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Binding energies and other global properties of nuclei in the middle opthshell, such asi1, E2, and
Gamow-Teller sum rules, have been obtained using a new shell model(cadeN) written in quasispin
formalism and using &-j-coupled basis. An extensive comparison is made with the recently available shell
model Monte Carlo results using the effective interaction KB3. The binding energies for nearly afi;jhe 1
nuclei are compared with the measufedd extrapolatedresults.[ S0556-28189)05303-(

PACS numbd(s): 21.10.Dr, 21.60.Cs, 27.40z

I. INTRODUCTION Il. THE SHELL MODEL CODE “ NATHAN"

For a long time, shell model calculations have been lim-
ited to light nuclei or to heavier ones with only a few par-

G-matrix [4] with the monopole modifications of Reff5] ticles outside closed shells. Besides the well-known prpb-
(KB3). These calculations could only be done due to thé_ems r«_alated to the determination of a good effectl\_/e
availability of the m-scheme cod@nTOINE [6]. It has al-  Nteraction for large valence spaces, there are compelling
lowed us to tackle the largest dimensionalities ever reacheffchnical limitations due to the explosive increase of the di-
by any exact diagonalization shell model cgd@ The main  Mensions of the matrices to diagonalize. The diagonalization
disadvantage oANTOINE is thatJ and T are not good quan- N itself is not a problem since, in general, only a few eigen-
tum numbers and the dimensions of the matrices are maxiectors are needed and in this case the Lanczos method is
mal. very efficient. For very large matrices, the convergence of
One is then led to develop new tools to deal with thethe method is optimized by preliminary calculations in a
increasingly large model spaces needed in shell-model cairuncated space. The fundamental problem is that we have to
culations. In this paper we present the first results obtainedeal with “giant” matrices, giant meaning that the number
using a new codgNATHAN] [8,9] that works in thej-j cou-  of its nonzero elements is so large that it is impossible to
pling scheme and uses the quasispin formalism. This codgtore all of them before doing the Lanczos procedure. For
retains the main idea of the cod®TOINE to calculate effi- this reason, one needs to compute all the nonzero terms at
ciently all nonzero matrix elements during the diagonaliza-each new Lanczos iteration. It is clear that modern shell
tion procedure. It can be used either for unrestricted calculamodel codes must tackle this problem and that the quality of
tions as is the case here, or for nuclei in which senioritythe code will be directly related to its performance in the
truncations are physically sound as in the Sn region. The usgalculation of nonzero terms during the Lanczos procedure
of a j-j coupling scheme allows us to reduce the memonyitself.
requirements with the penalty of an increase in CPU time. The first breakthrough in this direction was due to the
This increase is not so important as new computers doubl&lasgow grougd12]. They took advantage of the simplicity
their speed every year and new shared-memory parallel m&f the m-scheme. In their code, each Slater determi¢@ibx
chines are now available that allow for a relatively easy paris represented by an integer word and each individual state
allelization. by a bit in this word. Bit manipulation and bisection algo-
This paper has several goala) to report on results of the rithms allow for a fast generation of the matrix elements. The
very large shell model calculations that can now be pershell model codeaNTOINE adds some important improve-
formed;(b) to use them as benchmarks for the new approxiiments to the Glasgow method. Its basic principles are the
mate methods of solving the large scale shell model problenfpllowing:
e.g., Monte Carlo shell mod¢10] or quantum Monte Carlo Each state of the basis is written as the product of two
diagonalization metho@11]; (c) to analyze the systematics SD’s, one for protons and one for neutrdhs=|i,a), where
of binding energies for nuclei 40A<56, 20sN, Z<28, we use capital letterd (J) for states in the total space, lower
extending the already published results Ao 47, 48 and 49 case latin lettersi(j) for proton states, and lower case greek
down to the beginning of the shell and up to the=Z=28 letters (,3) for neutron states.
closure, studying the effect of the scaling with the mass of Even if the dimensions are very large in the total space,
the matrix elements. These three objectives will be dealt witlihey are much smaller in the proton and in the neutron spaces
in Secs. 11, lll, and IV. separately. For example, the 1963461 SD’s with=0 in

Detailed shell model calculations in the fglf-shell have
been recently carried o{it—3] up to A=52 using a realistic
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Mp Mp+1 K=Q(p)+ u,

i [1]2]3[4fs]6] [7]8]9]w) Hiy=Hy = V(K).

