal state
bracket, parenthesis, and square bracket to distinguish totalas first visualized as a “natural” tool for a generalization
space, collective space, and noncollective space, respecf the BO approach to finite excitation energy within the
tively. We shall adopt a generalized BO picture of the eigenframework of the equations of motion method, as described
states of the Hamiltonian, designating themjra$). For low  in Sec. lll. Based on our previous experience, there was the
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further expectation that it would provide an appropriate 1

means for reaching the mean-field approximation. Q=35(Q+Q"). (219
Note that the development below depends for its validity

only on the form of Eq(2.8). A further specialization is to a

o k) ) Provided that the ingredient matrix elementsiofind B are
densityd(Q,T), describing a system to which a temperatur(.astroneg peaked i and slowly varying inQ, we then have

can be ass_|gn(_ad at all times, even if the system is not IBor the classical limit of a product,
overall equilibrium. We refer to this case as local or con-

strained equilibrium. This will be one of the special cases _ _ - . ~

treated in this paper. C(Q,P)Zf dQdQ" exp(—iPQ)(Q[A[Q")}(Q"[B|Q")
We now introduce a construct that can be thought of as

providing some quantum-mechanical underpinning for our =A(Q,P)B(Q,P), (2.16

ultimately classical considerations. We break the bilinear full
density (2.8) back again into co- and contravariant linear i.e., the Wigner transform of a matrix product is approxi-

pieces yielding a “thermal state” mately the product of the individual Wigner transforms.
12 There remains the question of how to characterize the
Q.d)=[Q)d™, (2.9 degrees of freedom buried in the intrinsic stdtdn the zero

heredV2 L g temperaturdfully coherenj limit, this state is characterized
whered™ can be any square-root of the intrinsic density 3 set of non-collective coordinates usually treated in

For simplicity, we use here the Hermitian square root. We, atice in the small vibration limit. In the classical limit
can also write this state in the form these become the conjugate paitsf). The theory to be
developed suggests that also at finite temperature one can
1Q.dy=|Q)>. [flas [f'], (2.10  extract a coherent set of noncollective variables. There re-
ft’ mains, however, an additional incoherent structure, currently

and see that the coefficierds;, therein are just the elements assigned an |d_ent|f|cat|on labe] 10 be |dent|f|_ed later as a
set of occupation numbers. Thus we rewrite the thermal

of d*2. They fulfill the conditions states as

Z af}a:qzd”,, (2.11 |Q.d)=|Q.q,v). (2.1
f

. These are still mixed states in the sense that we cannot form
The statg(2.9) has the property, essential for our needs, thatinear combinations of them. It is furthermore assumed that

its dual product reproduces the full densi&8), i.e., for transition matrix elements between different thermal
. ~ states, the value of is fixed, whereag) shares the same
D=[Q,d)(Q,d|=]Q)d(Q], (212 behavior a®. Finally this means that for the full physics the

guantity(2.13 is replaced by the quanti#(Q,P,q,p,»). In

and with it all expectation values, products, etc. . ;
It is important to emphasize once more that the considert-he sequel, we drop the bars. The way In which these con-

ations to this pointand for the rest of this papealso apply structs play their role will be seen in the next section.

to systems more general than thermal equilibrium. Some fur-

ther discussion and especially comparison with the concepts IIl. BASIC DYNAMICAL EQUATIONS

of thermal-field theory will be found in Appendix A. In the

next section, we show how the description introduced in this We study the dynamics of the system starting with the
section can be incorporated into the dynamical description ogquation of motion for the “particle-hole” operator

our nuclear system. The net result is E8.4) below for the R +

time dependence of the single-particle density matrix, which Pap=8paq, (3.2

is generated both by a mean field and by a “collision” term.

Thus far the stat® as given in Eq(2.12 represents one
localized point of a collective manifold. Our ultimate aim is R
the despription of colleptive dynamics which connects vari- [ abaﬂz[i)aﬁ,H]:hwi)yﬁ—,‘)ayhyﬁ
ous points of the manifold. Consequently, one has to deal
with nondiagonal matrix elemen{®,d|A|Q’,d"). It is cus- -
tomary to express this in the spirit of a semiclassical picture + 5 Vaysedpa,aeds
through coordinat€ and momentunP. Toward that end,
we follow the well-worn path of introducing the Wigner 1 ot

: : . — =V;s.5,45a.a,a,. (3.2
transform. Suppressing for the instant the intrinsic structure, 2 1 oefyT oDy e
we therefore compute

namely

At the next stage we take the matrix element of this equa-
= D) = ‘DR Al tion between two different thermal statéwith the same
A(Q,P)=| d —iP A 2.1
(Q.P) J Qexp ~IPQ)(QIAIQ", 213 value of v, see above To evaluate matrix elements of two
body operators, we introduce a generalized factorizgtatn

Q=0-Q’, (2.149  ting Q stand forQ,q,v),
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(Qlafiata.a,Q)=p2(5¢Q’| y8Q) IV. DENSITY MATRIX IN THE BASIS OF NATURAL
ORBITALS
1
- E{<Q|a';ae|Q")(Q"|c’:l,JE.:?:llle’) Equation (3.4) is the basic dynamical equation from

which we want to extract the description of the collective
— (e 8)— (B y)+ (e 8,y moFion in terms of the density matrix(Q,P,q,p,v), that

defines the collective manifold. We shall divide this proce-
+c@(5eQ’ |vBQ). 3.3 dure into several distinct steps. In the first step, carried out in
this section, we introduce the description of the density ma-
trix in terms of natural orbitals and thus identify the elements

1—2')5 tiiufgr?;;the %ui)da:;rz; torfeatl\l/v?fb\gg;vggnas?t; n?g{'r?)lt'?: ;”fthat are singled out for further study. The equations satisfied
pas’t applications, we have simply dropped this term .so thag;z/ these elements are determined by the application of Eq.

the resulting equation becomes an approximation, the gene 4. We study what can be leamed from this equation with-
. g€q . . pp . , (Ne g ut specifying in detail the classical dynamics of the collec-
alized density matrix or “Kerman-Klein” approximation. tive coordinates

For the class of problems under study, we shall eventually : . . .
have to go beyond these previous treatments, though in thi Already at this stage, it is possible to specify the shape

aper, we shall make simplifying assumptions that wil allo %nd content of the most general problem we can hope to
Paper, pltying u p)' Wi Wstudy with the formalism of this paper, which is a mixed
us to postpone the problem of includin).

Taking the Wigner transform of Eq3.3) and applying classical-quantum transport or relaxation problem. The for-

: . ) mulation to be presented in this section will, however, be too
the convolution theorem for a product in the approximate

) ! complex to be dealt with practically. It will be too complex
form (2.16, we thaln the equations that are fundamental Qor two reasons. The first is that though we shall identify a
our further studies,

classical Hamiltonian system as a subsystem of the extended
mean-field theory, it has far too many degrees of freedom

d (even an infinite numbegrfor us to consider realistically.

i apaﬁ:[H,P]aﬁJrIa,g- (34  Thus, an essential element of the development will require us
to seek a canonical transformation to a phase space in which
we can separate off one or a few collective degrees of free-

Here’H is the mean field Hamiltonian dom from the full symplectic manifold. The second reason is
that we are also not equipped to treat in full generality the
quantum part of the problem, that will describe the time rates
of change of occupation numbers brought about by colli-
sions.

