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In the framework of the random phase approximation in the continuum we calculate the strength function of
the 44w isoscalar monopole giant resonance’i#b. The one-particle continuum plays an important role in
the formation of the structure of the strength function. Most interesting is the appearance of some narrow
resonances at large excitation energy. We discuss the results obtained from the point of view of resonance
trapping which is known to appear due to the strong coupling of the resonance states via the continuum.
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[. INTRODUCTION is therefore an interesting question whether the coupling of
the discrete states to the continuum will influence the struc-
Nuclear states at high excitation energy are embedded iture of GR’s in realistic cases in a measurable manner. In this
the continuum and have a finite lifetime. This important factwork we will study the structure of GR’s using the well-
has to be taken into account in the theoretical description oknown method for describing the coupling of nuclear excited
giant resonance€GR’s) in order to obtain an adequate de- states to the one-particle continuum within the random phase
scription of the reaction and to study the internal propertiegpproximation(continuum RPA [4—6]. It is the aim of the
of the system which are influenced by the continuum. present paper to consider thé & isoscalar monopole giant
The strong coupling of open quantum systems to the conresonancélSMGR) in 2%Pb. This resonance lies at a high
tinuum has been investigated in different papers, glg-3|. excitation energyabout 30 MeV and resonance trapping is
The results show nontrivial modifications in the excitationexpected to appear in its structure.
spectra under the influence of the coupling to the continuum The higher harmonics of GR’snfw giant resonances
when the resonances start to overlap. The most pronouncedth n>2) have been investigated experimentally as well as
modification is the appearance of narrow resonances in thiheoretically[7—11]. The best known example is theéi @
spectra at strong coupling, if the numli¢of states embed- isoscalar dipole GR, which is observed in the cross section of
ded in the continuum is larger than the numibeof open  (a,a’) scattering[7,8]. There are some indications that a
decay channels. This effect, called resonance trapping, igsonance found in thé3C,**N) reaction[12,13 is the Fiw
caused by the alignment of some resonance states with theovector dipole GR[14]. The 41w states have not been
open channels. As a result, we see a separation of timebserved up to now. It is expect¢dl5], however, that ex-
scales: the widths oK states become large under the influ- perimental studies of thew GR’s will be continued and
ence of the continuum, while the widths of the remainingthe results of our investigation will be useful in analyzing
N—K states become small. We hakestates aligned with future experimental data.
the K decay channels and—K trapped resonance states. In our investigation we concentrate on two questions.
The structure of a GR under the influence of its couplingFirst, does the Ao ISMGR exist as an isolated resonance in
to the one-particle continuum is investigated[B] on the spite of the high excitation energy? This is an interesting
basis of a schematic model. The results depend strongly ofuestion because the relaxation is expected to be large at
the ratioA between externdlia the continuumand internal  high excitation energy especially for those states which are
(configurational mixing of the basis states. If this ratio is coupled strongly to the continuum. Second, do the peculiari-
large, we see shifts of the gross structure components ities described in the schematic model of R&fl appear in
energy as well as changes in the transition strengths arthe structure of the #o» ISMGR and do narrowtrapped
escape widths of the individual components. In particularstates exist in its structure?
some narrow resonances may appear, at large external cou-In the next section, the basic relations of the schematic
pling, near the maximum of the giant resonance which carrynodel and the continuum-RPA model are sketched, both of
a considerable amount of transition strengh which allow a solution to the problem with one particle in
Calculations of this type have been performed, up to nowthe continuum. Furthermore, the model parameters used in
only in the framework of a schematic model. The parameterghe continuum-RPA calculations are given. The results of
used in these calculations are not adjusted to the well-knownumerical calculations are presented and discussed in Sec.
parameters of mean field and residual interactions in nuclelll. Our attention is focused mainly on the nature and the
Moreover, the assumed energy independence of the coupliqgoperties of narrowmtrapped resonances in the strength
strength to the continuum is not justified in realistic cases. Ifunction. We also comment briefly on the signature of a pos-
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sible observation of the#dw ISMGR. The results are sum- where\,m, compose a set of single-particle quantum num-

marized in Sec. IV. bers (\ includes the radial quantum number, orbital, and
total momentajm, is the magnetic quantum numben, ,
Il. EORMULATION OF THE MODEL qﬁmx(r), and e, are the occupation numbers, wave func-

