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B- and double-B-decay transitions in a schematic model
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Single- and doublegs decay transitions of Fermi type are discussed within a schematic model. The ampli-
tudes associated with these transitions as well as some basic properties of the model like ground state and
excitation energies are reproduced quite well in terms of a multistep variational procedure. The procedure, fully
developed in a boson space, searches for the best ground state wave function through a series of minimizations.
Excited states are constructed in terms of a phonon operator acting on the ground state so derived and their
structure is also determined via a variational mechanism. Results obtained within the quasiparticle random
phase approximatioQRPA) are shown for reference and also the comparison with other approaches like the
renormalized QRPA is discussed. A considerable improvement is obtained within the present approach.
[S0556-281®9)05104-3

PACS numbegs): 21.60.Jz, 23.46:s

I. INTRODUCTION considered a schematic model which has been recently for-
mulated in connection witl83 decay physics and used as a
In recent years the quasiparticle random phase approxtesting ground for RQRPA calculatioi26]. Some impor-
mation (QRPA) has represented the most widely usedtant improvements with respect to the QRPA results have
nuclear structure method for the study of doupl¢BR3) been indeed observed, in particular for what concerns the
decay physics_ As well knowfﬂ__6], however, the evalua- Stablllty of the solutions. It is also true, hOWeVer, that some
tion of the results within this approach has proved to bedeficiencies have remained especially at the leves ofan-
particularly difficult due to the fact that the matrix elements Sition amplitudes for values of the interaction strength larger
associated with3B processes are highly sensitive to the an the QRPA critical point. _ _
particle-particle component of the residual interaction and The purpose of.th.e present paper is that of showing that a
that the physical value of this force is usually close to a poin uch better description of the properties of the model of Ref.

in which the QRPA “collapses.” These difficulties have en- 26] is possible in terms of a different approach. This ap-
. . . ; proach still makes use of a boson formalism and draws in-
couraged every effort aimed at improving this theory.

Several methods have been proposed in this conte%plratlon from a previous worR7]. In short, the approach is

2217 but th hich h sod . tar i ased on a multistep variational mechanism in which a deri-
[7-12 but the one which has raised more interest so far i 4o of the best ground state wave function is searched for

the so-called renormalized QRPARQRPA. The leading  4,gh a series of minimizations. A variational mechanism
principle in the elqboratlon Qf this method has been the rez|sg allows one to determine a phonon operator which is
moval of the basic inconsistency of the RPA approachysed for the definition of the excited states. We will show
namely, the quasiboson approximati@BA) [13], which  that, in comparison with the standard QRPA results, energies
consists in approximating the correlated ground state witind g8 and 88 transition amplitudes are reproduced much
the uncorrelated one when solving the equations of motionmore accurately and for values of the interaction strength far
The method can be traced back to some work of Ha#,  beyond the QRPA critical point. Similar conclusions will
Rowe[15] and da Providencipl6]; it has been the object of emerge also from a comparison with the RQRPA calcula-
recent elaborationfl7,18, and its first application tg838  tions[26] as well as with those of the previous boson ap-
decay physics is due to Toivanen and Suhoh&®] fol- proach[25].
lowed, then, by several other work®0—24. The paper is organized as follows. In Sec. Il, we will

The RQRPA is an approximation scheme developed indiscuss the model. In Sec. Ill, we will resume the main
fermion space. In a recent pagde5], still with reference to  points of the mapping procedure which is used to construct
BB decay physics, we have instead examined an alternatiisoson images of the fermion operators. In Sec. IV, we will
method having among its features that of being fully devel-describe the procedure for constructing ground and excited
oped in a boson space. Working in a boson space has thgates. In Sec. V, we will discuss the results. In Sec. VI, we
advantage that the QBA problem can be faced in a verwill search for a more accurate analysis of these results by
natural way. On the other hand, other important problemsnaking a comparison with previous calculations. Finally, in
appear which are just related to the use of bosons: in particigec. VII, we will provide a summary of the paper and draw
lar, a reliable mapping procedure is now needed in order tgome conclusions.
transform any fermion operator onto its boson image.

