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Binding energies and other global properties of nuclei in the middle of thep f shell, such asM1, E2, and
Gamow-Teller sum rules, have been obtained using a new shell model code~NATHAN! written in quasispin
formalism and using aj -j -coupled basis. An extensive comparison is made with the recently available shell
model Monte Carlo results using the effective interaction KB3. The binding energies for nearly all the 1f 7/2

nuclei are compared with the measured~and extrapolated! results.@S0556-2813~99!05303-0#

PACS number~s!: 21.10.Dr, 21.60.Cs, 27.40.1z
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I. INTRODUCTION

Detailed shell model calculations in the fullp f-shell have
been recently carried out@1–3# up toA552 using a realistic
G-matrix @4# with the monopole modifications of Ref.@5#
~KB3!. These calculations could only be done due to
availability of the m-scheme codeANTOINE @6#. It has al-
lowed us to tackle the largest dimensionalities ever reac
by any exact diagonalization shell model code@7#. The main
disadvantage ofANTOINE is thatJ andT are not good quan
tum numbers and the dimensions of the matrices are m
mal.

One is then led to develop new tools to deal with t
increasingly large model spaces needed in shell-model
culations. In this paper we present the first results obtai
using a new code@NATHAN# @8,9# that works in thej -j cou-
pling scheme and uses the quasispin formalism. This c
retains the main idea of the codeANTOINE to calculate effi-
ciently all nonzero matrix elements during the diagonali
tion procedure. It can be used either for unrestricted calc
tions as is the case here, or for nuclei in which senio
truncations are physically sound as in the Sn region. The
of a j -j coupling scheme allows us to reduce the mem
requirements with the penalty of an increase in CPU tim
This increase is not so important as new computers do
their speed every year and new shared-memory parallel
chines are now available that allow for a relatively easy p
allelization.

This paper has several goals:~a! to report on results of the
very large shell model calculations that can now be p
formed;~b! to use them as benchmarks for the new appro
mate methods of solving the large scale shell model probl
e.g., Monte Carlo shell model@10# or quantum Monte Carlo
diagonalization method@11#; ~c! to analyze the systematic
of binding energies for nuclei 40<A<56, 20<N, Z<28,
extending the already published results forA547, 48 and 49
down to the beginning of the shell and up to theN5Z528
closure, studying the effect of the scaling with the mass
the matrix elements. These three objectives will be dealt w
in Secs. II, III, and IV.
PRC 590556-2813/99/59~4!/2033~7!/$15.00
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II. THE SHELL MODEL CODE ‘‘ NATHAN ’’

For a long time, shell model calculations have been li
ited to light nuclei or to heavier ones with only a few pa
ticles outside closed shells. Besides the well-known pr
lems related to the determination of a good effect
interaction for large valence spaces, there are compel
technical limitations due to the explosive increase of the
mensions of the matrices to diagonalize. The diagonaliza
in itself is not a problem since, in general, only a few eige
vectors are needed and in this case the Lanczos metho
very efficient. For very large matrices, the convergence
the method is optimized by preliminary calculations in
truncated space. The fundamental problem is that we hav
deal with ‘‘giant’’ matrices, giant meaning that the numb
of its nonzero elements is so large that it is impossible
store all of them before doing the Lanczos procedure.
this reason, one needs to compute all the nonzero term
each new Lanczos iteration. It is clear that modern sh
model codes must tackle this problem and that the quality
the code will be directly related to its performance in t
calculation of nonzero terms during the Lanczos proced
itself.

The first breakthrough in this direction was due to t
Glasgow group@12#. They took advantage of the simplicit
of the m-scheme. In their code, each Slater determinant~SD!
is represented by an integer word and each individual s
by a bit in this word. Bit manipulation and bisection alg
rithms allow for a fast generation of the matrix elements. T
shell model codeANTOINE adds some important improve
ments to the Glasgow method. Its basic principles are
following:

Each state of the basis is written as the product of t
SD’s, one for protons and one for neutronsuI &5u i ,a&, where
we use capital letters (I ,J) for states in the total space, lowe
case latin letters (i , j ) for proton states, and lower case gre
letters (a,b) for neutron states.