/l\ % Another improvement that the cod@TOINE incorporates

is an initial Lanczos procedure with the operatdtsand T2,
a | 1 | 2 | 3 |4 | | 5 | 6 | 7 | i.e., a projection onto good and T. Basis states of good
and T are then used as initial states for the Hamiltonian’s
Mn Mn-1 Lanczos iterations. This accelerates the convergence dra-
FIG. 1. lllustration ofpn factorization. matically. _
The main disadvantage of tie-scheme is that the space
48Cr are generated from th&Ca SD's for all possible ~ ¢ontains all the states witheJ, andT=T,. The fundamen-
: tal limitation is the disk space needed to store the Lanczos
values(just 4865. .
vectors. For that reason, we have adapted the idea of sepa-
rating proton and neutron spaces to a coupled basis. Now,
eachi and « represents a combination of SD’s coupled to
good angular momentum with the usual techniques of the
Oak-Ridge/Rochester group3]. The “blocks” are labeled
by J, andJ, . But instead of having a one-to-one association
(Mp+M,=M), for a givenJ, we now have all the possible

Thei anda SD’s can be classified by thel, valuesM
andM,,. The totalM being fixed, proton and neutron SD’s
will be associated only iM,+M,=M. A graphical illustra-
tion is given below.

We can now follow in the graph how the basis is con-
structed. Let us first make a loop onand then ornx. Since
we have foura states in the first “block” M,,M) the SD
i=1 generates the statés-1,2,3,4, the SD=2 generates "
the state$=5,6,7,8 and so on. When we arrive at the second
“block” (M,+1M,—1), 6X4=24 states have been
built. Now we have threex SD’s, meaning that=7 gener-
atesl =25,26,27. It is clear that for eadlstate the allowed
statgs rurwithout discontin'uif[ybetwe.en a minimum anq a The continuity between the first state widy,
maximum value; therefore it is possible to constmeeri-
cally an arrayR(i) such that

‘]mins‘]ns‘]max
With Jpin=[Jo—Jp| and Jpa—=Jo+Jj-

and the last
with J,ax IS maintained and consequently the fundamental
relationl =R(i) + « still holds. The generation of the proton-
proton (neutron-neutronmatrix elements proceeds exactly
as inm-scheme.

For the proton-neutron matrix elements the one-body op-
erators in each space can be Writteﬂ%? (a;rlajz)”. There

I=R(i)+a.

In our example we have 2R(1)+1, 5=R(2)+1,

25=R(7)+5, ... ;thus, knowingi, «, andR(i) we get im- . . . .

mediatelyl. Afterwards, the program proceeds as follows:eX'St:Is astrlﬁt analogy betwedmn in ”F"SChem‘T. ar?d n rh?

for the pp and nn matrix elements all th¢ R(i),R(j),W] SOUp ed+sc irrr:e. Hf’?"e’l we c?n stldestal? ish a reldtion

and (@,B,W), where (i|H|j)=W and (a|H|B)=W, are =Q(p) + w. The matrix elements read now:

precalculated and stored. Therefore, in the Lanczos proce- H, ;=H,,=h*h* W(K)

dure a simple loop om andi will generate all thgzgp andnn LI L e

matrix elements I(J,W). For instance, in the*Cr case, . . .

