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4\v isoscalar monopole giant resonance in208Pb and resonance trapping
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In the framework of the random phase approximation in the continuum we calculate the strength function of
the 4\v isoscalar monopole giant resonance in208Pb. The one-particle continuum plays an important role in
the formation of the structure of the strength function. Most interesting is the appearance of some narrow
resonances at large excitation energy. We discuss the results obtained from the point of view of resonance
trapping which is known to appear due to the strong coupling of the resonance states via the continuum.
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PACS number~s!: 24.30.Cz, 21.60.Jz, 21.10.Pc
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I. INTRODUCTION

Nuclear states at high excitation energy are embedde
the continuum and have a finite lifetime. This important fa
has to be taken into account in the theoretical description
giant resonances~GR’s! in order to obtain an adequate d
scription of the reaction and to study the internal proper
of the system which are influenced by the continuum.

The strong coupling of open quantum systems to the c
tinuum has been investigated in different papers, e.g.,@1–3#.
The results show nontrivial modifications in the excitati
spectra under the influence of the coupling to the continu
when the resonances start to overlap. The most pronou
modification is the appearance of narrow resonances in
spectra at strong coupling, if the numberN of states embed
ded in the continuum is larger than the numberK of open
decay channels. This effect, called resonance trapping
caused by the alignment of some resonance states with
open channels. As a result, we see a separation of
scales: the widths ofK states become large under the infl
ence of the continuum, while the widths of the remaini
N2K states become small. We haveK states aligned with
the K decay channels andN2K trapped resonance states.

The structure of a GR under the influence of its coupl
to the one-particle continuum is investigated in@3# on the
basis of a schematic model. The results depend strongl
the ratiol between external~via the continuum! and internal
~configurational! mixing of the basis states. If this ratio i
large, we see shifts of the gross structure component
energy as well as changes in the transition strengths
escape widths of the individual components. In particu
some narrow resonances may appear, at large external
pling, near the maximum of the giant resonance which ca
a considerable amount of transition strength@3#.

Calculations of this type have been performed, up to n
only in the framework of a schematic model. The parame
used in these calculations are not adjusted to the well-kn
parameters of mean field and residual interactions in nuc
Moreover, the assumed energy independence of the coup
strength to the continuum is not justified in realistic cases
PRC 590556-2813/99/59~4!/2040~8!/$15.00
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is therefore an interesting question whether the coupling
the discrete states to the continuum will influence the str
ture of GR’s in realistic cases in a measurable manner. In
work we will study the structure of GR’s using the wel
known method for describing the coupling of nuclear excit
states to the one-particle continuum within the random ph
approximation~continuum RPA! @4–6#. It is the aim of the
present paper to consider the 4\v isoscalar monopole gian
resonance~ISMGR! in 208Pb. This resonance lies at a hig
excitation energy~about 30 MeV! and resonance trapping i
expected to appear in its structure.

The higher harmonics of GR’s (n\v giant resonances
with n.2) have been investigated experimentally as well
theoretically@7–11#. The best known example is the 3\v
isoscalar dipole GR, which is observed in the cross sectio
(a,a8) scattering@7,8#. There are some indications that
resonance found in the (13C,13N) reaction@12,13# is the 3\v
isovector dipole GR@14#. The 4\v states have not bee
observed up to now. It is expected@15#, however, that ex-
perimental studies of then\v GR’s will be continued and
the results of our investigation will be useful in analyzin
future experimental data.

In our investigation we concentrate on two questio
First, does the 4\v ISMGR exist as an isolated resonance
spite of the high excitation energy? This is an interest
question because the relaxation is expected to be larg
high excitation energy especially for those states which
coupled strongly to the continuum. Second, do the peculi
ties described in the schematic model of Ref.@3# appear in
the structure of the 4\v ISMGR and do narrow~trapped!
states exist in its structure?