Vas(Q,P.a,P, ¥)=Voars505,(Q,P,q,p,»). (3.6 The problem of studying the Hamiltonian system will take
up most of the remainder of this paper. Orientation for the
study of this problem will be provided beginning in the next

The last term in Eq(3.4), often designated simply as the section.

collision term, represents, in fact, all the physics consequent Tuyrning then to the first part of our task, we introduce the
upon the inclusion of the two-particle correlation function diagonal or natural orbital version of the one-body density
c¢®, and thus not included in the mean field approximation.matrix,
In this sense Eq(3.4) is still exact.

We have already alludefs—11] to the theoretical and
practical advances that have been made in the study of the
problem of the collision term. Our purposes are best served
by reference to the treatment by Ayfik3]. He shows that in
a weak-coupling approximation the diagonal part of the col-
lision term (in the basis of natural orbitals discussed below where the|¢,) are a complete set of orthonormal functions
is the well-known collision term in the Boltzmann- and then, are correspondingly the occupation numbers for
Uhlenbeck(BU) equation, whereas the off-diagonal part pro-those orbits. As a consequence, we shall show in this section
vides the explicit two-body friction term in the equations of that the equations of motion can be decomposed into two
motion (as well as a change of the self-consistent field in thesubsets. The first, which describes the time rate of change of
general non-Markovian situatipn the single-particle basis, will be seen to have the form of

In the development that follows, we have chosen to neHamilton’s classical equations of motion, generalizing the
glect the off-diagonal collision term. This means that theprevious considerations at zero temperature. The second set,
remaining theory can only describe one-body friction. Theoften called master equations, describes the rate of change of
retention of the BU term leads nevertheless to a well-definethe occupation numbers brought about by collisions.
problem, which we treat only in several limiting cases. To obtain equations for the elements contained in the

It is only in consequence of the neglect of two-body dis-form (4.1), namely, the single-particle wave functions and
sipation that we shall be able to directly generalize our zerothe occupation numbers, we study this form in conjunction
temperature version of LACM to finite excitation energy. A with the equation of motior{3.4). For instance, we would
further extension to include the off-diagonal terms appears ttike to find the equation satisfied by the single-particle func-
be feasible and will be the subject of a future investigation.tions |¢,). Toward this end, it is convenient to consider an

HaB(Q!P!q!p!V):haﬁ+VaB(Q!P!qlp!V)i (35)

PZE na| ‘Pa)(‘Pa|v (4.7)
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infinitesimal change inp. To conserve the norm of the apparent that it is the occupation numbers that constitute the
single-particle functions, we have elements of the set, hitherto unspecified, on which the den-
sity matrix elements depend.
It remains for us to specify the dynamics of the occupa-
— * _
g @a)_t;a |P6)Obas  Orfa=—rap. (4.2) tion numbers. According to Egé3.4) and(4.1), we have the
equation

As a consequence, we can write 0
a

i dd_t:Ia(n’S)’ (4.8

3p=2, |b) 3 haNa—Np) (el + 2 |02)
b>a b>a wherein the right-hand side, the “collision term” is specified
as a function of the sets={n,}, s={s,a}. Together with
X O (Na—np) (@p|+ 2 |@a)ONa(@al, (43 Eq.(4.7) we have arrived at the following formulation: Mean
a field theory with collisions is equivalent to two sets of equa-
: : .__tions for the elements of the one-particle density matrix in
an expression that clearly separates off-diagonal and dlag?ﬁe basis of natural orbitals. One set, £47), describes the
nal contributions. y RN

: . . . . .rates of change of the orbitals and is of Hamiltonian form.
Let us first consider the off-diagonal pieces in an approxi-

mation in which we ignore the off-diagonal elements of theThe second, Eq4.8), is for the rates of change of the occu-
- ve 19 T gon Pation numbers. Together these independent elements define
collision term. This approximation underlies our subsequen

! : an initial value problem which describes the relaxation of a
treatment of the off-diagonal elements of the equations OL ctem of fermions initially perturbed away from eauilib-
motion and is an essential simplification. From E{4) Y yp y q

i . rium.
and.(4.3) we can therefore writétogether with the complex Most of the considerations that begin in the next section
conjugate relation

are concerned with making further approximation in these

d equations, in particular the Hamiltonian set, in order to bring

i —Tpa=Hpa, b>a, (4.4 them into a more useful form. None of these manipulations,

dt however, will change the fundamentals as we have just out-

) _ lined them. For the remainder of this section, we review and

and furthermore, wittW equal to the instantaneous Hartree- develop some important and useful properties of the formal-
Fock energy, ism.

1 In Sec. VI, we shall study transformations from the set
W=Trhp+ =TrTrpVp (4.5 (orr) to the preferre_d canonical se®(P,q,p). _Imagine for .
2 the moment that this has been done. For fixed occupation
numbers, we thus can consider=r(Q,P,q,p). Conse-
we have guently we can write Eg(4.4) in a more explicit form by
using

(4.6 dr,
dt

B oW _ oW 1
Opap  Oap (Np—Ng)

7_{ba

2=[Qdg+ Pdp+4dq+ pdpllpa=2d pa- (4.9

If we understand that the eigenvalugshave been arranged

in descending order and that henceforth we follow the conThis explicit form allows us to display the single particle

vention b>a (and thereforen,>n,), it follows that Eq. equations that determine the functiopsThe most general

(4.4) can be rewritten form consistent with Egs(4.4) and (4.9), from which the
former may be derived, is

_dspy W .
I dt = 53331 [ea_l/v+|2(?z]|‘Pa)ZH|€Da)- (4.10
This has the form of a constrained Hartree-Fock equation
0Spa= \Na=Npdrp,. (4.7)  with eigenvaluee,, andu is the chemical potential. Equa-

tion (4.10 can be derived from the variational principle
These equations and their complex conjugates demonstrate
that the off-diagonal elements of the equations of motion are
of the form of Hamilton’s canonical equations of motion for o W= ; €aNa(¢al ¢a) =0, (411
the complex canonical coordinateg, andisg,,.

Though this result is to some extent similar to what wewhere
have found previously at zero temperature, there are two
essential differences. The first is that the number of degrees
of freedom of the equivalent dynamical system is much
larger than at zero temperature, comprising particle-particle
and hole-hole pairs in addition to particle-hole pairs. Theis the constrained mean field enerd#, is the mean-field
second is that, as just shown, the Hartree-Fock energy servesergy defined in Eq4.5), and the variations are carried out
as Hamiltonian only at fixed occupation number. It is nowwith respect to the single-particle functions.