In order to test this boson approach, in H&b] we have Il. MODEL
We consider a system of protons and neutrons occupying
*Electronic address: samba@ct.infn.it both a singlg shell and interacting via the Hamiltonian
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H=H,+H,+Hes, (1) N,
Poom e u=\/1-=~ i=p.n. (16)
2Q
where
. N The operator§A,A",C} satisfy the S(2) Lie algebra
Hp:ep% al@pm— GpSiSy, ¥) .
[AAT]=1-55. [CAT]=2A, (17)
Ho=€n2 &}mfnm— GnShSn, 3)
m and so the Hamiltonia®9) resembles that of the standard
_ _ Lipkin model[28] with, in addition, the\; term.
_ +_ +
Hres=2xB B~ —2kP"P", (4) In this paper, we will concentrate on the solutions of the

Hamiltonian (9), keeping for the coefficientg,A;,\, the
1 Tzt 1 Tzt dependence on the parametkrg which results from Egs.
st=—> a’a ., S=->alal (5) p the p ¥ whicl q
P24y TPmoem 2 45 ~nmenm (12—(14). In particular, calculations will be performed for a
fixed value of y and fork ranging in a given interval, as
_ N + ot specified in Sec. V. The reason for this choice is that, as
B _%‘4 Apm@nm, B =(B7), (6)  already observed if26], calculated quantities like excitation
energies angB and B8 transition amplitudes will exhibit a
dependence on these parameters similar to that observed for
P-=>alal, P =(P). (7)  realistic quantities in terms of the particle-partictg,¢) and
m particle-hole ) strenghtd1,2,4]. In this way, the model
) b . Hamiltonian (9), although not meant to reproduce actual
In this expressiom,n, is the operator which creates a proton ,clear properties, will provide at least some qualitative fea-
with angular momentumj, and projection m, al,  tures of a realistipn-QRPA calculation.
:(_1)j—mag_m is its time reversal, andzm, Ellm are the In the following, then, whenever talking about exact en-
equivalent operators for neutrons. By performing a standar@rgies and eigenstates, we will always mean those obtained
Bogolyubov transformatioi13] for protons and neutrons, from the diagonalization of Eq9) in the space

i.e., introducing the operators
F={|n)=(A"H"0), 0<n=<20Q}, (18)
aier:uiaiTm_Uiaim (8)
where|0) is the vacuum of the quasiparticle operators. These
(where ui2+vi2=1, i=p,n), under the hypothesis that,  eigenvalues are, of course, not those of the Hamiltofdan
=jn=]j, Gp=G,=G, and by neglecting the so-called scat- sinceHg, Eq. (9), only provides an approximation of Eq.
tering termsBt=[a'@,]°=° and B, it has been shown by (1)- However, aiming in this work at making a relative com-

Hirschet al.[26] that the above Hamiltonian can be reducedParison among different approximate schemes and having

to the simple form the Hamiltonian(9) already provide a basis for similar cal-
culations[25,26, the use of this Hamiltonian appears quite
He=eC+ MATAJF )\Z(ATAT+ AA), 9) suitable for such a comparative analysis.
where a constant term has been neglected and where lIl. BOSON IMAGES OF FERMION OPERATORS
A'=[a}al]’=°, (10 As anticipated in the Introduction, the approach discussed

in this paper is developed in a boson formalism. Therefore,
" " as a preliminary operation, it is necessary to construct the
CZ; “pmapm+§ Enm®%nm: (11 boson images of all the fermion operators of interest. In this
work we will not discuss the details of the mapping proce-
with dure adopted, for which we refer to R¢R5] or, more in
general, to Ref[29], but we simply recall its main points.
Let b',b be creation, annihilatiod=0 boson operators

6=§G, (12 and |0) the corresponding vacuum, and let us define the
space
N1=4Q[ x(uiva+oiud) —k(uiui+oivd)], (13 1
B=1|n)=—=(b")"0), 0<n=2Q;. 19
Na=40(x+K) Ut i, (19 m= w10 19
In the previous expressionf,=j+ 3 and We can establish a one-to-one correspondence between the
states ofF and B. We define boson image of the fermion
N o operatorOg in B a boson operato®g such that all the ei-
vi=\/z~ i=p,n, (15 ) ) X
2Q) genvalues ofD¢ in F are also eigenvalues @g in B. As a
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result of the orthonormality of the staté$9), this require-
ment simply amounts to a search for a boson oper@igpr

such that

1 1
— ——={(n|Og|n’")=(n|Ogx|n"), 0<n, n'<2Q,

N,
(20
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C1= ZQupvn( \/1—m—1), (30
/ 1

Cr= Zvaun( 1—m—1), (3D

and contains up to three boson terms. It is also

where N,=(n|n). This condition, which preserves matrix
elements between corresponding states and, therefore, is of
Marumori type[13], defines the operatdDg .