102886 {,j,W) terms generate 46 484 396,4,W). with i ;=(i|Ogli) and h, g=(a|O|B),
For thepn matrix elements the situation is only a bit more ,

complicated. Let us assume that the SD’andj are con- !

nected by the one-body operal:ai)};'ar (labeled byp), with W(K)ocV(K)*

g=nljm andr=n’l"j’'m’ andm’ —m=Am. We precalcu-

late all the[ R(i),R(j),p] and («,B,). Conservation of the

total M implies that the proton operators withm must be V(K) being a two-body matrix element.

associated with the neutron operators witlAm. Thus we As in mscheme we have to perform the three integer

could draw a scheme equivalent to the one above for theqitions which generate J, andK, but in addition we have

proton and neutron one-body operatésee Fig. 1 In the 4 figating point multiplications, sinde; ; andh,, 4, which

same way as we did before fore=R(i)+«, we can now 5 mscheme are just a phase, are now a product of cfp’s and

define K=Q(p) + . The two-body proton-neutron matrix g; coefficients(see formula 3.10 of Ref13]). Therefore, the

element that connect the stat@sa) and (j,8) will be de-  generation of the proton-neutron matrix elements requires

noted byV(K). three integer additions, as in tme-scheme code, plus two
Once[R(i),R(j),Q(p)] and («, B, 1) stored, the nonzero floating point multiplications.

elements of the matrix in the full space are generated with | symmary, the two codes turn out to be complementary.

J
J
0

¥ ™ R

j
A

three integer additions: The coupled formalism is more efficient in the following
_ cases.
I=R(i)+a, ForJ=0" states(the dimensions are two orders of mag-

nitude smaller than in thenschemeg and to a lesser extent
J=R(j)+ B, for low spin states.
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TABLE I. m-scheme and=0 dimensions in the fulpf shell.

FULL 0w SHELL MODEL CALCULATION OF THE ... 2035

TABLE II. Valence space energigsn MeV) and B(E2) sum
rules (in e fm?%), exact diagonalization vs shell model Monte

Nucleus m scheme J=0 dimension Carlo results. The SMMC results have been obtained at finite tem-
PP perature and include an internal excitation energy of 0.5 MeV. The
°Ti 634744 14177 typical error bar of the SMMC energies is 0.4 MeV.
50T 1967 848 39899
>2Ti 2843770 55944 Nucleus  E(SM) E(SM) SB(E2)  SB(E2)
*cr 14 625 240 267054 (shell model (SMMC) (shell model (SMMC)
S2Cr 45734928 773549
sacr 66 262 352 1093 850 48T —24.6 —-23.9 476 455 25
52Fe 109 954 620 1777116 50T -27.7 -27.2 405 46550
S4Fe 345 400 174 5220 621 ZT' —254 —24.9 4t 46355
s6Nj 1087 455228 15443 684 Cr —32.9 —323 978 94345
Socr —40.5 —40.0 913 89690
S2Cr —46.0 —45.6 690 64575
When many Lanczos iterations are needeasifor the cal- Sicr —47.0 —46.3 888 89690
culation of strength functions Sécr —455 —44.8 825 84690
When seniority truncations are reasonable. 52Fe —54.3 —53.7 1016 105% 50
When the size of thenscheme Lanczos vectors exceeds 54re -62.8 -62.7 764 756 80
the storage capacity of the disks. 56Ea —66.4 —65.8 1019 996 6
In other cases, then-scheme codeNTOINE remains a 58Fa —67.7 —66.7 1117 1018 65
better option. The two codes run on ordinary workstations. sogg —67.0 —65.8 1052 110% 65
Indeed, thg use of parallel computers should improve sey —785 —778 572 515 65
strongly their performances. _ ' 62\j ~895 876 823 1016 25
The pode NATHAN hgs made it possmle to carry out ea _89.9 _g77 773 1165 80
calculations that, if made im-scheme, would involve more 647, 1063 1048 1157 1225 65

than one billionM =0 Slater determinants, as in our calcu-
lation of the ground state of®Ni in the full pf-shell. The

dimensions of theJ=0 matrices together with their equiva-
lent mscheme dimensions are listed in Table | for some o

fo values that underpredict the experimental quadrupole tran-

: L ition rates. However this is irrelevant for our purpose of
the nuclei we have studied in this work. Once the energy ang' . : o
the wave function of the ground state of a given nucleus igomparnng SMMC and exact SM diagonalizations. SMMC

obtained, it is easy to build the doorway statalkso named !nvt()hlves two e?trat%oltatrl]onst; oge n ttergpgergiu_re ar;d atnother
sum rule statgsacting with the different transition operators mh € p‘a:am? er ft?] ast 0 be :cntrrlo ﬁ _Itln_or fhr toh
QM on it. The norm of the doorway gives the nonenergyC ange the sign of those terms of the Hamiltonian that have