Even if the dimensions are very large in the total spa
they are much smaller in the proton and in the neutron spa
separately. For example, the 1 963 461 SD’s withM50 in
2033 ©1999 The American Physical Society
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2034 PRC 59E. CAURIERet al.
48Cr are generated from the44Ca SD’s for all possibleM
values~just 4865!.

The i anda SD’s can be classified by theirJz valuesM p
and Mn . The totalM being fixed, proton and neutron SD
will be associated only ifM p1Mn5M . A graphical illustra-
tion is given below.

We can now follow in the graph how the basis is co
structed. Let us first make a loop oni, and then ona. Since
we have foura states in the first ‘‘block’’ (M p ,Mn) the SD
i 51 generates the statesI 51,2,3,4, the SDi 52 generates
the statesI 55,6,7,8 and so on. When we arrive at the seco
‘‘block’’ ( M p11,Mn21), 634524I states have bee
built. Now we have threea SD’s, meaning thati 57 gener-
atesI 525,26,27. It is clear that for eachi state the alloweda
states runwithout discontinuitybetween a minimum and
maximum value; therefore it is possible to constructnumeri-
cally an arrayR( i ) such that

I 5R~ i !1a.

In our example we have 15R(1)11, 55R(2)11,
255R(7)15, . . . ; thus, knowingi, a, andR( i ) we get im-
mediately I. Afterwards, the program proceeds as follow
for the pp and nn matrix elements all the@R( i ),R( j ),W#
and (a,b,W), where ^ i uHu j &5W and ^auHub&5W, are
precalculated and stored. Therefore, in the Lanczos pr
dure a simple loop ona andi will generate all thepp andnn
matrix elements (I ,J,W). For instance, in the48Cr case,
102 886 (i , j ,W) terms generate 46 484 396 (I ,J,W).

For thepn matrix elements the situation is only a bit mo
complicated. Let us assume that the SD’si and j are con-
nected by the one-body operatoraq

†ar ~labeled byp), with
q5nl jm and r 5n8l 8 j 8m8 andm82m5Dm. We precalcu-
late all the@R( i ),R( j ),p# and (a,b,m). Conservation of the
total M implies that the proton operators withDm must be
associated with the neutron operators with2Dm. Thus we
could draw a scheme equivalent to the one above for
proton and neutron one-body operators~see Fig. 1!. In the
same way as we did before forI 5R( i )1a, we can now
define K5Q(p)1m. The two-body proton-neutron matri
element that connect the states (i ,a) and (j ,b) will be de-
noted byV(K).

Once@R( i ),R( j ),Q(p)# and (a,b,m) stored, the nonzero
elements of the matrix in the full space are generated w
three integer additions:

I 5R~ i !1a,

J5R~ j !1b,

FIG. 1. Illustration ofpn factorization.
-
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K5Q~p!1m,

HI ,J5HJ,I5V~K !.

Another improvement that the codeANTOINE incorporates
is an initial Lanczos procedure with the operatorsJ2 andT2,
i.e., a projection onto goodJ and T. Basis states of goodJ
and T are then used as initial states for the Hamiltonia
Lanczos iterations. This accelerates the convergence
matically.

The main disadvantage of them-scheme is that the spac
contains all the states withJ>Jz andT>Tz . The fundamen-
tal limitation is the disk space needed to store the Lanc
vectors. For that reason, we have adapted the idea of s
rating proton and neutron spaces to a coupled basis. N
each i and a represents a combination of SD’s coupled
good angular momentum with the usual techniques of
Oak-Ridge/Rochester group@13#. The ‘‘blocks’’ are labeled
by Jp andJn . But instead of having a one-to-one associati
(M p1Mn5M ), for a givenJp we now have all the possible
Jn

Jmin<Jn<Jmax

with Jmin5uJ02Jpu and Jmax5J01Jp .

