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Pairing in low-density Fermi gases
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Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195
(Received 2 December 1998

We consider pairing in a dilute system of fermions with a short-range interaction. While the theory is
ill-defined for a contact interaction, the BCS equations can be solved in the leading order of low-energy
effective field theory. The integrals are evaluated with the dimensional regularization technique, giving analytic
formulas relating the pairing gap, the density, and the energy density to the two-particle scattering length.
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In the theory of fermionic matter, the expansion about the:Hk(Uk+Vkal,TaJ’_kvl)|0>; the energy is minimized with re-
low-density limit has been invaluable for understanding thespect toU,,V, to get the BCS equatiorjd7]. The equation
structure of the theory and the role of the interaction. At lowfor the pairing gap\ is
densities, the interaction needs only be characterized by its

scattering length to get expansions for the energy density, gVv d3k
excitation spectrum, et¢1]. However, to our knowledge the =22 TENETG )
—

pairing singularity has never been incorporated into this

framework. We have for example only the qualitative stateypare ) is the chemical potential. The density is given in
ment in Ref.[1] that _the pairing smgg!anty is Iogar|thm|9 terms of these parameters by

and unimportant for integrated quantities. A more quantita-

tive statement is needed to have complete understanding of N d3k €c— N
low-density fermionic matter. —= 3| 1— . 3
Another motivation for our study is the general reexami- v (2m) V(ie—N)“+A

nation of nuclear physics with effective field theory which is
now taking place[2-9]. In the effective field theory ap-
proach, the interaction is systematically expanded in a power 3 _ )
series in momentum with the object of getting relationshipsEzf d°k _ ek M) _ 1 A
between observables such that the details of the shortV (2m)? V(ee—NZ+AZ 2 [(e—N)Z+A2
distance interaction need not be parameterized. We shall (4)
show here that the BCS theory of pairing is amenable to this
approach, and the low-energy theory gives finite and ana|ytib|0te that the last two integrals are finite, although each in-
results. Within effective field theory many results can betégrand is a sum of terms that are individually divergent.
obtained analytically opposed to the numerical treatment of The problem with Eq(2) as derived is that the contact
potential models. In this sense our approach Comp|emeni§teraCti0n is singular in three dimensions. One often intro-
the large body of literature of pairing in nuclear and neutronduces a cutoff to make the integrals converge. However, in
matter that is based on potential modgl§—-16. effective field theory cutoffs are not explicitly introduced.
We consider a Fermi gas with two-fold degeneracy inter-Rather, the computed observables are expressed directly in
acting with a short-range attractive interaction. Examples aréerms of other physical quantities. To leading order in a low-

neutron matter or gaseodle. The Hamiltonian is idealized €nergy expansion of the interaction, the physical quantity is
to be of the form the scattering length. With the same Hamiltonian, the scat-

tering lengtha is given by a similar divergent integral,

Finally, the energy density of the paired state is given by

€k

d3k
_ T t 3
H—Vf Wek(amakpta,k’la,k_l) B mgV+ _ gVv d k3 i 5)
47a 2 ) (27)° e
[ dk [ oAk,
+gV Wf Wakja—k,ia—k’,lak’,m (1) Let us now subtract Eq$2) and(5) to obtain
wheree, =k?/2m is the kinetic energy an¥l the volume. In mg___ 9 J' 3y 1 6)
effective field theory the contact interaction is the leading 4ma 2(2m)3 V(e—N)Z+A% &l

term in a derivative expansion of the many-body system.

This limits the validity of the Hamiltoniaril) to the regime  Notice that the integral is now convergent and so any cutoff
of long wave lengths or small densities. However, correccan be taken to infinity. Furthermore, the strength of the
tions can systematically be implemented. We have only reeontact interactiorg, which is also an unphysical quantity,
tained terms in the contact interaction that are needed in thean be divided out. It is convenient to evaluate both terms of
wave function. The BCS wave function has the foj#)  the integral (6) separately by dimensional regularization
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) FIG. 2. EnergyE, of interacting neutron matter normalized to
FIG. 1. Energy gap\/A as a function okga. the energyE, of noninteracting neutrons as a function of the den-

sity.
(DR) [18]. In DR, integrals of powers are zero so the second

term in the integrand in Eq6) can be dropped. The first N k,3:
term can be evaluated usifg9] (3.252.1), Voo E(1+x2)1’4[ Py — 1W1+x%3)
fx G +VIHX Pa — IWI+32)], (10
o [(z—1)*+x*]" and the energy density by
aw
" Saa WOTRCINIDE @B S ) (1 (145006 Pt~ INTHR
whereP,, denotes the Legendre function. +V1+X2Pg( — 11+ XP)]. (11)

We write the final result in the form
For fixed density and scattering length E¢®. and (10) can
1 be solved for the pairing gap and the Fermi energy. Put into
= = (LX) P — VLX), (8)  Eq. (1D this yields the energy of the interacting system at
Kea fixed density. Figure 2 shows a comparison with the energy
of noninteracting neutrons. Folkcal~1 (i.e., N/V~5
wherekg= \2mN\ is the Fermi momentum and=A/\. This X 10 8fm~3) pairing lowers the energy about 3% confirm-
is our main result. Equatiof8) is graphed in Fig. 1. For ing the qualitative statement that the effects of pairing on the
small values okga the gap is exponentially small as in the binding are mild.