tions, and energies of the single-particle states, respectively,
andg(rr’,e) is the single-particle Green function. For sim-
In the schematic model for GR’s the effective Hamil- plicity we omit in Eq.(4) the isospin index. In Eqg2)—(4)
tonian the one-particle continuum is taken into account in the fol-
lowing manner. The Green functions in E¢) are calculated
H=Ho+DDT—iWwW'=Ho—iww' (1 by means of two linearly independent solutions of the single-
particle Schrdinger equation with the appropriate boundary
is studied in Ref[3] and consists of three parts. The peg  conditions[4,17]. Within this method the energy dependence
is the Hamiltonian of the closed nucleus wibh discrete  of the strength function, calculated using E¢®@.—(4), ex-
states. The parbDT describes the internal interaction be- hibits resonances with widths determined by the coupling of
tween these states. The additional paf’" describes the the internal states to the continuum.
coupling of the states via the continuum. THere the cor- To calculate the strength functio8,(w), Eq. (2), we
responding coupling vectors between testates and th&  have to choose an external fialdr). Since we are interested
open decay channels. The effective Hamiltonfdnis non-  in the excitation of the isoscalar monopole states, the exter-
Hermitian. Its eigenvalues provide the energies as well as thgal field V(r) has to act, therefore, on protons and neutrons
widths of the resonance states. The strength function is caln the same manner and its angular dependence has to con-
culated by means of the eigenfunctions?of The influence tain the spherical functionYoy(n): V(r)=V(r)Yen).
of the continuum can be studied by comparing the eigenvalThe radial dependence of the field can, in principal, be cho-
ues and eigenfunctions @t with those oft{, as well as the sen arbitrarily, because the energies and widths of all con-
corresponding strength functions. sidered states are independent of this field. Only the values
In the continuum RPA[4,5] used in our quantitative of the strength function depend on this choice. Usually the
analysis, the strength function is calculated, while the wavéield is chosen so thdt) the strength function has maximum
functions, positions, and widths of the resonance states akglues andii) the integral of the energy-weighted strength
not directly determined. The strength function is proportionaffunction (sum rulé can be calculated in a manner that is
to the excitation probability of a nucleus under the action ofaimost model independent. In the case of thedSMGR it
an external field. Its energy dependence contains informatiols convenient to choose this field in the form
about the distribution of strength over all resonance states
and, therefore, about their positions and widths. The basic V(r)=(r/R)’[1—(r/R)?], (5)
states for this approach are one-particle—one-tibfe1h
states including all states with one particle in the continuumwhereR is the radius of the nucleus. This choice is dictated
Let us first sketch the basic relations of this approachoy the fact thal/(r) has large matrix elements for quasipar-
according to Refd[4,5,16 as applied to the analysis of iso- ticle transitions over four shellavhich can be seen, for ex-
scalar excitations in nuclei. The strength function corre-ample, from the harmonic oscillator moglahd therefore the

sponding to an external fiel==,V(r,)exp(—iwt), where ~ external field(5) excites the 4« states with a high prob-
the indexa runs over all nucleons, is determined [5] ability. We note that the field/(r), Eq. (5), coincides with
the functionjo(qr)—1, wherej, is the spherical Bessel
1 - function, at the momentum transfgr-2/R. Therefore, the
Sw)=—— ImJ V(H)A(rr",)V(r')drdr’.  (2)  cross section of a reaction with excitation of monopole states
a . . . .
is connected with the strength function corresponding to the
. I LN . field (5).
Herew is the excitation energyi(1r ', ) is the particle-hole Under the assumption that the nuclear density is constant

from the external fieldv(r) because of the polarization of

the nucleus. The effective field satisfies the equaltin

A. Basic relations

o 23 #2A
Jo wSV(w)dw——420n_ ) (6)

\7(r)=V(r)+f F(rr At 0)V(r")dr'dr”,  (3)
for the external field given by Ed5). HereA is the number

. . . ) _ of nucleons andn is the nucleon mass.
whereF(r,r’) is the effective(residual particle-hole inter-

action. The particle-hole propagator can be expressed in
terms of single-particle wave and Green functions and
single-particle energies in the shell-model poterf#gb] as For a qualitative analysis we consider the basic equations
(2)—(4) within the Tamm-Dancoff approximatioGTDA).

