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Self-consistent theory of large amplitude collective motion at finite excitation energy
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We formulate a theory for the transfer of energy from collective degrees of freedom to internal degrees of
freedom when the former belong to the adiabatic large-amplitude regime. The framework is that of an extended
mean-field theory including dissipation, with the following salient features:~i! The Born-Oppenheimer ap-
proximation is extended to finite excitation energy by the introduction of the concept of thermal state, that is
pure with respect to collective coordinates and a~square root ofa) density matrix with respect to internal
coordinates.~ii ! By assuming that these states form an approximate complete set for application of the Kerman-
Klein method, the self-consistent theory of large amplitude collective motion is extended to finite excitation
energy.~iii ! The mean-field limit is taken, and further study is carried out in the basis of natural orbitals that
diagonalizes the one-particle density matrix. In the approximation maintained uniformly in this work, the
equations of motion for the orbitals are shown to be of Hamiltonian form; to these are conjoined the master
equations for the time rate of change of the occupation numbers. The latter are studied in two extreme limits.
In the collisionless limit, dissipation still arises from the response of the mean field to the collective motion
~one-body friction!. At the opposite extreme, collisions are assumed to be so effective as to force the system
always to be in a state of local~constrained! equilibrium. ~iv! We review a procedure by which the noncol-
lective variables in the Hamiltonian may be eliminated, leading to equations of motion for the collective
variables with dissipative terms that in general depend on the history of the system. The limit of instantaneous
friction can be justified in an adiabatic approximation.~v! A decoupling procedure is developed for deriving
the form of these equations of motion from the mean-field theory, with the ultimate aim of obtaining the
macroscopic parameters that appear in the classical equations of motion for the collective variables. This
procedure generalizes that developed in extensive previous work on large amplitude collective motion at zero
temperature.~vi! Associating the dissipative equations of motion for the collective variables with one of the
assumptions concerning the rates of change of the occupation numbers provides a description of the relaxation
of a system initially perturbed from a state of dynamic equilibrium.@S0556-2813~99!05204-8#

PACS number~s!: 21.60.Ev, 21.60.Jz, 05.60.2k, 05.70.Ln
pe
io
th
d

at
an
o
e

te

tu
he
e
it
re

la
a

ed
to

ave
trix,
-
e
o-

n-
in-

the
tive
imer
ly
us
in
sub-
re
o-
but
ful
I. INTRODUCTION

In the past, writers and their collaborators have develo
a self-consistent theory of large amplitude collective mot
~LACM ! that was based on the assumptions, first, that
degrees of freedom of a many-particle system could be
composed into two subsets, collective~slow, relevant! and
noncollective~fast, irrelevant!, and second, that we were
zero temperature, in the sense that excitation energy, if
remained concentrated in the collective degrees of freed
@1–4#. ~Essentially complete references to the work of oth
authors, as well as to the other work of the authors quo
will be found in the papers cited.! In this paper we wish to
show how the previous theory can be generalized to a si
tion where the excitation energy is sufficiently high that t
exchange of energy between the two subsystems is in
table. This is a difficult problem with a long history which
would be completely out of place to attempt to review he
Early work may be traced from Ref.@5#. In broad terms, this
work dealt with general quantum or semiclassical formu
tions of transport theory from which one sought to extract
PRC 590556-2813/99/59~4!/2065~17!/$15.00
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extended one-body approximation that, minimally, includ
dissipation. More recently, powerful algorithms designed
treat one and two-body correlations on an equal footing h
been formulated and applied, using either a density ma
i.e., one-time formalism@6–8# or a real-time Green’s func
tion approach@9–11#. This work, however, is not yet capabl
of dealing with problems of large amplitude collective m
tion.

In this paper, we shall make no effort to provide yet a
other general version of transport theory. Rather, we are
terested in developing the formalism for the case that
exchange of energy between the collective and noncollec
degrees of freedom can be described in a Born-Oppenhe
~BO! approximation. The work that follows is most close
connected in aim with a previous paper involving one of
@12#, but differs markedly from that work in concept and
execution. Selected papers that bear some relation to the
ject of self-consistent LACM at finite excitation energy a
@13–18#. It is also appropriate to mention several micr
scopic approaches, not fully self-consistent in our sense,
extensively worked out and with a track record of success
2065 ©1999 The American Physical Society
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2066 PRC 59G. DO DANG, ABRAHAM KLEIN, AND P.-G. REINHARD
applications. We refer to the linear response method of H
man and associates@19# and dissipative diabatic dynamic
due to Nörenberg and collaborators@20,21#. It would be par-
ticularly interesting to try to incorporate some of the lat
ideas into our work, but this will not be attempted here.

The way in which the extension of the BO approximati
to finite excitation energy is carried out is described in S
II. There we introduce the idea of thermal state, which ne
not be a state of thermal equilibrium, but naturally includ
the latter as a subclass. Application of this concept within
framework of the Kerman-Klein method@22,23#, in Sec. III,
followed by a passage to a semiclassical approximat
leads to the general dynamical equations that underlie
remainder of the development. Not surprisingly we co
down to a mean-field description extended to include tw
particle collisions. In this work, however, we confine o
efforts to an approximation in which the basic element
mains the one-particle density matrix. In Sec. IV, we stu
this object in the basis of natural orbitals, namely, the rep
sentation in which it is diagonal, and identify the indepe
dent dynamical elements of the problem. We also desc
the special limits that allow us to deal simply with the pro
lem of collisions.

The endgame of our exercise is to derive classical ‘‘m
roscopic’’ equations describing the thermalization of a s
tem initially excited into collective motion. Thus we mu
specify a set of classical equations that is consistent in f
with the microscopic structure of the theory as well as p
vide a method for the determination of the parameters
occur in these equations. The former discussion is carried
in Sec. V, where the central issue addressed is the deriva
of the equations of motion for the collective submanifo
including dissipation, starting from a classical Hamiltoni
for the total system. The microscopic basis for the start
equations of Sec. V is given in Sec. VI, which contains
outline of the calculations that actually have to be done
implement the theory. The procedure put forth generali
the previously developed self-consistent theory of LAC
valid for zero temperature. Section VII contains a summ
of our work that highlights the essential steps in the deri
tion of the final transport equations, reviews briefly how
utilize the resulting equations, and suggests further ex
sions of the formalism.

Further discussion of thermal states can be found in
pendix A. In Appendix B, we describe another argument t
generalizes the Kerman-Klein method to finite temperatu
applicable as given only to the case of thermal equilibriu
and in Appendix C, we record a few details concerning so
of the results of Sec. VI.

Before beginning the detailed exposition, it may be he
ful to augment the preceding brief statement of the conte
of this paper by providing an account of how we reached
shape and content of the material that follows. The origi
impetus was to try to simplify the self-consistent theory
nonequilibrium processes developed in Ref.@12#. There the
variables used to describe a system were pairs of cano
variables, equivalent to the ones that will be introduced
this work in Sec. II by applying a Wigner transform to
quantum transition amplitude; in addition one encounter
set of occupation numbers of single-particle states. Just a
zero temperature, the problem is simplified by focusing on
f-
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most a few canonical pairs approximately decoupled fr
the remaining space, but there was no apparent way of
lecting a subset of the occupation numbers, and this rend
the formalism too complicated to apply. Our original go
was to construct a formalism in which we would replace
the occupation numbers by temperature or entropy.

Though this aim is achievable only in special cases, as
shall learn, it served the purpose of leading us to the conc
of thermal state, introduced in Sec. II, followed in Sec. III b
its application to the~quantum! equations of motion, thus
providing us with a basis for a quantum theory of transpo
In this paper, however, this theory is utilized only as a co
venient way of passing to a classical description for the
namical variables. The first~familiar! climax of these con-
siderations is Eq.~3.4!, which is the standard mean-fiel
equation for the one-particle density matrix plus~so-far un-
specified! corrections that describe dynamical correlations

The next step in understanding how to deal with th
equation was to study, in Sec. IV, the Hermitian one-parti
density matrix in its diagonal form, namely in the basis
natural orbitals, Eq.~4.1!. Though the matrix itself is diago
nal, its time derivative is not. We first considered the o
diagonal equations of motions. It is well known~see@13# and
references therein! that off-diagonal correlation terms are th
source of dissipation of the mean-field energy due to tw
particle interactions. By choosing to drop this term, we fi
that the remaining equations have the structure of Hamilto
classical equations of motion. This allows us to apply t
theory of canonical transformations in order to introduce
representation in which the variables separate into collec
and noncollective sets, using the machinery described in@3#.
The details of this procedure are, however, postponed u
Sec. VI.

The question that one may legitimately ask at this poin
whether we would be stymied if we were to reinstate so
approximation to the discarded two-body dissipation, b
cause if this were the case, the value of the current w
would be seriously compromised. Our answer is that
could still carry out a transformation, leading to a modifi
form of the Hamiltonian equations of motion~5.4!–~5.7!, of
which the first two sets refer to the collective variables a
the last two to the non-collective variables. In these eq
tions there is naturally no overt sign of dissipation. The b
den of Sec. V is to show how friction arises when the no
collective variables are eliminated from these equatio
leading to a conventional Newton’s equation with frictio
Eq. ~5.41!, for the collective variables.~This is the so-called
one-body friction having its origin in a ‘‘time-dependent
mean-field.! If we were to retain the two-body friction term
Eqs.~5.4!–~5.7! would at this stage contain explicit dissipa
tive terms, which would be part of the final result.

The results of this paper can be used to study the follo
ing problem: Given a set of initial conditions specified by t
collective coordinates and velocities and by a set of occu
tion numbers, which are the diagonal elements of the den
matrix, how does the system relax to equilibrium? The d
sipative motion can be studied with the help of the Newt
equation of motion~5.41!. In this equation the quantities tha
enter, the mass matrix, the conservative forces, and the
tion tensor are all functions not only of the instantaneo
values of the collective coordinates, but also of the set
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PRC 59 2067SELF-CONSISTENT THEORY OF LARGE AMPLITUDE . . .
occupation numbers. The equations of motion for the lat
the so-called master equations are the content of the diag
elements of the equations of motion.

