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Pairing in low-density Fermi gases

T. Papenbrock and G. F. Bertsch
Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195

~Received 2 December 1998!

We consider pairing in a dilute system of fermions with a short-range interaction. While the theory is
ill-defined for a contact interaction, the BCS equations can be solved in the leading order of low-energy
effective field theory. The integrals are evaluated with the dimensional regularization technique, giving analytic
formulas relating the pairing gap, the density, and the energy density to the two-particle scattering length.
@S0556-2813~99!04804-9#

PACS number~s!: 21.30.2x, 21.60.2n, 21.65.1f, 26.60.1c
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In the theory of fermionic matter, the expansion about
low-density limit has been invaluable for understanding
structure of the theory and the role of the interaction. At lo
densities, the interaction needs only be characterized b
scattering length to get expansions for the energy den
excitation spectrum, etc.@1#. However, to our knowledge th
pairing singularity has never been incorporated into t
framework. We have for example only the qualitative sta
ment in Ref.@1# that the pairing singularity is logarithmi
and unimportant for integrated quantities. A more quant
tive statement is needed to have complete understandin
low-density fermionic matter.

Another motivation for our study is the general reexam
nation of nuclear physics with effective field theory which
now taking place@2–9#. In the effective field theory ap
proach, the interaction is systematically expanded in a po
series in momentum with the object of getting relationsh
between observables such that the details of the sh
distance interaction need not be parameterized. We s
show here that the BCS theory of pairing is amenable to
approach, and the low-energy theory gives finite and anal
results. Within effective field theory many results can
obtained analytically opposed to the numerical treatmen
potential models. In this sense our approach complem
the large body of literature of pairing in nuclear and neutr
matter that is based on potential models@10–16#.

We consider a Fermi gas with two-fold degeneracy int
acting with a short-range attractive interaction. Examples
neutron matter or gaseous3He. The Hamiltonian is idealized
to be of the form

H5VE d3k

~2p!3 ek~ak,↑
† ak,↑1a2k,↓

† a2k,↓!

1gV2E d3k

~2p!3 E d3k8

~2p!3 ak,↑
† a2k,↓

† a2k8,↓ak8,↑ , ~1!

whereek5k2/2m is the kinetic energy andV the volume. In
effective field theory the contact interaction is the lead
term in a derivative expansion of the many-body syste
This limits the validity of the Hamiltonian~1! to the regime
of long wave lengths or small densities. However, corr
tions can systematically be implemented. We have only
tained terms in the contact interaction that are needed in
wave function. The BCS wave function has the formuC&
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5Pk(Uk1Vkak,↑
† a2k,↓

† )u0&; the energy is minimized with re
spect toUk ,Vk to get the BCS equations@17#. The equation
for the pairing gapD is

152
gV

2~2p!3 E d3k

A~ek2l!21D2
, ~2!

where l is the chemical potential. The density is given
terms of these parameters by

N

V
5E d3k

~2p!3 F12
ek2l

A~ek2l!21D2G . ~3!

Finally, the energy density of the paired state is given by

E

V
5E d3k

~2p!3 F ek2
ek~ek2l!

A~ek2l!21D2
2

1

2

D2

A~ek2l!21D2G .

~4!

Note that the last two integrals are finite, although each
tegrand is a sum of terms that are individually divergent.

The problem with Eq.~2! as derived is that the contac
interaction is singular in three dimensions. One often int
duces a cutoff to make the integrals converge. However
effective field theory cutoffs are not explicitly introduce
Rather, the computed observables are expressed direct
terms of other physical quantities. To leading order in a lo
energy expansion of the interaction, the physical quantity
the scattering length. With the same Hamiltonian, the sc
tering lengtha is given by a similar divergent integral,

2
mgV

4pa
1152

gV

2 E d3k

~2p!3

1

ek
. ~5!

Let us now subtract Eqs.~2! and ~5! to obtain

mg

4pa
52

g

2~2p!3 E d3kF 1

A~ek2l!21D2
2

1

ek
G . ~6!