- : “bad” sign and that, if taken at their original value, will
weighted sum rule for the operator. If the doorway is used as oil the convergence of the Monte Carlo method. Both ex-

starting vector in the Lanczos process, successive iteratio P ; ) X . . .
provid th energy o feth weghted sum e or equiva- [P0 W Sontiuts o e el dferences it e
lently the different moments of the strength function of the : P

transition operator chosen. Notice that already with two it—Sibility of_doing a zero temperature .calculation are sm_ooth
erations we obtain the norm, the centroid, the width and th nd“predyllctgble, those associated with the change of sign of
skewness of the distribution of strength. These are averageHe bad™-sign terms are less weII_under control.

guantities that can be also accessed by the new stochasti In Table ”+ we 93”"” the energies anq the sum rules
approaches to the shell model problem, as for instance tl-f%iB(Ez) 0"—27"]. SMMC gives energies that are above
shell model Monte CarléSMMC), and we shall devote the the exact values by about 0.5 MeV in most of the cases.

next section to compare the approximate and exact solutiondiS iS consistent with a residual “heating” in SMMC.
However, for the heaviest part of the set of nuclei studied,

the discrepancies grow up to reach 2 MeV, indicating prob-
lems in the extrapolation linked to the “bad”-sign terms.
TheE, sum rules are nicely reproduced by SMMC except in
With the advent of the stochastic approximations to thea couple of casess?Ni and®Ni where the exact results are
solution of the shell model problem, it becomes crucial toclearly missed.
dispose of large enough sets of exacts results in order to In Table Il the comparison is extended td,; and
benchmark the accuracy of the new methods and to uncovésamow-Teller sum rules. In most cases, the 10—15% error
their strong and weak aspects. We have chosen to make tHigirs of the SMMC numbers suffice to embrace the exact
comparison with the set of nuclei studied by Langaekal.  result. Nevertheless, there still remain some large deviations
[14] using Caltech’s SMMC. The effective interaction KB3 in the Gamow-Teller strength d*Fe,%Ni, ®Ni, and 9zn.
is used throughout, with effective charges 1.35 for protons The outcome of this comparison is two-sided. On the one
and 0.35 for neutrons, barg-factors and unquenched side, it validates SMMC at the 0.5-1.0 MeV level for the
Gamow-Teller operator. The choice of an isoscalar effectiveground state energies and at the 20% level for the sum rules.
charge of 1.7 in14] instead of the canonical value of 2 leads On the other side, there are cases in which the discrepacies

Ill. BENCHMARKS AND COMPARISON WITH SMMC
RESULTS
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TABLE lll. M1 (in wy) and Gamow-Teller sum rules, exact  In our previous workq1,3] the values of the constants
diagonalization vs shell model Monte Carlo results. e., V.., andV,__ were determined from the differences in
binding energies betweetiSc and°Ca(e,) and theA=42
Nucleus *B(M1) 2B(M1) Z2B(GT,) 2B(GT.)  jisobars {/,, andV,,). In this paper we are interested in

(shell model  (SMMC)  (shell model  (SMMC) larger mass region, hence the need of a better determination
a8 10.6 10.261.2 126 113018 qf the constants in e_xpressim]). In ordgr to do so we have
507 126 125-1.0 124 147016 fitted Fhe Coulomb displacement energies of analog states for
527 129 125-1.0 0.99 11%0.16 nuclei betweerA=42 andA=64[16,17]. The resulting pa-
547 134  135:15 089  09%021 I'ametersare
“8Cr 12.0 13.81.7 4.13 4.3%0.35
socr 13.9 14525 3.57 3.5%0.27 e,=7.44+0.02,