The continuity between the first state withJmin and the last
with Jmax is maintained and consequently the fundamen
relationI 5R( i )1a still holds. The generation of the proton
proton ~neutron-neutron! matrix elements proceeds exact
as inm-scheme.

For the proton-neutron matrix elements the one-body
erators in each space can be written asOp

l5(aj 1

† aj 2
)l. There

exists a strict analogy betweenDm in m-scheme andl in the
coupled scheme. Hence, we can still establish a relatioK
5Q(p)1v. The matrix elements read now:

HI ,J5HJ,I5hi , j* ha,b* W~K !

with hi , j5^ i uOp
lu j & and ha,b5^auOv

l ub&,

W~K !}V~K !* H i a J

j b J

l l 0
J ,

V(K) being a two-body matrix element.
As in m-scheme we have to perform the three integ

additions which generateI, J, andK, but in addition we have
two floating point multiplications, sincehi , j andha,b , which
in m-scheme are just a phase, are now a product of cfp’s
9 j coefficients~see formula 3.10 of Ref.@13#!. Therefore, the
generation of the proton-neutron matrix elements requ
three integer additions, as in them-scheme code, plus two
floating point multiplications.

In summary, the two codes turn out to be complementa
The coupled formalism is more efficient in the followin
cases.

For J501 states~the dimensions are two orders of ma
nitude smaller than in them-scheme! and to a lesser exten
for low spin states.
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When many Lanczos iterations are needed~as for the cal-
culation of strength functions!.

When seniority truncations are reasonable.
When the size of them-scheme Lanczos vectors excee

the storage capacity of the disks.
In other cases, them-scheme codeANTOINE remains a

better option. The two codes run on ordinary workstatio
Indeed, the use of parallel computers should impro
strongly their performances.

The code NATHAN has made it possible to carry o
calculations that, if made inm-scheme, would involve more
than one billionM50 Slater determinants, as in our calc
lation of the ground state of56Ni in the full p f-shell. The
dimensions of theJ50 matrices together with their equiva
lent m-scheme dimensions are listed in Table I for some
the nuclei we have studied in this work. Once the energy
the wave function of the ground state of a given nucleus
obtained, it is easy to build the doorway states~also named
sum rule states! acting with the different transition operato
Vl on it. The norm of the doorway gives the nonener
weighted sum rule for the operator. If the doorway is used
starting vector in the Lanczos process, successive iterat
provide the energy to thenth weighted sum rules or equiva
lently the different moments of the strength function of t
transition operator chosen. Notice that already with two
erations we obtain the norm, the centroid, the width and
skewness of the distribution of strength. These are avera
quantities that can be also accessed by the new stoch
approaches to the shell model problem, as for instance
shell model Monte Carlo~SMMC!, and we shall devote the
next section to compare the approximate and exact soluti

III. BENCHMARKS AND COMPARISON WITH SMMC
RESULTS

With the advent of the stochastic approximations to
solution of the shell model problem, it becomes crucial
dispose of large enough sets of exacts results in orde
benchmark the accuracy of the new methods and to unc
their strong and weak aspects. We have chosen to make
comparison with the set of nuclei studied by Langankeet al.
@14# using Caltech’s SMMC. The effective interaction KB
is used throughout, with effective charges 1.35 for proto
and 0.35 for neutrons, bareg-factors and unquenche
Gamow-Teller operator. The choice of an isoscalar effec
charge of 1.7 in@14# instead of the canonical value of 2 lea

TABLE I. m-scheme andJ50 dimensions in the fullp f shell.

Nucleus m scheme J50 dimension

48Ti 634 744 14 177
50Ti 1 967 848 39 899
52Ti 2 843 770 55 944
50Cr 14 625 240 267 054
52Cr 45 734 928 773 549
54Cr 66 262 352 1 093 850
52Fe 109 954 620 1 777 116
54Fe 345 400 174 5 220 621
56Fe 501 113 392 7 413 488
56Ni 1 087 455 228 15 443 684
.
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to values that underpredict the experimental quadrupole t
sition rates. However this is irrelevant for our purpose
comparing SMMC and exact SM diagonalizations. SMM
involves two extrapolations; one in temperature and ano
in the parameter that has to be introduced@15# in order to
change the sign of those terms of the Hamiltonian that h
‘‘bad’’ sign and that, if taken at their original value, wil
spoil the convergence of the Monte Carlo method. Both
trapolations will contribute to the final differences with th
exact results. While the defaults associated with the imp
sibility of doing a zero temperature calculation are smo
and predictable, those associated with the change of sig
the ‘‘bad’’-sign terms are less well under control.

