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b- and double-b-decay transitions in a schematic model

M. Sambataro*
Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Corso Italia 57, I-95129 Catania, Italy

~Received 18 November 1998!

Single- and double-b decay transitions of Fermi type are discussed within a schematic model. The ampli-
tudes associated with these transitions as well as some basic properties of the model like ground state and
excitation energies are reproduced quite well in terms of a multistep variational procedure. The procedure, fully
developed in a boson space, searches for the best ground state wave function through a series of minimizations.
Excited states are constructed in terms of a phonon operator acting on the ground state so derived and their
structure is also determined via a variational mechanism. Results obtained within the quasiparticle random
phase approximation~QRPA! are shown for reference and also the comparison with other approaches like the
renormalized QRPA is discussed. A considerable improvement is obtained within the present approach.
@S0556-2813~99!05104-3#
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I. INTRODUCTION

In recent years the quasiparticle random phase appr
mation ~QRPA! has represented the most widely us
nuclear structure method for the study of double-b (bb)
decay physics. As well known@1–6#, however, the evalua
tion of the results within this approach has proved to
particularly difficult due to the fact that the matrix elemen
associated withbb processes are highly sensitive to t
particle-particle component of the residual interaction a
that the physical value of this force is usually close to a po
in which the QRPA ‘‘collapses.’’ These difficulties have e
couraged every effort aimed at improving this theory.

Several methods have been proposed in this con
@7–12# but the one which has raised more interest so fa
the so-called renormalized QRPA~RQRPA!. The leading
principle in the elaboration of this method has been the
moval of the basic inconsistency of the RPA approa
namely, the quasiboson approximation~QBA! @13#, which
consists in approximating the correlated ground state w
the uncorrelated one when solving the equations of mot
The method can be traced back to some work of Hara@14#,
Rowe@15# and da Providencia@16#; it has been the object o
recent elaborations@17,18#, and its first application tobb
decay physics is due to Toivanen and Suhonen@19# fol-
lowed, then, by several other works@20–24#.

The RQRPA is an approximation scheme developed
fermion space. In a recent paper@25#, still with reference to
bb decay physics, we have instead examined an alterna
method having among its features that of being fully dev
oped in a boson space. Working in a boson space has
advantage that the QBA problem can be faced in a v
natural way. On the other hand, other important proble
appear which are just related to the use of bosons: in par
lar, a reliable mapping procedure is now needed in orde
transform any fermion operator onto its boson image.

In order to test this boson approach, in Ref.@25# we have
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considered a schematic model which has been recently
mulated in connection withbb decay physics and used as
testing ground for RQRPA calculations@26#. Some impor-
tant improvements with respect to the QRPA results h
been indeed observed, in particular for what concerns
stability of the solutions. It is also true, however, that som
deficiencies have remained especially at the level ofb tran-
sition amplitudes for values of the interaction strength lar
than the QRPA critical point.

The purpose of the present paper is that of showing th
much better description of the properties of the model of R
@26# is possible in terms of a different approach. This a
proach still makes use of a boson formalism and draws
spiration from a previous work@27#. In short, the approach is
based on a multistep variational mechanism in which a d
vation of the best ground state wave function is searched
through a series of minimizations. A variational mechani
also allows one to determine a phonon operator which
used for the definition of the excited states. We will sho
that, in comparison with the standard QRPA results, ener
and b and bb transition amplitudes are reproduced mu
more accurately and for values of the interaction strength
beyond the QRPA critical point. Similar conclusions w
emerge also from a comparison with the RQRPA calcu
tions @26# as well as with those of the previous boson a
proach@25#.

The paper is organized as follows. In Sec. II, we w
discuss the model. In Sec. III, we will resume the ma
points of the mapping procedure which is used to constr
boson images of the fermion operators. In Sec. IV, we w
describe the procedure for constructing ground and exc
states. In Sec. V, we will discuss the results. In Sec. VI,
will search for a more accurate analysis of these results
making a comparison with previous calculations. Finally,
Sec. VII, we will provide a summary of the paper and dra
some conclusions.

II. MODEL

We consider a system of protons and neutrons occupy
both a singlej shell and interacting via the Hamiltonian
2056 ©1999 The American Physical Society
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PRC 59 2057b- AND DOUBLE-b-DECAY TRANSITIONS IN A . . .
H5Hp1Hn1H res, ~1!

where

Hp5ep(
m

apm
† apm2GpSp

†Sp, ~2!

Hn5en(
m

anm
† anm2GnSn

†Sn, ~3!