The boson operator is constructed by requiring the fulfill-

ment of the condition20) for increasingly larger fermion In order to keep the notation as clear as possible, we will
and boson subspaces. The larger these spaces are, in geneigfer directly to the model under discussion. Starting point

the more complicated the structure of the resulting bosofor our procedure is the introduction of a RPA-like phonon
operator will be. In this paper we will consider boson imagespperator

having at most four-boson terms. This requires involving at
most the states of the subspaces

(BHY =BT, =12 (32

IV. PROCEDURE

ai=X;b"—Y;b. (33)

F®={]0),AT|0),(AT)?|0),(AT)3|0)} (21)  We define the stathgs;) as the vacuum of thg, operator,
ie.,
and
91/9s;) =0. (34)
B®=110),b"0) i(bT)2|0) i(bT)3|0) (22)  As is well known[13], this condition implies
V2 V6 ’
ST
in the fulfilment of the conditior(20). |gs1)=e%10), (39
The boson image of the Hamiltonig®) which is con-  \;hare
struted with this procedure has the form
Y
Hg=ab'b+ B(b'b"+bb)+ yb'b'bb Sl=ib*b*. (36)
1
+38(b"™d"™bb+b'bbb), (23 ,
The state(35 has components carrying any number of
with bosons but only those components which have up @ 2
bosons can belong to the spaBand so to have a physical
a=2€+N\q, (24)  counterpart inF. We get rid of the spurious components of
Eq. (35 by acting on this state with the identity operator of
1 B,
=No\/1- ==, 25
B=M2 20 (25) 20
lg=2 [n)(nl, (37)
M (26) "
Y= " 50¢
20 and obtain
5>\\/1111 \/11 2 oo
— - I - ~ n
2 30 20 20| @7) |98)=l1slgs)) =7 >, —=|n), (38
n=0 \/m
This Hamiltonian has been seen to provide an excellent im- ith
age of Eq.(9) [25]. wi
For what concerns the FerrBitransition operatorés), in ni v, \ N2
order to make clear the role played by different truncations, (;511):(”/'2)' (i) (39
: 1

we will consider two different images. The first one is

(,8’){;1)=\/E(upvan+vpunb) (where we have also introduced the normalization factor

(28)

Ny).
and is obtained by truncating the boson expansion at the In qrder to fix the amﬂhtudexl "’_m_d\_(l of Eq. (33 an_d
lowest order. The second image is so to fix the structure ofgs;), we minimize the expectation
value of the boson Hamiltonia(23) in this state, i.e., the

(B)g'=(B)g’+cib™b+cb™ob, (29 energy

with E(Y=(g51|HzlTS)). (40)
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Actually, it is clear from Eq.(39) that the statdgs;) only The Ansatz(43) is not the only one that can be thought to
depends on the ratiy,/X,. The absolute values of these add some “flexibility” to thec,, coefficients. A similar result
amplitudes can be fixed by requiring the normalization of thecan be obtained, for instance, with a stide;) defined by

one-phonon state the following Ansatz
20-1,2 ~ ~
~ ’ |9%5) = Nals(1+S})[gSy), (47
l9)=1501lg51) =Ny nzl di[n), (41 ¥

whereS}=Z;b'b" [we have in this case introduced the pro-
where jection operatol g which was unnecessary in E@3)]. This

state has the form
(1) c

Cﬂ— n
4= (n—ll)!xl_ n?lYl Jnt. (42) N 202 ()
19S5) =N3>, —]n), (48)
n=0 /n!