WEW_Ea: (‘Pa'na[_/“"'i.zaz“@a) (4.12
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For the special case of instantaneous local equilibrium of Under these conditions, as we now compute, the
the single-particle degrees of freedom, the previous considzonservation-of-energy condition will determine a relation-
erations may be supplemented by the requirement that wenip betweeng and Q that will serve as one of the driving
maximize the mean-field entropy equations for the description of the relaxation process. Thus,

from the vanishing of the right-hand side of E¢.15), by
S=-> nyIn(ny)—> (1-nyln(1—n,), (4.13  substituting Eq.(4.14, at the same time taking E¢4.17)
a a into account, we obtain

with respect to the choice of the occupation numbess 9E expl BE,)
subject to a fixed value for the constrained mean-field energy > Bga_a —az
W. This yields after a standard manipulation the expected : a 9Q [1+exp(B&)]° .
result B=- Q. (4.18
S |e24 ge 9E|  exp(BE,)
na={1+exdﬁ(5a_ﬂ)]}ila a 2 a(7,3 [1+exli,35a)]2
€a=(¢al H|@a). (4149 |n the strong collision limit, as we have defined it, this equa-

tion replaces the entire panoply of rate equations for the oc-

We consider finally the question of conservation of thecupation numbers.

mean-field energy. Using the equations of motidrv), we

find easily
V. CLASSICAL EQUATIONS OF MOTION

dw dn, WITH DISSIPATION
— = a0, (4.15
dt 73 dt A logical next step in the development might be the deri-
vation of the canonical transformation to collective and in-
_ trinsic coordinates that provides optimum decoupling of the
ca ha+% Vabatfl - (418 collective pairs Q,P) from the noncollective pairsg(p).
We postpone these considerations to the next section. In this

Obviously W is conserved if we ignore collisiondr{;/dt  section, we shall suppose once more that this step has been
=0). This will be one of the limits that we consider. carried out. We then use the resulting equations of motion to

On the other hand, it has been shol3] that the right-  “eliminate” the noncollective degrees of freedom from the
hand side of Eq(4.195 vanishes approximately even in the equations of motion leading to equations of motion for the
presence of collisions. This follows if one substitutesfigr  collective coordinates that contain explicit dissipative terms.
the usual form of collision term, namely the Boltzmann form This is by far the longest argument given in detail in this
with Pauli correctiongthe Boltzmann-Uhlenbeck fonmn  paper, leading to Eq5.40, even more familiar in the form
the approximation in which the sum of the single particle(5.41).
energies is conserved. Thus the total mean-field energy con- We thus turn to a derivation of the equations for a dissi-
tinues to be conserved even in the presence of collisiongative collective dynamics from*“first principles.” This is
which are responsible, nevertheless, for the exchange of eadso a subject with a long history. For a recent review with
ergy between the collective and non-collective degrees oéxtensive bibliography, sd@4]. We shall not attempt to do
freedom. any justice to this topic, but simply present the material in

It is a further stretch to assume that we can apply consetthe form that we require it.
vation of mean-field energy even in the strong-collision We suppose the full many-particle system, with all de-
limit, which we define as one in which, in a relaxation pro- grees of freedom included, to be described classically by the
cess, the system passes only through states of local equilibtamiltonian
rium. This requires, in general, that the equilibration time be
short compared to the period of the collective motion. In 1 ,
general, we may expect this limit to be valid, if at all, onlyat ~ H=V(Q,q,p)+ 5B"(Q,q,p)PiP;+A'(Q,q,p)P;.
high energies of excitation, whereas we know that the no- (5.1)
collision limit is valid at low excitation, where collisions are ’

suppressed by th? _Pau!l prlnmple. . Here, the lower casg andp refer to the noncollective vari-
The strong collision limit can be treated almost as simply

as the no collision limit. As will be clear from the discussion igﬁi;ggtwrlltjﬁ tﬁﬁirk: iiztegfolg?&eziAa?:-legfttiggoftuzoct%ns
to be given in Sec. VI, in this case the dynamic-thermal gie-p

; . : o So far, we have expanded only in powers of the collective
fﬁ;ligxgirzg%gl;ild is specified by values @f and 5, and momenta. The choice of variables in E§.1) can be con-

sidered to result from a canonical transformation at fixed
EAQ,B)=e— (4.17  occupation numbers from the variablsg,, isy, that have
been identified previously as canonical. Thus Exjl) can
will be determined as functions of these variables alone. Thibe viewed(to the second order iR) as formally equivalent
is a tremendous simplification compared to the general casé the original mean-field Hamiltoniaw for a fixed set of
where, as we shall see, the collective manifold is specified bpccupation numbers. Further details concerning the condi-
Q and the full set of occupation humbers. tions that determine the mapping
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s,=s,(Q,P,q,p) (5.2 time in the collective coordinates. As the number of noncol-
lective coordinates increases, we expect this recurrence time
are discussed in the next section. to increase. Beyond some point it becomes more sensible to

In order to be able to present our arguments as explicitltalk about friction and a relaxation timéor an analytically
as possible, we specialize the fofB1) to the small ampli- solvable model illustrating these concepts, $26].) The
tude approximation in the intrinsic space. In this approxima-procedure just described will be applicable in practice only

tion it becomes for especially simple systems or for systems with a finite
1 1 number of degrees of freedom for which the required initial

_ 4 Zgii P4 anb value calculation can actually be carried out. For such ex-
H=V(Q) 2 BHQPiP, ZVab(Q)q q amples, the “observed” flow of energy from the collective

1 to the noncollective degrees of freedom will show rapid fluc-
4+ Zpgab +V ay gai P.. (5.3 tuations owing to the high frequency components of the mo-
2B7(Q)Papy+Va(Q)a (QpaPi- 53 tion associated with the intrinsic degrees of freedom. On the

. ) o average, however, it will be unidirectional and thus corre-
HereV, andV,, are first and second partial derivatives\f  spond to an increase of entropy.

evaluated ag=0. The problem of determining the potential ~ Thys the source of dissipation lies in the relative phase
and mass coefficients that occur in this expression is préspace associated with the intrinsic coordinates and not with
cisely the problem of determining the canonical transformaipe coarse-graining procedure introduced beginning with Eq.
tion from the original form of the mean field Hamiltonian. (5 19, The purpose of the latter is to reach a smooth macro-
In the equations of motion that follow and any further scopic description of the dissipation, from which the fluctua-
manipulation of them we shall consistently and without ad-tjiopns have been suppressed by averaging. The procedure
ditional diSClaimel’S I|m|t Ourselves to terms Of the firSt Orderconsists Of e"minating the intrinsic degrees Of freedom from

in g andp. From Eq.(5.3) we thus have the equations of motion, going to the limit of a large number
L . of such variables, assuming a suitable distribution in fre-

Q'=B"P;+ B"“pa, (5.4 guency(white noise for the residual interaction between the
] collective and the noncollective coordinates, and then aver-

Pi=—Vi— V0% (6.5  aging. The final result is expressed in E§.40, which con-
_ tains not only a frictional force of the conventional type, but
9*=B*P;+B*py, (5.6)  additional contributions to the conservative forces arising
from the coupling of the two spaces.
Pa=—Va—Vard". (5.7 The arguments to be developed will be simplified consid-

. _ _ erably if we work only to the lowest nontrivial order in
Without further loss of generality, we introduce normal co- ai v andV,. This assumption is consistent with the

ordinates in the intrinsic space. This allows us to replace th‘f)rocedure by which we shall define the canonical transfor-

quantitiesB3° by unity and the quantitie¥,,, by wﬁ and  ation from s,,is* to Q,P,q,p, which assumes that for
suppose that all remaining force and mass coefficients refeg -

h . he distincti ~~'good decoupling to occur, these quantities must be small.
to the new cqordmatgs. The distinction .between covariang,om Eqgs.(5.6) and(5.7), we thereby deduce the equation
and contravariant indices now becomes irrelevant in the in-

trinsic space. Henceforth all such indices will be written as Ha= — w20at Xa(Q), (5.9
subscripts.
We cannot emphasize too strongly that to the approxima- Xa(Q)=—V,—BLV,, (5.10

tions consideredconvenient for the explicit derivations car-
ried out below, Egs.(5.4—(5.7) are completely equivalent with solution
to Eq. (4.7). Here the macroscopic paramet&'s, etc., are