H res52xb2b122kP2P1, ~4!

Sp
†5

1

2 (
m

apm
† ãpm

† , Sn
†5

1

2 (
m

anm
† ãnm

† , ~5!

b25(
m

apm
† anm , b15~b2!†, ~6!

P25(
m

apm
† ãnm

† , P15~P2!†. ~7!

In this expressionapm
† is the operator which creates a proto

with angular momentum j p and projection m, ãpm
†

5(21) j 2map2m
† is its time reversal, andanm

† , ãnm
† are the

equivalent operators for neutrons. By performing a stand
Bogolyubov transformation@13# for protons and neutrons
i.e., introducing the operators

a im
† 5uiaim

† 2v i ãim ~8!

~where ui
21v i

251, i 5p,n), under the hypothesis thatj p

5 j n[ j , Gp5Gn[G, and by neglecting the so-called sca
tering termsB†5@ap

†ãn#J50 and B, it has been shown by
Hirschet al. @26# that the above Hamiltonian can be reduc
to the simple form

HF5eC1l1A†A1l2~A†A†1AA!, ~9!

where a constant term has been neglected and where

A†5@ap
†an

†#J50, ~10!

C5(
m

apm
† apm1(

m
anm

† anm , ~11!

with

e5
V

2
G, ~12!

l154V@x~up
2vn

21vp
2un

2!2k~up
2un

21vp
2vn

2!#, ~13!

l254V~x1k!upvpunvn. ~14!

In the previous expressions,V5 j 1 1
2 and

v i5A Ni

2V
, i 5p,n, ~15!
rd

ui5A12
Ni

2V
, i 5p,n. ~16!

The operators$A,A†,C% satisfy the SU~2! Lie algebra

@A,A†#512
C

2V
, @C,A†#52A†, ~17!

and so the Hamiltonian~9! resembles that of the standa
Lipkin model @28# with, in addition, thel1 term.

In this paper, we will concentrate on the solutions of t
Hamiltonian ~9!, keeping for the coefficientse,l1 ,l2 the
dependence on the parametersk,x which results from Eqs.
~12!–~14!. In particular, calculations will be performed for
fixed value ofx and for k ranging in a given interval, as
specified in Sec. V. The reason for this choice is that,
already observed in@26#, calculated quantities like excitatio
energies andb and bb transition amplitudes will exhibit a
dependence on these parameters similar to that observe
realistic quantities in terms of the particle-particle (gpp) and
particle-hole (gph) strenghts@1,2,4#. In this way, the model
Hamiltonian ~9!, although not meant to reproduce actu
nuclear properties, will provide at least some qualitative f
tures of a realisticpn-QRPA calculation.

In the following, then, whenever talking about exact e
ergies and eigenstates, we will always mean those obta
from the diagonalization of Eq.~9! in the space

F[$un&5~A†!nu0&, 0<n<2V%, ~18!

whereu0& is the vacuum of the quasiparticle operators. The
eigenvalues are, of course, not those of the Hamiltonian~1!
since HF , Eq. ~9!, only provides an approximation of Eq
~1!. However, aiming in this work at making a relative com
parison among different approximate schemes and ha
the Hamiltonian~9! already provide a basis for similar ca
culations@25,26#, the use of this Hamiltonian appears qui
suitable for such a comparative analysis.

III. BOSON IMAGES OF FERMION OPERATORS

As anticipated in the Introduction, the approach discus
in this paper is developed in a boson formalism. Therefo
as a preliminary operation, it is necessary to construct
boson images of all the fermion operators of interest. In t
work we will not discuss the details of the mapping proc
dure adopted, for which we refer to Ref.@25# or, more in
general, to Ref.@29#, but we simply recall its main points.

Let b†,b be creation, annihilationJ50 boson operators
and u0) the corresponding vacuum, and let us define
space

B[H un)5
1

An!
~b†!nu0), 0<n<2VJ . ~19!

We can establish a one-to-one correspondence betwee
states ofF and B. We define boson image of the fermio
operatorOF in B a boson operatorOB such that all the ei-
genvalues ofOF in F are also eigenvalues ofOB in B. As a
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2058 PRC 59M. SAMBATARO
result of the orthonormality of the states~19!, this require-
ment simply amounts to a search for a boson operatorOB
such that

1

ANn

1

ANn8

^nuOFun8&5~nuOBun8!, 0<n, n8<2V,

~20!

where Nn5^nun&. This condition, which preserves matr
elements between corresponding states and, therefore,
Marumori type@13#, defines the operatorOB .