This brings us to what still remains the most serious pr
tical difficulty facing a self-consistent theory of transpo
such as formulated in this paper. The elements in the fi
Newton equation are to be calculated by the method
scribed in Sec. VI. This requires the solution of a nonline
problem, the so-called local harmonic approximation, ove
multidimensional manifold which is the direct product of th
Lagrangian manifolds associated with the collective coo
nates and the multidimensional space of the occupation n
bers. We consider only two tractable limits for the treatm
of the occupation number space. The first is the natural
serve of the mean-field approximation in which the occu
tion numbers are fixed as we move away from thermal eq
librium; in this case the entire manifold of occupatio
numbers is replaced by the entropy variable, and there is
necessity to adjoin a master equation to the Newton eq
tion. In the other limit, in which we assume that the system
always in a configuration of~constrained! local equilibrium,
as we explain in the text, the space of occupation numb
can be replaced by the temperature as the single varia
The slow change of the temperature with time, as given
Eq. ~4.18!, is derived from an equation which is a line
combination of all the master equations, determined by
approximate condition of conservation of mean-field ene
and the local Fermi distributions. In any event, both in t
general case and in the special cases, we end up wi
theory that is classical in the treatment of the collective va
ables and quantum in the treatment of the occupation n
bers.

II. CONCEPT OF THERMAL STATES

In our applications, we shall have in mind the nucle
many-body problem, described by a general shell-mo
Hamiltonian of the form

Ĥ5habaa
†ab1

1

4
Vabgdaa

†ab
†adag . ~2.1!

The single-particle basis designated by the first few letter
the Greek alphabet refer to an arbitrary choice of suc
single-particle set. The formalism developed below will a
apply to the more general case of a given energy functio
of any order in density, kinetic-energy density, etc., witho
changes in the essence of the construction. The assum
~2.1! just simplifies the further considerations.

We begin with a discussion of the basis of states for
many-body system that will be utilized in the following d
velopments, leading below to the concept of thermal st
We assume that we can introduce a localized basis:

uQ,q&5uQ)uq], ~2.2!

where Q refers to the collective coordinates andq to the
noncollective coordinates. Note the use of the angu
bracket, parenthesis, and square bracket to distinguish
space, collective space, and noncollective space, res
tively. We shall adopt a generalized BO picture of the eig
states of the Hamiltonian, designating them asun, f &. For low
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excitation energies, we may assume thatn represents quan
tum numbers of a collective band and thatf is an ordering
number for these bands that is associated with the stat
excitation of the fast~noncollective! system. For higher ex-
citation energies, we shall continue to use the same desi
tion, but its physical meaning is perhaps less clear, exc
when a simple spectrum~such as a set of harmonic oscilla
tors! may be associated with the noncollective spectrum.
represent the statesun, f & in the form

un, f &5(
f 8

E dQuQ, f 8&^Q, f 8un, f &, ~2.3!

uQ, f &5uQ)u f :Q][uQ)u f ], ~2.4!

u f :Q] 5E dquq] @qu f :Q#. ~2.5!

The expanded notation,u f :Q], which we now suppress, is
meant to indicate that the states of the fast system adju
the instantaneous positionQ of the slow system, which is the
basic adiabatic assumption. We have

^Q, f uQ8, f 8&5d~Q2Q8!d f f 8 . ~2.6!

Let us, for the moment, focus on the basis vectors~2.4!.
At T50 we can associate with it a pure-stateN-body density

D̂5uQ)u f ] @ f u~Qu. ~2.7!

~This is to be contrasted with the densityun f&^ f nu that we
would actually use to calculate physical averages.! At finite
excitation energy, this is replaced by an incoherent aver
in the intrinsic space yielding a mixed state

~2.8!

where the density in the intrinsic subspace has been ab
viated asd̂. This is some arbitrary density at the mome
Below it will be specialized to a density valid for the cha
acterization of the BO approximation.

Our motivation for introducing the construct~2.8! is by no
means obvious. It is not meant to be directly useful in t
standard sense of averaging with operators to provide ex
tation values of physical observables. Instead it is recor
as a~possibly helpful! intermediate step motivating the in
troduction of its square root, the thermal state, Eq.~2.9!.
With the latter we aim at providing a mixed description th
is, nevertheless, coherent with respect to the collective
namics. By coherent we mean that we can~and shall! calcu-
late matrix elements of operators between thermal states
differentQ, these states sharing, in this respect, the prop
of a pure state. Because of this property, the thermal s
was first visualized as a ‘‘natural’’ tool for a generalizatio
of the BO approach to finite excitation energy within th
framework of the equations of motion method, as describ
in Sec. III. Based on our previous experience, there was
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further expectation that it would provide an appropria
means for reaching the mean-field approximation.

Note that the development below depends for its valid
only on the form of Eq.~2.8!. A further specialization is to a
densityd̂(Q,T), describing a system to which a temperatu
can be assigned at all times, even if the system is no
overall equilibrium. We refer to this case as local or co
strained equilibrium. This will be one of the special cas
treated in this paper.

We now introduce a construct that can be thought of
providing some quantum-mechanical underpinning for
ultimately classical considerations. We break the bilinear
density ~2.8! back again into co- and contravariant line
pieces yielding a ‘‘thermal state’’

uQ,d&5uQ)d̂1/2, ~2.9!

whered̂1/2 can be any square-root of the intrinsic densityd̂.
For simplicity, we use here the Hermitian square root. W
can also write this state in the form

uQ,d&5uQ)(
f f 8

u f ]af f 8@ f 8u, ~2.10!

and see that the coefficientsaf f 8 therein are just the elemen
of d̂1/2. They fulfill the conditions

(
f̃

af f̃af 8 f̃
* 5df f 8 . ~2.11!

The state~2.9! has the property, essential for our needs, t
its dual product reproduces the full density~2.8!, i.e.,

D̂5uQ,d&^Q,du5uQ!d̂~Qu, ~2.12!

and with it all expectation values, products, etc.
It is important to emphasize once more that the consid

ations to this point~and for the rest of this paper! also apply
to systems more general than thermal equilibrium. Some
ther discussion and especially comparison with the conc
of thermal-field theory will be found in Appendix A. In th
next section, we show how the description introduced in t
section can be incorporated into the dynamical descriptio
our nuclear system. The net result is Eq.~3.4! below for the
time dependence of the single-particle density matrix, wh
is generated both by a mean field and by a ‘‘collision’’ ter

Thus far the stateD̂ as given in Eq.~2.12! represents one
localized point of a collective manifold. Our ultimate aim
the description of collective dynamics which connects va
ous points of the manifold. Consequently, one has to d
with nondiagonal matrix elements^Q,duÂuQ8,d8&. It is cus-
tomary to express this in the spirit of a semiclassical pict
through coordinateQ and momentumP. Toward that end,
we follow the well-worn path of introducing the Wigne
transform. Suppressing for the instant the intrinsic structu
we therefore compute

A~Q̄,P!5E dQ̃ exp~2 iPQ̃!^QuÂuQ8&, ~2.13!

Q̃5Q2Q8, ~2.14!
y
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Q̄5
1

2
~Q1Q8!. ~2.15!

Provided that the ingredient matrix elements ofÂ andB̂ are
strongly peaked inQ̃ and slowly varying inQ̄, we then have
for the classical limit of a product,

C~Q̄,P!5E dQ̃dQ9 exp~2 iPQ̃!^QuÂuQ9&^Q9uB̂uQ8&

>A~Q̄,P!B~Q̄,P!, ~2.16!

i.e., the Wigner transform of a matrix product is approx
mately the product of the individual Wigner transforms.

There remains the question of how to characterize
degrees of freedom buried in the intrinsic stated̂. In the zero
temperature~fully coherent! limit, this state is characterized
by a set of non-collective coordinatesq, usually treated in
practice in the small vibration limit. In the classical lim
these become the conjugate pairs (q,p). The theory to be
developed suggests that also at finite temperature one
extract a coherent set of noncollective variables. There
mains, however, an additional incoherent structure, curre
assigned an identification labeln, to be identified later as a
set of occupation numbers. Thus we rewrite the therm
states as

uQ,d&[uQ,q,n&. ~2.17!

These are still mixed states in the sense that we cannot f
linear combinations of them. It is furthermore assumed t
for transition matrix elements between different therm
states, the value ofn is fixed, whereasq shares the same
behavior asQ. Finally this means that for the full physics th
quantity~2.13! is replaced by the quantityA(Q̄,P,q̄,p,n). In
the sequel, we drop the bars. The way in which these c
structs play their role will be seen in the next section.

III. BASIC DYNAMICAL EQUATIONS

We study the dynamics of the system starting with t
equation of motion for the ‘‘particle-hole’’ operator

r̂ab5ab
†aa , ~3.1!

namely

i
d

dt
r̂ab5@ r̂ab ,Ĥ#5hagr̂gb2 r̂aghgb

1
1

2
Vagdeab

†ag
†aead

2
1

2
Vdebgad

†ae
†agaa . ~3.2!

At the next stage we take the matrix element of this eq
tion between two different thermal states~with the same
value of n, see above!. To evaluate matrix elements of tw
body operators, we introduce a generalized factorization~let-
ting Q stand forQ,q,n),
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^Quab
†ag

†aeaduQ8&[r~2!~deQ8ugbQ!

5
1

2
$^Quag

†aeuQ9&^Q9uab
†aduQ8&

2~e↔d!2~b↔g!1~e↔d,b↔g!%

1c~2!~deQ8ugbQ!. ~3.3!