In Table II we gather the energies and theE2 sum rules
@( iB(E2) 01→2i

1#. SMMC gives energies that are abov
the exact values by about 0.5 MeV in most of the cas
This is consistent with a residual ‘‘heating’’ in SMMC
However, for the heaviest part of the set of nuclei studi
the discrepancies grow up to reach 2 MeV, indicating pro
lems in the extrapolation linked to the ‘‘bad’’-sign term
TheE2 sum rules are nicely reproduced by SMMC except
a couple of cases,62Ni and64Ni where the exact results ar
clearly missed.

In Table III the comparison is extended toM1 and
Gamow-Teller sum rules. In most cases, the 10–15% e
bars of the SMMC numbers suffice to embrace the ex
result. Nevertheless, there still remain some large deviat
in the Gamow-Teller strength of60Fe,62Ni, 64Ni, and 64Zn.

The outcome of this comparison is two-sided. On the o
side, it validates SMMC at the 0.5–1.0 MeV level for th
ground state energies and at the 20% level for the sum ru
On the other side, there are cases in which the discrepa

TABLE II. Valence space energies~in MeV! and B(E2) sum
rules ~in e2 fm4), exact diagonalization vs shell model Mon
Carlo results. The SMMC results have been obtained at finite t
perature and include an internal excitation energy of 0.5 MeV. T
typical error bar of the SMMC energies is 0.4 MeV.

Nucleus E(SM) E(SM) (B(E2) (B(E2)
~shell model! ~SMMC! ~shell model! ~SMMC!

48Ti 224.6 223.9 476 455625
50Ti 227.7 227.2 405 465650
52Ti 225.4 224.9 477 465655
54Ti 222.0 221.4 445 450680
48Cr 232.9 232.3 978 945645
50Cr 240.5 240.0 913 890690
52Cr 246.0 245.6 690 645675
54Cr 247.0 246.3 888 890690
56Cr 245.5 244.8 825 840690
52Fe 254.3 253.7 1016 1055650
54Fe 262.8 262.7 764 750680
56Fe 266.4 265.8 1019 99066
58Fe 267.7 266.7 1117 1010665
60Fe 267.0 265.8 1052 1105665
56Ni 278.5 277.8 572 515665
62Ni 289.5 287.6 823 1010625
64Ni 289.9 287.7 773 1165680
64Zn 2106.3 2104.8 1157 1225665
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2036 PRC 59E. CAURIERet al.
grow larger without an evident cause. This could represe
serious threat to the predictive power of SMMC, although
is possible that a more thorough control of the different
trapolations could bring these isolated cases into line w
the overall results.

IV. BINDING ENERGIES

The codeNATHAN has given us the opportunity to com
plete our stock of binding energies ofp f-shell nuclei, in the
full space, using the effective interaction KB3. It is our a
now to verify that we can describe the ground state ener
at the same level of accuracy that we have achieved for
excitation energies~;200 keV!. A remark is timely here: the
monopole part of the interaction KB3 was fixed by 1f 7/2
nuclei, when only extremely truncated calculations were f
sible. Therefore its non-1f 7/2 monopoles are not well dete
mined. Furthermore, its quasiparticle gap around56Ni is too
strong by about 1 MeV, which results in a relative u
derbinding of the nuclei withN or Z larger than 28. For this
reason we shall only deal with 1f 7/2 nuclei in this section.

What the shell model calculation produces,E(SM) in the
second column of Table IV, is the contribution to the nucle
binding energy of the interaction of the valence partic
among themselves. It does not include the Coulomb re
sion among the protons, nor the binding energy of the c
(40Ca in our case!, nor the interaction among the core and t
valence particles. Therefore, in order to compare with
experimental binding energies relative to40Ca,Be , we have
take into account these quantities.