The boson operator is constructed by requiring the fulfi
ment of the condition~20! for increasingly larger fermion
and boson subspaces. The larger these spaces are, in ge
the more complicated the structure of the resulting bo
operator will be. In this paper we will consider boson imag
having at most four-boson terms. This requires involving
most the states of the subspaces

F ~3!5$u0&,A†u0&,~A†!2u0&,~A†!3u0&% ~21!

and

B~3!5H u0),b†u0),
1

A2
~b†!2u0),

1

A6
~b†!3u0)J ~22!

in the fulfillment of the condition~20!.
The boson image of the Hamiltonian~9! which is con-

struted with this procedure has the form

HB5ab†b1b~b†b†1bb!1gb†b†bb

1d~b†b†b†b1b†bbb!, ~23!

with

a52e1l1 , ~24!

b5l2A12
1

2V
, ~25!

g52
l1

2V
, ~26!

d5l2FAS 12
1

3V D S 12
1

2V D2A12
1

2VG . ~27!

This Hamiltonian has been seen to provide an excellent
age of Eq.~9! @25#.

For what concerns the Fermib transition operators~6!, in
order to make clear the role played by different truncatio
we will consider two different images. The first one is

~b2!B
~1!5A2V~upvnb†1vpunb! ~28!

and is obtained by truncating the boson expansion at
lowest order. The second image is

~b2!B
~2!5~b2!B

~1!1c1b†b†b1c2b†bb, ~29!

with
of

-

eral,
n
s
t

-

,

e

c15A2VupvnSA12
1

2V
21D , ~30!

c25A2VvpunSA12
1

2V
21D , ~31!

and contains up to three boson terms. It is also

~b1!B
~ i !5„~b2!B

~ i !
…

†, i 51,2. ~32!

IV. PROCEDURE

In order to keep the notation as clear as possible, we
refer directly to the model under discussion. Starting po
for our procedure is the introduction of a RPA-like phon
operator

q1
†5X1b†2Y1b. ~33!

We define the stateugs1) as the vacuum of theq1 operator,
i.e.,

q1ugs1)50. ~34!

As is well known@13#, this condition implies

ugs1)}eS1
†
u0), ~35!

where

S1
†5

Y1

2X1
b†b†. ~36!

The state~35! has components carrying any number
bosons but only those components which have up toV
bosons can belong to the spaceB and so to have a physica
counterpart inF. We get rid of the spurious components
Eq. ~35! by acting on this state with the identity operator
B,

I B5 (
n50

2V

un)~nu, ~37!

and obtain

ugs̃1)[I Bugs1)5N1 (
n50

2V,2 cn
~1!

An!
un), ~38!

with

cn
~1!5

n!

~n/2!! S Y1

2X1
D n/2

~39!

~where we have also introduced the normalization fac
N1).

In order to fix the amplitudesX1 andY1 of Eq. ~33! and
so to fix the structure ofugs̃1), we minimize the expectation
value of the boson Hamiltonian~23! in this state, i.e., the
energy

Egs
~1!5~gs̃1uHBugs̃1!. ~40!
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PRC 59 2059b- AND DOUBLE-b-DECAY TRANSITIONS IN A . . .
Actually, it is clear from Eq.~39! that the stateugs̃1) only
depends on the ratioY1 /X1. The absolute values of thes
amplitudes can be fixed by requiring the normalization of
one-phonon state

uq1)[I Bq1
†ugs̃1)5N1 (

n51

2V21,2

dn
~1!un), ~41!

where

dn
~1!5S cn21

~1!

~n21!!
X12

cn11
~1!

n!
Y1DAn!. ~42!

This normalization would reduce to the standard condit
(X1)22(Y1)251 if we neglected the finite dimensionality o
the spaceB. We define the state which results from the min
mization of E1 as the ‘‘first-order’’ approximation of the
ground state of our system.

The state~38! has a very ‘‘rigid’’ structure which results
from the condition~34!. In other words, all thecn

(1) coeffi-
cients are strictly bound one to the other and fixingc2

(1) @or,
equivalently, the structure of the operatorS1

† , Eq. ~36!# im-
plies fixing them all at once. To search for a better grou
state necessarily means to free these coefficients from
severe constraint and this is the basic idea which has insp
the following steps of the procedure.