This equation should first of all be viewed as a definition
c(2), the correlated part of the two-body density matrix. In
past applications, we have simply dropped this term, so
the resulting equation becomes an approximation, the ge
alized density matrix or ‘‘Kerman-Klein’’ approximation
For the class of problems under study, we shall eventu
have to go beyond these previous treatments, though in
paper, we shall make simplifying assumptions that will allo
us to postpone the problem of includingc(2).

Taking the Wigner transform of Eq.~3.3! and applying
the convolution theorem for a product in the approxim
form ~2.16!, we obtain the equations that are fundamenta
our further studies,

i
d

dt
rab5@H,r#ab1Iab . ~3.4!

HereH is the mean field Hamiltonian

Hab~Q,P,q,p,n!5hab1Vab~Q,P,q,p,n!, ~3.5!

Vab~Q,P,q,p,n!5Vagbdrdg~Q,P,q,p,n!. ~3.6!

The last term in Eq.~3.4!, often designated simply as th
collision term, represents, in fact, all the physics consequ
upon the inclusion of the two-particle correlation functio
c(2), and thus not included in the mean field approximati
In this sense Eq.~3.4! is still exact.

We have already alluded@6–11# to the theoretical and
practical advances that have been made in the study o
problem of the collision term. Our purposes are best ser
by reference to the treatment by Ayik@13#. He shows that in
a weak-coupling approximation the diagonal part of the c
lision term ~in the basis of natural orbitals discussed belo!
is the well-known collision term in the Boltzmann
Uhlenbeck~BU! equation, whereas the off-diagonal part pr
vides the explicit two-body friction term in the equations
motion ~as well as a change of the self-consistent field in
general non-Markovian situation!.

In the development that follows, we have chosen to
glect the off-diagonal collision term. This means that t
remaining theory can only describe one-body friction. T
retention of the BU term leads nevertheless to a well-defi
problem, which we treat only in several limiting cases.

It is only in consequence of the neglect of two-body d
sipation that we shall be able to directly generalize our ze
temperature version of LACM to finite excitation energy.
further extension to include the off-diagonal terms appear
be feasible and will be the subject of a future investigatio
f
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IV. DENSITY MATRIX IN THE BASIS OF NATURAL
ORBITALS

Equation ~3.4! is the basic dynamical equation from
which we want to extract the description of the collecti
motion in terms of the density matrix,r(Q,P,q,p,n), that
defines the collective manifold. We shall divide this proc
dure into several distinct steps. In the first step, carried ou
this section, we introduce the description of the density m
trix in terms of natural orbitals and thus identify the eleme
that are singled out for further study. The equations satis
by these elements are determined by the application of
~3.4!. We study what can be learned from this equation wi
out specifying in detail the classical dynamics of the colle
tive coordinates.

Already at this stage, it is possible to specify the sha
and content of the most general problem we can hope
study with the formalism of this paper, which is a mixe
classical-quantum transport or relaxation problem. The f
mulation to be presented in this section will, however, be
complex to be dealt with practically. It will be too comple
for two reasons. The first is that though we shall identify
classical Hamiltonian system as a subsystem of the exten
mean-field theory, it has far too many degrees of freed
~even an infinite number! for us to consider realistically
Thus, an essential element of the development will require
to seek a canonical transformation to a phase space in w
we can separate off one or a few collective degrees of fr
dom from the full symplectic manifold. The second reason
that we are also not equipped to treat in full generality
quantum part of the problem, that will describe the time ra
of change of occupation numbers brought about by co
sions.

The problem of studying the Hamiltonian system will ta
up most of the remainder of this paper. Orientation for t
study of this problem will be provided beginning in the ne
section.

Turning then to the first part of our task, we introduce t
diagonal or natural orbital version of the one-body dens
matrix,

r5(
a

nauwa)~wau, ~4.1!

where theuwa) are a complete set of orthonormal functio
and thena are correspondingly the occupation numbers
those orbits. As a consequence, we shall show in this sec
that the equations of motion can be decomposed into
subsets. The first, which describes the time rate of chang
the single-particle basis, will be seen to have the form
Hamilton’s classical equations of motion, generalizing t
previous considerations at zero temperature. The second
often called master equations, describes the rate of chang
the occupation numbers brought about by collisions.

To obtain equations for the elements contained in
form ~4.1!, namely, the single-particle wave functions a
the occupation numbers, we study this form in conjunct
with the equation of motion~3.4!. For instance, we would
like to find the equation satisfied by the single-particle fun
tions uwa). Toward this end, it is convenient to consider
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infinitesimal change inr. To conserve the norm of th
single-particle functions, we have

duwa)5 (
bÞa

uwb)dr ba , dr ba* 52dr ab . ~4.2!

As a consequence, we can write

dr5 (
b.a

uwb)dr ba~na2nb!(wau1 (
b.a

uwa)

3dr ba* ~na2nb!(wbu1(
a

uwa)dna~wau, ~4.3!

an expression that clearly separates off-diagonal and di
nal contributions.

Let us first consider the off-diagonal pieces in an appro
mation in which we ignore the off-diagonal elements of t
collision term. This approximation underlies our subsequ
treatment of the off-diagonal elements of the equations
motion and is an essential simplification. From Eqs.~3.4!
and ~4.3! we can therefore write~together with the complex
conjugate relation!

i
d

dt
r ba5Hba , b.a, ~4.4!

and furthermore, withW equal to the instantaneous Hartre
Fock energy,

W5Tr hr1
1

2
Tr Tr rVr ~4.5!

we have

Hba5
dW

drab
5

dW

dr ab

1

~nb2na!
. ~4.6!

If we understand that the eigenvaluesna have been arrange
in descending order and that henceforth we follow the c
vention b.a ~and thereforena.nb), it follows that Eq.
~4.4! can be rewritten

i
dsba

dt
5

dW

dsba*
,

dsba5Ana2nbdr ba . ~4.7!

These equations and their complex conjugates demons
that the off-diagonal elements of the equations of motion
of the form of Hamilton’s canonical equations of motion f
the complex canonical coordinatessba and isba* .

Though this result is to some extent similar to what
have found previously at zero temperature, there are
essential differences. The first is that the number of deg
of freedom of the equivalent dynamical system is mu
larger than at zero temperature, comprising particle-part
and hole-hole pairs in addition to particle-hole pairs. T
second is that, as just shown, the Hartree-Fock energy se
as Hamiltonian only at fixed occupation number. It is no
o-

i-

t
f

-

ate
e

o
es
h
le
e
es

apparent that it is the occupation numbers that constitute
elements of the setn, hitherto unspecified, on which the den
sity matrix elements depend.

It remains for us to specify the dynamics of the occup
tion numbers. According to Eqs.~3.4! and~4.1!, we have the
equation

i
dna

dt
5Ia~n,s!, ~4.8!

wherein the right-hand side, the ‘‘collision term’’ is specifie
as a function of the setsn5$na%, s5$sba%. Together with
Eq. ~4.7! we have arrived at the following formulation: Mea
field theory with collisions is equivalent to two sets of equ
tions for the elements of the one-particle density matrix
the basis of natural orbitals. One set, Eq.~4.7!, describes the
rates of change of the orbitals and is of Hamiltonian for
The second, Eq.~4.8!, is for the rates of change of the occu
pation numbers. Together these independent elements d
an initial value problem which describes the relaxation o
system of fermions initially perturbed away from equilib
rium.

Most of the considerations that begin in the next sect
are concerned with making further approximation in the
equations, in particular the Hamiltonian set, in order to br
them into a more useful form. None of these manipulatio
however, will change the fundamentals as we have just o
lined them. For the remainder of this section, we review a
develop some important and useful properties of the form
ism.

In Sec. VI, we shall study transformations from the ses
~or r ! to the preferred canonical set (Q,P,q,p). Imagine for
the moment that this has been done. For fixed occupa
numbers, we thus can considerr 5r (Q,P,q,p). Conse-
quently we can write Eq.~4.4! in a more explicit form by
using

drba

dt
5@Q̇]Q1 Ṗ]P1q̇]q1 ṗ]p#r ba[ ż]zr ba . ~4.9!

This explicit form allows us to display the single partic
equations that determine the functionsw. The most genera
form consistent with Eqs.~4.4! and ~4.9!, from which the
former may be derived, is

@ea2m1 i ż]z#uwa)5Huwa). ~4.10!

This has the form of a constrained Hartree-Fock equa
with eigenvalueea , andm is the chemical potential. Equa
tion ~4.10! can be derived from the variational principle

dFW2(
a

eana~wauwa!G50, ~4.11!

where

W[W2(
a

~wauna@2m1 i ż]z#uwa! ~4.12!

is the constrained mean field energy,W is the mean-field
energy defined in Eq.~4.5!, and the variations are carried ou
with respect to the single-particle functions.
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For the special case of instantaneous local equilibrium
the single-particle degrees of freedom, the previous con
erations may be supplemented by the requirement that
maximize the mean-field entropy

S52(
a

na ln~na!2(
a

~12na!ln~12na!, ~4.13!

with respect to the choice of the occupation numbersna ,
subject to a fixed value for the constrained mean-field ene
W. This yields after a standard manipulation the expec
result

na5$11exp@b~ea2m!#%21,

ea5~wauHuwa!. ~4.14!

We consider finally the question of conservation of t
mean-field energy. Using the equations of motion~4.7!, we
find easily

dW

dt
5(

a
ea

dna

dt
, ~4.15!

ea5ha1(
b

Vababnb . ~4.16!

Obviously W is conserved if we ignore collisions (dna /dt
50). This will be one of the limits that we consider.

On the other hand, it has been shown@13# that the right-
hand side of Eq.~4.15! vanishes approximately even in th
presence of collisions. This follows if one substitutes forṅa
the usual form of collision term, namely the Boltzmann for
with Pauli corrections~the Boltzmann-Uhlenbeck form! in
the approximation in which the sum of the single partic
energies is conserved. Thus the total mean-field energy
tinues to be conserved even in the presence of collisio
which are responsible, nevertheless, for the exchange o
ergy between the collective and non-collective degrees
freedom.