In the next section, the basic relations of the schem
model and the continuum-RPA model are sketched, both
which allow a solution to the problem with one particle
the continuum. Furthermore, the model parameters use
the continuum-RPA calculations are given. The results
numerical calculations are presented and discussed in
III. Our attention is focused mainly on the nature and t
properties of narrow~trapped! resonances in the strengt
function. We also comment briefly on the signature of a p
2040 ©1999 The American Physical Society
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sible observation of the 4\v ISMGR. The results are sum
marized in Sec. IV.

II. FORMULATION OF THE MODEL

A. Basic relations

In the schematic model for GR’s the effective Ham
tonian

H5H01DDT2 iVV †5H02 iVV † ~1!

is studied in Ref.@3# and consists of three parts. The partH0
is the Hamiltonian of the closed nucleus withN discrete
states. The partDDT describes the internal interaction b
tween these states. The additional partiVV † describes the
coupling of the states via the continuum. TheV are the cor-
responding coupling vectors between theN states and theK
open decay channels. The effective HamiltonianH is non-
Hermitian. Its eigenvalues provide the energies as well as
widths of the resonance states. The strength function is
culated by means of the eigenfunctions ofH. The influence
of the continuum can be studied by comparing the eigen
ues and eigenfunctions ofH with those ofH0 as well as the
corresponding strength functions.

In the continuum RPA@4,5# used in our quantitative
analysis, the strength function is calculated, while the w
functions, positions, and widths of the resonance states
not directly determined. The strength function is proportio
to the excitation probability of a nucleus under the action
an external field. Its energy dependence contains informa
about the distribution of strength over all resonance sta
and, therefore, about their positions and widths. The ba
states for this approach are one-particle–one-hole~1p-1h!
states including all states with one particle in the continuu

Let us first sketch the basic relations of this approa
according to Refs.@4,5,16# as applied to the analysis of iso
scalar excitations in nuclei. The strength function cor
sponding to an external fieldV̂5(aV(ra)exp(2 ivt), where
the indexa runs over all nucleons, is determined by@5#

SV~v!52
1

p
ImE V~r !A~rr 8,v!Ṽ~r 8!drdr 8. ~2!

Herev is the excitation energy,A(rr 8,v) is the particle-hole
propagator, andṼ(r 8) is the effective field which differs
from the external fieldV(r ) because of the polarization o
the nucleus. The effective field satisfies the equation@5#

Ṽ~r !5V~r !1E F~r,r 8!A~r 8r 9,v!Ṽ~r 9!dr 8dr 9, ~3!

whereF(r,r 8) is the effective~residual! particle-hole inter-
action. The particle-hole propagator can be expressed
terms of single-particle wave and Green functions a
single-particle energies in the shell-model potential@4,5# as

A~rr 8,v!5 (
l,ml

nlflml
* ~r !flml

~r 8!@g~rr 8,«l1v!

1g~rr 8,«l2v!#, ~4!
he
l-

l-

e
re
l
f
n
s

ic

.
h

-

in
d

wherel,ml compose a set of single-particle quantum nu
bers (l includes the radial quantum number, orbital, a
total momenta;ml is the magnetic quantum number!, nl ,
flml

(r ), and «l are the occupation numbers, wave fun
tions, and energies of the single-particle states, respectiv
andg(rr 8,«) is the single-particle Green function. For sim
plicity we omit in Eq.~4! the isospin index. In Eqs.~2!–~4!
the one-particle continuum is taken into account in the f
lowing manner. The Green functions in Eq.~4! are calculated
by means of two linearly independent solutions of the sing
particle Schro¨dinger equation with the appropriate bounda
conditions@4,17#. Within this method the energy dependen
of the strength function, calculated using Eqs.~2!–~4!, ex-
hibits resonances with widths determined by the coupling
the internal states to the continuum.