functions a0 =P+ [(dt’ sinoyt—t) 2 (519
a ®
Bii =B”(Q,na)- (5.8 ° :
The canonical transformation that leads to E1) is carried (M = g,(0)coSw,t + Pa(0) sinw,t. (5.12
out at fixedn,, i.e., there are infinitely many such canonical Wa

transformations, one for each setrgf. Furthermore, in prin-

ciple, we can at this point study the initial value or relaxationInte@JratIngl by parts, we have

problem by adjoining the master equatiof@s8) to (5.4)— X, (1) Xa(0)
(5.7 Ga()=03" (1) + — 7~ — — 7~ CoSw,t
For a system with a finite number of degrees of freedom, @Wa @Wa
this might well be a practical and straightforward calculation. ¢ IX (1) .
An application of interest would be to consider a set of initial - f dt’ cosw,(t—t") ———Q'(t).
conditions in which all the energy was concentrated in the 0 Wa
collective degrees of freedom. We would then ask how, in (5.13

the course of time this energy is transferred to the other
degrees of freedom. For a small number of coordinates ovelor the intrinsic momenta, we can derive the corresponding
all, we would expect energy to reconcentrate from time toexpression
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Q'(t)=Qj(t)+ 6Q'(1). (5.20

This decomposition is defined by the requirement that the

There is, naturally, no explicit sign of irreversibility in Coarse-grain value ofQ' vanish, which we write as
these equations. We now consider the assumptions that will 50=0 (5.21)
lead to a simpléMarkov) description of dissipation. For this (6Q")=0. '

purpose we must form the surig,q* andB‘apa that appear On the other hand to the order of accuracy to which we shall
in Egs.(5.5 and(5.4), respectively. At this point we find it olve Eq.(5.15, i.e., to second order in ){he coupling be-

i irst-order ion ngl- . .
convenient o replace these first-order equations by seco ween the collective and noncollective spaces we shall also

order equations. Working to only first order @, we find  eed the value of
with the help of Eqs(5.5 and(5.7)

) t
pa=qgh>—Ba'Pi+f dt’ X,(t")coswy(t—t'). (5.14
0

ia

P (6Q'(1)8Q) (1)) #0. (5.22
Q'=BIP,+Bap,+

~kn — i Fiay _ ~iank
dQy Q*Pa=F'+F70.~ Gy’ Q"pa, To evaluate Eq(5.22 to the required accuracy, it suffices to
(5.15 take Q' in the form

_ _Riiy. _Ria _ _
Fi=—BIV,=BVa, (516 Q=3 [Qu(expiva)tccl, (529
Fla=—BivV,,—B" w2, (5.17) 4
where theQ} (t) are slowly varying functions of. [The
) JBia expansion(5.23 is initially subject to the criticism that the
Gl=- 905 (5.189  frequenciesw, depend orQ' and therefore on. It is, how-

ever consistent with our other assumptions to ignore the
We infer from Eq.(5.15 that Q' contains both the low variation over an averaging timgqy.] Arguing that at any

frequencies of the collective motion and the high frequenciedMe these functions take values that are randomly distrib-

of the non-collective motion. For a macroscopic description/t€d in magnitude and sign, we can compute the correlation

of the collective motion, it is appropriate to coarse-grain in(5'22’ assuming that only coherent sums survive, namely,
time. For this purpose, we assume that we can choose a time

7o, whic_h relative to_a timerc, charac'ger_istic of the_,- cqlle_c- <5Qi(t)5Qi(t)>: 5”2 2|Q;+|2. (5.24)
tive motion, and a timeryc characteristic of the intrinsic a

motion, satisfies the inequalit
q y We shall need both Eg$5.21) and(5.24) for what follows.

TNC< TO<TC . (5.19 We note that the approximation

pnder these conditions, if we average E515 over a time 'Qi(t):'QiO(t)Jrz (i waQ;+(t)epr(iwat)+c.c.),
interval 7o, the terms depending on the frequencies of the a
collective motion alone are essentially unaffected. (5.2
The existence of times satisfying E¢.19 is subject to N
serious question, particularly because of the influence ofvhich neglect€Q;_ (t), will also be needed below.
avoided level crossings as the system evolves in shape space,Before entering into the details of the time-averaging pro-
i.e., as it traverses the collective manifold. But this problemcess, it may serve the reader to remark that the end result of
also arises for the treatment of collective motion at zero temeur manipulations is Eq5.41), which contains both conser-
perature. The answer lies not in the single-particle spectrunaative forces and frictional forces. As explained above, the
but in the spectrum of the local harmonic equation derived irsource of friction does not lie in the time-averaging process
the next section. There is no basis for introducing the conper sebut in the fact that there are many intrinsic degrees of
cept of collective motion for a system unless one or at mosfreedom, and that energy initially in the collective motion
a few frequencies are low-lying and separated by a gap frorwill flow out (on the averageand not return to this mode in
the remaining frequencies. This gap, in the nuclear case, imacroscopic time. What the averaging does is enforce a
unlikely to be more than an order of magnitude under opti-smooth description of this dissipative process. The conserva-
mum conditions, not leaving much room, it appears,fgt  tive force is a sum of three types of contributions—the
We believe that it is incorrect, however, to associate the resmooth given forces on the collective manifold, the smooth
ciprocal of this gap withryc. To obtain a conventional fric- forces arising from the interaction of the collective modes
tion tensor, it is necessary to assume a very broad distribuwwith the low-frequency motion of the intrinsic coordinates,
tion of frequencies characterizing the interaction between thand the time-averaged effect of the high frequency fluctua-
collective and the noncollective coordinates, peaked at a fretions. Thus some effects of the high-frequency fluctuations
guency which is more properly identified with ¢4/). The are present, but how to connect this with our treatment of
following derivations require that this assumption on timedissipation remains an open question.
scales be valid. We turn to the evaluation of the time average of Eq.
To understand what happens to the high frequencies, wg.15), with the aid of Eqs(5.13 and(5.14). It is this aver-
assume tha®'(t) can be written in the form age which will be utilized for the study of the classical re-
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laxation process. The values @, that enter in this calcu- L 9 Xa(t) , ,
lation will be derived subsequently. Consider for example g F (t)—wz—ﬂf do®j(w,t,t"), (5.33
the term a

Where<b} , though necessarily an integrable distribution, is a

JIF! 2F! i i
Fi Fi + 2 _s0i+ = 501 50K+ - very broad, slowly varying function ob. For the purposes
(Q=F(Qu) Frol Q 2 9QdQ Q'aQ 5.26 of evaluating the integral oven (which we now do first,
5.2
When we average ovér utilizing Egs.(5.21) and(5.24), we i(t,t")= Jo dw cosw(t—t")Pj(w,tt"),  (5.34
find that Eq.(5.26) reduces to
e e we further assume that we can tre@f,— as a function,
FlsF'+Flye e 1 : : - :
ue, Aj(t,t"), of the times alongwhite noise assumptionTo
this approximation we have
i 2 _ _
Ffluc,l 2 (92QJ E |Q +| . (527) |]=77A;(Q(t))5(t_t’) (535)

Here and below, it is understood that after the arrow the rom these considerations, we then conclude [Ré
quantities that were functions @' are now functions of

Qp., but we henceforth drop the subscript. The second term (Q)— TrA'(Q) (5.36
of Eq. (5.27) represents an additional contribution to the
force arising from the high frequency fluctuations, since as
we shall see below, the quantiti€¥,, are driven by the
amplitudes of the noncollective coordinates. Below, we shal
find additional contributions having their origin in the high
frequency fluctuations.