usual BCS theory, DiscussionWe now discuss the domain of validity of this
low-density expansion. As pointed out above, the applicabil-
8 - ity of Hamiltonian (1) is limited to the regime of long wave
A gzk exp( k] |) (9) length|keal<1 or small densities. The description of neu-

tron or nuclear matter at nuclear densities requires the inclu-
sion of the effective range and pions. Comparing with more
This comes about by the behavior Bf,,(z), which has a microscopic calculations involving phenomenological poten-
logarithmic singularity az=—1 [20]. Equation(9) agrees tials it appears that deviations from the low-density behavior
with the result derived in Ref14]. For large values dkgra, are set by the scattering length. Similar considerations can be
the gap is proportional ta, approachingA~1.16\. made for®He where the scattering length of the Aziz poten-
For neutron matter the solution of E¢B) agrees with tial [21] is large on an atomic scale. Many-body correlation
numerical results from potential models only for small val- effects will become important whega~ 1. It might be pos-
ues of the Fermi momentum. The large value of the scattersible to treat them by modifying the strength of the pairing
ing length @= —18.8 fm) clearly limits the domain of valid- and the density of states in E(L). The sign would be to
ity of the Hamiltonian(1). In the Appendix we consider increase the pairing, but we have not attempted to calculate
pairing in the effective range approximation. This improvesthese effects.
on the precision of the calculation in the low-density regime Another consideration is whether the low-density phase
but does not enlarge the domain of validity. exists for fermionic systems with attractive scattering
We complete this discussion by computing the energylengths. In the case dHe, a low-density phase could only
density(4) and the density3). The finite integrals involved be metastable at zero temperature, because there is a finite
are very similar to the previous one and can be evaluatetlinding of the liquid phase. However, the metastability could
using the same DR integral, E(). The density of the BCS be quite significant, because the minimum size for a bound
state is given by drop is thought to be of the order of fifty particles. Another
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indication of the metastability of a low-density phase is the Vg,Amke
sound velocity in the scattering length expansion. Taking the 0=— —4772_‘]1/2(X:y)-

first three terms, the sound velocity is positive at all densi-
ties, and thus small deviations from uniformity are energeti-O
cally unfavorable. In the case of neutron matter, it is thoughte
that pressure is always positive as a function of density, so
the low-density state would be stable.

In summary, we have considered the pairing in low- A(p)=Vg
density Fermi systems within effective field theory. This
model independent approach yields analytical expressions
which relate the pairing gap, the density and the ground stateép to quadratic order in momenta. The loop integral is
energy to the scattering length. The analytical derivation of

bviously we haveS/A=g,/g. To make contact with low
nergy scattering data we expand the scattering amplitude

17

1+Vg|(p)+%p2+(Vg|(p))2

these results is quite interesting. 1 d3k 1 mp (= t1/2
H(p)= 2 (2m)° €p— €t 77: 472 ) dtl—H—i 7’
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(18

At low energies the scattering amplitude is given in terms of
the scattering length and the effective range,

APPENDIX A(p)= A%a[l— iap+ (ary/2—a?)p?]. (19
To include the effective range we add the effective range
potential Note that the divergence of the integrgl,(X,y) appearing
in the gap equationd 6) is similar to that of the loop integral
, [ 9% d3k’ ot I(p) appearing in the expressig7) for the scattering am-
g2V (2m)3 (277)3(k_k T T plitude. Thus, both divergencies may be taken care off by a

(12) renormalization of the coupling constaggsandg,. We use
o ] dimensional regularization to compute the divergent inte-
to the Hamiltonian(1). The gap equation then becomes grals. One obtain$(p) = —i(m/4m)p and a comparison of
Egs.(17) and (19 yields g,/g=ary/2 andg=4ma/m. Fi-
A=— XJ d°k  g+ga(p—k)° 13  nally we have
2] 2 Jlg—n)F+AZ ¢

2

1 al2
and is explicitty momentum dependent. We make the qua- J,(X,y)=— sinwa(1+y2)_l/2(1+y2 P.(—2),
dratic ansatzAp=A+p25 for the momentum dependence (20)
and obtain two coupled equations that exprAsand & in

terms of(divergenj integrals. To deal with the divergencies _a JAEDAH?) L '
we observe that the integrals’ dependence on the Fermi mc\)/\_/herez—(l XY)N(@L+x)(1+y7). This yields the final

mentum is given by results
2\ 1/4
d3k k2n k2" 1m 1 2\~ 1/2 X _ _af 5
3 2 2 2: 2 Jn+1/2(XaY)a k,:a_(1+y ) 1+y2 P1/2( Z), y_ 2 kFX‘
(27)° (e,— N2>+ (A+KZ8)2 27\

(14 (21
wherex=A/\, y=8kZ/\ andJ,, 1,(X,y) is the dimension- Notzge that these equatipns add correctioqs of the order
less function ~kgarg to the gap equatiofB). These corrections are small

only in the low-density regim&-a<1. For a description of
o te neutron mattefa=—18.8fm,ro=2.75 fm) at larger densi-
Ja(X,Y)EJO dt D2 (g2 (19 ties, at least the inclusion of pions seems to be necessary.

Note also, that the gap equatio(®l) become singular for
In effective field theory an expansion in momenta is quiteki— —2/aro (i.e.,y— —Xx) due to the logarithmic singularity

useful [3,8]. In what follows we truncate each of the gap of the Legendre function fozr— —1. This behavior results
equations to its leading order in the Fermi momentum androm the quadratic approximation for the interaction poten-

obtain tial and the truncations in the gap equation. It is related to the
change in sign of the truncated potentialkat=/—2/ar
1—— ngkCJ (x.y) (16) [14]. Again, the introduction of pions or higher potential
42 uAXY), terms seem to be necessary to alter this behavior.
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