S2Cr 15.6 18.92.2 3.33 3.5%#0.19
S4cr 16.5 13.@25 2.24 2.2%0.22 V,.=0.274+0.003, )
Sécr 16.3 16.2-2.0 1.92 1.56:0.21
52Fe 17.2 18.91.4 6.92 7.16:0.42
S4e 189 16528 633  6.080.45 Vo, =—0.042£0.003.
Sére 19.4 20.4£3.0 4.69 3.990.27
58re 18.8 20.33.0 3.12 3.060.28  Another option is to rely in global expressions that are used
60Ee 18.2 17.32.1 2.60 1.86:0.24 for the Coulomb term of the mass formulas. We have chosen
SeNj 22.8 23.0-1.2 10.2 9.860.38 the one used in Ref18]:
62Ni 20.7 19.6-2.9 4.38 3.430.40
64N 19.3 18.9-2.7 3.44 1.730.29 Ec=0.700Z(Z—-1)—0.76Z(Z—-1))*?])/R¢,
84zn 21.6 23.62.2 5.54 4.130.34
2
grow larger without an evident cause. This could represent a RC:el'SAAl/?’(O-g"'G_ 057{ K) ) €

serious threat to the predictive power of SMMC, although it

is possible that a more thorough control of the different ex- ) i
trapolations could bring these isolated cases into line with 1he valence space Coulomb energies obtained from Eq.

the overall results. (3) are very close to those obtained from the (8, with
discrepancies that never reach 1%. In what follows we shall
IV. BINDING ENERGIES use the Coulomb energies from the global form{8a

Besides, one should add the nuclear interaction between a

The codeNATHAN has given us the opportunity to com- particle in the valence space and the core. The value of this,
plete our stock of binding energies pf-shell nuclei, in the  one body, matrix element is usually taken from the binding
full space, using the effective interaction KB3. It is our aim energy difference betweetCa and*°Ca. However we shall
now to verify that we can describe the ground state energiesroceed otherwise; the effective interaction we have been
at the same level of accuracy that we have achieved for thesing (KB3) has been only tested against spectroscopic ob-
excitation energie6~200 keV). A remark is timely here: the servables that will not vary if we add to the Hamiltonian
monopole part of the interaction KB3 was fixed by712  terms that only depend on scalars made withttital num-
nuclei, when only extremely truncated calculations were feaber of valence particle@) or thetotal isospin (T). Thus, we
sible. Therefore its non{fI7/2 monopoles are not well deter- have the freedom to add the following monopole expression
mined. Furthermore, its quasiparticle gap aroNilis too  to our Hamiltonian:
strong by about 1 MeV, which results in a relative un-
derbinding of the nuclei withN or Z larger than 28. For this 1
reason we shall only deal withfZ/2 nuclei in this section. Ey=e,n+a-n(n—1)+b

What the shell model calculation produc&$SM) in the 2
second column of Table 1V, is the contribution to the nuclear
binding energy of the interaction of the valence particleswheree, is an average particle core interactimopefully
among themselves. It does not include the Coulomb repulelose to the one experimentally determinedhin 41) anda
sion among the protons, nor the binding energy of the coraind b are the isoscalar and isovector global monopole cor-
(*°Ca in our caskg nor the interaction among the core and therections to KB3 that we will fix by a fit to the experimental

valence particles. Therefore, in order to compare with thebinding energies relative t8Ca using the formula:
experimental binding energies relative {CaB,, we have

take into account these quantities.