This normalization would reduce to the standard condition
(X1)?=(Y1)?*=1 if we neglected the finite dimensionality of | .t coefficients
the spacaB. We define the state which results from the mini-

mization of E; as the “first-order” approximation of the c®=N,[c®+Zsn(n—1)c@,]. (49)
ground state of our system. " " n-2

The state(38) has a very “rigid” structure which results These coefficients can be fixed as before by minimizing the

from the condition(34). In other words, all the:gl) coeffi-  energy
cients are strictly bound one to the other and fixayy [or,
equivalently, the structure of the opera@}r, Eq. (36)] im- Eg2=(9Ss|Hg|gSs) (50)

plies fixing them all at once. To search for a better ground
state necessarily means to free these coefficients from thigith respect to the variablg;. The same considerations al-
severe constraint and this is the basic idea which has inspiragéady made fofgs,) also hold for|gs;) and so this state is

the following steps of the procedure. _ expected to represent an improvement with respef$g).
As a next step, then, we introduce the s{ats,) which is The best way of proceeding that we have experienced
defined by the followingAnsatz consists in making an alternate use of #esaze (43) and
—_ — (47). Qualitatively, such a result can be understood by notic-
19,) =N2(1+S,)[gsy), (43 ing that the operators (£S) and (1+S") contain nothing

h bb and wherdaz ) is th hich h | but the first two terms of the power expansion of the opera-
rondy bon Zned i the ﬁ:ig;%%i::i;aiosga$hg State has oirs € ande®’, respectively. Had we used such operators,
y ' only their alternate use would have been meaningful since

the form(38), i.e., the sequential action of two exponential operators of the

20,2 (2) same form in the minimization procedure would be exactly
195,) =N, > ——In), (44)  equivalent to the use of just one of them. We could have
n=0 \/—I indeed used these full exponential forms and in the special
model under discussion this would have given no special
but with coefficients problems. However, having in mind possible applications of
2)_ (1) (1) the procedure under discussion to realistic cases we have
Cn =NilCq+Zo(1= 8 20)Chi'z]- (45 preferred to test an approach as simple as possible.

In conclusion, we define the std@) (47) as the “third-
order” approximation of the ground state of our system and
(46) we proceed by alternatively minimizing forms of the types
(43) and (47). As already noticed above, one can expect an
improvement of the approximate ground state energy at each
step of this procedure. However, one should also not forget

. : ~ . that, as far as the boson Hamiltonian that one is using is not
exponential form of the_ t_ypé%S)._ Since|gs) is g)hose” such an exact image of the fermion orfend this is generally the
to correspond to a minimum in the enerdyys can only  caq4 this procedure cannot converge to the exact solution.
provide an approximate ground state energy better tbBn  The quality of the final result will, of course, strictly depend
at worst, equal tbE{?. We define|gs,) as the “second- on the quality of the Hamiltonian itself.
order” approximation of the ground state of our system. For what concerns excited states, we have already consid-

Having fixed|gs,), the procedure could go on by iterating ered in Eq.(41) the one-phonon statgg;). An important
the step just described. So we could introduce a $tggg)  feature of this state is that, in the spirit of RPA, the ground
of the type(43), namely in which an operator (1S;) acts statelaél) entering the definition ofq,) is the vacuum(a
on |gs,), we could minimize the ground state energy with part from a projectionof the phonon operatar;. Whenever
respect to the new variabi;, and so on. As a matter of fact dealing with a ground staﬂ@NSn) with n>1, instead, a defi-
we have verified a more effective way of proceeding thatition of this kind becomes impossible since this state is no
works as follows. longer the vacuum of any phonon operator. A quite natural

These coefficients can be fixed by minimizing the energy
ELL=(0%|Hg|g%,)

with respect to the variablg,. The advantage dngSZ) with
respect tdgs,) is that this new state is no longer bound to an
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FIG. 1. Comparison of the ground state energies resulting from FIG. 2._ E_nergies of the first excited state referred Fo the ground
the diagonalization ofi , Eq.(9), in the basig18) (solid line) with state. Solid line shqws the exact result, dash-dottgd line the QRPA
those obtained in our approactashed lines Dashed lines are one, apd dgshed lines refer to our results at different orders of
labeled by numbers which indicate the order of the approximatiorfPProximation.
of the calculation(see text
this case, we also plot the energies calculated within the
way of constructing an excited one-phonon state based oQRPA (for these as well as for the other QRPA results we

|gs,) is, then, that of defining refer to Ref[26]). The latter figure well illustrates the extent
- of the interval chosen for the variabl€ [(0,3)] when one
lan)=189"|05,), (51)  compares this with the range of applicability of the QRPA