Notice that the integral is now convergent and so any cu
can be taken to infinity. Furthermore, the strength of
contact interactiong, which is also an unphysical quantity
can be divided out. It is convenient to evaluate both terms
the integral ~6! separately by dimensional regularizatio
2052 ©1999 The American Physical Society
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~DR! @18#. In DR, integrals of powers are zero so the seco
term in the integrand in Eq.~6! can be dropped. The firs
term can be evaluated using@19# ~3.252.11!,

E
0

`

dz
za

@~z21!21x2#1/2

52
p

sinpa
~11x2!a/2Pa~21/A11x2!, ~7!

wherePa denotes the Legendre function.
We write the final result in the form

1

kFa
5~11x2!1/4P1/2~21/A11x2!, ~8!

wherekF5A2ml is the Fermi momentum andx5D/l. This
is our main result. Equation~8! is graphed in Fig. 1. For
small values ofkFa the gap is exponentially small as in th
usual BCS theory,

D5
8

e2 l expS 2p

2kFuau D . ~9!

This comes about by the behavior ofP1/2(z), which has a
logarithmic singularity atz521 @20#. Equation~9! agrees
with the result derived in Ref.@14#. For large values ofkFa,
the gap is proportional tol, approachingD'1.16l.

For neutron matter the solution of Eq.~8! agrees with
numerical results from potential models only for small v
ues of the Fermi momentum. The large value of the scat
ing length (a5218.8 fm) clearly limits the domain of valid
ity of the Hamiltonian ~1!. In the Appendix we conside
pairing in the effective range approximation. This improv
on the precision of the calculation in the low-density regim
but does not enlarge the domain of validity.

We complete this discussion by computing the ene
density~4! and the density~3!. The finite integrals involved
are very similar to the previous one and can be evalua
using the same DR integral, Eq.~7!. The density of the BCS
state is given by

FIG. 1. Energy gapD/l as a function ofkFa.
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N

V
52

kF
3

4p
~11x2!1/4@P1/2~21/A11x2!

1A11x2 P3/2~21/A11x2!#, ~10!

and the energy density by

E

V
52

3

20p
kF

3l~11x2!1/4@~11x2/6!P1/2~21/A11x2!

1A11x2P3/2~21/A11x2!#. ~11!

For fixed density and scattering length Eqs.~8! and~10! can
be solved for the pairing gap and the Fermi energy. Put i
Eq. ~11! this yields the energy of the interacting system
fixed density. Figure 2 shows a comparison with the ene
of noninteracting neutrons. ForukFau'1 ~i.e., N/V'5
31026 fm23! pairing lowers the energy about 3% confirm
ing the qualitative statement that the effects of pairing on
binding are mild.

Discussion. We now discuss the domain of validity of thi
low-density expansion. As pointed out above, the applica
ity of Hamiltonian~1! is limited to the regime of long wave
length ukFau!1 or small densities. The description of ne
tron or nuclear matter at nuclear densities requires the in
sion of the effective range and pions. Comparing with mo
microscopic calculations involving phenomenological pote
tials it appears that deviations from the low-density behav
are set by the scattering length. Similar considerations ca
made for3He where the scattering length of the Aziz pote
tial @21# is large on an atomic scale. Many-body correlati
effects will become important whenkFa'1. It might be pos-
sible to treat them by modifying the strength of the pairi
and the density of states in Eq.~1!. The sign would be to
increase the pairing, but we have not attempted to calcu
these effects.

Another consideration is whether the low-density pha
exists for fermionic systems with attractive scatteri
lengths. In the case of3He, a low-density phase could onl
be metastable at zero temperature, because there is a
binding of the liquid phase. However, the metastability cou
be quite significant, because the minimum size for a bou
drop is thought to be of the order of fifty particles. Anoth

FIG. 2. EnergyED of interacting neutron matter normalized t
the energyE0 of noninteracting neutrons as a function of the de
sity.



he
th
s

et
gh
, s

w
is
io
ta
o

a

to
o

g

ua
e

s
m

ite
p
n

de

of

l

y a

te-
f

der
ll

ary.

n-
the

al

2054 PRC 59T. PAPENBROCK AND G. F. BERTSCH
indication of the metastability of a low-density phase is t
sound velocity in the scattering length expansion. Taking
first three terms, the sound velocity is positive at all den
ties, and thus small deviations from uniformity are energ
cally unfavorable. In the case of neutron matter, it is thou
that pressure is always positive as a function of density
the low-density state would be stable.