As a next step, then, we introduce the stateugs̃2) which is
defined by the followingAnsatz:

ugs̃2)5N2~11S2!ugs̃1), ~43!

whereS25Z2bb and whereugs̃1) is the state which has al
ready been fixed in the first minimization. This state has s
the form ~38!, i.e.,

ugs̃2)5N2 (
n50

2V,2 cn
~2!

An!
un), ~44!

but with coefficients

cn
~2!5N1@cn

~1!1Z2~12dn,2V!cn12
~1! #. ~45!

These coefficients can be fixed by minimizing the energy

Eg.s.
~2!5~gs̃2uHBugs̃2! ~46!

with respect to the variableZ2. The advantage ofugs̃2) with
respect tougs̃1) is that this new state is no longer bound to
exponential form of the type~35!. Sinceugs̃2) is chosen such
to correspond to a minimum in the energy,Eg.s.

(2) can only
provide an approximate ground state energy better than~or,
at worst, equal to! Eg.s.

(1) . We defineugs̃2) as the ‘‘second-
order’’ approximation of the ground state of our system.

Having fixedugs̃2), the procedure could go on by iteratin
the step just described. So we could introduce a stateugs̃3)
of the type~43!, namely in which an operator (11S3) acts
on ugs̃2), we could minimize the ground state energy w
respect to the new variableZ3, and so on. As a matter of fac
we have verified a more effective way of proceeding t
works as follows.
e

n

d
is

ed

ll

t

TheAnsatz~43! is not the only one that can be thought
add some ‘‘flexibility’’ to thecn coefficients. A similar result
can be obtained, for instance, with a stateugs̃3) defined by
the following Ansatz:

ugs̃3)5N3I B~11S3
†!ugs̃2), ~47!

whereS3
†5Z3b†b† @we have in this case introduced the pr

jection operatorI B which was unnecessary in Eq.~43!#. This
state has the form

ugs̃3)5N3 (
n50

2V,2 cn
~3!

An!
un), ~48!

with coefficients

cn
~3!5N2@cn

~2!1Z3n~n21!cn22
~2! #. ~49!

These coefficients can be fixed as before by minimizing
energy

Eg.s.
~3!5~gs̃3uHBugs̃3! ~50!

with respect to the variableZ3. The same considerations a
ready made forugs̃2) also hold forugs̃3) and so this state is
expected to represent an improvement with respect tougs̃2).

The best way of proceeding that we have experien
consists in making an alternate use of theAnsätze ~43! and
~47!. Qualitatively, such a result can be understood by no
ing that the operators (11S) and (11S†) contain nothing
but the first two terms of the power expansion of the ope
tors eS and eS†

, respectively. Had we used such operato
only their alternate use would have been meaningful si
the sequential action of two exponential operators of
same form in the minimization procedure would be exac
equivalent to the use of just one of them. We could ha
indeed used these full exponential forms and in the spe
model under discussion this would have given no spe
problems. However, having in mind possible applications
the procedure under discussion to realistic cases we h
preferred to test an approach as simple as possible.

In conclusion, we define the stateugs̃3) ~47! as the ‘‘third-
order’’ approximation of the ground state of our system a
we proceed by alternatively minimizing forms of the typ
~43! and ~47!. As already noticed above, one can expect
improvement of the approximate ground state energy at e
step of this procedure. However, one should also not for
that, as far as the boson Hamiltonian that one is using is
an exact image of the fermion one~and this is generally the
case!, this procedure cannot converge to the exact solut
The quality of the final result will, of course, strictly depen
on the quality of the Hamiltonian itself.

For what concerns excited states, we have already con
ered in Eq.~41! the one-phonon stateuq1). An important
feature of this state is that, in the spirit of RPA, the grou
stateugs̃1) entering the definition ofuq1) is the vacuum~a
part from a projection! of the phonon operatorq1. Whenever
dealing with a ground stateugs̃n) with n.1, instead, a defi-
nition of this kind becomes impossible since this state is
longer the vacuum of any phonon operator. A quite natu
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2060 PRC 59M. SAMBATARO
way of constructing an excited one-phonon state based
ugs̃n) is, then, that of defining

uqn)5I Bq†ugs̃n), ~51!

whereq†5Xb†2Yb is a phonon operator to be determine
The X and Y variables of this operator can be fixed by t
minimization of

Eq
~n!5~qnuHBuqn! ~52!

under the constraint (qnuqn)51. The difference between thi
state uqn) (n.1) and the stateuq1), Eq. ~41!, is crucial.
While, in fact, an evident interdependence exists between
ground stateugs̃1) and the excited stateuq1) due to the fact
that the same phonon operator enters in the definition of b
these states, this is no longer true in the case ofugs̃n) and
uqn) for n.1. This leaves more freedom in the choice of t
best excited state. The analysis of this interdependence
been the object of a recent Letter@30# and will be further
discussed in Sec. VI. To conclude this section, we rem
that, hereafter, whenever referring to an ‘‘nth-order’’ ap-
proximation, we will always mean a calculation involvin
the statesugs̃n) and uqn).