To calculate the strength functionSV(v), Eq. ~2!, we
have to choose an external fieldV(r ). Since we are intereste
in the excitation of the isoscalar monopole states, the ex
nal field V(r ) has to act, therefore, on protons and neutro
in the same manner and its angular dependence has to
tain the spherical functionY00(n): V(r )5V(r )Y00(n).
The radial dependence of the field can, in principal, be c
sen arbitrarily, because the energies and widths of all c
sidered states are independent of this field. Only the va
of the strength function depend on this choice. Usually
field is chosen so that~i! the strength function has maximum
values and~ii ! the integral of the energy-weighted streng
function ~sum rule! can be calculated in a manner that
almost model independent. In the case of the 4\v ISMGR it
is convenient to choose this field in the form

V~r !5~r /R!2@12~r /R!2#, ~5!

whereR is the radius of the nucleus. This choice is dictat
by the fact thatV(r ) has large matrix elements for quasipa
ticle transitions over four shells~which can be seen, for ex
ample, from the harmonic oscillator model! and therefore the
external field~5! excites the 4\v states with a high prob-
ability. We note that the fieldV(r ), Eq. ~5!, coincides with
the function j 0(qr)21, where j 0 is the spherical Besse
function, at the momentum transferq;2/R. Therefore, the
cross section of a reaction with excitation of monopole sta
is connected with the strength function corresponding to
field ~5!.

Under the assumption that the nuclear density is cons
inside the nucleus, the energy weighted sum rule is@18#

E
0

`

vSV~v!dv5
23

420p

\2A

mR2 ~6!

for the external field given by Eq.~5!. HereA is the number
of nucleons andm is the nucleon mass.

B. Qualitative analysis of the basic relations

For a qualitative analysis we consider the basic equati
~2!–~4! within the Tamm-Dancoff approximation~TDA!.
For this purpose we neglect the second term in the brac
in Eq. ~4! and take into account only those poles of the Gre
functiong(rr 8,«l1v) in Eq. ~4! which correspond to unoc
cupied single-particle states, to avoid Pauli violating exci
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tions. Among these unoccupied states, there are both sta
ary and quasistationary states in the shell-model poten
In the vicinity of such a state with quantum numbersm,
the Green function inside the nucleus can be represe
as @17#

g~rr 8,«l1v!5(
mm

f̃mmm
~r !f̃mmm

* ~r 8!

«l1v2«m1 iGm/2
, ~7!

where«m and Gm are the energy and the width of the qu
sistationary statem, respectively,f̃mmm

(r ) is the solution of

the Schro¨dinger equation at the energy«m , which is normal-
ized to unity within the volume of the nucleus@in the case of
a stationary stateGm→0 andf̃mmm

(r )→fmmm
(r )#.

As a result of the shell structure of the nucleus, the ene
distances«m2«l between the energies of two differe
single-particle states are grouped near values which are c
to a multiple of the energy interval between shells and de
mine the 1\v, 2\v, 3\v, etc., GR’s. In realistic shell-
model potentials for nuclei, the widthsGm of the quasista-
tionary states are smaller than the energy interval betw
single-particle states with the same values of angular
mentum and parity. Thus for a qualitative analysis of t
4\v excitations~near an energy of 30 MeV in208Pb) we
should take into account only one pole of the Green funct
in each term of the expression~4!. Further, we substitute th
modified ~TDA! expression~4! with the Green function~7!

into Eqs.~2! and ~3!, multiply Eq. ~3! by f̃mmm
* (r )flml

(r ),

and integrate overr . After summation over the magneti
quantum numbers, we obtain

SV~v!52
1

p
Im(

lm

2 j l11

4p

VlmṼml

«l1v2«m1 iGm/2
~8!

for the strength function~2! and the system of equations

Ṽml5Vml1(
nk

2 j l11

4p

FmlnkṼkn

«n1v2«k1 iGk/2
~9!

for the matrix elements of the effective field. HereFmlnk is
the matrix element of the residual interaction associated w
four single-particle wave functions. In these expressions,
quantum numbers of a holel and of a particlem ~or n and
n-
l.

ed

y

se
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en
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e
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k) are connected by the monopole transition rules (j l5 j m
and l l5 l m , where j and l are the total and orbital angula
momenta of single-particle states, respectively! and the
corresponding radial quantum numbers differ by 2~i.e., the
hole states and the particle states are separated by
shells!.