) ) which is approximately(0,1). It emerges that, within the
whereq"=Xb"—Ybis a phonon operator to be determined. QRPA range, already the first-order approximation of our
The X andY variables of this operator can be fixed by the calculations provides results which are quite well in agree-
minimization of ment with the exact ones. Outside this range, instead, the

n_ largerk’ is, the more thesa=1 values start deviating from
Eq =(dn|Hgldn) (52 the exact ones. In this region, however, a visible improve-
. _ . . mentin the results is observed when resorting to higher order
under the constrainy|q,) = 1. The difference between this approximations and, fon=15, both ground and excitation

state|q,) (n>1) and the statdq,), Eq. (41), is crucial. energies are very well reproduced in the whole rangk’of

While, in fact, an evident interdependence exists between th'Iahese figures, therefore, underline the high degree of conver-

ground statggs,) and the excited stalj«_ql) due to .the fact Hence which is reached by the procedure under discussion.
that the same phonon operator enters in the definition of bot

these states, this is no longer true in the cas¢gsf) and
|g,) for n>1. This leaves more freedom in the choice of the
best excited state. The analysis of this interdependence has As a simple test on the quality of the wave functions, we
been the object of a recent Lettg80] and will be further have performed a comparison between exact and approxi-
discussed in Sec. VI. To conclude this section, we remarknate expectation values of half the quasiparticle number op-

that, hereafter, whenever referring to amth-order” ap-  €rator(11), C/2, in the ground state and in the first excited
proximation, we will always mean a calculation involving State. The interest in such a comparison is due to the fact that

the statedgs,) and|qp). the boson image dE/2 which is constructed with the proce-

dure of Sec. Ill, namely, the operatdtz=b'b, is quite

simple andexact It follows that any difference between ex-

act and approximate values in the above quantities cannot be
The parameters that we have chosen for our mode| are ascribed to a bad quality of the boson operator but rather

=9/2,Z=4, N=6, ande=1 MeV. Moreover, in order to reflects the quality of the wave functions of the states in-

avoid dealing with small numbers, we have also redefineyolved.

the two parameterk and y as follows:k—k’=20Qk and x We define

—x'=2Qy. Calculations have been performed fgr

=0.5 whilek’ has been varied in the intervd,3). Ng.s= < g.s

B. Expectation values of the quasiparticle number operator

V. RESULTS

c 53
7|9-s. (53
A. Energies

In Fig. 1, we show the ground state energies for differen@ind
orders of approximations and compare them with the exact
values. In Fig. 2, a similar comparison is made for the ener- C C
gies of the first excited stateelative to the ground stateln AN= < ex# 5 exc> - < g.s

E‘ g.s.> , (54)
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3 L
2 L
%
pd
1 L
0
0
FIG. 3. Expectation values of half the quasiparticle number op-
erator(11), C/2, in the ground state. For symbols see Fig. 2.
0.5 - -
where|g.s) is the ground state arj@xc) is the first excited 0 1 .2 3
state of the system. In Figs. 3 and 4, we show the exact k

values, the QRPA ones, and those obtained within the p[g 5. Transition amplitudes of the operagr (6) between
present procedure at different orders of approximation. Thesground and first excited state@) refers to the use of the boson
results confirm qualitatively those already seen for the energperator g-){, Eq. (28), while (B) to (87)?, Eq. (29). For
gies. Indeed, already fan=1, both Ny and AN are ap-  symbols see Fig. 2.
proximated reasonably well within the range of applicability
of the QRPA while for larger values & a clear disagree-
s il for e vl . ovever, S0 1 15 0. yce oson temei( ) (e, (9. Mt semerts o
very good extent this disagreement. The convergence t3_hese operators betwegn the ground state and the.flrst excn_ed
. y ? tate are compared with the corresponding fermion quanti-
wards the exact results provides evidence of the improve

quality of the wave functions. €S,

erators truncated at one-boson terss I [Eq. (28] and at

(B7)=(exdB~|g.s), (55)
C. Fermi B and B transition amplitudes

A comparison between matrix elements of heperators in Figs. 5 and 6. These results confirm qualitatively those
(6) presents some extra difficulties with respect to the previ-
ous cases. Indeed, one has now to deal with boson operators
which are not exact images and so one has also to take into
account the effect of this further approximation when evalu-
ating the results. To test such an effect, we have performed
calculations using two differeng transition operators: op-