V. RESULTS

The parameters that we have chosen for our model aj
59/2, Z54, N56, ande51 MeV. Moreover, in order to
avoid dealing with small numbers, we have also redefin
the two parametersk andx as follows:k→k8[2Vk andx
→x8[2Vx. Calculations have been performed forx8
50.5 whilek8 has been varied in the interval~0,3!.

A. Energies

In Fig. 1, we show the ground state energies for differ
orders of approximations and compare them with the ex
values. In Fig. 2, a similar comparison is made for the en
gies of the first excited state~relative to the ground state!. In

FIG. 1. Comparison of the ground state energies resulting f
the diagonalization ofHF , Eq.~9!, in the basis~18! ~solid line! with
those obtained in our approach~dashed lines!. Dashed lines are
labeled by numbers which indicate the order of the approxima
of the calculation~see text!.
on

.

he

th

as

rk

d

t
ct
r-

this case, we also plot the energies calculated within
QRPA ~for these as well as for the other QRPA results
refer to Ref.@26#!. The latter figure well illustrates the exten
of the interval chosen for the variablek8 @~0,3!# when one
compares this with the range of applicability of the QRP
which is approximately~0,1!. It emerges that, within the
QRPA range, already the first-order approximation of o
calculations provides results which are quite well in agr
ment with the exact ones. Outside this range, instead,
largerk8 is, the more thesen51 values start deviating from
the exact ones. In this region, however, a visible impro
ment in the results is observed when resorting to higher o
approximations and, forn515, both ground and excitation
energies are very well reproduced in the whole range ofk8.
These figures, therefore, underline the high degree of con
gence which is reached by the procedure under discussi

B. Expectation values of the quasiparticle number operator

As a simple test on the quality of the wave functions, w
have performed a comparison between exact and appr
mate expectation values of half the quasiparticle number
erator~11!, C/2, in the ground state and in the first excite
state. The interest in such a comparison is due to the fact
the boson image ofC/2 which is constructed with the proce
dure of Sec. III, namely, the operatorNB5b†b, is quite
simple andexact. It follows that any difference between ex
act and approximate values in the above quantities canno
ascribed to a bad quality of the boson operator but rat
reflects the quality of the wave functions of the states
volved.

We define

Ng.s.5 K g.s.U C

2 Ug.s.L ~53!

and

DN5 K excU C UexcL 2 K g.s.U C Ug.s.L , ~54!

m

n

FIG. 2. Energies of the first excited state referred to the gro
state. Solid line shows the exact result, dash-dotted line the QR
one, and dashed lines refer to our results at different order
approximation.
2 2
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PRC 59 2061b- AND DOUBLE-b-DECAY TRANSITIONS IN A . . .
whereug.s.& is the ground state anduexc& is the first excited
state of the system. In Figs. 3 and 4, we show the ex
values, the QRPA ones, and those obtained within
present procedure at different orders of approximation. Th
results confirm qualitatively those already seen for the en
gies. Indeed, already forn51, both Ng.s. and DN are ap-
proximated reasonably well within the range of applicabil
of the QRPA while for larger values ofk8 a clear disagree
ment is visible for this value ofn. However, also in this case
higher order approximations in our calculations cancel t
very good extent this disagreement. The convergence
wards the exact results provides evidence of the impro
quality of the wave functions.

C. Fermi b and bb transition amplitudes

A comparison between matrix elements of theb operators
~6! presents some extra difficulties with respect to the pre
ous cases. Indeed, one has now to deal with boson oper
which are not exact images and so one has also to take
account the effect of this further approximation when eva
ating the results. To test such an effect, we have perform
calculations using two differentb transition operators: op

FIG. 3. Expectation values of half the quasiparticle number
erator~11!, C/2, in the ground state. For symbols see Fig. 2.