We have finally to consider the last term in E§.15), in
hich we insert Eq(5.14) Discarding a term of second order
n the collective velocity, we have

The evaluation of the next term of E¢.15 yields the -2 GPQip,=—2 GPQia" (1)
result a a
F'ax F'ax.(0 +J dt’ cosw,(t—t")X (t’)}
S Fig,=3 Frgl+ 3 T3 T8 cosuyg S
a2 Ya (5.37)
X (t ).

. (9
—g F'af dt’ cosw,(t—t') Qi(t") —>Fiﬂuc,3_7:}2Qj- (5.38

(5.28 Here]—"'2 can be defined in analogy tEJl, Eq. (5.36), and

—Fiye ot OFi— FjQL. (5.29 Fiuss=— 2 GPoX(@QL,q(0)+cc). (5.39
a

Here the time averages of the first two terms of Eg28),

which follow by arguments already given, are represented by Collecting results we obtain our final form for the collec-
the expressions tive equations of motion

! iar ol '=F 4+ SF + Fl o~ F 5.4
Fhue2= > 20;F[QL,qy"(0)+c.c], (530 Q'= e~ FiQl, (5.40
) where the first term on the right-hand side of E§.40 is

Fiay defined by Eq(5.16), the second by Ed5.31), the third is a

5Fi:E ’ a (5.30) sum of three terms given by Eg&.27), (5.30, and(5.39,
a W3 and the dissipative term is a sum of two terms defined in Egs.
(5.36 and (5.38. In addition to the frictional force, which
o o <h>( ) was expected, we see that there are two contributions of
(0)_ (0)+i—— (5.32  second order in the coupling between the collective and the

noncollective spaces that contribute to the conservative

Remembering that we are working only to the second ordeforce. One of thesef g, depends on the initial conditions
in the collective-noncollective coupling the time average offor the noncollective variables, more particularly on three
the third term vanishes, since the quanft}X,(0), evalu-  quadratic forms in these values.
ated atQ,, is already of this order. Finally we must consider  If we write Eq.(5.40 in the form @;; is the mass matrix
the origin of the friction term, which requires an additional inverse toB')
argument.

To extract a frictional term without memory, we proceed BuQ — V- ]:.JQ’ (5.4)
as follows. We assume that we can replace the sumabegr ‘
an integral ovew, Fij=BiFj, (5.42
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thus defining the potential energy, of the conservative VI. DECOMPOSITION OF MEAN-FIELD HAMILTONIAN
forces, we can associate the expression INTO COLLECTIVE AND NONCOLLECTIVE PARTS

1. The considerations of the previous subsection were based
EMzzBijQ'QHLV(Q) (5.43 on transformation of the mean-field Hamiltonian into the
form (5.3) together with the associated equations of motion
with the mechanical energy of collective motion. The dissi-(2-4—(5.7). In this section we describe how this transforma-
pative terms proportional td lead to a loss of mechanical tion can be effected. The procedure is an extension of the

energy for which we obtain the standard energy-flow equag:alculations carried out at zero temperature, as we shall de-
tion scribe. As has already been emphasized, the transformation

will be based on the identity
.EM:_]:ij.Qi.Qj. (544)

It remains only to show that the first-order Fourier coef-
ficients, Qy. (t) are proportional toqg'IZ(O). In fact, it is  To determine the transformation implied by E®.1), we
straightforward to derive in lowest order from E§.15 the  could invoke the full machinery of LACM described in Refs.

H(Qipiqip!na):W(Sa(Q7P1q1p)=Sz'na)' (61)

equation [3,4]. In the following, however, we shall utilize an approxi-
) o . mate form of one of the methods described in these refer-
— 03Qh: = —QjQ, +L7qY)(0), (5.49  ences, the local harmonic approximatirHA), which is
_ . fully described below.
Qj=—9F', (5.49 The procedure is to reexpress the equations of motion

(4.7) by writing for the left-hand side

La=F2+iw,GPQl. (5.47) . .
5,=[Q'dq+Pidp,+a*dqa+ Padp_]Sa (6.2
Formally, we have therefore
[ and then substituting in this expression the equations of mo-
Liag"(0). (5.48  tion (5.4—(5.7). On the right-hand side of E¢4.7), we ex-
i pand in powers ofP*q'p™, with k+I+m=<1 and then
] o . equate corresponding powers on both sides. The resulting set
The solution(5.48 can be made more explicit by diagonal- of equations contains the density matrix nonlinearly. How-
izing the matrix{}. S _ever, for the determination of the off-diagonal density matrix

The study of Eq.(5.40 for some simplified models is anq of its first derivatives with respect @ andP at a given
under way. As it stands this equation is not yet well-definedyint, the equations derived thus far do not suffice. The nec-

as a macroscopic equation, sirfeg,. depends on a given set essary additional equations are provided by differentiating
of initial conditions for the noncollective coordinates. To the equation of motion with respect ®' (n, fixed) and

have a result that depends only on the collective coordinateggfterwards settinP=Q=p=0. In order to obtain closure
we shall have to introduce a further averaging over a distrifrom this step, we must, in general, ignore second derivatives
bution of initial con.dltlons'of the noncollective coqrdlnates of s,. The resulting set of equations then contains only ze-
(or, more pragmatically, incorporate the fluctuation forcergth and first derivatives of the density matrix. By extending
phenomenologically intdF'). The quantities needed for the these considerations, a procedure can be formulated for in-
computation of the results developed in this section are aU:Iuding second and higher derivative&inder the special
obtainable, in principle, from the theory explained in Sec.circumstances of a point canonical transformation, we have
VI. Actually carrying through the manipulations for a realis- eyven showr{3], using established geodesic properties of a
tic model would seem to require some simplifying assump-ecoupled manifold, how to eliminate the second derivatives
tions for the distribution of matrix elements coupling collec- that occur in favor of the first derivatives, and thus obtain
tive and noncollective variables. closure at this point. We shall not pursue this possibility
Given Q'(0) andQ'(0), Eg. (5.4 allows us to discuss here)

the relaxation of the collective mechanical degrees of free- Let us now recall the role of the master equations in our
dom. Here we must remember that the macroscopic paranapproach. Together with E¢6.41) they determine how, with
eters in this equation also depend on the occupation nuna given set of initial conditions fam, and for the mechanical
bers, and therefore the problem is not well defined as awariables, the system will move through a subspace of the
initial-value problem until we adjoin the equations of motion collective manifold. Any special choice of master equations
for the latter, the so-called master equations. We have als covered by these remarks. However, for the two special
ready mentioned the two special cases of master equatiossenarios that we have proposed, the limits of weak and
that can be treated with relative ease. If we assume that therong collisions, the possible set of points that can be tra-
occupation numbers remain fixed, we are studying what weersed in the collective manifold is preassigned to a one-
define as one-body friction. The other case considered, idimensional subspace of the occupation number space. In
which the system relaxes through a sequence of states €dct this was one of the principal motivations for introducing
local equilibrium, can be considered the strong-collisionthese special cases. It allows us to evade the impossibly dif-
limit. Further discussion of these scenarios will be found inficult task of constructing the entire collective manifold and
Sec. VI. to replace it by a feasible calculation, albeit a different one in