) N ) , For this purpose we neglect the second term in the brackets

A(rr -w)=)\2m Ny Pxm, () Prm, (F)IG(IT " 8\ + @) in Eq. (4) and take into account only those poles of the Green

o functiong(rr ',&, + w) in Eq. (4) which correspond to unoc-

+g(rr',ey—w)], (4) cupied single-particle states, to avoid Pauli violating excita-

B. Qualitative analysis of the basic relations
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tions. Among these unoccupied states, there are both station. 5% ' ' '

ary and quasistationary states in the shell-model potential.  5¢f 1
In the vicinity of such a state with quantum numbers a5 1
the Green function inside the nucleus can be representec  4¢[ 1

as[17] 351

@ 30

> 25

~ ~ [75]

, B, (N (1) .

m',e\tw)= : , 7 L

o o) m, exto—e,+il /2 1’3_

whereg, andI',, are the energy and the width of the qua- 051
sistationary state, respectively leM(r) is the solution of %2 p P 35 0

the Schrdinger equation at the energy, , which is normal-
ized to unity within the volume of the nuclelis the case of

a stationary stat& ,—0 and&”mﬂ(r)—>¢umﬂ(r)].

o (MeV)

FIG. 1. Energy dependence of the strength functinrarbitrary

. - )
As a result of the shell structure of the nucleus, the energynits f t::e 4w ISMGR in 2Pb CalCU(;ated according to Egs.
distancese,,—&, between the energies of two different 2)—(5). The parameterél2)—(15) are used.

single-particle states are grouped near values which are clos(g are connected by the monopole transition rulgs=(j ,

to a multiple of the energy interval between shells and detergng l,=1,, wherej and| are the total and orbital angular
mine the %o, 2fiw, 3ho, etc., GR’s. In realistic shell- momenta of single-particle states, respectivend the
model potentials for nuclei, the widths, of the quasista- corresponding radial quantum numbers differ byi.2., the
tionary states are smaller than the energy interval betweehole states and the particle states are separated by four
single-particle states with the same values of angular mashells.

mentum and parity. Thus for a qualitative analysis of the The number of equations in E¢9) coincides with the
4hw excitations(near an energy of 30 MeV if%Pb) we number of occupied states which have a corresponding
should take into account only one pole of the Green functiorpartneru among the unoccupied states. The indexelates

in each term of the expressig#). Further, we substitute the to either a stationary state or a quasistationary state in the
modified (TDA) expression4) with the Green functior{7) shell-model potential, and the widths of the quasistationary

into Egs.(2) and (3), multiply Eq. (3) by a/tm#(r)d’)\mx(r)’ states are included in the equations. In the dage 0, the

and integrate over. After summation over the magnetic gaflﬁrr?itr?te)(,#) IS cr?udpled to rt]h(ramccl)nq_r;‘uunlhdlﬁetc):tlyi an<tjt
quantum numbers, we obtain ete es one open decay channel. The other basic states

are coupled to the continuum by the effective interaction.

ViV
e tw—g, +ill,/2

1 2j,+1
Sy(@)=——ImX —,—

A

for the strength functioni2) and the system of equations

i) ®

The latter are associated with hole statesn deep shells,
because in this case the energy of the corresponding particle
stateu can be smaller than the threshold energy in the shell-
model potential, and hence, this state is a stationary one. In
the realistic shell-model potential fo?°®Pb [Egs. (12) and

(13) below], there are 34 basic states ofid type; 15 of
- them are in the proton subsystem and 19 in the neutron one.
2\ t1 FuveViw g  Out of these states, 29 basic states are coupled directly to
e, tw—g, +il',/2 © open decay channeld’(>0); for two of them the widths
I', are very small. It means that within the 1p-1h approxi-
for the matrix elements of the effective field. Hefe,,, is  mation, the 4 ISMGR in 2Pb has 29 open decay chan-
the matrix element of the residual interaction associated witlmels, two of which are almost closed.
four single-particle wave functions. In these expressions, the The solution of the inhomogeneous system of equations
quantum numbers of a hole and of a particlew (or v and  (9) is inversely proportional to the determinant

VM=VM+% pp

a)—wm\—FMMM-I— EFP' _F,u,)\)\lp,l _F,u,)\)\zp,z
“Fuppe o=, " Fungu T i_r TP
MM LS L Lo R R 5} , (10
“Fupon P
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wherew,,=¢,—¢, and the factor (+1)/4x is included single-particle(binding energies and the low-lying levels in
in F. The poles of the strength function as a functioneof ~odd-even nuclei in the vicinity of%Pb.