The number of equations in Eq.~9! coincides with the
number of occupied statesl which have a correspondin
partnerm among the unoccupied states. The indexm relates
to either a stationary state or a quasistationary state in
shell-model potential, and the widths of the quasistation
states are included in the equations. In the caseGmÞ0, the
basic state (l,m) is coupled to the continuum directly an
determines one open decay channel. The other basic s
are coupled to the continuum by the effective interactio
The latter are associated with hole statesl in deep shells,
because in this case the energy of the corresponding par
statem can be smaller than the threshold energy in the sh
model potential, and hence, this state is a stationary one
the realistic shell-model potential for208Pb @Eqs. ~12! and
~13! below#, there are 34 basic states of 4\v type; 15 of
them are in the proton subsystem and 19 in the neutron
Out of these states, 29 basic states are coupled direct
open decay channels (Gm.0); for two of them the widths
Gm are very small. It means that within the 1p-1h appro
mation, the 4\v ISMGR in 208Pb has 29 open decay cha
nels, two of which are almost closed.

The solution of the inhomogeneous system of equati
~9! is inversely proportional to the determinant

FIG. 1. Energy dependence of the strength function~in arbitrary
units! of the 4\v ISMGR in 208Pb calculated according to Eqs
~2!–~5!. The parameters~12!–~15! are used.
Uv2vml2Fmllm1
i

2
Gm

2Fmll1m1
2Fmll2m2 . . .

2Fm1l1lm v2vm1l1
2Fm1l1l1m1

1
i

2
Gm1

2Fm1l1l2m2 . . .

2Fm2l2lm 2Fm2l2l1m1 . . . . . .

. . . . . . . . . . . .

U , ~10!
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wherevml5«m2«l and the factor (2j 11)/4p is included
in F. The poles of the strength function as a function ofv
are, therefore, determined by the zeros of this determin
and hence coincide with the eigenvalues of the n
Hermitian matrix

S vml1Fmllm Fmll1m1 . . .

Fm1l1lm vm1l1
1Fm1l1l1m1 . . .

. . . . . . . . .
D

2
i

2S Gm 0 0

0 Gm1 0

0 0 . . .
D . ~11!

The matrix~11! coincides with the matrix of the Hamil
tonian~1! for a specific choice of the coupling vectorV ~each
basic state couples to only one decay channel!. As shown in
Refs. @1–3#, there are narrow~trapped! states among eigen
states of the Hamiltonian~1! at large coupling to the con
tinuum, if the numberN of basic states is larger than th
numberK of open decay channels. We therefore expect
appearance of trapped resonance states also in
continuum-RPA results at large excitation energies. We e
phasize that our numerical results given in the present p
~Sec. III! are obtained on the basis of the exact continuu
RPA equations~2!–~5!, andnot on the basis of Eqs.~7!–~11!
which are given here only for a qualitative analysis.

C. Choice of the model parameters

To calculate the strength functionSV(v) according to
Eqs.~2!–~5! it is necessary to choose the nuclear mean fie
which determines the energies«l , wave functionsflml

(r ),

and Green functionsg(rr 8,«) in expression~4! for the
propagator, and the effective interactionF(r,r 8) used in Eq.
~3!. In our calculations we use a shell-model potential wh
includes the central isoscalar potential, spin-orbital inter
tion, symmetry potential, and Coulomb potential~for pro-
tons!. The shell-model potential has the form

U~r !5U0f WS~r !1Uso~s–l!
1

r

d fWS~r !

dr
6Usymf WS~r !