FIG. 4. Differences between the expectation values of half
quasiparticle number operator~11!, C/2, in the first excited state
and in the ground state. For symbols see Fig. 2.
ct
e
se
r-

a
o-
d

i-
ors
to
-
d

erators truncated at one-boson terms (b6)B
(1) @Eq. ~28# and at

three-boson terms (b6)B
(2) @Eq. ~29#. Matrix elements of

these operators between the ground state and the first ex
state are compared with the corresponding fermion qua
ties,

^b6&[^excub6ug.s.&, ~55!

in Figs. 5 and 6. These results confirm qualitatively tho

-

e

FIG. 5. Transition amplitudes of the operatorb2 ~6! between
ground and first excited states.~A! refers to the use of the boso
operator (b2)B

(1) , Eq. ~28!, while ~B! to (b2)B
(2) , Eq. ~29!. For

symbols see Fig. 2.

FIG. 6. Transition amplitudes of the operatorb1, Eq. ~6!, be-
tween ground and first excited states.~A! refers to the use of the
boson operator (b1)B

(1) , while ~B! to (b1)B
(2) , Eq. ~32!. For sym-

bols see Fig. 2.
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2062 PRC 59M. SAMBATARO
already found for the energies as well as forNg.s. andDN. In
addition, one can now examine the role of the two differe
truncations in the boson operators employed. As expec
the use of the (b6)B

(2) in place of (b6)B
(1) results in a better

agreement with the exact values. However, the differe
between the two cases becomes really appreciable only
rather large values of the strengthk8.

In order to examine two-neutrinobb decay amplitudes in
this model, we follow the same lines of Ref.@26# and make
the approximation ^(g.s.)finalub2ul&'^(g.s.)initialub2ul&
5^lub1ug.s.&. In this way, we define

M2n5(
l

^lub1ug.s.&^lub2ug.s.&
El1D

, ~56!

where the sum runs over all the excited states of the Ha
tonian ~9! and theEl’s are the excitation energies of the
states.

This quantity is shown in Fig. 7~line a) for D50.5 MeV
and is compared with the QRPA result and with the valu
which are obtained making use of theb matrix elements
illustrated in Figs. 5 and 6 in the best approximation exa
ined so far, namely,n515. A quite good agreement is foun
between our results and the exact ones up to the cancell
point of M2n . After this point an increasing difference ap
pears between the two results. To better understand the
gin of this difference, in Fig. 7 we have also plotted t
quantityM2n calculated by restricting the summation in E
~56! to the first excited state only~line b). It should be re-
membered, in fact, that both in the QRPA and in the pres
approach only this state is involved in the summation. T
line ~b! closely approaches the one obtained in the pres
approach in the whole range of variation ofk8. The differ-
ence between our results and the exact ones~line a) is there-
fore essentially ascribable to the contribution of all the e
cited states which are not included in our calculations. T
contribution, however, becomes appreciable only for la
values ofk8.

FIG. 7. Two-neutrino decay amplitudes~56! for D50.5 MeV.
The solid line~a! refers to the exact values obtained summing o
all the excited states while for lineb the summation has been re
stricted to the first excited state only. The dash-dotted line refer
the QRPA result while the dashed line to ourn515 calculation.
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VI. COMPARISON WITH PREVIOUS CALCULATIONS

In the calculations just described we have resorted
ugs̃15) and uq15) in order to have good ground and first e
cited states in the whole range 0<k8<3. The mechanism of
these calculations is such, however, that the order of
approximation needed to reach the ‘‘convergence’’ is stric
related to the initial ground state trial function. So far, th
has been taken of the form~38!, namely, as the vacuum
~properly projected! of the standard phonon~33!. In this sec-
tion, instead, we believe it interesting to consider also
case of a quite more elaborate phonon operator, that is,

Q†5Xb†2Yb1Zb†b†b2Wb†bb. ~57!

The vacuum of theQ operator, namely, the stateuGS) such
that

QuGS)50, ~58!

has still the form~38! but with cn coefficients which are now
quite more complicated than Eq.~39!. They are defined by
the recursion formula

cn115
nY1n~n21!W

X1nZ
cn21 , ~59!

with c051, c150 @as for the state~38!, we consider this
stateuGS) projected onB#. This state has no longer an ex
ponential form of the type~35!.

Similarly to Eq.~41!, we construct the one-phonon stat

uQ)5I BQ†uGS), ~60!

whose coefficientsdn are now given by

dn5S cn21

~n21!!
X1

cn21

~n22!!
Z2

cn11

n!
Y2

cn11

~n21!!
WDAn!.

~61!

In Ref. @30# it was shown that, minimizing the energyEGS
5(GSuHBuGS) with respect to the variablesX, Y, W, andZ,
one obtained values quite close to the exact ones in
whole range ofk8. These values are shown in the colum
Eg.s.