are, therefore, determined by the zeros of this determinant The effective interactiofr(r,r’) is chosen in the Landau-
and hence coincide with the eigenvalues of the nonMigdal form

Hermitian matrix

F(r,r’)=%F(r)5(r—r’),

Ot Fuoou Fuagu,
Funp o TR . _ _F 3
Bl A e makg T T g F(r)=350 fey— (fin— fed fws(r)] MeVim®, (14
where fq, and f;, are phenomenological parameters deter-
(T, 0 0 mining the strength of the residual interaction insidg,)(
i .
- o T, o | (11) and outside f,,) the nucleus. We usé]
0 0 o fom —3.9, f;,=—0.15. (15

The matrix(11) coincides with the matrix of the Hamil- These parameters allow us to obtain a satisfactory descrip-
tonian(1) for a specific choice of the coupling vectoreach ~ tion of the Ziw isoscalar monopole and quadrupole giant
basic state couples to only one decay chanme shown in resonance_$16] an_d t_he_ Io |sosc_alar dipole giant reso-
Refs.[1-3], there are narrovitrappedl states among eigen- "ance[20] in nuclei within the continuum RPA.
states of the Hamiltoniafil) at large coupling to the con- In connection with the ch0|_ce of model parameters, Egs.
tinuum, if the numbem of basic states is larger than the (12—(15), we note the following: In a self-consistent ap-
numberK of open decay channels. We therefore expect th@roach(see, for examplg9,21)) the strength functio, (w)
appearance of trapped resonance states also in tff@r the isoscalar dipole fiel?/(r)=rYq(n) has one maxi-
continuum-RPA results at large excitation energies. We emMum at zero energy with 100% strength which corresponds
phasize that our numerical results given in the present papdp @ Spurious state. In our approach, with parameite2s-
(Sec. Il are obtained on the basis of the exact continuum{15), the strength of the spurious state lying at zero energy

RPA equation$2)—(5), andnoton the basis of Eqg7)—(11) ~ €Xhausts 91% of the sum rule as showri26]. This small
which are given here only for a qualitative analysis. difference from 100% characterizes the degree of nonconsis-

tency of our model. We will show in the next section that the

structure of the Aw ISMGR is mainly determined by its

strong coupling to the continuum and is only slightly depen-
To calculate the strength functioB,(w) according to  dent on the residual interaction. It means that the small non-

Egs.(2)—(5) it is necessary to choose the nuclear mean fieldconsistency in our model has a negligible influence on our

which determines the energieg, wave functions,, (),  results. In the following section we use E¢®)—(5) with the

and Green functiong(rr’,e) in expression(4) for the parameterg12)—(15) in calculating the strength function of

propagator, and the effective interactibir,r’) used in Eq. the 4iw ISMGR.

(3). In our calculations we use a shell-model potential which

includes the central isoscalar potential, spin-orbital interac- Ill. NUMERICAL RESULTS AND DISCUSSION

tion, symmetry potential, and Coulomb potenti&r pro-

tons. The shell-model potential has the form

C. Choice of the model parameters

The strength function of the#» ISMGR in 2°%b ob-
tained in the continuum-RPA approach is given in Fig. 1.

1 dfws(r) The calculated strength function exhibits the following struc-
U(N=Uofws(N +Usd ol - — 35— = Usymfws(r) ture: There is one broad resonance with an energy of 29
MeV and total escape width of 9 MeV. It exhausts 40% of
+Uc(r), (120  the sum rule(6) within the energy interval of 21-40 MeV.

Seven narrow asymmetrical resonances are near the maxi-
where fyg(r)=1£1+exd (r —R)/a]} is the Woods-Saxon mum of the broad resonance. These narrow resonances ex-
function (a is the nucleus diffusenesg1/2)o- andl are the  haust altogether about 4% of the sum r(8g According to
operators of spin and orbital angular momenta of a nucleomur calculations the remainder of the strength is exhausted
the “plus” and “minus” signs relate to protons and neu- mainly by the Zw ISMGR and the high-energy tail of the
trons, respectively. The Coulomb potentist(r) is that as- 4% w ISMGR. The energies,,, widthsT',, and strengths,
sociated with a uniformly charged sphere with radu$he-  of the narrow resonances are given in Table I. Below we will
nomenological parameters of the poteniia®) are chosen investigate this structure in detail. Here, we note only that

according to Ref[19], this structure is expected for théid ISMGR in 2%Pb from
the theoretical point of resonance trappifig2]. As dis-
R=7.34 fm, a=0.65 fm, Uy=-53.3 MeV, cussed in Sec. Il B, there are 34 neighboring basic states and