1UC~r !, ~12!

where f WS(r )51/$11exp@(r 2R)/a#% is the Woods-Saxon
function (a is the nucleus diffuseness!, (1/2)s and l are the
operators of spin and orbital angular momenta of a nucle
the ‘‘plus’’ and ‘‘minus’’ signs relate to protons and neu
trons, respectively. The Coulomb potentialUC(r ) is that as-
sociated with a uniformly charged sphere with radiusR. Phe-
nomenological parameters of the potential~12! are chosen
according to Ref.@19#,

R57.34 fm, a50.65 fm, U05253.3 MeV,

Uso519.8 MeV fm2, Usym527.05 MeV. ~13!

This set of parameters allows us to reproduce, within
shell-model approach with the continuum, both the nucle
nt
-

e
he
-
er
-

,

h
-

n,

e
n

single-particle~binding! energies and the low-lying levels i
odd-even nuclei in the vicinity of208Pb.

The effective interactionF(r ,r 8) is chosen in the Landau
Migdal form

F~r ,r 8!5
1

2
F~r !d~r2r 8!,

F~r !5350@ f ex2~ f in2 f ex! f WS~r !# MeV fm3, ~14!

where f ex and f in are phenomenological parameters det
mining the strength of the residual interaction inside (f in)
and outside (f ex) the nucleus. We use@5#

f ex523.9, f in520.15. ~15!

These parameters allow us to obtain a satisfactory desc
tion of the 2\v isoscalar monopole and quadrupole gia
resonances@16# and the 3\v isoscalar dipole giant reso
nance@20# in nuclei within the continuum RPA.

In connection with the choice of model parameters, E
~12!–~15!, we note the following: In a self-consistent ap
proach~see, for example,@9,21#! the strength functionSV(v)
for the isoscalar dipole fieldV(r )5rY10(n) has one maxi-
mum at zero energy with 100% strength which correspo
to a spurious state. In our approach, with parameters~12!–
~15!, the strength of the spurious state lying at zero ene
exhausts 91% of the sum rule as shown in@20#. This small
difference from 100% characterizes the degree of noncon
tency of our model. We will show in the next section that t
structure of the 4\v ISMGR is mainly determined by its
strong coupling to the continuum and is only slightly depe
dent on the residual interaction. It means that the small n
consistency in our model has a negligible influence on
results. In the following section we use Eqs.~2!–~5! with the
parameters~12!–~15! in calculating the strength function o
the 4\v ISMGR.

III. NUMERICAL RESULTS AND DISCUSSION

The strength function of the 4\v ISMGR in 208Pb ob-
tained in the continuum-RPA approach is given in Fig.
The calculated strength function exhibits the following stru
ture: There is one broad resonance with an energy of
MeV and total escape width of 9 MeV. It exhausts 40%
the sum rule~6! within the energy interval of 21–40 MeV
Seven narrow asymmetrical resonances are near the m
mum of the broad resonance. These narrow resonances
haust altogether about 4% of the sum rule~6!. According to
our calculations the remainder of the strength is exhaus
mainly by the 2\v ISMGR and the high-energy tail of th
4\v ISMGR. The energiesvn , widthsGn , and strengthssn
of the narrow resonances are given in Table I. Below we w
investigate this structure in detail. Here, we note only t
this structure is expected for the 4\v ISMGR in 208Pb from
the theoretical point of resonance trapping@1,2#. As dis-
cussed in Sec. II B, there are 34 neighboring basic states
29 open decay channels, two of which are almost closed.
expect therefore 27 resonance states appearing as one
resonance in the strength function due to overlapping
seven narrow resonances with energies near the maximu
the broad resonance.
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The results shown in Fig. 1 differ substantially from tho
obtained, using the same approach, for resonances
smaller energies~see, e.g.,@9,16#!. In the last case, one o
just a few resonances exhausting the main part of the
rule are shifted in energy with respect to the energies of
other states. As an example we show in Fig. 2~a! the strength
function of the 2\v ISMGR in 208Pb, calculated according
to Eqs. ~2!–~4! for the external fieldV(r )5r 2Y00(n) with
the parameters~12!–~15!. We see from this figure that on
resonance with a large strength is shifted in energy in r
tion to several weak components~satellites!. The width of
the main resonance is approximately equal to the sum of
satellite widths. The difference in the resonance structure
large and small energies is caused by the strong influenc
the continuum.