(@30#) of Table I. In the same table, columnEg.s.
(n515) , we

show the best results obtained in this work. The similar
between the two column is apparent. It therefore emer
clearly that the stateugs̃15) of our procedure is to a good
extent equivalent to the vacuum of the more elaborateQ
phonon operator~57!. In other words, either taking the
‘‘simple’’ phonon operator~33! and applying the multistep
variational procedure described in this work~up to the order
n515) or taking the ‘‘sophisticated’’ phonon operator~57!
and just minimizing the energy of its vacuum~i.e., remaining
at the ordern51) gives rise to results which are quite sim
lar. The first way, however, is the one which looks mo
accessible in a realistic case.

Using theX, Y, W, Z amplitudes resulting from this mini
mization, it was also seen in Ref.@30# that the energiesEQ
5(QuHBuQ) reproduced reasonably well the exact ones o
up to k8;0.8. After this value, they started deviating com
pletely. It was also realized, however, that, introducing a n
one-phonon operatorQ̄†, constructing the one-phonon sta

r

to
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TABLE I. Comparison between approximate and exact energies as a function of the variablek8. Eg.s.
(n515) ,

Eg.s.
([30]), andEg.s.

(exact) are the ground state energies obtained, respectively, in the best approximation te
this work, in Ref.@30# ~see discussion in Sec. VI! and in the exact calculations. A similar notation is used
the excitation energiesDE.

k8 Eg.s.
(n515) Eg.s.

(@30#) Egs
(exact) DE(n515) DE(@30#) DE(exact)

0.0 20.02108 20.02109 20.02109 2.48877 2.48845 2.48845
0.2 20.04462 20.04466 20.04466 2.26446 2.26330 2.26330
0.4 20.08025 20.08047 20.08047 2.02776 2.02426 2.02426
0.6 20.13154 20.13239 20.13239 1.78001 1.77032 1.77033
0.8 20.20328 20.20635 20.20635 1.52691 1.50171 1.50173
1.0 20.30166 20.31153 20.31152 1.28364 1.22149 1.22153
1.2 20.45384 20.46237 20.46235 0.95286 0.93820 0.93826
1.4 20.66647 20.68030 20.68023 0.70580 0.66871 0.66876
1.6 20.95734 20.99157 20.99141 0.48213 0.43722 0.43713
1.8 21.35853 21.41569 21.41539 0.28889 0.26426 0.26383
2.0 21.89819 21.95121 21.95072 0.13938 0.15215 0.15125
2.2 22.54238 22.57819 22.57747 0.06398 0.08650 0.08514
2.4 23.25098 23.27290 23.27191 0.03055 0.04984 0.04816
2.6 24.00324 24.01658 24.01527 0.01506 0.02956 0.02771
2.8 24.78748 24.79625 24.79457 0.00793 0.01819 0.01630
3.0 25.59641 25.60318 25.60106 0.00525 0.01167 0.00981
y

e
n
a

g
ite
ta
es

e
p

ba
en
lt

a
os
ke

m

m
e

ha
b

ha
ic
fix

ach
d a
heir
.
e
-
for

, in
ing
evi-
tion
rge.
new
and
r
ith
alues

ave
of
p-
-
ap-

ep
si-

istic
me
ther
ility
ria-
are

tly
del
uQ̄)5I BQ̄†uGS) @where uGS) is the ground state alread
fixed in the previous minimization#, and minimizing the en-
ergy of this state with respect to the new variablesX̄,Ȳ,W̄,Z̄
which definined this new phonon, one obtained results v
close to the exact ones. These are shown in Table I. O
again one notices the similarity between these results
those of the column ‘‘n515.’’ A common feature to both
these results is that they have been obtained by employin
independent phonon operator in the definition of the exc
state, i.e., a phonon by no means bound to the ground s
Differently from what is seen for the ground state energi
however, the effects of using theQ† operator~57! rather than
q†, Eq. ~33!, are now much less evident.

VII. SUMMARY AND CONCLUSIONS

In this paperb and bb decay transitions of Fermi typ
have been analyzed within a schematic model. The am
tudes associated with these transitions as well as some
properties of the model like ground state and excitation
ergies have been reproduced quite well in terms of a mu
step variational procedure.