29 open decay channels, two of which are almost closed. We
Uso=19.8 MeV fn?, Ugym=—7.05 MeV. (13 expect therefore 27 resonance states appearing as one broad
resonance in the strength function due to overlapping and
This set of parameters allows us to reproduce, within theseven narrow resonances with energies near the maximum of
shell-model approach with the continuum, both the nucleorthe broad resonance.
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TABLE I. Parameters of the narrow resonances in the energy 8 T ' T
dependence of the strength function. 70 - (a)
60
n wn r, Sh Basic state  of" P el
(MeV)  (keV) (%) (MeV) (%) 2 ol
wv)
1 29.8 26 0.64 2s],-4s], 299  0.49 w0
20
2 30.8 39 071 1p5,—3ph, 309 055 wh |
n . ‘ 1 L
n n 010 1 12 13 14 15 16 17 18 19 20
3 31.3 66  0.96 1d2,—3dl, 314 091 © (MeV)
4 315 12 0.04 1p%,—3pf, 316 0.16 o ' ' ' '
(b)
45
5 31.9 11 040 1d5,—3d}, 319 049 ol
35
6 33.6 73 077 1dB,—3d®, 338  0.95 fj;
20 -
7 34.3 146 0.39 1d8,—3d}, 344 045 5 .
10 R
| e ]
I L h Ad A
The results shown in Fig. 1 differ substantially from those s % e 8 5 e 8 40
obtained, using the same approach, for resonances with ® (MeV)
smaller energiegsee, €.9.[9,16)). In the last case, one or i
just a few resonances exhausting the main part of the sum
. . . . L © |
rule are shifted in energy with respect to the energies of the 28
other states. As an example we show in Fi@) 2Zhe strength 20 .
function of the Z.w ISMGR in 2%%b, calculated according =
to Egs.(2)—(4) for the external fieldV(r)=r2Yy(n) with Zer 1
the parameter§l2)—(15). We see from this figure that one wl |
resonance with a large strength is shifted in energy in rela-
tion to several weak componentsatellite3. The width of 05 1
the main resonance is approximately equal to the sum of the . , .
satellite widths. The difference in the resonance structures at » » 3°(M V) # 0
w e

large and small energies is caused by the strong influence of
the contlnuum.. . FIG. 2. Energy dependence of the strength functionsarbi-

To prove this statement we performe_d some calculatlonﬁary unit9 in 2°%Pb. (a) The 2w ISMGR, calculated according to
for the strength function similar to those in RER). Inthese  gqg (2)_(4) for the external fieldv(r)=(r/R)? with parameters
calculations we varied both the residual interaction and the12)_(15). (b) The 44w ISMGR, calculated according to E¢&)—
intensity of the coupling to the continuum in the following (s), using the mean field&l2) and (13) with the barrier(16) with
manner. The residual interaction was varied by varying they=0.7 and the residual interactiond4)—(15). (c) The 4w
parameterd;, and f, of Eq. (14) and the coupling to the |ISMGR, calculated according to Eq®)—(5) using the mean fields
continuum was varied by adding an additional potential bar{12) and(13). The residual interaction is increased by a factor of 4
rier outside the nucleus into the shell-model potenti). in comparison with Eq(15).

This potential barrier has the form
and suffer a shift in energy. The widths are distributed over
r—pBR\? all resonances more or less uniformly.
Up(r)=aUoexp — YR , (16 The shift of the collective states as well as the ratio be-
tween the widths of the satellites and the collective states