3

AN

FIG. 6. Transition amplitudes of the operatet, Eq. (6), be-
FIG. 4. Differences between the expectation values of half theween ground and first excited stat¢s) refers to the use of the
quasiparticle number operat6t1), C/2, in the first excited state boson operatorg™){", while (B) to (8%)?, Eq. (32). For sym-
and in the ground state. For symbols see Fig. 2. bols see Fig. 2.
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1 " . VI. COMPARISON WITH PREVIOUS CALCULATIONS
I — In the calculations just described we have resorted to
' \‘\\\‘\ | |gNsl5) and|qys) in order to have good ground and first ex-
\ cited states in the whole rangestk’ <3. The mechanism of
— 0 T these calculations is such, however, that the order of the
S " approximation needed to reach the “convergence” is strictly
§ -0.5 i related to the initial ground state trial function. So far, this
= : has been taken of the forrf88), namely, as the vacuum
s -1 i (properly projectefof the standard phonai33). In this sec-
i tion, instead, we believe it interesting to consider also the
15 | : case of a quite more elaborate phonon operator, that is,
, | | QT=Xb'— Yb+Zb'b'b— Wh'bb. (57)
0 ! K 2 8 The vacuum of the&) operator, namely, the staf&S) such

that
FIG. 7. Two-neutrino decay amplitud€s6) for A=0.5 MeV.
The solid line(a) refers to the exact values obtained summing over QIG9)=0, (58)
all the excited states while for link the summation has been re- ) ) . .
stricted to the first excited state only. The dash-dotted line refers t§/@S Still the form(38) but with c,, coefficients which are now

the QRPA result while the dashed line to oux 15 calculation. quite more complicated than E(B9). They are defined by
the recursion formula

already found for the energies as well asfgs andAN. In nY+n(n—1)W
addition, one can now examine the role of the two different Chi1= w7z Cn-1»
truncations in the boson operators employed. As expected,

the use of the §)) in place of 3%)§" results in a better ith co=1,c,=0 [as for the statg38), we consider this

agreement with the exact values. However, the differencgtate|GS) projected orB]. This state has no longer an ex-
between the two cases becomes really appreciable only fgjonential form of the typé35).

(59

rather large values of the strength. Similarly to Eq.(41), we construct the one-phonon state
In order to examine two-neutringB decay amplitudes in
this model, we follow the same lines of R¢26] and make |Q)=15QT|GS), (60)
the approximation ((9g.S.yinal 8~ [N)~((9.8)nitall B |N) - ,
=(\|B8*|g.s). In this way, we define whose coefficientsl,, are now given by
_ Cn-1 Cn-1 Cht1 Cnt1
vT 4 E A ’ (61)

where the sum runs over all the excited states of the Hamil" Ref. [30] it was shown that, minimizing the ener@s
tonian (9) and theE,’s are the excitation energies of these :(GSHBJGS) with respect to the variables, Y, W, andZ.,
states. one obtained values quite close to the exact ones in the
This quantity is shown in Fig. ine a) for A=0.5 MeV W{E%ﬁ range ofk’. These values are shown 'gzﬂfg column
and is compared with the QRPA result and with the value€gs.~ Of Table I. In the same table, colunty, ™, we
which are obtained making use of ti® matrix elements show the best results obtgmed in this work. The similarity
illustrated in Figs. 5 and 6 in the best approximation examPetween the two column is apparent. It therefore emerges
ined so far, namelyn=15. A quite good agreement is found clearly that the stat¢gs;s) of our procedure is to a good
between our results and the exact ones up to the cancellatig¥xtent equivalent to the vacuum of the more elabocte
point of M,, . After this point an increasing difference ap- pPhonon operator(57). In other words, either taking the
pears between the two results. To better understand the orisimple” phonon operator(33) and applying the multistep
gin of this difference, in Fig. 7 we have also plotted the Variational procedure described in this wdtlp to the order
quantity M, calculated by restricting the summation in Eq. = 15) or taking the “sophisticated” phonon operat@7)
(56) to the first excited state onlgfine b). It should be re- ~and just minimizing the energy of its vacuulire., remaining
membered, in fact, that both in the QRPA and in the preseritt the orden=1) gives rise to results which are quite simi-
approach only this state is involved in the summation. Thidar. The first way, however, is the one which looks more
line (b) closely approaches the one obtained in the preserfccessible in a realistic case.
approach in the whole range of variation Idf. The differ- Using theX, Y, W, Z amplitudes resulting from this mini-
ence between our results and the exact dfes a) is there- ~ Mization, it was also seen in R4B0] that the energie&,
fore essentially ascribable to the contribution of all the ex-=(Q|Hg|Q) reproduced reasonably well the exact ones only
cited states which are not included in our calculations. Thig¢/p to k' ~0.8. After this value, they started deviating com-
contribution, however, becomes appreciable only for largddletely. It was also realized, however, that, introducing a new