In summary, we have considered the pairing in lo
density Fermi systems within effective field theory. Th
model independent approach yields analytical express
which relate the pairing gap, the density and the ground s
energy to the scattering length. The analytical derivation
these results is quite interesting.

We acknowledge discussions with P. Bedaque, A. Bulg
H. Grießhammer, D. Kaplan, and M. Savage. We thank
Hormuzdiar and S. D. H. Hsu for pointing out a correction
formula ~9!. This work was supported by the Department
Energy under Grant No. DE-FG-06-90ER-40561.

APPENDIX

To include the effective range we add the effective ran
potential

g2V2E d3k

~2p!3 E d3k8

~2p!3 ~k2k8!2ak,↑
† a2k,↓

† a2k8,↓ak8,↑

~12!

to the Hamiltonian~1!. The gap equation then becomes

Dp52
V

2 E d3k

~2p!3

g1g2~p2k!2

A~ek2l!21Dk
2
Dk ~13!

and is explicitly momentum dependent. We make the q
dratic ansatzDp5D1p2d for the momentum dependenc
and obtain two coupled equations that expressD and d in
terms of~divergent! integrals. To deal with the divergencie
we observe that the integrals’ dependence on the Fermi
mentum is given by

E d3k

~2p!3

k2n

A~ek2l!21~D1k2d!2
5

kF
2n11m

2p2l
Jn11/2~x,y!,

~14!

wherex5D/l, y5dkF
2/l andJn11/2(x,y) is the dimension-

less function

Ja~x,y![E
0

`

dt
ta

A~ t21!21~x1yt!2
. ~15!

In effective field theory an expansion in momenta is qu
useful @3,8#. In what follows we truncate each of the ga
equations to its leading order in the Fermi momentum a
obtain

152
VgmkF

4p2 J1/2~x,y!, ~16!
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d52
Vg2DmkF

4p2 J1/2~x,y!.

Obviously we haved/D5g2 /g. To make contact with low
energy scattering data we expand the scattering amplitu

A~p!5VgF11VgI~p!1
g2

g
p21„VgI~p!…2G ~17!

up to quadratic order in momenta. The loop integral is

I ~p![
1

2 E d3k

~2p!3

1

ep2ek1 ih
5

mp

4p2 E
0

`

dt
t1/2

12t1 ih
.

~18!

At low energies the scattering amplitude is given in terms
the scattering lengtha and the effective ranger 0

A~p!5
4pa

m
@12 iap1~ar0/22a2!p2#. ~19!

Note that the divergence of the integralJ1/2(x,y) appearing
in the gap equations~16! is similar to that of the loop integra
I (p) appearing in the expression~17! for the scattering am-
plitude. Thus, both divergencies may be taken care off b
renormalization of the coupling constantsg andg2 . We use
dimensional regularization to compute the divergent in
grals. One obtainsI (p)52 i (m/4p)p and a comparison o
Eqs. ~17! and ~19! yields g2 /g5ar0/2 andg54pa/m. Fi-
nally we have

Ja~x,y!52
p

sinpa
~11y2!21/2S 11x2

11y2D a/2

Pa~2z!,

~20!

where z5(12xy)/A(11x2)(11y2). This yields the final
results

1

kFa
5~11y2!21/2S 11x2

11y2D 1/4

P1/2~2z!, y5
ar0

2
kF

2x.

~21!

Note that these equations add corrections of the or
;kF

2ar0 to the gap equation~8!. These corrections are sma
only in the low-density regimekFa!1. For a description of
neutron matter~a5218.8 fm, r 052.75 fm! at larger densi-
ties, at least the inclusion of pions seems to be necess
Note also, that the gap equations~21! become singular for
kF

2→22/ar0 ~i.e.,y→2x! due to the logarithmic singularity
of the Legendre function forz→21. This behavior results
from the quadratic approximation for the interaction pote
tial and the truncations in the gap equation. It is related to
change in sign of the truncated potential atkF5A22/ar0
@14#. Again, the introduction of pions or higher potenti
terms seem to be necessary to alter this behavior.
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