It is a further stretch to assume that we can apply con
vation of mean-field energy even in the strong-collisi
limit, which we define as one in which, in a relaxation pr
cess, the system passes only through states of local equ
rium. This requires, in general, that the equilibration time
short compared to the period of the collective motion.
general, we may expect this limit to be valid, if at all, only
high energies of excitation, whereas we know that the
collision limit is valid at low excitation, where collisions ar
suppressed by the Pauli principle.

The strong collision limit can be treated almost as sim
as the no collision limit. As will be clear from the discussio
to be given in Sec. VI, in this case the dynamic-therm
collective manifold is specified by values ofQ and b, and
the combinations

Ea~Q,b![ea2m ~4.17!

will be determined as functions of these variables alone. T
is a tremendous simplification compared to the general c
where, as we shall see, the collective manifold is specified
Q and the full set of occupation numbers.
f
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Under these conditions, as we now compute,
conservation-of-energy condition will determine a relatio
ship betweenḃ and Q̇ that will serve as one of the driving
equations for the description of the relaxation process. Th
from the vanishing of the right-hand side of Eq.~4.15!, by
substituting Eq.~4.14!, at the same time taking Eq.~4.17!
into account, we obtain

ḃ52

(
a

bEa

]Ea

]Q

exp~bEa!

@11exp~bEa!#2

(
a

FE a
21bEa

]Ea

]b
G exp~bEa!

@11exp~bEa!#2

Q̇. ~4.18!

In the strong collision limit, as we have defined it, this equ
tion replaces the entire panoply of rate equations for the
cupation numbers.

V. CLASSICAL EQUATIONS OF MOTION
WITH DISSIPATION

A logical next step in the development might be the de
vation of the canonical transformation to collective and
trinsic coordinates that provides optimum decoupling of
collective pairs (Q,P) from the noncollective pairs (q,p).
We postpone these considerations to the next section. In
section, we shall suppose once more that this step has
carried out. We then use the resulting equations of motion
‘‘eliminate’’ the noncollective degrees of freedom from th
equations of motion leading to equations of motion for t
collective coordinates that contain explicit dissipative term
This is by far the longest argument given in detail in th
paper, leading to Eq.~5.40!, even more familiar in the form
~5.41!.

We thus turn to a derivation of the equations for a dis
pative collective dynamics from‘‘first principles.’’ This is
also a subject with a long history. For a recent review w
extensive bibliography, see@24#. We shall not attempt to do
any justice to this topic, but simply present the material
the form that we require it.

We suppose the full many-particle system, with all d
grees of freedom included, to be described classically by
Hamiltonian

H5V~Q,q,p!1
1

2
Bi j ~Q,q,p!Pi Pj1Ai~Q,q,p!Pi .

~5.1!

Here, the lower caseq andp refer to the noncollective vari-
ables that run over a set of indices labeled bya ~not to be
confused with the like index on the single-particle function!.
So far, we have expanded only in powers of the collect
momenta. The choice of variables in Eq.~5.1! can be con-
sidered to result from a canonical transformation at fix
occupation numbers from the variablessba , isba* that have
been identified previously as canonical. Thus Eq.~5.1! can
be viewed~to the second order inP) as formally equivalent
to the original mean-field HamiltonianW for a fixed set of
occupation numbers. Further details concerning the co
tions that determine the mapping
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sa5sa~Q,P,q,p! ~5.2!

are discussed in the next section.
In order to be able to present our arguments as explic

as possible, we specialize the form~5.1! to the small ampli-
tude approximation in the intrinsic space. In this approxim
tion it becomes

H5V~Q!1
1

2
Bi j ~Q!Pi Pj1

1

2
Vab~Q!qaqb

1
1

2
Bab~Q!papb1Va~Q!qa1Bai~Q!paPi . ~5.3!

HereVa andVab are first and second partial derivatives ofV
evaluated atq50. The problem of determining the potenti
and mass coefficients that occur in this expression is
cisely the problem of determining the canonical transform
tion from the original form of the mean field Hamiltonian.

In the equations of motion that follow and any furth
manipulation of them we shall consistently and without a
ditional disclaimers limit ourselves to terms of the first ord
in q andp. From Eq.~5.3! we thus have

Q̇i5Bi j Pj1Biapa , ~5.4!

Ṗi52Vi2Viaqa, ~5.5!

q̇a5BaiPi1Babpb , ~5.6!

ṗa52Va2Vabq
b. ~5.7!

Without further loss of generality, we introduce normal c
ordinates in the intrinsic space. This allows us to replace
quantitiesBab by unity and the quantitiesVab by va

2 and
suppose that all remaining force and mass coefficients r
to the new coordinates. The distinction between covar
and contravariant indices now becomes irrelevant in the
trinsic space. Henceforth all such indices will be written
subscripts.

We cannot emphasize too strongly that to the approxim
tions considered~convenient for the explicit derivations ca
ried out below!, Eqs. ~5.4!–~5.7! are completely equivalen
to Eq. ~4.7!. Here the macroscopic parametersBi j , etc., are
functions

Bi j 5Bi j ~Q,na!. ~5.8!

The canonical transformation that leads to Eq.~5.1! is carried
out at fixedna , i.e., there are infinitely many such canonic
transformations, one for each set ofna . Furthermore, in prin-
ciple, we can at this point study the initial value or relaxati
problem by adjoining the master equations~4.8! to ~5.4!–
~5.7!.

For a system with a finite number of degrees of freedo
this might well be a practical and straightforward calculatio
An application of interest would be to consider a set of init
conditions in which all the energy was concentrated in
collective degrees of freedom. We would then ask how
the course of time this energy is transferred to the ot
degrees of freedom. For a small number of coordinates o
all, we would expect energy to reconcentrate from time
ly
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time in the collective coordinates. As the number of nonc
lective coordinates increases, we expect this recurrence
to increase. Beyond some point it becomes more sensib
talk about friction and a relaxation time.~For an analytically
solvable model illustrating these concepts, see@25#.! The
procedure just described will be applicable in practice o
for especially simple systems or for systems with a fin
number of degrees of freedom for which the required init
value calculation can actually be carried out. For such
amples, the ‘‘observed’’ flow of energy from the collectiv
to the noncollective degrees of freedom will show rapid flu
tuations owing to the high frequency components of the m
tion associated with the intrinsic degrees of freedom. On
average, however, it will be unidirectional and thus cor
spond to an increase of entropy.

Thus the source of dissipation lies in the relative pha
space associated with the intrinsic coordinates and not w
the coarse-graining procedure introduced beginning with
~5.19!. The purpose of the latter is to reach a smooth mac
scopic description of the dissipation, from which the fluctu
tions have been suppressed by averaging. The proce
consists of eliminating the intrinsic degrees of freedom fro
the equations of motion, going to the limit of a large numb
of such variables, assuming a suitable distribution in f
quency~white noise! for the residual interaction between th
collective and the noncollective coordinates, and then av
aging. The final result is expressed in Eq.~5.40!, which con-
tains not only a frictional force of the conventional type, b
additional contributions to the conservative forces aris
from the coupling of the two spaces.

The arguments to be developed will be simplified cons
erably if we work only to the lowest nontrivial order i
Bai, Va , and Vai . This assumption is consistent with th
procedure by which we shall define the canonical trans
mation from sa , isa* to Q,P,q,p, which assumes that fo
good decoupling to occur, these quantities must be sm
From Eqs.~5.6! and ~5.7!, we thereby deduce the equation

q̈a52va
2qa1Xa~Q!, ~5.9!

Xa~Q!52Va2Ba
i Vi , ~5.10!

with solution

qa~ t !5qa
~h!~ t !1E

0

t

dt8 sinva~ t2t8!
Xa~ t8!

va
, ~5.11!

qa
~h!5qa~0!cosvat1

pa~0!

va
sinvat. ~5.12!

Integrating by parts, we have

qa~ t !5qa
~h!~ t !1

Xa~ t !

va
2 2

Xa~0!

va
2 cosvat

2E
0

t

dt8 cosva~ t2t8!
] iXa~ t8!

va
2 Q̇i~ t8!.

~5.13!

For the intrinsic momenta, we can derive the correspond
expression
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pa5q̇a
~h!2BaiPi1E

0

t

dt8Xa~ t8!cosva~ t2t8!. ~5.14!

There is, naturally, no explicit sign of irreversibility i
these equations. We now consider the assumptions that
lead to a simple~Markov! description of dissipation. For thi
purpose we must form the sumsViaqa andBiapa that appear
in Eqs.~5.5! and ~5.4!, respectively. At this point we find i
convenient to replace these first-order equations by sec
order equations. Working to only first order inQ̇i , we find
with the help of Eqs.~5.5! and ~5.7!

Q̈i5Bi j Ṗj1Biaṗa1
]Bia

]Qk
Q̇kpa5Fi1Fiaqa2Gk

iaQ̇kpa ,

~5.15!

Fi52Bi j Vj2BiaVa , ~5.16!

Fia52Bi j Vja2Biava
2 , ~5.17!

Gk
ia52

]Bia

]Qk . ~5.18!

We infer from Eq.~5.15! that Qi contains both the low
frequencies of the collective motion and the high frequenc
of the non-collective motion. For a macroscopic descript
of the collective motion, it is appropriate to coarse-grain
time. For this purpose, we assume that we can choose a
tO , which relative to a timetC , characteristic of the collec
tive motion, and a timetNC characteristic of the intrinsic
motion, satisfies the inequality

tNC!tO!tC . ~5.19!

Under these conditions, if we average Eq.~5.15! over a time
interval tO , the terms depending on the frequencies of
collective motion alone are essentially unaffected.