values ofk’. one-phonon operatcﬁ*, constructing the one-phonon state
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TABLE |. Comparison between approximate and exact energies as a function of the vh‘ria‘f')gg 9
Eg_gf’]), and ngg_aC’ are the ground state energies obtained, respectively, in the best approximation tested in
this work, in Ref[30] (see discussion in Sec. Mand in the exact calculations. A similar notation is used for
the excitation energieAE.

K' E(=19 E2D E(2e) AE(=19 AE(30) AE(exe0)

0.0 —0.02108 —0.02109 —0.02109 2.48877 2.48845 2.48845
0.2 —0.04462 —0.04466 —0.04466 2.26446 2.26330 2.26330
0.4 —0.08025 —0.08047 —0.08047 2.02776 2.02426 2.02426
0.6 —0.13154 —0.13239 —0.13239 1.78001 1.77032 1.77033
0.8 —0.20328 —0.20635 —0.20635 1.52691 1.50171 1.50173
1.0 —0.30166 -0.31153 —-0.31152 1.28364 1.22149 1.22153
1.2 —0.45384 —0.46237 —0.46235 0.95286 0.93820 0.93826
1.4 —0.66647 —0.68030 —0.68023 0.70580 0.66871 0.66876
1.6 —0.95734 —0.99157 —0.99141 0.48213 0.43722 0.43713
1.8 —1.35853 —1.41569 —1.41539 0.28889 0.26426 0.26383
2.0 —1.89819 —1.95121 —1.95072 0.13938 0.15215 0.15125
2.2 —2.54238 —2.57819 —2.57747 0.06398 0.08650 0.08514
2.4 —3.25098 —3.27290 —-3.27191 0.03055 0.04984 0.04816
2.6 —4.00324 —4.01658 —4.01527 0.01506 0.02956 0.02771
2.8 —4.78748 —4.79625 —4.79457 0.00793 0.01819 0.01630
3.0 —5.59641 —5.60318 —5.60106 0.00525 0.01167 0.00981

|Q)=15Q"|GS) [where|GY9) is the ground state already by minimizing the energy of the corresponding state at each
fixed in the previous minimizatignand minimizing the en- step. As a result of these minimizations we have verified a
ergy of this state with respect to the new variabley \W.Z qontinous improvement of the g'round state energies and their
which definined this new phonon, one obtained results verfinal convergence to values quite close to the exact ones.
close to the exact ones. These are shown in Table I. Once It is worth stressing that, with the only exception of the
again one notices the similarity between these results angfarting approximation (=1), the ground state so con-
those of the column H=15." A common feature to both Structed is not the vacuum of any phonon operator. Even for
these results is that they have been obtained by employing dr= 1, however, this feature is not strictly necessary and, in
independent phonon operator in the definition of the excitegbrinciple, one could assume any trial function as a starting
state, i.e., a phonon by no means bound to the ground statapproximation. It remains understood, of course, as also evi-
Differently from what is seen for the ground state energiesdenced in Sec. VI, that the better the starting approximation
however, the effects of using ti@¢" operatorn(57) rather than s, the sooner the procedure will have a chance to converge.

q', Eq. (33), are now much less evident. Excited states have been constructed in terms of a new
phonon operator acting on the ground state so derived and
VII. SUMMARY AND CONCLUSIONS fixing the relatedX and Y variables by means of a further

minimization. Also the excitation energies associated with

In this papers and 83 decay transitions of Fermi type these states have exhibited a convergence to the exact values
have been analyzed within a schematic model. The amp"qmte analogous to the ground state energies.

tudes associated with these transitions as well as some baS|cIn this paper, as a reference for our calculations, we have
properties of the model like ground state and excitation €Nshown the results obtained within the QRPA. An analysis of

rgies hav n repr ite well in terms of a multi-__ . . .
ergies have been reproduced quite we terms of a Utprewous works also allows a comparison with other ap-
step variational procedure.