To prove this statement we performed some calculati
for the strength function similar to those in Ref.@3#. In these
calculations we varied both the residual interaction and
intensity of the coupling to the continuum in the followin
manner. The residual interaction was varied by varying
parametersf in and f ex of Eq. ~14! and the coupling to the
continuum was varied by adding an additional potential b
rier outside the nucleus into the shell-model potential~12!.
This potential barrier has the form

Ub~r !5aU0 expH 2S r 2bR

gR D 2J , ~16!

where b51.25 andg50.15 are chosen. The parametera
characterizing the height of the barrier is varied within t
limits 0<a<0.9. In this way we change strongly the co
pling of the basic states to the continuum, i.e., the widthsGm
in Eqs.~7!–~11!. The energies of the states are only sligh
changed.

As an example, the strength function of the 4\v ISMGR
calculated by using the interactions~14! and ~15! and the
shell-model potential~12! and~13! with a50.7 in the barrier
~16! is given in Fig. 2~b!. The strength function shown i
qualitatively similar to that given in Fig. 2~a!. Two collective
resonance states exhaust the main part of the total stre

TABLE I. Parameters of the narrow resonances in the ene
dependence of the strength function.

n vn Gn sn Basic state vn
ph sn

ph

~MeV! ~keV! ~%! ~MeV! ~%!

1 29.8 26 0.64 2s1/2
n 24s1/2

n 29.9 0.49

2 30.8 39 0.71 1p3/2
p 23p3/2

p 30.9 0.55

3 31.3 66 0.96 1d5/2
n 23d5/2

n 31.4 0.91

4 31.5 12 0.04 1p1/2
p 23p1/2

p 31.6 0.16

5 31.9 11 0.40 1d3/2
n 23d3/2

n 31.9 0.49

6 33.6 73 0.77 1d5/2
p 23d5/2

p 33.8 0.95

7 34.3 146 0.39 1d3/2
p 23d3/2

p 34.4 0.45
ith

m
e

-

e
at
of

s

e

e

r-

gth

and suffer a shift in energy. The widths are distributed o
all resonances more or less uniformly.

The shift of the collective states as well as the ratio b
tween the widths of the satellites and the collective sta
decreases with increasing coupling to the continuum.
illustration we show in Fig. 3~a! the dependence of the quan
tity dG5(v̄x2vG)/v̄x on the parametera (v̄x is the aver-
age energy of the basic states, andvG is the average energ
of the collective states!. This quantity characterizes the rela
tive energy shift of the GR. In Fig. 3~b! the dependence o
the ratiogG5GG /(GG1Gs) on the parametera is shown,
where GG (Gs) is the sum of the widths of the collectiv
states~satellites!. The results are as follows. Introducing th
barrier with the heighta50.9 leads to a 40% increase in th
relative shiftdG of the GR, while the ratiogG between the
widths of the GR and satellites decreases from 0.96 aa

y

FIG. 2. Energy dependence of the strength functions~in arbi-
trary units! in 208Pb. ~a! The 2\v ISMGR, calculated according to
Eqs. ~2!–~4! for the external fieldV(r )5(r /R)2 with parameters
~12!–~15!. ~b! The 4\v ISMGR, calculated according to Eqs.~2!–
~5!, using the mean fields~12! and ~13! with the barrier~16! with
a50.7 and the residual interactions~14!–~15!. ~c! The 4\v
ISMGR, calculated according to Eqs.~2!–~5! using the mean fields
~12! and~13!. The residual interaction is increased by a factor o
in comparison with Eq.~15!.
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50 to 0.05 ata50.9. We also note that all resonance sta
suffer a small shift to larger energies in calculations with
barrier@Fig. 2~b!# in comparison with those obtained witho
it ~Fig. 1!. This is explained by the fact that the barrier~16!
leads to a decrease of the ‘‘effective’’ radius of the nucle
and hence to an increase of the energies of all particle-
states.