The existence of times satisfying Eq.~5.19! is subject to
serious question, particularly because of the influence
avoided level crossings as the system evolves in shape s
i.e., as it traverses the collective manifold. But this probl
also arises for the treatment of collective motion at zero te
perature. The answer lies not in the single-particle spect
but in the spectrum of the local harmonic equation derived
the next section. There is no basis for introducing the c
cept of collective motion for a system unless one or at m
a few frequencies are low-lying and separated by a gap f
the remaining frequencies. This gap, in the nuclear cas
unlikely to be more than an order of magnitude under o
mum conditions, not leaving much room, it appears, fortO .
We believe that it is incorrect, however, to associate the
ciprocal of this gap withtNC . To obtain a conventional fric-
tion tensor, it is necessary to assume a very broad distr
tion of frequencies characterizing the interaction between
collective and the noncollective coordinates, peaked at a
quency which is more properly identified with (1/tNC). The
following derivations require that this assumption on tim
scales be valid.

To understand what happens to the high frequencies
assume thatQi(t) can be written in the form
ill
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Qi~ t !5Q0
i ~ t !1dQi~ t !. ~5.20!

This decomposition is defined by the requirement that
coarse-grain value ofdQi vanish, which we write as

^dQi&50. ~5.21!

On the other hand to the order of accuracy to which we s
solve Eq.~5.15!, i.e., to second order in the coupling b
tween the collective and noncollective spaces we shall a
need the value of

^dQi~ t !dQj~ t !&Þ0. ~5.22!

To evaluate Eq.~5.22! to the required accuracy, it suffices t
takedQi in the form

dQi~ t !5(
a

@Qa1
i ~ t !exp~ ivat !1c.c.#, ~5.23!

where theQa1
i (t) are slowly varying functions oft. @The

expansion~5.23! is initially subject to the criticism that the
frequenciesva depend onQi and therefore ont. It is, how-
ever consistent with our other assumptions to ignore
variation over an averaging timeTO .] Arguing that at any
time these functions take values that are randomly dist
uted in magnitude and sign, we can compute the correla
~5.22! assuming that only coherent sums survive, namely

^dQi~ t !dQj~ t !&5d i j (
a

2uQa1
i u2. ~5.24!

We shall need both Eqs.~5.21! and ~5.24! for what follows.
We note that the approximation

Q̇i~ t !5Q̇0
i ~ t !1(

a
„ivaQa1

i ~ t !exp~ ivat !1c.c.…,

~5.25!

which neglectsQ̇a1
i (t), will also be needed below.

Before entering into the details of the time-averaging p
cess, it may serve the reader to remark that the end resu
our manipulations is Eq.~5.41!, which contains both conser
vative forces and frictional forces. As explained above,
source of friction does not lie in the time-averaging proce
per sebut in the fact that there are many intrinsic degrees
freedom, and that energy initially in the collective motio
will flow out ~on the average! and not return to this mode in
macroscopic time. What the averaging does is enforc
smooth description of this dissipative process. The conse
tive force is a sum of three types of contributions—t
smooth given forces on the collective manifold, the smo
forces arising from the interaction of the collective mod
with the low-frequency motion of the intrinsic coordinate
and the time-averaged effect of the high frequency fluct
tions. Thus some effects of the high-frequency fluctuatio
are present, but how to connect this with our treatment
dissipation remains an open question.

We turn to the evaluation of the time average of E
~5.15!, with the aid of Eqs.~5.13! and~5.14!. It is this aver-
age which will be utilized for the study of the classical r
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laxation process. The values ofQa1
i that enter in this calcu-

lation will be derived subsequently. Consider for exam
the term

Fi~Q!5Fi~Q0!1
]Fi

]Qj dQj1
1

2

]2Fi

]Qj]Qk dQjdQk1¯ .

~5.26!

When we average overt, utilizing Eqs.~5.21! and~5.24!, we
find that Eq.~5.26! reduces to

Fi→Fi1Ffluc,1
i ,

Ffluc,1
i 5(

j

]2Fi

]2Qj (
a

uQa1
j u2. ~5.27!

Here and below, it is understood that after the arrow
quantities that were functions ofQi are now functions of
Q0

i , but we henceforth drop the subscript. The second t
of Eq. ~5.27! represents an additional contribution to t
force arising from the high frequency fluctuations, since
we shall see below, the quantitiesQa1

i are driven by the
amplitudes of the noncollective coordinates. Below, we sh
find additional contributions having their origin in the hig
frequency fluctuations.

The evaluation of the next term of Eq.~5.15! yields the
result

(
a

Fiaqa5(
a

Fiaqa
~h!1(

a

FiaXa

va
2 2(

a

FiaXa~0!

va
2 cosvat

2(
a

FiaE
0

t

dt8 cosva~ t2t8!
] jXa~ t8!

va
2 Q̇j~ t8!

~5.28!

→Ffluc,2
i 1dFi2F j 1

i Q̇ j . ~5.29!

Here the time averages of the first two terms of Eq.~5.28!,
which follow by arguments already given, are represented
the expressions

Ffluc,2
i 5(

a
2] jF

ia@Qa1
j qa2

~h! ~0!1c.c.#, ~5.30!

dFi5(
a

FiaXa

va
2 , ~5.31!

qa2
~h! ~0!5

1

2 S qa
~h!~0!1 i

pa
~h!~0!

va
D . ~5.32!

Remembering that we are working only to the second or
in the collective-noncollective coupling the time average
the third term vanishes, since the quantityFiaXa(0), evalu-
ated atQ0 , is already of this order. Finally we must consid
the origin of the friction term, which requires an addition
argument.

To extract a frictional term without memory, we proce
as follows. We assume that we can replace the sum overa by
an integral overv,
e

e

m

s

ll

y

r
f

l

(
a

Fia~ t !
] jXa~ t8!

va
2 →E dvF j

i ~v,t,t8!, ~5.33!

whereF j
i , though necessarily an integrable distribution, is

very broad, slowly varying function ofv. For the purposes
of evaluating the integral overv ~which we now do first!,

I j
i ~ t,t8![E

0

`

dv cosv~ t2t8!F j
i ~v,t,t8!, ~5.34!

we further assume that we can treatF j
i as a function,

Aj
i (t,t8), of the times alone~white noise assumption!. To

this approximation we have

I j
i 5pAj

i
„Q~ t !…d~ t2t8!. ~5.35!

From these considerations, we then conclude that@26#

F j 1
i ~Q!5

1

2
pAj

i ~Q!. ~5.36!

We have finally to consider the last term in Eq.~5.15!, in
which we insert Eq.~5.14! Discarding a term of second orde
in the collective velocity, we have

2(
a

Gj
iaQ̇j pa52(

a
Gj

iaQ̇j F q̇a
~h!~ t !

1E dt8 cosva~ t2t8!Xa~ t8!G
~5.37!

→Ffluc,3
i 2F j 2

i Q̇ j . ~5.38!

HereF j 2
i can be defined in analogy toF j 1

i , Eq. ~5.36!, and

Ffluc,3
i 52(

a
Gj

iava
2
„Qa1

j qa2
~h! ~0!1c.c.). ~5.39!

Collecting results we obtain our final form for the colle
tive equations of motion

Q̈i5Fi1dFi1Ffluc
i 2F j

i Q̇ j , ~5.40!

where the first term on the right-hand side of Eq.~5.40! is
defined by Eq.~5.16!, the second by Eq.~5.31!, the third is a
sum of three terms given by Eqs.~5.27!, ~5.30!, and~5.39!,
and the dissipative term is a sum of two terms defined in E
~5.36! and ~5.38!. In addition to the frictional force, which
was expected, we see that there are two contributions
second order in the coupling between the collective and
noncollective spaces that contribute to the conserva
force. One of these,Ffluc

i , depends on the initial condition
for the noncollective variables, more particularly on thr
quadratic forms in these values.

If we write Eq. ~5.40! in the form (Bi j is the mass matrix
inverse toBi j )

Bi j Q̈
j52] iV2F i j Q̇

j , ~5.41!

Fi j 5BikF j
k , ~5.42!
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thus defining the potential energy,V, of the conservative
forces, we can associate the expression

EM5
1

2
Bi j Q̇

iQ̇j1V~Q! ~5.43!

with the mechanical energy of collective motion. The dis
pative terms proportional toF lead to a loss of mechanica
energy for which we obtain the standard energy-flow eq
tion

ĖM52F i j Q̇
i Q̇j . ~5.44!

It remains only to show that the first-order Fourier co
ficients, Qa1

i (t) are proportional toqa1
(h) (0). In fact, it is

straightforward to derive in lowest order from Eq.~5.15! the
equation

2va
2Qa1

i 52V j
i Qa1

j 1Liaqa1
~h! ~0!, ~5.45!

V j
i 52] jF

i , ~5.46!

Lia5Fia1 ivaGj
iaQ̇j . ~5.47!

Formally, we have therefore

Qa1
i 5S 1

V2va
2D

j

i

L jaqa1
~h! ~0!. ~5.48!

The solution~5.48! can be made more explicit by diagona
izing the matrixV.

The study of Eq.~5.40! for some simplified models is
under way. As it stands this equation is not yet well-defin
as a macroscopic equation, sinceFfluc

i depends on a given se
of initial conditions for the noncollective coordinates. T
have a result that depends only on the collective coordina
we shall have to introduce a further averaging over a dis
bution of initial conditions of the noncollective coordinat
~or, more pragmatically, incorporate the fluctuation for
phenomenologically intodFi). The quantities needed for th
computation of the results developed in this section are
obtainable, in principle, from the theory explained in Se
VI. Actually carrying through the manipulations for a reali
tic model would seem to require some simplifying assum
tions for the distribution of matrix elements coupling colle
tive and noncollective variables.