where =1.25 andy=0.15 are chosen. The parameter ~decreases with increasing coupling to the continuum. For
characterizing the height of the barrier is varied within theillustration we show in Fig. @) the dependence of the quan-
limits 0<a=<0.9. In this way we change strongly the cou- tity ég=(wyx— wg)/w, on the parametes (w, is the aver-
pling of the basic states to the continuum, i.e., the widths age energy of the basic states, anglis the average energy
in Egs.(7)—(11). The energies of the states are only slightly of the collective statgsThis quantity characterizes the rela-
changed. tive energy shift of the GR. In Fig.(B) the dependence of
As an example, the strength function of thk« ISMGR  the ratio yg=I'g/(I'c+1's) on the parametet is shown,
calculated by using the interactiori$4) and (15 and the whereI'g (I'g) is the sum of the widths of the collective
shell-model potentiall2) and(13) with «=0.7 in the barrier ~ states(satelliteg. The results are as follows. Introducing the
(16) is given in Fig. Zb). The strength function shown is barrier with the heightt=0.9 leads to a 40% increase in the
qualitatively similar to that given in Fig.(2). Two collective  relative shift§g of the GR, while the ratioyg between the
resonance states exhaust the main part of the total strengttidths of the GR and satellites decreases from 0.9& at
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FIG. 4. Energy dependence of the strength funcfinrarbitrary
units) of the 4iw ISMGR in 2%Pb calculated according to Egs.
(2)—(5). The parametergl2)—(15) are used. Different from Fig. 1,
the term corresponding to the neutron hole stadg,2s excluded
from the propagato(4).

ISMGR described above can also be qualitatively explained
on the basis of the shell model in the continuum. In this

@ model each of the 1p-1h basic states can be coupled to only
FIG. 3. Dependences of ratioss=(w,— wg)/wy (@ and ys € de_cay channel gnd interacts with the others by means of
—T¢/(Tg+T¢) (b) on the height of the barrigiL6) (see text the residual interactiofsee Sec. |l B At large energiesgfor

example, in the case of théié basic states the widths of
=0 to 0.05 ate=0.9. We also note that all resonance stateghe basic states are very different from one another. The
suffer a small shift to larger energies in calculations with thebasic states with smalbr zerg widths contain a hole in a
barrier[Fig. 2(b)] in comparison with those obtained without deep shellsee Sec. Il B The interaction between the basic
it (Fig. 1). This is explained by the fact that the barr{&6) states with large and small widths is small, because the ma-
leads to a decrease of the “effective” radius of the nucleuslrix elements of the realistic residual interactiofis) and
and hence to an increase of the energies of all particle-hol€l5) [F .\, in Egs.(9)—(11)] are smaller than the energy
states. intervals between these states in ttemplexenergy plane.

In Fig. 2(c) we show the strength function of theié Therefore, the mixing of the basic states having different
ISMGR calculated with the shell-model potenti&l?) and  widths is small, and each narrow resonance in the energy
(13) without a barrier, but with the residual interaction in- dependence of the strength function relates to a concrete ba-
creased by a factor of 4 in comparison with the interactiorsic state with a smallor zerg width. As a consequence, the
(15). One can see a large shift of the main resonance to lownergies and strengths of these resonances are close to those
energies. The widths are distributed more or less uniformlyf the basic states. The small widths arise from their small
between the GR and satellites. This result is qualitativelyinteraction with other basic states.
similar to that obtained by enlarging the barij€ig. 2(b)]. To illustrate these statements we give in Table | the ener-

All the results given above show the following: the struc- gies @P" and strengthssf") of the basic states with a hole
ture of the strength function depends on both the residudh a deep shell. The fact that these values are close to those
interaction of the basic statémternal interactionand their  calculated by taking into account the residual interaction
decay into the continuunfexternal interaction It is gov-  supports our interpretation. Further, we performed some ad-
erned by the interplay and competition of these two types oflitional calculations of the strength function in the following
interaction. This behavior of the strength function is qualita-manner. In each calculation, we excluded from the propaga-
tively similar to that obtained in Ref3] [the different signs tor (4) one of the terms which corresponds to a single-
between the shift of the 4w ISMGR considered here and particle statex in a deep shell. This decreases the number of
the GR considered in Reff3] are due to the different signs the basic states by 1, but the number of open channels re-
between the isoscalar interaction in E¢&4) and (15) and  mains unchangetsee Sec. Il B As an example we give in
that of the residual interaction used in RE3]]. All these  Fig. 4 the strength function calculated according to EBs-
results allow us to identify the narrow resonances in the en¢5) with the parameter§12)—(15), by excluding the term
ergy dependence of the strength function as trapped reseoorresponding to the neutron statg 2. It is seen from Fig.
nances. We note that changes of the mean field and of th& that the strength function loses the narrow resonance at
residual interaction made above can lead to some nonconsi29.8 MeV (compare with Fig. 1 These results show that the
tency of the model. For this reason the results given in Figsnarrow resonance states are almost pure 1p-1h states. This
2 and 3 have an illustrative character and serve the aim tmeans that the internal interaction of the 1p-1h states is ef-
better understand the influence of the continuum on thdectively reduced due to their strong coupling to the con-
structure of the strength function. tinuum.