The Coulomb energies relative to40Ca can be approxi-
mated by the following formula valid for a major she
~p5valence protons,n5valence neutrons!:

EC5epp1Vpp

p~p21!

2
1Vpnpn. ~1!

TABLE III. M1 (in mN) and Gamow-Teller sum rules, exa
diagonalization vs shell model Monte Carlo results.

Nucleus (B(M1) (B(M1) (B(GT1) (B(GT1)
~shell model! ~SMMC! ~shell model! ~SMMC!

48Ti 10.6 10.261.2 1.26 1.1360.18
50Ti 12.6 12.561.0 1.24 1.4760.16
52Ti 12.9 12.561.0 0.99 1.1160.16
54Ti 13.4 13.561.5 0.89 0.9760.21
48Cr 12.0 13.861.7 4.13 4.3760.35
50Cr 13.9 14.562.5 3.57 3.5160.27
52Cr 15.6 18.962.2 3.33 3.5160.19
54Cr 16.5 13.062.5 2.24 2.2160.22
56Cr 16.3 16.262.0 1.92 1.5060.21
52Fe 17.2 18.961.4 6.92 7.1060.42
54Fe 18.9 16.562.8 6.33 6.0560.45
56Fe 19.4 20.463.0 4.69 3.9960.27
58Fe 18.8 20.363.0 3.12 3.0660.28
60Fe 18.2 17.362.1 2.60 1.8060.24
56Ni 22.8 23.061.2 10.2 9.8660.38
62Ni 20.7 19.662.9 4.38 3.4360.40
64Ni 19.3 18.962.7 3.44 1.7360.29
64Zn 21.6 23.662.2 5.54 4.1360.34
a
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In our previous works@1,3# the values of the constant
ep , Vpp , andVpp were determined from the differences
binding energies between41Sc and40Ca(ep) and theA542
isobars (Vpp and Vpn). In this paper we are interested i
larger mass region, hence the need of a better determina
of the constants in expression~1!. In order to do so we have
fitted the Coulomb displacement energies of analog states
nuclei betweenA542 andA564 @16,17#. The resulting pa-
rameters are

ep57.4460.02,

Vpp50.27460.003, ~2!

Vpn520.04960.003.

Another option is to rely in global expressions that are us
for the Coulomb term of the mass formulas. We have cho
the one used in Ref.@18#:

EC50.700@Z~Z21!20.76„Z~Z21!…2/3#/RC ,

RC5e1.5/AA1/3S 0.94620.573S 2T

A D 2D . ~3!

The valence space Coulomb energies obtained from
~3! are very close to those obtained from the fit~2!, with
discrepancies that never reach 1%. In what follows we s
use the Coulomb energies from the global formula~3!.

Besides, one should add the nuclear interaction betwe
particle in the valence space and the core. The value of
one body, matrix element is usually taken from the bindi
energy difference between41Ca and40Ca. However we shall
proceed otherwise; the effective interaction we have b
using ~KB3! has been only tested against spectroscopic
servables that will not vary if we add to the Hamiltonia
terms that only depend on scalars made with thetotal num-
ber of valence particles~n! or thetotal isospin (T). Thus, we
have the freedom to add the following monopole express
to our Hamiltonian:

EM5evn1a
1

2
n~n21!1bS T~T11!2

3

4
nD , ~4!

whereev is an average particle core interaction~hopefully
close to the one experimentally determined inA541) anda
and b are the isoscalar and isovector global monopole c
rections to KB3 that we will fix by a fit to the experimenta
binding energies relative to40Ca using the formula:

EB52Be5E~SM!1EC1EM . ~5!

The data set is listed in the fourth column of Table IV~the
numbers with a star are extrapolated values from@19# not
included in the fit! and contains 51 entries. The values of t
parameters resulting from the fit are
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TABLE IV. Shell model binding energies relative to40Ca ~in
MeV!, compared with the experimental values~the numbers with a
star are extrapolated values from@19# not included in the fit!. KB3
interaction without mass dependence~see text for more details!.