Given Qi(0) andQ̇i(0), Eq. ~5.41! allows us to discuss
the relaxation of the collective mechanical degrees of fr
dom. Here we must remember that the macroscopic par
eters in this equation also depend on the occupation n
bers, and therefore the problem is not well defined as
initial-value problem until we adjoin the equations of motio
for the latter, the so-called master equations. We have
ready mentioned the two special cases of master equa
that can be treated with relative ease. If we assume tha
occupation numbers remain fixed, we are studying what
define as one-body friction. The other case considered
which the system relaxes through a sequence of state
local equilibrium, can be considered the strong-collisi
limit. Further discussion of these scenarios will be found
Sec. VI.
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VI. DECOMPOSITION OF MEAN-FIELD HAMILTONIAN
INTO COLLECTIVE AND NONCOLLECTIVE PARTS

The considerations of the previous subsection were ba
on transformation of the mean-field Hamiltonian into t
form ~5.3! together with the associated equations of mot
~5.4!–~5.7!. In this section we describe how this transform
tion can be effected. The procedure is an extension of
calculations carried out at zero temperature, as we shall
scribe. As has already been emphasized, the transforma
will be based on the identity

H~Q,P,q,p,na!5W„sa~Q,P,q,p!,sa* ,na…. ~6.1!

To determine the transformation implied by Eq.~6.1!, we
could invoke the full machinery of LACM described in Ref
@3,4#. In the following, however, we shall utilize an approx
mate form of one of the methods described in these re
ences, the local harmonic approximation~LHA !, which is
fully described below.

The procedure is to reexpress the equations of mo
~4.7! by writing for the left-hand side

ṡa5@Q̇i]Qi1 Ṗi]Pi
1q̇a]qa1 ṗa]pa

#sa ~6.2!

and then substituting in this expression the equations of
tion ~5.4!–~5.7!. On the right-hand side of Eq.~4.7!, we ex-
pand in powers ofPkqlpm, with k1 l 1m<1 and then
equate corresponding powers on both sides. The resulting
of equations contains the density matrix nonlinearly. Ho
ever, for the determination of the off-diagonal density mat
and of its first derivatives with respect toQ andP at a given
point, the equations derived thus far do not suffice. The n
essary additional equations are provided by differentiat
the equation of motion with respect toQi (na fixed! and
afterwards settingP5Q5p50. In order to obtain closure
from this step, we must, in general, ignore second derivati
of sa . The resulting set of equations then contains only
roth and first derivatives of the density matrix. By extendi
these considerations, a procedure can be formulated fo
cluding second and higher derivatives.~Under the special
circumstances of a point canonical transformation, we h
even shown@3#, using established geodesic properties o
decoupled manifold, how to eliminate the second derivati
that occur in favor of the first derivatives, and thus obta
closure at this point. We shall not pursue this possibil
here.!

Let us now recall the role of the master equations in o
approach. Together with Eq.~5.41! they determine how, with
a given set of initial conditions forna and for the mechanica
variables, the system will move through a subspace of
collective manifold. Any special choice of master equatio
is covered by these remarks. However, for the two spe
scenarios that we have proposed, the limits of weak
strong collisions, the possible set of points that can be
versed in the collective manifold is preassigned to a o
dimensional subspace of the occupation number space
fact this was one of the principal motivations for introducin
these special cases. It allows us to evade the impossibly
ficult task of constructing the entire collective manifold a
to replace it by a feasible calculation, albeit a different one
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detail for the two special cases. We shall return below t
further elaboration of this point.

Returning to the technical development, we introduce
definitions

] i5]Qi, ~6.3!

]a5]qa, ~6.4!

] i5]Pi
, ~6.5!

]a5]pa
, ~6.6!

]052Vi]
i2Va]a, ~6.7!

]1i5Bi j ] j1Bia]a , ~6.8!

]1a5Ba j] j1Bab]b , ~6.9!

]2i52Vi j ]
j2Vib]b, ~6.10!

]2a52Va j]
j2Vab]

b. ~6.11!

In terms of these definitions, we now record the equatio
~6.12! and ~6.13!, that follow from the expansion describe
in the second paragraph of this section plus the additio
set, Eq.~6.14!, needed for the formulation of a local ha
monic algorithm,

]0sa52 i
]W

]sa*
[2 iSa , ~6.12!

]1msa52 i @Mab]msb1Lab]msb* #, ~6.13!

]2msa52 i @Mab]msb1Lab]msb* #, ~6.14!

Mab5
]2W

]sa* ]sb
, ~6.15!

Lab5
]2W

]sa* ]sb*
, ~6.16!

where it is understood that all quantities are functions only
Q and of the occupation numbers, and in which we ha
combined the setsi anda into a single index setm. To the
above we adjoin the complex conjugate set. Explicit form
las for S,M ,L are given in Appendix C.

We now ask what, if anything, is actually determined
the above set of equations. Without further restriction th
are identities~to linear order in all variables butQ) satisfied
by anycanonical transformation from the original to the ne
set of canonical variables. For example, any transforma
satisfying the Lagrange bracket conditions

]msa]nsa* 2]nsa]msa* 52 idn
m , ~6.17!

]msa]nsa* 2]nsa]msa* 50, ~6.18!

]msa]nsa* 2]nsa]msa* 50, ~6.19!

will automatically guarantee the satisfaction of Eqs.~6.12!–
~6.14!.
a
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What we actually want is a canonical transformation th
minimizes the coupling between the collective and the n
collective spaces. For the spectroscopic problem studied
viously, the object was clearly to obtain, upon quantization
Hamiltonian describing a well-developed collective spe
trum, weakly coupled to the remaining Hilbert space. For
transport problem studied in this work, minimizing the co
pling between collective and noncollective spaces allows
to treat dissipation by perturbative means. The decoup
requirement, when translated into the quantitative terms
viewed below defines the collective manifold. The latter is
geometrical object; the choice of a coordinate system is
tially a matter of numerical convenience. For example, in
treatment of the low-energy spectrum of28Si @4#, oura priori
prejudice was that the collective coordinate should stron
resemble the quadrupole moment. However, the algori
used to solve the problem produces a ‘‘dressed’’ collect
variable that is a mixture of multipoles of even order. Ne
ertheless, when the calculation is done, we have a sin
particle density matrix defined over the collective manifo
and thus we can calculate any one-particle physical quan
of interest.

At zero temperature, the decoupling requirement dicta
the further imposition on the transformation of the so-cal
first order decoupling conditions@3#. These are the condi
tions that the terms in the classical Hamiltonian~5.3! linear
in q andp vanish, namely,

Va~Q!5]aW5@]asa]sa
1]asa* ]s

a*
#W50, ~6.20!

Bai5]a] iW50. ~6.21!

Because of the complete analogy in the Hamiltonian str
ture, we now argue that the same conditions provide an
tension of the zero temperature theory to finite excitat
energy. What we must admit is the additional complicati
that arises from the fact that the collective manifold depe
not only on the collective coordinatesQ but on the assigned
values of the occupation numbers. At zero temperature,
occupation distribution is that of a Fermi sphere. This dis
bution remains fixed as we map out the dependence of
collective manifold onQ, though at each point the Ferm
distribution refers to a different basis of single-particle stat

In the local harmonic method, the construction of the c
lective manifold at an arbitrary value ofQ involves an itera-
tion between Eq.~6.12! and the local harmonic equation
~6.13! and ~6.14!, both simplified by the conditions~6.20!
and~6.21!. This procedure, as described, for example, in R
@4#, is initiated at the point of dynamic equilibrium, wher
the constrained Hartree-Fock conditions reduce to the unc
strained limit and decouple from the local harmonic equ
tions. We thus have at this limit an ordinary Hartree-Fo
calculation and a separate random phase approxima
~RPA! calculation. The solution at this point provides th
starting values for an iterative treatment for a nearby n
equilibrium value. Continuing in this manner, we bootstr
our way from point to point.

For the corresponding problem for finite excitation en
gies, it is natural to choose a point of thermodynamic eq
librium as a starting point. At such a point the problem r
duces to the solution of separate standard thermal Hart
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Fock and thermal RPA problems@27–30#. We suppose tha
the system has been put into contact with a heat bath to
the initial temperature. We thus obtain a starting set of
cupation numbers of the form~4.14!.

If we now move away from equilibrium to construct
general manifold suitable for the study of transport pheno
ena, we face a general problem of daunting proportions if
wish to obtain the dynamical parameters for arbitrary val
of occupation numbers. For this reason, as already em
sized, we have chosen to study two limiting cases of poss
physical interest, each corresponding to a one-dimensi
subspace of the space of occupation numbers. One lim
that of collisionless motion, corresponding to fixed occup
tion numbers~in the local coordinate system! and one-body
friction. For this case, the formal problem is the same as
zero excitation energy, since we deal with a case of fix
occupation numbers as we explore changes of the collec
variables. The set of occupation numbers is that determ
at equilibrium at a fixed temperature. The resulting manif
is thus constructed from a series of collective paths w
fixed entropy. Technically, this problem is more difficu
than the zero-temperature problem because of the increa
the number of degrees of freedom of the Hamiltonian s
tem.

The other limit is that of two-body collisions establishin
local thermodynamic equilibrium on a time scale small co
pared to that associated with the collective motion. For t
limit it is convenient, technically, to calculate collectiv
paths at fixedT, where each point is associated with
occupation number distribution of the type~4.14!. We start
the calculation again at a point of thermal equilibrium, no
keepingT fixed as we changeQ. @This calculation is not to
be confused with what happens in an actual relaxation p
cess, whereT will change with time, as forced in part by Eq
~4.18!.# Thus, as opposed to the collision-less regime,
want the solutions of the LHA only at points where the o
cupation numbers satisfy Eq.~4.14!, with local values of
single-particle energies and chemical potential, adjusted
part of the calculation.

The submanifold of occupation numbers for which w
construct solutions can be thus be characterized as follo
In the collisionless case we have, zero referring to equi
rium,

na5na~Q0 ,T0!. ~6.22!