The procedure has been fully developed in a boson sp
and so, as a preliminary step, we have constructed the b
images of all the fermion operators of interest. A RPA-li
phonon operator depending on the standardX, Y amplitudes
has been introduced and we have assumed the vacuu
this operator~properly projected onto the ‘‘physical’’ space!
as an initial approximation of the ground state of the syste
The X andY amplitudes have been fixed by minimizing th
energy of this state.

The purpose of the remaining part of the procedure
been that of drawing up a scheme able to improve step
step the starting approximation of the ground state. For t
newAnsätzefor the ground state have been introduced wh
depended on new variables. These variables have been
ry
ce
nd

an
d
te.
,

li-
sic
-

i-

ce
on

of

.

s
y
t,

h
ed

by minimizing the energy of the corresponding state at e
step. As a result of these minimizations we have verifie
continous improvement of the ground state energies and t
final convergence to values quite close to the exact ones

It is worth stressing that, with the only exception of th
starting approximation (n51), the ground state so con
structed is not the vacuum of any phonon operator. Even
n51, however, this feature is not strictly necessary and
principle, one could assume any trial function as a start
approximation. It remains understood, of course, as also
denced in Sec. VI, that the better the starting approxima
is, the sooner the procedure will have a chance to conve

Excited states have been constructed in terms of a
phonon operator acting on the ground state so derived
fixing the relatedX and Y variables by means of a furthe
minimization. Also the excitation energies associated w
these states have exhibited a convergence to the exact v
quite analogous to the ground state energies.

In this paper, as a reference for our calculations, we h
shown the results obtained within the QRPA. An analysis
previous works also allows a comparison with other a
proaches like the RQRPA@26# and a different boson proce
dure @25#. In all the cases examined so far, the present
proach has provided considerable improved results.

In conclusion, the picture which emerges of the multist
variational procedure discussed in this paper is highly po
tive and encourages an extension of this technique to real
cases. Of course, such an extension will imply facing so
problems that have not been met within the present, ra
simple, model and we cannot even exclude the possib
that the solution of these problems might require some va
tions in the procedure just illustrated. These final notes
meant to clarify this point.

All the calculations performed so far have been grea
facilitated by the fact that, as a result of the particular mo
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employed, only one boson operatorb† and, consequently
one phonon operatorq† have been introduced. This has im
plied that, at each step of the variational procedure for
determination of the best ground state wave function,
minimization has been performed with respect to one v
able only. Clearly, this situation is bound to become m
complicated in a realistic case where more than oneb† will
appear, labeled by some indices, and a set of phonon op
tors of the form

qn
†5 (

l51

N

~Xl
~n!bl

†2Yl
~n!bl! ~n51,2, . . . ,N! ~62!

will replace the single phonon~33!.
Following exactly the indications of Sec. IV, in a realist

case one should assume the vacuum of the operatorsqn as
the starting approximation for the ground state wave funct
and this state has the form@13#

ugs)5N0eS†
u0), ~63!

where

S†5
1

2 (
l,l8

Zll8bl
†bl8

† , ~64!

N0 is a normalization constant, and the~symmetric! matrix Z
is related to the matricesX andY through the expression

Z5YX21 ~65!

~in the hypothesis of real quantities!. In this case, then, the
first step of the procedure would require performing a mi
uc

nd
e
e
i-
e

ra-

n

-

mization with respect toN(N11)/2 variablesZll8 . De-
pending onN, there could be situations in which the numb
of these variables might become rather large and so ca
some difficulties in the calculations. In such a circumstan
however, one has to remember that, as already pointed
the choice~63!,~64! is not at all an obliged one and, bein
only meant to provide a starting approximation for t
ground state wave function, one can choose alternative
more tractable forms for it. One possibility could be, f
instance, that of assuming a state still of the exponential fo
~63! but with the operatorS† expressed as

S†5
1

2 S (
l

zlbl
†D 2

. ~66!

This choice, which amounts to assumeZll8[zlzl8 in Eq.
~64!, would considerably simplify the calculations since t
number of variables involved in the minimization would b
reduced toN and this number is expected not to cause p
ticular problems in realistic cases. Of course, this choice a
leaves less freedom in the initial determination of the wa
function and so it appears worse than Eq.~64!. Thanks to the
multistep mechanism, however, this fact should only g
rise to a slower convergence torward the exact solution~in
Sec. VI, we have just seen the opposite situation wher
better choice of the initial wave function has caused a fa
convergence!.

The choices~64! and~66! are undistinguishable within the
model discussed in this paper and so nothing more can
said at present on this point. More elaborate calculations
under way to explore this subject in more detail and we p
to illustrate them in a future publication.
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