Nucleus E(SM) Be(Theor.) Be(Expt.) D

42Ca 22.71 19.93 19.84 0.08
42ScT51 22.71 12.44 12.64 20.20
42ScT50 22.35 12.20 12.02 0.17
42Ti 22.71 4.55 4.85 20.30
43Ca 22.55 28.19 27.78 0.41
43Sc 26.67 25.06 24.77 0.29
43Ti 26.67 17.24 17.12 0.12
43V 22.55 4.72 5.05* 20.32
44Ca 24.99 38.93 38.91 0.02
44Sc 28.26 35.07 34.47 0.60
44Ti 213.88 33.06 33.42 20.37
44V 28.26 19.16 18.94* 0.22
44Cr 24.99 7.11 7.84* 20.74
45Ca 24.61 46.73 46.32 0.41
45Sc 210.95 46.06 45.80 0.27
45Ti 215.49 43.09 42.95 0.14
45V 215.49 35.00 35.04 20.04
45Cr 210.95 21.80 21.79* 0.00
45Mn 24.61 6.28 6.71* 20.43
46Ca 26.73 56.90 56.72 0.18
46Sc 211.67 54.94 54.56 0.39
46Ti 220.14 56.02 56.14 20.12
46VT51 220.14 47.99 48.31 20.32
46VT50 219.77 47.75 47.51 0.24
46Cr 220.14 39.58 39.92 20.35
46Mn 211.67 22.06 22.04* 0.02
46Fe 26.73 7.57 8.13* 20.56
47Ca 26.10 64.20 63.99 0.21
47Sc 214.05 65.37 65.20 0.17
47Ti 221.06 65.11 65.02 0.09
47V 225.07 61.33 61.31 0.02
47Cr 225.07 52.98 53.08 20.10
47Mn 221.06 40.05 40.00* 0.05
47Fe 214.05 23.61 23.58* 0.03
48Ca 27.88 73.79 73.94 20.15
48Sc 214.13 73.37 73.43 20.07
48Ti 224.57 76.65 76.65 0.00
48V 227.58 71.99 71.85 0.14
48Cr 232.95 69.20 69.41 20.21
48Mn 227.58 55.03 54.81* 0.22
48Fe 224.57 42.72 43.14* 20.42
48Co 214.13 22.48 22.61* 20.13
49Sc 216.19 83.23 83.57 20.34
49Ti 224.81 84.80 84.79 0.01
49V 231.01 83.45 83.40 0.04
49Cr 235.59 79.98 79.99 20.01
49Mn 235.59 71.37 71.49 20.13
49Fe 231.01 57.61 57.68* 20.07
49Co 224.81 41.74 41.90* 20.15
50Ti 227.72 95.49 95.73 20.24
50V 232.16 92.50 92.74 20.24
50Cr 240.54 92.95 92.99 20.05
50MnT51 240.54 84.39 84.58 20.18
ev528.6760.01 MeV,

a50.09260.003 MeV,

b50.06360.006 MeV.

The shell model binding energies calculated with the
values are listed in the third column of Table IV. The rm
deviation between theory and experiment is 227 keV. Th
results deserve some comments.

The rms deviation we have attained satisfies our expe
tions; we are able to describe consistently at the same l
of accuracy excitation energies and, valence space, gro
state energies.

The valueev528.67 MeV is close enough to theA
541 value28.36 MeV as to be considered satisfactory.

The values of thea andb parameters are small and indee
smaller than the monopole modifications of some terms
the original Kuo-Brown interaction that led to KB3~about
300 keV).