SinceQ05Q0(T0), this is a one-dimensional subspace w
a given entropy. In the strong collision limit

na5na~Q,T!, ~6.23!

is the Fermi distribution~4.14!. The derivation of the latter
by maximization of the local entropy guarantees that for e
Q, we have replaced the setna by the single variable,T,
defining the local equilibrium. In principle~though not in
practice! nothing prevents us from calculating the ent
manifold of canonical transformations and then identifyi
the two special subspaces afterwards.

Before continuing with the technical details, the most i
portant additional point to keep in mind is that after we co
plete the algorithm to be described below the solution fou
will not, in general, satisfy the decoupling conditions~6.20!
x
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and ~6.21! exactly ~except for the singular case of exact
decoupled motion when there is no dissipation!. As ex-
plained below, the transformation found will, however, allo
the evaluation of the quantities that occur in these conditio
Their non-vanishing values are, as we have seen in the
vious section, essential to the development of dissipative
havior. Thus all the quantities in the Hamiltonian~5.3! can
be evaluated.

The formulas required are obtained by inserting the so
tions for the density matrix and its various first derivativ
into an expansion of the right hand side of Eq.~6.1!. The
simplest example of such a calculation is the potential ene

V~Q!5W„sa~Q,0,0,0!,sa* ,na…. ~6.24!

Next in complexity is the first derivative

Va~Q!5]aW5
]W

]sa
]asa1c.c., ~6.25!

where the right-hand side is evaluated atP5q5p50. The
remaining parameters that we need are all second de
tives,

Bmn5]m]nW>
]2W

]sa]sb
]msa]nsb1

]2W

]sa]sb*
]msa]nsb* 1c.c.,

~6.26!

where we have~consistently! neglected second derivatives o
the density matrix. In order to evaluate Eq.~6.25! and all the
elements of Eq.~6.26!, it is evident that we need all the
solutions of the LHA equations~6.13! and ~6.14!, and not
only the collective ones that play a special role in the se
consistent calculation.

We review briefly the properties and solutions of Eq
~6.12!–~6.14!. When the decoupling conditions are enforce
these equations simplify to the forms

2Vi]
isa52 iSa , ~6.27!

Bi j ] j sa52 i @Mab] isb1Lab] isb* #, ~6.28!

2Vi j ]
j sa52 i @Mab] isb1Lab] isb* #. ~6.29!

They can be simplified further by the consistent assumpti
thatM andL are real symmetric matrices and that the par
derivatives are either real or imaginary,

] isa* 5] isa , ~6.30!

] isa* 52] isa . ~6.31!

This allows us to eliminate the partials ofsa* . The formalism
now consists of the constrained Hartree-Fock equation~6.27!
and two equivalent eigenvalue equations obtained by c
bining ~6.28! and ~6.29!, of which one is

2~VB! i
j] j sa5@~L2M !~L1M !#ab] isb , ~6.32!

and the other, for] isa , is the transpose of Eq.~6.32!. This
implies thatVB and BV have the same diagonal form~if
there are no degeneracies, as we assume!. These eigenvalue
equations plus the corresponding Lagrange bracket co



m
o

ob

n

lu
ng
p
i

he
u
io
e
o

w
io

th
oi

o
ls
a

he
s,

on
ffi
o
th

io
y

de
ec
c
c
n
t
ic

he
i-

ion
ies
p

av
th
.

ua-
-
elax-
e of
ider

n

ual
upa-
as-
oes

ted

ng a
rst
at
r-
n-
y the
al-

late
the
be-
ee-
ing.
m-

he

the
is
too
in

l
ol-
ted
that
tee
ain
is

al
ion
ur-
ith
tion
in

st
old
al

2078 PRC 59G. DO DANG, ABRAHAM KLEIN, AND P.-G. REINHARD
tions are equivalent to the eigenvalue problem of the ther
RPA @27–30#, but in our case the theory applies outside
thermal equilibrium.

As emphasized previously, the solution of the system
tained utilizes an algorithm of the same general structure
required at zero temperature, a procedure that has bee
scribed in considerable detail in our previous work@4# and
will not be repeated here. The solutions of the eigenva
problem automatically satisfy the homogeneous Lagra
bracket equations, whereas the inhomogeneous brackets
vide normalization conditions. The solution procedure
usually started at a point of thermal equilibrium where t
Hartree-Fock equations decouple from local harmonic eq
tions. At a general point, the algorithm requires an iterat
between the constrained Hartree-Fock equations and th
genvalue equations. This is the essence of the local harm
approximation.

As remarked earlier, we are confining our attention to t
cases. If, starting from equilibrium, we keep the occupat
numbers constant as we changeQ, the analogy with the
calculation at zero temperature is rather complete. If, on
other hand we keep the temperature fixed, at every p
there is the additional task of finding self-consistent values
the occupation numbers. This type of calculation was a
required for thermal Hartree-Fock. As a final observation,
we have implied all along, it is possible to move out from t
one-dimensional subspaces of fixed occupation number
effect to changena for fixed Q. We first set

]W~sa ,sa* ,na!

]na
5

]H

]na
, ~6.33!

whereW is the full Hartree-Fock energy andH is the clas-
sical expression~5.3!. Equating powers ofP, p, and q on
both sides of this equation yields microscopic expressi
for the first derivatives of the various force and mass coe
cients with respect tona . Such formulas could be used t
extend the study of the relaxation problem away from
limiting scenarios.

We summarize the argument developed in this sect
Given the mean-field Hamiltonian at finite excitation energ
we have described a method for introducing an optimal
composition of the total space into collective and noncoll
tive coordinates. In general these spaces will not be exa
decoupled, but as a result of the actual calculations, we
evaluate the coupling terms. In other words, we can fi
explicit forms of Eqs.~5.4!–~5.7! and from these project ou
the collective subspace that leads to a dissipative dynam
the procedure described in detail in Sec. V.

VII. SUMMARY AND PERSPECTIVE

In this work, we have introduced a new method for t
study of large amplitude collective motion, including diss
pation, in an extended Born-Oppenheimer approximat
Though to start with it is a quantum formulation that carr
us outside the framework of mean field theory, we have u
the present worked out the details only within the~extended!
boundaries of mean field theory. This means that we h
neglected two-body dissipation, though we anticipate that
methods developed can be extended to include this case
al
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The practical end of our labors is a set of classical eq
tions of motion~5.41! for the collective coordinates that in
cludes necessary dissipative parameters to describe the r
ation of a perturbed collective subsystem and the leakag
energy to the noncollective degrees of freedom. We cons
this equation now for a single collective coordinate,

B~Q,na!Q̈1F~Q,na!Q̇1]QV~Q,na!50. ~7.1!

This looks like an ordinary Newton equation with a frictio
term, except that the macroscopic parametersB,F depend on
the value of the collective coordinate, and there is a resid
quantum aspect in that they also depend on a set of occ
tion numbers of single-particle orbitals. There are two
pects of this equation that have been discussed. How d
one derive it? How does one use it?

By far the major part of the discussion has been devo
to the first question. Consider a fixed set ofna . ~At zero
temperature, these are the usual values 1 and 0 defini
Slater determinant. At finite excitation energy, the fi
choice is a set of occupation numbers for equilibrium
some finite temperature.! For such a single choice, the dete
mination ofV andB, as described in Sec. VI is in its esse
tials the same as at zero temperature, as summarized b
phrase local harmonic approximation. This allows us to c
culate the first line of the transformed Hamiltonian, Eq.~5.3!.
If we are interested in leading corrections, we also calcu
the second line. But in previous work we have ignored
existence of the third line which describes the coupling
tween the collective and the noncollective degrees of fr
dom, that will be non-zero unless there is exact decoupl
To include both the second and third lines, we need a co
plete set of solutions of the local RPA equation~6.32!. For
example, given such solutions,Va(Q) can be calculated
from Eq.~6.20! and there are corresponding formulas for t
other quantities needed in the subsequent development.

At this point, we could, for a fixed set ofna simply study
the classical equations of motion~5.4!–~5.7! as an initial
value problem. Of most interest would be the case that
initial energy is all in the collective motion. This study
feasible if the total number of degrees of freedom is not
great. @We are undertaking such a program for models
which the (Q,P,q,p) basis is known.#

On the other hand, Eq.~5.41! refers only to a very specia
limiting case in which the interaction strength between c
lective and noncollective degrees of freedom is distribu
over a very broad spectrum of oscillator energies, one
can be approximated by white noise. There is no guaran
that a chosen model will have such a property, though ag
we may choose to study one in which such a property
imposed. What is involved in the calculation of the friction
force can be seen most simply if we ignore the fluctuat
analysis that consumes much of Sec. V. Then for the p
poses of calculatingF, the essential steps associated w
obtaining the consequences of the white-noise assump
are Eqs.~5.33!–~5.37!. From these we see that at least
principleF can be obtained from anab initio calculation.

Given Eq. ~5.41!, how then do we use it? The simple
case is that of true one-body friction. Here the large manif
of values of (Q,na) is indeed restricted to a two-dimension
manifold of values wherena5na(T), with T a set of equi-
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librium values of the temperature. Disturbances away fr
equilibrium are assumed to take place with fixedna , i.e., at
constant entropy. Here Eq.~5.41! by itself defines an initial-
value problem. We have also described a relatively acc
sible second case in which relaxation occurs through po
of local thermodynamic equilibrium. Here the solution of t
relaxation problem requires the joint consideration of E
~5.41! and of Eq.~4.18!, describing how the local tempera
ture changes with time. Studies of these two cases for sim
models are in progress.

The formalism developed in this paper allows in princip
an extended scenario in which we would couple Eq.~5.41!
with a more general equation for the time rate of change
the occupation numbers~master equations!, either phenom-
enological or involving a Boltzmann-Uhlenbeck collisio
term. A major complication is that we would have to stu
the collective manifold over a multidimensional space of
na , though we might try at first to limit ourselves to a sma
neighborhood of one of the limiting cases. Beyond th
would be the inclusion of two-body friction.
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APPENDIX A: FURTHER DISCUSSION OF THERMAL
STATES. RELATION TO THERMOFIELD THEORY

The thermal state has a remarkable similarity to the s
in thermofield theory, see, e.g.,@31#. The thermofield theory
can be summarized as follows: One produces a copy of
Hilbert spaceG with statesuc& yielding the G̃ space with
statesuc̃&. The full space is the productG^ G̃. A basis in the
full space can be constructed from the product states

un,ñ&&5un& ^ uñ&, ~A1!

and a general state is expanded as

uC&&5(
nñ

cnñun,ñ&&. ~A2!