In Fig. 2~c! we show the strength function of the 4\v
ISMGR calculated with the shell-model potentials~12! and
~13! without a barrier, but with the residual interaction i
creased by a factor of 4 in comparison with the interact
~15!. One can see a large shift of the main resonance to
energies. The widths are distributed more or less uniform
between the GR and satellites. This result is qualitativ
similar to that obtained by enlarging the barrier@Fig. 2~b!#.

All the results given above show the following: the stru
ture of the strength function depends on both the resid
interaction of the basic states~internal interaction! and their
decay into the continuum~external interaction!. It is gov-
erned by the interplay and competition of these two types
interaction. This behavior of the strength function is quali
tively similar to that obtained in Ref.@3# @the different signs
between the shift of the 4\v ISMGR considered here an
the GR considered in Ref.@3# are due to the different sign
between the isoscalar interaction in Eqs.~14! and ~15! and
that of the residual interaction used in Ref.@3##. All these
results allow us to identify the narrow resonances in the
ergy dependence of the strength function as trapped r
nances. We note that changes of the mean field and of
residual interaction made above can lead to some nonco
tency of the model. For this reason the results given in F
2 and 3 have an illustrative character and serve the aim
better understand the influence of the continuum on
structure of the strength function.

The peculiarities of the strength function of the 4\v

FIG. 3. Dependences of ratiosdG5(v̄x2vG)/v̄x ~a! and gG

5GG /(GG1Gs) ~b! on the height of the barrier~16! ~see text!.
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ISMGR described above can also be qualitatively explain
on the basis of the shell model in the continuum. In th
model each of the 1p-1h basic states can be coupled to
one decay channel and interacts with the others by mean
the residual interaction~see Sec. II B!. At large energies~for
example, in the case of the 4\v basic states!, the widths of
the basic states are very different from one another. T
basic states with small~or zero! widths contain a hole in a
deep shell~see Sec. II B!. The interaction between the bas
states with large and small widths is small, because the
trix elements of the realistic residual interactions~14! and
~15! @Fmlnk in Eqs. ~9!–~11!# are smaller than the energ
intervals between these states in thecomplexenergy plane.
Therefore, the mixing of the basic states having differe
widths is small, and each narrow resonance in the ene
dependence of the strength function relates to a concrete
sic state with a small~or zero! width. As a consequence, th
energies and strengths of these resonances are close to
of the basic states. The small widths arise from their sm
interaction with other basic states.

To illustrate these statements we give in Table I the en
gies (vn

ph) and strengths (sn
ph) of the basic states with a hol

in a deep shell. The fact that these values are close to th
calculated by taking into account the residual interact
supports our interpretation. Further, we performed some
ditional calculations of the strength function in the followin
manner. In each calculation, we excluded from the propa
tor ~4! one of the terms which corresponds to a sing
particle statel in a deep shell. This decreases the numbe
the basic states by 1, but the number of open channels
mains unchanged~see Sec. II B!. As an example we give in
Fig. 4 the strength function calculated according to Eqs.~2!–
~5! with the parameters~12!–~15!, by excluding the term
corresponding to the neutron state 2s1/2. It is seen from Fig.
4 that the strength function loses the narrow resonanc
29.8 MeV~compare with Fig. 1!. These results show that th
narrow resonance states are almost pure 1p-1h states.
means that the internal interaction of the 1p-1h states is
fectively reduced due to their strong coupling to the co
tinuum.