The procedure has been fully developed in a boson spacmo"’mheS like the RQRPF26] and a different boson proce-

and so, as a preliminary step, we have constructed the bos re[25]. In all t.he cases_examlne_d so far, the present ap-
images of all the fermion operators of interest. A RPA-like proach has p_rowded c.onS|derapIe improved results. )
phonon operator depending on the standérd amplitudes I'n gonclusmn, the plgture WhIC.h emerges of_the' multlstep
has been introduced and we have assumed the vacuum yﬁlrlatlonal procedure dlscusse.d in th|§ paper is highly posi-
this operatorproperly projected onto the “physical” space tive and encourages an extension (_)f thls_ tgchnlque 'Fo realistic
as an initial approximation of the ground state of the systemcases. Of course, such an extension will imply facing some
The X and Y amplitudes have been fixed by minimizing the Problems that have not been met within the present, rather
energy of this state. simple, model and we cannot even exclude the possibility
The purpose of the remaining part of the procedure ha#hat the solution of these problems might require some varia-
been that of drawing up a scheme able to improve step btions in the procedure just illustrated. These final notes are
step the starting approximation of the ground state. For thatneant to clarify this point.
newAnsazefor the ground state have been introduced which  All the calculations performed so far have been greatly
depended on new variables. These variables have been fixé&tilitated by the fact that, as a result of the particular model
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employed, only one boson operatof and, consequently, mization with respect taN(N+1)/2 variablesZ,, . De-

one phonon operatar’ have been introduced. This has im- pending onN, there could be situations in which the number
plied that, at each step of the variational procedure for th@f these variables might become rather large and so cause
determination of the best ground state wave function, thesome difficulties in the calculations. In such a circumstance,
minimization has been performed with respect to one varihowever, one has to remember that, as already pointed out,
able only. Clearly, this situation is bound to become morethe choice(63),(64) is not at all an obliged one and, being

complicated in a realistic case where more than ohevill only meant to provide a starting approximation for the
appear, labeled by some indices, and a set of phonon operground state wave function, one can choose alternative and

tors of the form

N

a,= 2, (4ol =Y,"by)

(v=1,2,...N) (62

will replace the single phono(83).

Following exactly the indications of Sec. 1V, in a realistic

case one should assume the vacuum of the opergtoes

more tractable forms for it. One possibility could be, for
instance, that of assuming a state still of the exponential form
(63) but with the operatoB' expressed as

T 1 T ?
SZE ;Z)\b)\ .

(66)

This choice, which amounts to assurdg,,=z,z,, in Eq.

the starting approximation for the ground state wave functiong4), would considerably simplify the calculations since the

and this state has the forfin3]

199)=Nee¥'|0), (63)

where
+ 1 tt
s'=5 > Zubib),, (64)
NN

Ny is @ normalization constant, and tteymmetrig matrix Z
is related to the matricex andY through the expression

Z=YX1 (65)

number of variables involved in the minimization would be
reduced toN and this number is expected not to cause par-
ticular problems in realistic cases. Of course, this choice also
leaves less freedom in the initial determination of the wave
function and so it appears worse than ). Thanks to the
multistep mechanism, however, this fact should only give
rise to a slower convergence torward the exact solution
Sec. VI, we have just seen the opposite situation where a
better choice of the initial wave function has caused a faster
convergence

The choiceg64) and(66) are undistinguishable within the
model discussed in this paper and so nothing more can be
said at present on this point. More elaborate calculations are

(in the hypothesis of real quantitiedn this case, then, the under way to explore this subject in more detail and we plan
first step of the procedure would require performing a mini-to illustrate them in a future publication.
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