Consider now an observable from the physical Hilbert spa
ÂPG. Its expectation value becomes

^^CuÂuC&&5(
nn8

Dnn8^n8uÂun&, ~A3!

Dnn85(
ñ

cnñcn8ñ
* , ~A4!

where it is obvious how the averaging overG̃ space produces
a mixed ensembleDnn8 in G space. The expectation valu
holds for every observableÂ. Thus the formalism utilizing
s-
ts

.

le

f

e

t

o-

e

e

te

e

e,

the statesuC&& of the thermofield theory is equivalent to th
standard formalism of the density matrix

D̂5tr̃$uC&&^^Cu%5un&(
ñ

cnñcn8ñ
* ^n8u5un&Dnn8^n8u,

~A5!

where tr̃means the trace over theG̃ space. This indicates tha
all three pictures, thermal states, thermofield theory, and d
sity matrices are equivalent.

Next we try to express the collective decoupling in t
thermofield representation. The collective space is doub
uQ,Q̃))5uQ) ^ uQ̃) and similarly for the intrinsic space. A
pure intrinsic state~temperature 0! would then read

uQ,Q̃))u f , f̃ ]] 5uQ,Q̃))u f ] ^ u f̃ ], ~A6!

and a mixed state becomes

uC&&5uQ,Q̃))(
f f̃

af f̃ u f ] ^ u f̃ ]. ~A7!

The expectation value in this thermofield state becomes

^^CuÂuC&&5tr$ÂuQ!d̂~Qu%, ~A8!

d̂5u f ]df f 8@ f 8u, ~A9!

df f 85(
f̃

af f̃af 8 f̃
* , ~A10!

which is exactly the expectation value in the thermal sta
We thus can establish the equivalence

uQ)(
f f 8

u f ]af f 8@ f 8u[uQ,Q̃!)(
f f̃

af f̃ u f , f̃ ]]. ~A11!

This equivalence encourages the following set of obser
tions.

~1! It links the new development of the ‘‘thermal states
to the old and well settled concept of thermofield theo
This gives confidence that the present thermal representa
is useful and reasonable.

~2! It shows that the ‘‘thermal states’’ are fully equivale
to density matrices because this equivalence has been e
lished long ago for the thermofield states. It is a matter
taste and experience which of the various representations
prefers. The thermal states look closer to pure states and
allow one to work out all steps in sort of a Hilbert spa
picture.

~3! The ‘‘thermal states’’ seem to be simpler because o
does not need to double the Hilbert space. But this limits
range of applicability, as shown by the following points.

~4! The ‘‘thermal state’’uQ)d̂1/2 cannot be used in a linea
superposition, as, e.g.,*dQuQ)d̂1/2g(Q), because thed̂1/2 is
related to a bilinear object. Thus the ‘‘thermal states’’ a
used in this work only as a pathway to asemiclassical dy-
namicswhere one has only oneQ at one time, i.e., in a
dynamics which is expressed solely in terms ofQ(t), etc.
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APPENDIX B: ALTERNATIVE PRESENTATION
OF GENERALIZED KERMAN-KLEIN METHOD

FOR FINITE TEMPERATURE

In the body of the paper we have developed a version
generalized symmetry-preserving equation of motion met
for mixed states, applicable to transport phenomena as
as to thermal equilibrium. In the brief account included he
we describe an older previously unpublished argument
such a generalization restricted to the case of thermal e
librium.

Let X be an arbitrary operator. We contrast four physi
situations.

For the study of the ground state,u0& at T50, the relevant
quantity is

^0uXu0&5tr XP0 ,

P05u0&^0u. ~B1!

For the study of thermal equilibrium at finite temperatu
we replace Eq.~B1! by ~grand canonical ensemble!

^X&5
tr X exp~2bH8!

tr exp~2bH8!
,

[tr XD,

H85H2mN. ~B2!

Though usually left unspecified, this formulation contai
the assumption that the transfer of any energy to the sys
raises its temperature.

By contrast the Kerman-Klein theory contains the impli
assumption that we are dealing with a system that boast
ensemble of cold~collective! states described by a Hami
tonianHC and labeleduA&,uB&, . . . . Thefundamental role is
played by the transition matrix element

^BuXuA&5tr XPAB ,

PAB5uA&^Bu. ~B3!

A comparison between Eqs.~B3! and ~B1! suggeststhat
an appropriate generalization of Eq.~B2! is

^^BuXuA&&[tr XDA
1/2DB

1/2,

DA5
exp@2b~H2HC2mAN!#PA

tr exp@2b~H2HC2mAN!#PA
. ~B4!

HereDA is a mixed state that is pure with respect to t
collective stateuA& ~whose projection operator isPA and
whose chemical potential ismA) and a grand canonical en
semble with respect to noncollective excitations. Since it
positive definite operator, a positive square root is a w
defined concept.
a
d

ell
,
r
i-

l

m

an

a
l-

To use these last ideas in the equations of motion,
define a thermal single particle density matrix

r~aAubB!5tr ab* aaDA
1/2DB

1/2. ~B5!

The thermal version of the Kerman-Klein equations fo
lows from the assumption of the validity of the factorizatio

tr ag* ad* aaabDA
1/2DB

1/2>
1

2
@r~bAugC!r~aCudB!2~g↔d!

2~a↔b!1~g↔d,a↔b!#, ~B6!

which can, as in the text, be augmented into a formally ex
expression. The present construction, though sufficient
the formulation of an equilibrium statistical mechanics, is n
as general as that proposed in the body of the paper.

APPENDIX C: EXPLICIT FORMULAS FOR THE LOCAL
HARMONIC APPROXIMATION

In this Appendix, we give explicit formulas for the quan
tities S, L, andM that appear in Eqs.~6.12!–~6.16! and play
an essential role in the formulation of the local harmon
approximation. These quantities can be evaluated star
from the mean-field Hamiltonian using formulas given
Sec. IV. Notice that the indexa actually refers to a pair
(b,a), b.a. Recalling, in particular, the definitions~6.15!
and ~6.16!, we find

Sba5Ana2nbHba , ~C1!

Mbadc5Mdcba*

5
1

A~na2nb!~nc2nd!
@Hbddca~nc2nb!

2Hcaddb~na2nd!#1VbcadA~na2nb!~nc2nd!,

~C2!

Lbadc5Ldcab

5
1

2A~na2nb!~nc2nd!
@Hdadcb2Hbcdda#

3@~na2nb!2~nc2nd!#

1VdbacA~na2nb!~nc2nd!. ~C3!

It is easily seen that in the zero temperature limit, when
occupation numbers correspond to the choice (b,a)
→(ph), np50,nh51, that the matrices reduce to pieces
the well-known RPA matrix,M to the Tamm-Dancoff~shell-
model! matrix andL to a two-particle, two-hole matrix ele
ment ofV, associated with the inclusion of ground-state c
relations.



G

17

.

nn

c

ys

ys

er

s.

s.

PRC 59 2081SELF-CONSISTENT THEORY OF LARGE AMPLITUDE . . .
@1# P.-G. Reinhard and K. Goeke, Rep. Prog. Phys.50, 1 ~1987!.
@2# D. Slavov, F. Gru¨mmer, K. Goeke, and R. Gessler, J. Phys.

16, 395 ~1990!.
@3# A. Klein, N. R. Walet, and G. Do Dang, Ann. Phys.~N.Y.!

208, 90 ~1991!.
@4# A. Klein, N. R. Walet, and G. Do Dang, Phys. Rev. C45, 249

~1992!.
@5# Time-Dependent Hartree-Fock and Beyond, edited by K.

Goeke and P.-G. Reinhard, Lecture Notes in Physics Vol.
~Springer, Berlin, 1982!.

@6# S. J. Wang and W. Cassing, Ann. Phys.~N.Y.! 159, 328
~1985!.

@7# W. Cassing, A. Peter, and A. Pfitzner, Nucl. Phys.A561, 133
~1993!.

@8# A. Peter, W. Cassing, J. M. Ha¨user, and A. Pfitzner, Nucl
Phys.A573, 93 ~1994!.

@9# K. Guetter, P.-G. Reinhard, K. Wagner, and C. Toepffer, A
Phys.~N.Y.! 225, 339 ~1993!.

@10# T. Gherega, R. Krieg, P.-G. Reinhard, and C. Toepffer, Nu
Phys.A560, 166 ~1993!.

@11# Shun-Jin Wang, Wei Zuo, and Wolfgang Cassing, Nucl. Ph
A573, 245 ~1994!.

@12# P.-G. Reinhard, H. Reinhardt, and K. Goeke, Ann. Ph
~N.Y.! 166, 257 ~1986!.

@13# S. Ayik, Nucl. Phys.A422, 331 ~1984!.
@14# F. A. Ivanyuk, Z. Phys. A334, 69 ~1989!.
@15# X. Wu et al., Phys. Rev. C48, 1183~1993!.
1

.

l.

.

.

@16# X. Wu et al., Phys. Rev. C53, 1233~1996!.
@17# M. Yamamura, J. da Provideˆncia, A. Kuriyama, and C. Fiol-

hias, Prog. Theor. Phys.81, 1198~1989!.
@18# M. Yamamura, J. da Provideˆncia, A. Kuriyama, and C. Fiol-

hias, Prog. Theor. Phys.83, 749 ~1990!.
@19# H. Hofmann, Phys. Rep.284, 137 ~1997!.
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