QLH— =

1
Q—waz
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detail for the two special cases. We shall return below to a What we actually want is a canonical transformation that

further elaboration of this point. minimizes the coupling between the collective and the non-
Returning to the technical development, we introduce thesollective spaces. For the spectroscopic problem studied pre-
definitions viously, the object was clearly to obtain, upon quantization, a
Hamiltonian describing a well-developed collective spec-
9= dqi, (6.3 trum, weakly coupled to the remaining Hilbert space. For the
transport problem studied in this work, minimizing the cou-
Ja= dga, 6.4 pling between collective and noncollective spaces allows us
P ©6.5 to treat dissipation by perturb_ative means. _Th(_a decoupling
Py ' requirement, when translated into the quantitative terms re-
a viewed below defines the collective manifold. The latter is a
9°=dp» (6.6) geometrical object; the choice of a coordinate system is ini-
_ tially a matter of numerical convenience. For example, in the
do=—V;d' = Vad?, (6.7 treatment of the low-energy spectrum388i[4], oura priori
1w i prejudice was that the collective coordinate should strongly
J1=Bl9,+B"4,, (6.8)  resemble the quadrupole moment. However, the algorithm
A used to solve the problem produces a “dressed” collective
9*3=B9;+ B3y, (6.9 variable that is a mixture of multipoles of even order. Nev-
_ j b ertheless, when the calculation is done, we have a single-
d21= = Vijd =Vipd", (6.10 particle density matrix defined over the collective manifold,
Opa= —Vaj&j V. 6.11) and thus we can calculate any one-particle physical quantity

of interest.

In terms of these definitions, we now record the equations, At zero temperature, the decoupling requirement dictated
(6.12 and (6.13, that follow from the expansion described the further imposition on the transformation of the so-called

in the second paragraph of this section plus the additiondirst order decoupling conditiong3]. These are the condi-
set, Eq.(6.14, needed for the formulation of a local har- tions that the terms in the classical Hamiltoni@&n3) linear

monic algorithm, in g andp vanish, namely,
Vv =9,W= +9,SF dor W= .
ssum—i Ve s, 612 a(Q)=0W=[ 08,05 + 3aSh s IW=0,  (6.20
(9801 . .
B2'=¢29'W=0. (6.21
I™s,= —i[M4p0"sg+ L 450"} ], (6.13
Because of the complete analogy in the Hamiltonian struc-
02,Sa=—1[M ,5d,S+ La,gﬁ,LSZ], (6.149  ture, we now argue that the same conditions provide an ex-
tension of the zero temperature theory to finite excitation
P*W energy. What we must admit is the additional complication
aﬁ:m, (6.19  that arises from the fact that the collective manifold depends
not only on the collective coordinat€¥ but on the assigned
92W values of the occupation numbers. At zero temperature, the

(6.16  occupation distribution is that of a Fermi sphere. This distri-
bution remains fixed as we map out the dependence of the

where it is understood that all quantities are functions only of-0lléctive manifold onQ, though at each point the Fermi
Q and of the occupation numbers, and in which we havdlistribution refers to a different basis of single-particle states.
combined the sets anda into a sing’le index sefz. To the In the local harmonic method, the construction of the col-

above we adjoin the complex conjugate set. Explicit formu-€ctive manifold at an arbitrary value @ involves an itera-
las for S,M,L are given in Appendix C. tion between Eq(6.12 and the local harmonic equations

We now ask what, if anything, is actually determined by (6-13 and (6.14, both simplified by the conditions5.20
the above set of equations. Without further restriction they?d(6-21. This procedure, as described, for example, in Ref.
are identitiegto linear order in all variables b@) satisfied 4} 1S initiated at the point of dynamic equilibrium, where
by any canonical transformation from the original to the new the constrained Hartree-Fock conditions reduce to the uncon-
set of canonical variables. For example, any transformatiogtrained limit and decouple from the local harmonic equa-
satisfying the Lagrange bracket conditions tions. We thus have at this limit an ordinary Hartree_—Foc_k
calculation and a separate random phase approximation

Lop=——,
B osk gt

aﬂsa&”s’;—a”saaﬂsz:—mg‘, (6.1 (RPA) calculation. The solution at this point provides the
starting values for an iterative treatment for a nearby non-
ﬁMSaﬁys’;—ﬁysa%SZ:O. (6.18 equilibrium value_. Contin_uing in this manner, we bootstrap
our way from point to point.
9", d"SE — 3's, 0 sk =0, (6.19 For the corresponding problem for finite excitation ener-
gies, it is natural to choose a point of thermodynamic equi-
will automatically guarantee the satisfaction of E@s12—  librium as a starting point. At such a point the problem re-

(6.14). duces to the solution of separate standard thermal Hartree-
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Fock and thermal RPA problemi27—-30. We suppose that and (6.21) exactly (except for the singular case of exactly
the system has been put into contact with a heat bath to fidecoupled motion when there is no dissipatioAs ex-
the initial temperature. We thus obtain a starting set of ocplained below, the transformation found will, however, allow
cupation numbers of the forif#.14). the evaluation of the quantities that occur in these conditions.
If we now move away from equilibrium to construct a Their non-vanishing values are, as we have seen in the pre-
general manifold suitable for the study of transport phenomvious section, essential to the development of dissipative be-
ena, we face a general problem of daunting proportions if wénavior. Thus all the quantities in the Hamiltoni@h3) can
wish to obtain the dynamical parameters for arbitrary valuebe evaluated.
of occupation numbers. For this reason, as already empha- The formulas required are obtained by inserting the solu-
sized, we have chosen to study two limiting cases of possibléons for the density matrix and its various first derivatives
physical interest, each corresponding to a one-dimensionahto an expansion of the right hand side of Ef.1). The
subspace of the space of occupation numbers. One limit isimplest example of such a calculation is the potential energy
that of collisionless motion, corresponding to fixed occupa-
tion numbers(in the local coordinate systénand one-body V(Q)=W(s,(Q,0,0,0,s} ,n,). (6.24
friction. For this case, the formal problem is the same as at
zero excitation energy, since we deal with a case of fixedV
occupation numbers as we explore changes of the collective SW
variables. The set of occupation numbers is that determined Va(Q)=09,W= ——4,S,+cC.C., (6.25
at equilibrium at a fixed temperature. The resulting manifold ISa

is thus constructed from a series of collective paths Witr\/vhere the right-hand side is evaluatedrat q=p=0. The

fixed entropy. Technically, this problem is more _dlfflcult remaining parameters that we need are all second deriva-
than the zero-temperature problem because of the increaseif).q

the number of degrees of freedom of the Hamiltonian sys-
tem. 9*W 9*W

The other limit is that of two-body collisions establishing B*”=d*3"W= 9#84,0"sp+ Wﬁ”saﬂvs’,& +c.c.,
local thermodynamic equilibrium on a time scale small com- *"=B (6.26
pared to that associated with the collective motion. For this '
limit it is convenient, technically, to calculate collective where we havéconsistently neglected second derivatives of
paths at fixedT, where each point is associated with anthe density matrix. In order to evaluate E§.25 and all the
occupation number distribution of the ty|§é.14. We start  elements of Eq(6.26), it is evident that we need all the
the calculation again at a point of thermal equilibrium, nowsolutions of the LHA equation.13 and (6.14), and not
keepingT fixed as we chang®. [This calculation is not to  only the collective ones that play a special role in the self-
be confused with what happens in an actual relaxation proeconsistent calculation.
cess, wherd will change with time, as forced in partby Eq.  We review briefly the properties and solutions of Egs.
(4.18.] Thus, as opposed to the collision-less regime, we6.12—(6.14). When the decoupling conditions are enforced,
want the solutions of the LHA only at points where the oc-these equations simplify to the forms
cupation numbers satisfy E@4.14), with local values of

ext in complexity is the first derivative

S49S4

single-particle energies and chemical potential, adjusted as —Vi&‘sa= —iS,, (6.27)
part of the calculation. - _ _