The shell model binding energies for those nuclei not
cluded in the fit can be compared with the extrapolated v
ues in@19#. The differences are somewhat larger than for
measured values, without exceeding 500 keV in any cas

There are basic reasons to scale the matrix elements o
effective interactions with a term that reflects somehow
change in size of the underlying mean field. In the harmo
oscillator basis this brings in the usualA1/3 dependence of
\v, which has been sometimes incorporated tosd and
p f-shell effective interactions@20–22#. A more elaborate de-
pendence has been proposed recently@23# in order to im-
prove the description of nuclear radii. It leads to the follo
ing scaling factor:

S A0

A D 1/3

e3~A2A0! /AA0S 0.94620.573S 2T

A0
D 2

0.94620.573S 2T

A D 2D 2

, ~6!

TABLE IV. ~Continued!.

Nucleus E~SM! Be(Theor.) Be(Expt.) D

50MnT50 240.28 84.26 84.35 20.09
50Fe 240.54 75.47 75.64 20.18
50Co 232.16 57.55 57.59* 20.04
50Ni 227.72 43.06 43.40* 20.34
51V 235.31 103.42 103.79 20.37
51Cr 241.81 102.10 102.25 20.15
51Mn 246.17 98.16 98.26 20.11
51Fe 246.17 89.29 89.46 20.17
51Co 241.81 75.51 75.74* 20.23
51Ni 235.31 59.09 59.12* 20.03
52Cr 245.99 114.05 114.29 20.24
52Fe 254.27 105.46 105.64 20.19
52Ni 245.99 78.08 78.41* 20.32
54Fe 262.85 129.63 129.71 20.07
54Co 262.85 120.57 120.68 20.11
54Ni 262.85 111.15 111.10 0.05
56Ni 278.46 142.44 141.94 0.50
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TABLE V. Shell model binding energies relative to40Ca ~in
MeV!, compared with the experimental values~the numbers with a
star are extrapolated values from@19# not included in the fit!. KB3
interaction with mass dependence~see text for more details!.

Nucleus E(SM) Be(Theor.) Be(Expt.) D

42Ca 22.71 19.83 19.84 20.01
42ScT51 22.71 12.34 12.64 20.30
42ScT50 22.35 12.21 12.02 0.19
42Ti 22.71 4.45 4.85 20.40
43Ca 22.53 28.06 27.78 0.28
43Sc 26.62 25.07 24.77 0.30
43Ti 26.62 17.25 17.12 0.12
43V 22.53 4.59 5.05* 20.45
44Ca 24.92 38.76 38.91 20.14
44Sc 28.14 35.08 34.47 0.60
44Ti 213.67 33.08 33.42 20.34
44V 28.14 19.16 18.94* 0.23
44Cr 24.92 6.94 7.84* 20.90
45Ca 24.51 46.58 46.32 0.25
45Sc 210.72 46.05 45.80 0.25
45Ti 215.16 43.13 42.95 0.18
45V 215.16 35.05 35.04 0.01
45Cr 210.72 21.78 21.79* 20.01
45Mn 24.51 6.13 6.71* 20.58
46Ca 26.54 56.73 56.72 0.02
46Sc 211.35 54.97 54.56 0.41
46Ti 219.57 56.01 56.14 20.13
46VT51 219.57 47.98 48.31 20.33
46VT50 219.21 47.85 47.51 0.35
46Cr 219.57 39.57 39.92 20.36
46Mn 211.35 22.09 22.04* 0.05
46Fe 26.54 7.41 8.13* 20.73
47Ca 25.90 64.12 63.99 0.13
47Sc 213.58 65.39 65.20 0.19
47Ti 220.36 65.16 65.02 0.14
47V 224.20 61.38 61.31 0.07
47Cr 224.20 53.03 53.08 20.05
47Mn 220.36 40.10 40.00* 0.10
47Fe 213.58 23.64 23.58* 0.05
48Ca 27.58 73.74 73.94 20.20
48Sc 213.59 73.50 73.43 0.07
48Ti 223.60 76.66 76.65 0.02
48V 226.49 72.10 71.85 0.25
48Cr 231.61 69.16 69.41 20.25
48Mn 226.49 55.14 54.81* 0.33
48Fe 223.60 42.74 43.14* 20.40
48Co 213.59 22.61 22.61* 0.00
49Sc 215.48 83.41 83.57 20.16
49Ti 223.70 84.95 84.79 0.16
49V 229.61 83.56 83.40 0.16
49Cr 233.96 80.02 79.99 0.03
49Mn 233.96 71.41 71.49 20.08
49Fe 229.61 57.73 57.68* 0.05
49Co 223.70 41.89 41.90* 0.00
50Ti 226.34 95.66 95.73 20.07
50V 230.57 92.76 92.74 0.02
50Cr 238.47 92.94 92.99 20.05
50MnT51 238.47 84.39 84.58 20.19
whereA0 is the mass at which the effective interaction h
been computed andA andT are the mass and the isospin
the nucleus with which we are dealing.