The peculiarities of the strength function of thé We emphasize that our results show that the continuum
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strongly influences not only the widths, but also the energieshe ratio of the strength function at the maximum of the
and strengths of the GR components. In calculations withoutarrow resonance to the backgroufidignal-to-noise” ra-
the continuum, the role of the internal interaction is overestio): s,I',/spI",~0.2, wheres,=40%, I',~14 MeV and
timated. Therefore, the energy shift of the GR as well as its,=4%, I',~7 MeV are the strengths and total widths of
collectivity are overestimated when the influence of the conthe broad and narrow resonances, respectively. This value
tinuum is not taken into account. This conclusion is obtainedallows us to hope that thefido ISMGR may be, in principle,
on the basis of the continuum RPA and is in agreement witlobserved experimentally. One can use, for example, the
the results obtained in the framework of the schematic modegla,«’) reaction[24] at large momentum transfer, because
for giant resonances of R€3]. the excitation probability of the #lw ISMGR is small for

The interaction of the 1p-1h resonance states with statdeng-wave external fields. A detailed analysis of the possi-
of more complicated structure leads to some spreading of thigility of observing the 4 » ISMGR experimentally requires
1p-1h strength and, hence, to some changes in the resulise ingredients of transition densities, hadron-nucleon inter-
obtained. A detailed analysis of the spreading effést®, action and optical potentials, and a sensitivity of the experi-
for example,[16,21,23) is beyond the scope of the present mental techniques and thus should be the subject of a sepa-
work. However, we can understand the main features of theate work. Here we stress only that the observation of the
actual strength function of the#4o ISMGR on the basis of 4% ISMGR would provide an important physical insight,
the experimental widths of other giant resonances. The exsecause it would show the important role of the continuum at
perimental total widths of the isoscalar GR’s #®Pb are  high excitation energy.
equal to 2.8 MeV for the 2w ISMGR lying at the excitation
energy of 13.7 MeV[22], about 3 MeV for the octupole
resonance at the excitation energy of 19.7 M8Y/ and 3—-6 IV. SUMMARY
MeV (according to different dajdfor the dipole giant reso-

nance at the excitation energy of 22 Mg¥,8]. According to 208h on the basis of the continuum-RPA approach. By

these data, the spreading width of th2«l ISMGR is ex- . X
.means of some numerical calculations we have shown that

pected to be not larger than 5-6 MeV. Because this value 'the structure of this resonance is mainly determined by its

smaller than the escape W'd.th of th.e broad resonance in ths‘?rong coupling to the continuum. This leads to the formation
RPA strength function, the mteraptmn betwgen the Narrovihs two different time scales in its structure. On the one hand

and broad resonances via complicated configurations IS n(?ﬁere is one broad resonance whose width is approximatelyy
expected to be strong so that only one broad resonance in t?v%ice as big as the distance between the shelf9%Rb. This

actual strength function will appear. Therefore, we EXPECtesonance is therefore relaxed more or less fully. On the

that the interaction of the 7w ISMGR with complicated .
i : . other hand, there are several narrow resonances in the energy
configurations does not change our conclusion about the ex:

) ) . S dependence of the 1p-1h strength function. These narrow
istence of two different time scales in its structure. Theresonance states are shown to arise due to resonance tran-
strength function is expected to exhibit two different reso- P

nances. One of them exhausts 40% of the total strength a9 They carry a small part of the strength and can appear

has a total width of about 14 MeV. The second resonance ig] the experl_mental cross section as an isolated resonance at
arge excitation energy.

a superposition of the considered narrow resonances. It has a
total width of about 6—7 MeV and exhausts 4% of the sum
rule (6). Therefore, the main part of the strength of thewt
ISMGR suffers a strong relaxation mainly due to the cou-
pling to the continuum and can appear in any cross section as We gratefully acknowledge valuable discussions with M.
a smooth background. The small part of the strength is exMuller and O. A. Rumyantsev. One of (8.E.M) thanks the
pected to appear as an isolated resonance over the badWax-Planck-Institut fu Physik komplexer Systeme for hos-
ground. pitality. The present investigations are supported by the

Taking into account the strengths and widths of the narWTZ Germany-RussidRUS-647-96 and the U.S. Depart-
row and broad resonances one can obtain an estimation fonent of Energy under Grant No. FG03-93ER40773.

In this work we have investigated theid ISMGR in
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