T(T+1)—‘3—1n>, 4

The Coulomb energies relative tfCa can be approxi- Eg=—B.=E(SM)+Ec+En. ®)
mated by the following formula valid for a major shell
(r=valence protonsy=valence neutrons The data set is listed in the fourth column of Table(tkfe
(1) numbers with a star are extrapolated values fid@] not
r(— . . 4 :
Ec=e mtV. iy o 1) included in the fit and contains 51 entries. The values of the

2 parameters resulting from the fit are
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TABLE IV. Shell model binding energies relative*f€a (in

MeV), compared with the experimental valugise numbers with a

star are extrapolated values frgd®] not included in the fjt KB3
interaction without mass depender(see text for more detajls

Nucleus E(SM) Be(Theor.)  B(Expt.) A
4Ca -2.71 19.93 19.84 0.08
42gcT=1 -2.71 12.44 12.64 -0.20
42gcT=0 -2.35 12.20 12.02 0.17
42T -2.71 4.55 4.85 -0.30
4Ca —2.55 28.19 27.78 0.41
433¢c —6.67 25.06 24.77 0.29
43Tj —6.67 17.24 17.12 0.12
43y —2.55 4.72 5.05 -0.32
4Ca —4.99 38.93 38.91 0.02
43¢ —8.26 35.07 34.47 0.60
44T —13.88 33.06 3342  -0.37
44y —8.26 19.16 18.94 0.22
“cr —4.99 7.11 7.84 -0.74
“Ca -4.61 46.73 46.32 0.41
45sc —10.95 46.06 45.80 0.27
45T —15.49 43.09 42.95 0.14
Sy —15.49 35.00 35.04 —0.04
45cr —10.95 21.80 21.79 0.00
4SMn —4.61 6.28 6.71 -0.43
46Ca -6.73 56.90 56.72 0.18
465¢ —11.67 54.94 54.56 0.39
46T —20.14 56.02 56.14 -0.12
46yT=1 —20.14 47.99 48.31 -0.32
46yT=0 -19.77 47.75 4751 0.24
46Cr —20.14 39.58 39.92 -0.35
“Mn —11.67 22.06 22.04 0.02
4Sre -6.73 7.57 8.18 —0.56
4Ca -6.10 64.20 63.99 0.21
473¢c —14.05 65.37 65.20 0.17
AT —21.06 65.11 65.02 0.09
47y —25.07 61.33 61.31 0.02
4Tcr —25.07 52.98 53.08 -0.10
4Mn —21.06 40.05 40.00 0.05
4Fe —14.05 23.61 23.58 0.03
48Ca —7.88 73.79 73.94 -0.15
483¢ -14.13 73.37 7343  -0.07
48T —24.57 76.65 76.65 0.00
48y —27.58 71.99 71.85 0.14
“8cr —32.95 69.20 69.41 -0.21
“8Mn —27.58 55.03 54.81 0.22
“Bre —24.57 42.72 43.14 -0.42
48Co —14.13 22.48 22.61 -0.13
495¢ —16.19 83.23 83.57 -0.34
49T —24.381 84.80 84.79 0.01
49y —31.01 83.45 83.40 0.04
“ocr —35.59 79.98 79.99 -0.01
“Mn —35.59 71.37 71.49 -0.13
“re —31.01 57.61 57.68 -0.07
“Co —24.81 41.74 4190 -0.15
50T] —27.72 95.49 95.73 -0.24
S0y -32.16 92.50 92.74 -0.24
S0cr —40.54 92.95 92.99 -0.05
SOMnT=1 —40.54 84.39 84.58 -0.18

FULL 0w SHELL MODEL CALCULATION OF THE ...
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TABLE IV. (Continued.

Nucleus E(SM) Bc(Theor.) B.(Expt.) A
S0MnT=0° —40.28 84.26 84.35 —-0.09
50Fe —40.54 75.47 75.64 -0.18
50Cco —32.16 57.55 57.59 —0.04
SONjj -27.72 43.06 43.40 -0.34
Sly —35.31 103.42 103.79  —-0.37
Sicr —41.81 102.10 102.25 -0.15
5IMn —46.17 98.16 98.26 -0.11
SlFe —46.17 89.29 89.46 -0.17
5ico -41.81 75.51 75.74 -0.23
SINi -35.31 59.09 59.12 -0.03
52Cr —45.99 114.05 11429 -0.24
52Fe —54.27 105.46 105.64 —0.19
S52Ni —45.99 78.08 78.41 -0.32
S4Fe —62.85 129.63 129.71  -0.07
Co —62.85 120.57 120.68 —0.11
54N —62.85 111.15 111.10 0.05
SeNi —78.46 142.44 141.94 0.50

e,= —8.67+0.01 MeV,
a=0.092+0.003 MeV,

b=0.063-0.006 MeV.