The submanifold of occupation numbers for which we BY9js,=—i[Mpd'sg+ Lpd's], (6.28
construct solutions can be thus be characterized as follows. .
In the collisionless case we have, zero referring to equilib- —Vjjd's,=—i[M,zd;Sg+ Laﬁ&is’/g]. (6.29
rium,

They can be simplified further by the consistent assumptions
N;=N,(Qq,To). (6.22  thatM andL are real symmetric matrices and that the partial

derivatives are either real or imaginary,

SinceQo=Qy(Ty), this is a one-dimensional subspace with
a given entropy. In the strong collision limit Jisk=4a;s,, (6.30

a

na: na(QiT)v (623) &iSZ/: _&isa. (631)

by maximization of the local entropy guarantees that for eachow consists of the constrained Hartree-Fock equaBaRY)
Q. we have replaced the saf, by the single variableT,  angd two equivalent eigenvalue equations obtained by com-

defining the local equilibrium. In principléthough not in bining (6.28 and (6.29, of which one is
practice nothing prevents us from calculating the entire

manifold of canonical transformations and then identifying —(VB){ajsa:[(L—M)(|_+|\/|)]aﬁ(9isﬁ, (6.32
the two special subspaces afterwards. '

Before continuing with the technical details, the most im-and the other, fo#'s,, is the transpose of E@6.32. This
portant additional point to keep in mind is that after we com-implies thatVB and BV have the same diagonal forfif
plete the algorithm to be described below the solution foundhere are no degeneracies, as we asguiifeese eigenvalue
will not, in general, satisfy the decoupling conditiof@20 equations plus the corresponding Lagrange bracket condi-
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tions are equivalent to the eigenvalue problem of the thermal The practical end of our labors is a set of classical equa-
RPA[27-30, but in our case the theory applies outside oftions of motion(5.41) for the collective coordinates that in-
thermal equilibrium. cludes necessary dissipative parameters to describe the relax-
As emphasized previously, the solution of the system obation of a perturbed collective subsystem and the leakage of
tained utilizes an algorithm of the same general structure asnergy to the noncollective degrees of freedom. We consider
required at zero temperature, a procedure that has been déis equation now for a single collective coordinate,
scribed in considerable detail in our previous w4 and
will not be repeated here. The solutions of the eigenvalue B(Q,ny)Q+FAQ,n,)Q+ JoV(Q,ny)=0. (7.1
problem automatically satisfy the homogeneous Lagrange
bracket equations, whereas the inhomogeneous brackets prfyjs |ooks like an ordinary Newton equation with a friction
vide normalization coqdltlons. The squ.t|_0n_ procedure iSterm, except that the macroscopic parameBers depend on
usually started at a point of thermal equilibrium where theyhe yajue of the collective coordinate, and there is a residual
Hartree-Fock equations decouple from local harmonic equaquantum aspect in that they also depend on a set of occupa-
tions. At a general point, the algorithm requires an iterationtion numbers of single-particle orbitals. There are two as-

between the co_nstraine_d _Hartree-Fock equations and the §lects of this equation that have been discussed. How does
genvalue equations. This is the essence of the local harmonie derive it? How does one use it?

approximation. , o _ By far the major part of the discussion has been devoted
As remarked earlier, we are confining our attention to tWoig the first question. Consider a fixed setrof. (At zero

cases. If, starting from equilibrium, we keep the occupationemperature, these are the usual values 1 and 0 defining a
numbers constant as we chan@e the analogy with the gjater determinant. At finite excitation energy, the first

calculation at zero temperature is rather.complete. If, on th%hoice is a set of occupation numbers for equilibrium at
other hand we keep the temperature fixed, at every pointome finite temperatuseFor such a single choice, the deter-
there is the addltlonal task of flndmg self-con5|st_ent values ofyination ofV and B, as described in Sec. VI is in its essen-
the occupation numbers. This type of calculation was alsjg|s the same as at zero temperature, as summarized by the
required for thermal Hartree-Fock. As a final observation, a$nrase local harmonic approximation. This allows us to cal-
we have implied all along, it is possible to move out from thec|ate the first line of the transformed Hamiltonian, E53).
one-dimensional subspaces of fixed occupation numbers, ift e are interested in leading corrections, we also calculate
effect to change, for fixed Q. We first set the second line. But in previous work we have ignored the
existence of the third line which describes the coupling be-
tween the collective and the noncollective degrees of free-
dom, that will be non-zero unless there is exact decoupling.
To include both the second and third lines, we need a com-
whereW is the full Hartree-Fock energy artd is the clas-  plete set of solutions of the local RPA equati@32. For
sical expressior(5.3). Equating powers oP, p, andq on  example, given such solution§/,(Q) can be calculated
both sides of this equation yields microscopic expression§om Eq.(6.20 and there are corresponding formulas for the
for the first derivatives of the various force and mass coeffi-other quantities needed in the subsequent development.
cients with respect tm,. Such formulas could be used to At this point, we could, for a fixed set of, simply study
extend the study of the relaxation problem away from thethe classical equations of motia®.4—(5.7) as an initial
limiting scenarios. value problem. Of most interest would be the case that the
We summarize the argument developed in this sectionhitial energy is all in the collective motion. This study is
Given the mean-field Hamiltonian at finite excitation energy,feasible if the total number of degrees of freedom is not too
we have described a method for introducing an optimal degreat.[We are undertaking such a program for models in
composition of the total space into collective and noncollecwhich the Q,P,q,p) basis is known.
tive coordinates. In general these spaces will not be exactly On the other hand, E¢5.41) refers only to a very special
decoupled, but as a result of the actual calculations, we calimiting case in which the interaction strength between col-
evaluate the coupling terms. In other words, we can findective and noncollective degrees of freedom is distributed
explicit forms of Eqs(5.4—(5.7) and from these project out over a very broad spectrum of oscillator energies, one that
the collective subspace that leads to a dissipative dynamicean be approximated by white noise. There is no guarantee
the procedure described in detail in Sec. V. that a chosen model will have such a property, though again
we may choose to study one in which such a property is
imposed. What is involved in the calculation of the frictional
force can be seen most simply if we ignore the fluctuation
In this work, we have introduced a new method for theanalysis that consumes much of Sec. V. Then for the pur-
study of large amplitude collective motion, including dissi- poses of calculatingF, the essential steps associated with
pation, in an extended Born-Oppenheimer approximationobtaining the consequences of the white-noise assumption
Though to start with it is a quantum formulation that carriesare Egs.(5.33—(5.37). From these we see that at least in
us outside the framework of mean field theory, we have up tgrinciple F can be obtained from aab initio calculation.
the present worked out the details only within teetended Given Eq.(5.41), how then do we use it? The simplest
boundaries of mean field theory. This means that we havease is that of true one-body friction. Here the large manifold
neglected two-body dissipation, though we anticipate that thef values of Q,n,) is indeed restricted to a two-dimensional
methods developed can be extended to include this case. manifold of values whera,=n,(T), with T a set of equi-

(?W(Sa VSty vna) (9H
an, S oong’

(6.33

VIl. SUMMARY AND PERSPECTIVE
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librium values of the temperature. Disturbances away fronthe states¥)) of the thermofield theory is equivalent to the
equilibrium are assumed to take place with fixed i.e., at  standard formalism of the density matrix
constant entropy. Here E¢6.41) by itself defines an initial-
value problem. We have also described a relatively acces- ~ * , ,
sible second case in which relaxation occurs through points D=tr{|\lf)>(<\1f|}=|n); CriCarN [ =IM)Dan{n’l,
of local thermodynamic equilibrium. Here the solution of the (A5)
relaxation problem requires the joint consideration of Eq.
(5.41) and of Eq.(4.18), describing how the local tempera- wherermeans the trace over t@‘espace. This indicates that
ture changes with time. Studies of these two cases for simplgll three pictures, thermal states, thermofield theory, and den-
models are in progress. sity matrices are equivalent.