It is worth noticing that the lowerp f-shell might be spe-
cial when it comes to scaling, because the radii of40Ca and
58Ni can be reproduced without any change in the harmo
oscillator size parameter as well as the Coulomb displa
ment energies@24#. On the other hand we wondered wheth
or not the extra global monopole correction that comes ou
our fit is an artifact due precisely to the absence of m
dependence in the matrix elements. In order to settle
point we have repeated all the binding energy calculati
with matrix elements scaled as in Eq.~6! with A0542 ~see
Table V!. Afterwords, we follow exactly the same steps d
cussed above; we add the same Coulomb energies and
ceed to fit the coefficients of the global monopole formu
~4!, but now with thea and b parameters scaling as th
matrix elements. The values of the parameters atA542 are

ev528.6160.01 MeV,

a50.04160.003 MeV,

b50.11960.006 MeV.

The resulting binding energies are compared in Table V w
the experimental data. The rms deviation is now 215 ke
Therefore we are led to conclude that the average qualit
the agreement is insensitive to the inclusion of a mass
pendence in the two-body matrix elements. Notice that
value of ev is essentially the same as that obtained with
mass dependence. On the other hand thea andb parameters
are quite different from the ones obtained earlier, even
they are in the same range of values. It appears that one
of the global isoscalar monopole correction can be absor
into the mass dependence, while the isovector correc
doubles. The predictions for the binding energies not
cluded in the fit differ from those of the previous calculatio
typically by 150 keV, in the direction of increasing the di

TABLE V. ~Continued!.

Nucleus E(SM) Be(Theor.) Be(Expt.) D

50MnT50 238.25 84.39 84.35 0.04
50Fe 238.47 75.46 75.64 20.18
50Co 230.57 57.80 57.59* 0.22
50Ni 226.34 43.23 43.40* 20.17
51V 233.37 103.71 103.79 20.07
51Cr 239.49 102.27 102.25 0.02
51Mn 243.60 98.22 98.26 20.04
51Fe 243.60 89.35 89.46 20.11
51Co 239.49 75.68 75.74* 20.06
51Ni 233.37 59.38 59.12* 0.27
52Cr 243.21 114.21 114.29 20.08
52Fe 250.95 105.38 105.64 20.27
52Ni 243.21 78.24 78.41* 20.16
54Fe 258.46 129.70 129.71 20.01
54Co 258.46 120.63 120.68 20.05
54Ni 258.46 111.21 111.10 0.11
56Ni 272.31 142.38 141.94 0.44
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crepancy with the extrapolated values. Nevertheless non
these elements is decisive in making a choice between
two approaches. On the one side, Occam’s razor favors
mass independent choice, on the other side, if we want to
beyond 56Ni we should surely need to incorporate the ma
dependence.

V. CONCLUSIONS

The new shell model codeNATHAN has been used to ca
culate the binding energies,M1, E2 , and GT sum rules o
several nuclei of thep f-shell, in the full valence space, usin
the effective interaction KB3. These results have been u
to benchmark the SMMC calculations, which we find to
-

er

v.
of
he
he
o

s

ed

in reasonable agreement with the exact results. We have
computed the binding energy of nearly all 1f 7/2 nuclei,
reaching the same level of agreement that we had for
excitation energies and making predictions for a number
still unavailable masses. We also show that the inclusion
mass dependence in the two-body matrix elements is
critical for the description of the binding energies in th
region.
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