The shell model binding energies calculated with these
values are listed in the third column of Table IV. The rms
deviation between theory and experiment is 227 keV. These
results deserve some comments.

The rms deviation we have attained satisfies our expecta-
tions; we are able to describe consistently at the same level
of accuracy excitation energies and, valence space, ground
state energies.

The valuee,=—8.67 MeV is close enough to tha
=41 value—8.36 MeV as to be considered satisfactory.

The values of th@ andb parameters are small and indeed
smaller than the monopole modifications of some terms of
the original Kuo-Brown interaction that led to KB@&bout
300 keV).

The shell model binding energies for those nuclei not in-
cluded in the fit can be compared with the extrapolated val-
ues in[19]. The differences are somewhat larger than for the
measured values, without exceeding 500 keV in any case.

There are basic reasons to scale the matrix elements of the
effective interactions with a term that reflects somehow the
change in size of the underlying mean field. In the harmonic
oscillator basis this brings in the usual’® dependence of
hw, which has been sometimes incorporatedsib and
pf-shell effective interactions20—22. A more elaborate de-
pendence has been proposed receff3] in order to im-
prove the description of nuclear radii. It leads to the follow-
ing scaling factor:

2T\2\ 2
0.946- o.573< —)
Ao

A 1/3
(KO) e3(A—Ag) IAAy 6)

2T\? | (
0.94&0.57'4(?)
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TABLE V. Shell model binding energies relative tdCa (in

MeV), compared with the experimental valugise numbers with a

star are extrapolated values frgd®] not included in the fit KB3
interaction with mass dependen(®e text for more detajls

Nucleus E(SM) Be(Theor.)  B(Expt.) A
4Ca -2.71 19.83 19.84 —-0.01
42gcT=1 -2.71 12.34 12.64 -0.30
42gT=0 -2.35 12.21 12.02 0.19
42T -2.71 4.45 4.85 —0.40
4Ca -2.53 28.06 27.78 0.28
433¢c —6.62 25.07 24.77 0.30
43Tj —6.62 17.25 17.12 0.12
43y —2.53 4.59 5.05 —0.45
4Ca -4.92 38.76 38.91 -0.14
43¢ -8.14 35.08 34.47 0.60
44T —13.67 33.08 33.42 -0.34
44y -8.14 19.16 18.94 0.23
“cr -4.92 6.94 7.84 -0.90
“Ca -451 46.58 46.32 0.25
45sc -10.72 46.05 45.80 0.25
45T —15.16 43.13 42.95 0.18
Sy —15.16 35.05 35.04 0.01
45cr -10.72 21.78 21.79 -0.01
4SMn —451 6.13 6.71 —0.58
46Ca —6.54 56.73 56.72 0.02
463¢c —11.35 54.97 54.56 0.41
46T -19.57 56.01 56.14 -0.13
46yT=1 —19.57 47.98 48.31 -0.33
46yT=0 -19.21 47.85 4751 0.35
46Cr —19.57 39.57 39.92 -0.36
“Mn -11.35 22.09 22.04 0.05
4Sre —6.54 7.41 8.18 -0.73
4Ca —5.90 64.12 63.99 0.13
473¢c —13.58 65.39 65.20 0.19
AT —20.36 65.16 65.02 0.14
47y —24.20 61.38 61.31 0.07
4Tcr —24.20 53.03 53.08 —-0.05
4"Mn —20.36 40.10 40.00 0.10
4Fe —13.58 23.64 23.58 0.05
48Ca —7.58 73.74 73.94 -0.20
483¢ —13.59 73.50 73.43 0.07
48T —23.60 76.66 76.65 0.02
48y —26.49 72.10 71.85 0.25
“8cr -31.61 69.16 69.41 -0.25
“8Mn —26.49 55.14 54.81 0.33
“Bre —23.60 42.74 43.14 —0.40
48Co —13.59 22.61 22.61 0.00
495¢ —15.48 83.41 83.57 -0.16
49T —23.70 84.95 84.79 0.16
49y —29.61 83.56 83.40 0.16
“ocr —33.96 80.02 79.99 0.03
“Mn —33.96 71.41 71.49 -0.08
“re —29.61 57.73 57.68 0.05
“Co —23.70 41.89 41.90 0.00
50T] —26.34 95.66 95.73 -0.07
S0y —-30.57 92.76 92.74 0.02
S0cr —38.47 92.94 92.99 -0.05
SOMnT=1 —38.47 84.39 84.58 -0.19
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TABLE V. (Continued.