The formalism developed in this paper allows in principle  Next we try to express the collective decoupling in the
an extended scenario in which we would couple Eg41)  thermofield representation. The collective space is doubled
with a more general equation for the time rate of change OrQ7Q))=|Q)®|Q) and similarly for the intrinsic space. A

the occupation numbergnaster equationseither phenom-  re intrinsic statétemperature Pwould then read
enological or involving a Boltzmann-Uhlenbeck collision

term. A major complication is that we would have to study = 1 1A A 7

the collective manifold over a multidimensional space of the 1Q.QNIFf1I=[Q.Q)If]@f], (A6)
n,, though we might try at first to limit ourselves to a small and a mixed state becomes

neighborhood of one of the limiting cases. Beyond that

would be the inclusion of two-body friction. ~ ~
¥)=1Q,Q)) > arlfle[f]. (A7)
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APPENDIX A: FURTHER DISCUSSION OF THERMAL L . .
STATES. RELATION TO THERMOFIELD THEORY which is exactly the expectation value in the thermal state.
We thus can establish the equivalence
The thermal state has a remarkable similarity to the state
in thermofield theory, see, e.g31]. The thermofield theory - ~
can be summarized as follows: One produces a copy of the |Q)§ |f]aff’[f,|E|Q-Q))% arlf,f]]. (A1l

Hilbert spaceG with states|y) yielding the G space with
statesﬁb). The full space is the product® G. A basis inthe  This equivalence encourages the following set of observa-

full space can be constructed from the product states tions.
(2) It links the new development of the “thermal states”
In,Ti))=[n)®[T), (Al)  to the old and well settled concept of thermofield theory.
) This gives confidence that the present thermal representation
and a general state is expanded as is useful and reasonable.
(2) It shows that the “thermal states” are fully equivalent
|W))=> c.zn,A)). (A2) to density matrices because this equivalence has been estab-
nnh lished long ago for the thermofield states. It is a matter of

taste and experience which of the various representations one

Consider now an observable from the physical Hilbert SpaCeprefers. The thermal states look closer to pure states and thus

Aeg. Its expectation value becomes allow one to work out all steps in sort of a Hilbert space
picture.
{|A[FY)= Dpn(n’|A|nY, (A3) (3) The “thermal states” seem to be simpler because one
nn does not need to double the Hilbert space. But this limits the

range of applicability, as shown by the following points.

(4) The “thermal state”|Q)d"2 cannot be used in a linear
superposition, as, e.gfdQ|Q)d"’g(Q), because thd*?is
~ related to a bilinear object. Thus the “thermal states” are
where it is obvious how the averaging o¥gspace produces ysed in this work only as a pathway tosamiclassical dy-
a mixed ensembl®,, in G space. The expectation value namicswhere one has only on@ at one time, i.e., in a
holds for every observabld. Thus the formalism utilizing dynamics which is expressed solely in termsQgf), etc.

Dnn/:; CnﬁC:;ﬁ ) (A4)
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APPENDIX B: ALTERNATIVE PRESENTATION To use these last ideas in the equations of motion, we
OF GENERALIZED KERMAN-KLEIN METHOD define a thermal single particle density matrix

FOR FINITE TEMPERATURE
_ p(aA|BB)=traja,Da’Dy?. (B5)
In the body of the paper we have developed a version of a
generalized symmetry-preserving equation of motion method The thermal version of the Kerman-Klein equations fol-
for mixed states, applicable to transport phenomena as welbws from the assumption of the validity of the factorization
as to thermal equilibrium. In the brief account included here,

we describe an older previously unpublished argument for,_ 212 1
such a generalization restricted to the case of thermal equilf 22532330 Dp =5[p(BA|¥C)p(aC|sB)— ()

librium.

Let X be an arbitrary operator. We contrast four physical —(a=p)+(y—=d6,a=p)], (B6)
situations. ) ) )

For the study of the ground stai6) at T=0, the relevant which can, asin the text, be augme_nted into a formally exact
quantity is expression. The present construction, though sufficient for

the formulation of an equilibrium statistical mechanics, is not
(0]X]0)=tr XPy, as general as that proposed in the body of the paper.
Po=10)(0]. (B1) APPENDIX C: EXPLICIT FORMULAS FOR THE LOCAL

S . HARMONIC APPROXIMATION
For the study of thermal equilibrium at finite temperature

we replace Eq(B1) by (grand canonical ensemble In this Appendix, we give explicit formulas for the quan-
tities S, L, andM that appear in Eqg6.12—(6.16 and play
(X)= tr Xexp(—pBH") an essential role in the formulation of the local harmonic
trexpg(—BH') ’ approximation. These quantities can be evaluated starting
from the mean-field Hamiltonian using formulas given in
=tr XD, Sec. IV. Notice that the index: actually refers to a pair
(b,a), b>a. Recalling, in particular, the definition®.15
H' =H-—uN. (B2)  and(6.16), we find
Though usually left unspecified, this formulation contains Spa= mea, (C1)

the assumption that the transfer of any energy to the system
raises its temperature.

By contrast the Kerman-Klein theory contains the implicit
assumption that we are dealing with a system that boasts an
ensemble of coldcollective) states described by a Hamil-

_ N *
Mbadc_ dcba

[Hbdaca(nc_ nb)

B \/(na_ nb)(nc_ nd)

tonianH and labeledA),|B), . . . . Thefundamental role is
played by the transition matrix element — Headap(Na—Ng) ]+ Vpeagy(Na— Np) (Ne— Ng),
(B|X|A)=tr XPag, (C2
Pap= |A><B| (B3) Lbadc=Ldcab

A comparison between Eq&B3) and (B1) suggestshat
an appropriate generalization of E®2) is

[Haadcb— HbcOdal

~ 2V(Na— o) (Ne—ng)
X[(na_ nb)_(nc_nd)]

D,= exq_B(H_HC_MAN)]PA (B4) +deac\/(na_nb)(nc—nd). (Cg)
A trexd —B(H—He—paN)1Pa’

((B|X|A))=trXD¥?D1?,

It is easily seen that in the zero temperature limit, when the
HereD, is a mixed state that is pure with respect to theoccupation numbers correspond to the choice,a)
collective state|A) (whose projection operator i®, and  —(ph), n,=0,n,=1, that the matrices reduce to pieces of
whose chemical potential ig,) and a grand canonical en- the well-known RPA matrixM to the Tamm-Dancoffshell-
semble with respect to noncollective excitations. Since it is anode) matrix andL to a two-particle, two-hole matrix ele-
positive definite operator, a positive square root is a welliment ofV, associated with the inclusion of ground-state cor-
defined concept. relations.
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