We emphasize that our results show that the continu

FIG. 4. Energy dependence of the strength function~in arbitrary
units! of the 4\v ISMGR in 208Pb calculated according to Eqs
~2!–~5!. The parameters~12!–~15! are used. Different from Fig. 1
the term corresponding to the neutron hole state 2s1/2 is excluded
from the propagator~4!.
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strongly influences not only the widths, but also the energ
and strengths of the GR components. In calculations with
the continuum, the role of the internal interaction is over
timated. Therefore, the energy shift of the GR as well as
collectivity are overestimated when the influence of the c
tinuum is not taken into account. This conclusion is obtain
on the basis of the continuum RPA and is in agreement w
the results obtained in the framework of the schematic mo
for giant resonances of Ref.@3#.

The interaction of the 1p-1h resonance states with st
of more complicated structure leads to some spreading o
1p-1h strength and, hence, to some changes in the re
obtained. A detailed analysis of the spreading effects~see,
for example,@16,21,23#! is beyond the scope of the prese
work. However, we can understand the main features of
actual strength function of the 4\v ISMGR on the basis of
the experimental widths of other giant resonances. The
perimental total widths of the isoscalar GR’s in208Pb are
equal to 2.8 MeV for the 2\v ISMGR lying at the excitation
energy of 13.7 MeV@22#, about 3 MeV for the octupole
resonance at the excitation energy of 19.7 MeV@8#, and 3–6
MeV ~according to different data! for the dipole giant reso-
nance at the excitation energy of 22 MeV@7,8#. According to
these data, the spreading width of the 4\v ISMGR is ex-
pected to be not larger than 5–6 MeV. Because this valu
smaller than the escape width of the broad resonance in
RPA strength function, the interaction between the narr
and broad resonances via complicated configurations is
expected to be strong so that only one broad resonance i
actual strength function will appear. Therefore, we exp
that the interaction of the 4\v ISMGR with complicated
configurations does not change our conclusion about the
istence of two different time scales in its structure. T
strength function is expected to exhibit two different res
nances. One of them exhausts 40% of the total strength
has a total width of about 14 MeV. The second resonanc
a superposition of the considered narrow resonances. It h
total width of about 6–7 MeV and exhausts 4% of the s
rule ~6!. Therefore, the main part of the strength of the 4\v
ISMGR suffers a strong relaxation mainly due to the co
pling to the continuum and can appear in any cross sectio
a smooth background. The small part of the strength is
pected to appear as an isolated resonance over the b
ground.

Taking into account the strengths and widths of the n
row and broad resonances one can obtain an estimation
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the ratio of the strength function at the maximum of t
narrow resonance to the background~‘‘signal-to-noise’’ ra-
tio!: snGb /sbGn;0.2, wheresb540%, Gb;14 MeV and
sn54%, Gn;7 MeV are the strengths and total widths
the broad and narrow resonances, respectively. This v
allows us to hope that the 4\v ISMGR may be, in principle,
observed experimentally. One can use, for example,
(a,a8) reaction@24# at large momentum transfer, becau
the excitation probability of the 4\v ISMGR is small for
long-wave external fields. A detailed analysis of the pos
bility of observing the 4\v ISMGR experimentally requires
the ingredients of transition densities, hadron-nucleon in
action and optical potentials, and a sensitivity of the expe
mental techniques and thus should be the subject of a s
rate work. Here we stress only that the observation of
4\v ISMGR would provide an important physical insigh
because it would show the important role of the continuum
high excitation energy.

IV. SUMMARY

In this work we have investigated the 4\v ISMGR in
208Pb on the basis of the continuum-RPA approach.
means of some numerical calculations we have shown
the structure of this resonance is mainly determined by
strong coupling to the continuum. This leads to the format
of two different time scales in its structure. On the one ha
there is one broad resonance whose width is approxima
twice as big as the distance between the shells in208Pb. This
resonance is therefore relaxed more or less fully. On
other hand, there are several narrow resonances in the en
dependence of the 1p-1h strength function. These nar
resonance states are shown to arise due to resonance
ping. They carry a small part of the strength and can app
in the experimental cross section as an isolated resonan
large excitation energy.
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