Nucleus E(SM) B.(Theor.) B.(Expt.) A
S0MnT=0° —38.25 84.39 84.35 0.04
50Fe —38.47 75.46 75.64 -0.18
50Cco —30.57 57.80 57.59 0.22
SONjj —26.34 43.23 43.40 -0.17
Sly —33.37 103.71 103.79  —-0.07
Sicr —39.49 102.27 102.25 0.02
5IMn —43.60 98.22 98.26 -0.04
SlFe —43.60 89.35 89.46 -0.11
5ico —39.49 75.68 75.74 —-0.06
SINi —33.37 59.38 59.12 0.27
52Cr —43.21 114.21 11429 -0.08
52Fe —50.95 105.38 105.64 —0.27
S52Ni —43.21 78.24 78.41 -0.16
S4Fe —58.46 129.70 129.71  -0.01
Co —58.46 120.63 120.68 —0.05
54N —58.46 111.21 111.10 0.11
SeNi —72.31 142.38 141.94 0.44

whereA, is the mass at which the effective interaction has
been computed and and T are the mass and the isospin of
the nucleus with which we are dealing.

It is worth noticing that the lowep f-shell might be spe-
cial when it comes to scaling, because the radif%a and
%8N can be reproduced without any change in the harmonic
oscillator size parameter as well as the Coulomb displace-
ment energief24]. On the other hand we wondered whether
or not the extra global monopole correction that comes out of
our fit is an artifact due precisely to the absence of mass
dependence in the matrix elements. In order to settle this
point we have repeated all the binding energy calculations
with matrix elements scaled as in E@) with A,=42 (see
Table V). Afterwords, we follow exactly the same steps dis-
cussed above; we add the same Coulomb energies and pro-
ceed to fit the coefficients of the global monopole formula
(4), but now with thea and b parameters scaling as the
matrix elements. The values of the parameterdat2 are

e,=—8.61+-0.01 MeV,
a=0.041+0.003 MeV,

b=0.119+0.006 MeV.

The resulting binding energies are compared in Table V with
the experimental data. The rms deviation is now 215 keV.
Therefore we are led to conclude that the average quality of
the agreement is insensitive to the inclusion of a mass de-
pendence in the two-body matrix elements. Notice that the
value ofe, is essentially the same as that obtained without
mass dependence. On the other handathedb parameters

are quite different from the ones obtained earlier, even if
they are in the same range of values. It appears that one half
of the global isoscalar monopole correction can be absorbed
into the mass dependence, while the isovector correction
doubles. The predictions for the binding energies not in-
cluded in the fit differ from those of the previous calculation
typically by 150 keV, in the direction of increasing the dis-
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crepancy with the extrapolated values. Nevertheless none d@f reasonable agreement with the exact results. We have also
these elements is decisive in making a choice between theomputed the binding energy of nearly alf;L nuclei,

two approaches. On the one side, Occam’s razor favors theeaching the same level of agreement that we had for the
mass independent choice, on the other side, if we want to gexcitation energies and making predictions for a number of

beyond *®Ni we should surely need to incorporate the massstill unavailable masses. We also show that the inclusion of a

dependence. mass dependence in the two-body matrix elements is not
critical for the description of the binding energies in this
V. CONCLUSIONS region.
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