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Importance of the hexadecapole-hexadecapole interaction
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Motivated by the sensitivity of collectivbl 1 excitations to the hexadecapole-hexadecapole interaction, we
explore the influence of this and other features of sdgIlBM on the ground-state band properties of deformed
rare-earth nuclei. We adopt microscopically motivated choices of the Hamiltonian parameters and work within
the angular-momentum-projected intrinsic state formalism, deriving analytic expressions for observables in
which the dependence on wave functions and parameters of the model is explicit. We find that energies of
ground-state band excitations are insensitive to the hexadecapole-hexadecapole interaction. On the other hand,
its contribution to the deformation energy term in the nuclear binding energy is substantial. Our results indicate
that angular momentum projection is important even for well-deformed nuclei and that at leagbtvgons
should be utilized in the corresponding sdgIBM calculatig®556-281®39)04001-7

PACS numbd(s): 21.60.Fw, 21.10.Re, 21.30x, 27.70:+q

[. INTRODUCTION quadrupole interactiothe k=2 term abovg[7]. This sen-
sitivity has been confirmed independentli®]. The
The interacting boson model withandd degrees of free- implication would appear to be that use of the hexadecapole-
dom (sdIBM-1) and the generalization in which neutron and hexadecapole interaction is strongly indicated. But if this is
proton degrees of freedom are distinguisk@diBM-2) have  the case, how critical is knowledge of the poorly known
per.ViiEd Amanﬁ/ insights i?to t.he regularitiej gf complex nu.":parameters in the hexadecapole operﬁlﬁ? and how reli-
I 1], anler Senerliaton Su09esad by MICOSCOPaple e previus Stuces n whch the hexacecapoe
' ' hexadecapole interaction is neglected? More generally, there

freedom[2], also looks phenomenologically useful. An in- . . -
creasing body of studies have shown that not only is a semf® the question of the overall compatlbl!lty of sdIBM-2 and
sdgIBM-2 results for observables. In this paper, we explore

guantitative description ofE4 data possible within the . : : . .
sdglBM-1, but also an improved description of rotationalthese issues in connection with the properties of the ground-

bands ancE2 data is obtainef3—5]. state band of deformed nuclei using omtyicroscopically

Applications of the sdglBM-1 and the sdglBM-2 have Motivatedparameter estimates.
been inhibited by their complexity. However, for us, their  The structure of this paper is as follows. In Sec. I, we
attraction lies in the hope that sdglBM parameters may péliscuss our choice of the sdgIBM-2 Hamiltonian and electric
more amenable to microscopic interpretation than sdIBM patransition EKk) operators. For the sake of definiteness, we
rameters. It is, for example, possible within the sdglBM-2present explicit expressions for our choices of the related
(but not the sdIBM-2to reproduce with essentially constant model parametergstraight line fits to microscopic esti-
Hamiltonian parameters a spherical-to-deformed shape tramrates. In Secs. Il and IV, we review the calculational
sition in an isotopic chaif6]. Also, one can accommodate in scheme we employ to obtain the ground-state band expecta-
the sdgIBM-2 the energetics d¥l1 scissors state@vhile  tion values and transition matrix elements of interest. Since
adhering to microscopically motivated values of model pa4ve confine our attention to well-deformed nuclei, we calcu-
rameter$ without resorting to the use of the somewhat arti-late ground-state band observables using an angular-
ficial Majorana interaction invoked in the sdIBM{Z]. momentum-projected intrinsic state. In Sec. lIl, our choice of

In the applications of the sdgIBM-1 and -2 to date, thereintrinsic state is discussed and closed-form expressions for
has been no consensus about the overall structure of thexpectation values and matrix elements in terms of overlap
Hamiltonian. A Hamiltonian of the forntour notation is de- integrals arising from angular momentum projection are

fined in Sec. Il below given. In Sec. IV, we consider the analytic evaluation of
these overlap integrals via an asymptotic expansion and es-

b= At e Pr) — T F k0 1 tabllsh the orde_r to which it is necessary, in pra_lctu_:e,_to carry

|=2 (€1pMip* €mnin) ;4 Kklp " n @ out this expansion. In Sec. V, we pin down an intrinsic wave

function of the ground-state band by generalizing the method
would be microscopically reasonable, but the hexadecapolef Ref.[7] to include, where feasible, the leading corrections
hexadecapole interactiofthe k=4 term abovg has been arising from angular momentum projection. The effect of
omitted in several previous phenomenological stu@é8].  these 10% or so corrections on our choice of wave function
A conclusion of our earlier work on the scissors states is thais substantial and brings it into line with intrinsic state wave
their excitation energies are as sensitive to the hexadecapoltmctions found in other applications of the sdgIBM. In Sec.
hexadecapole interaction as they are to the quadrupolé/l, we discuss our findings on the systematics of ground-
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state band observables for deformed rare-earth nuclei. WAgentional estimate of the pairing gap [A
present several approximate analytical results which make-(11.8 MeV)/J/A]. The combinations

explicit the role of the various ingredients of the sdgIBM-2.

Our conclusions are given in Sec. VII. In particular, we find N N
that sdgIBM-2 calculations for deformed nuclei should con- E|=—pe|p+ Wn

: N Eln
tain at least tway bosons.

can be represented approximately over the interval of interest
Il. MODEL AND ITS PARAMETERS as the linear functionse,=1.92-0.18 and e,=2.12
Our starting point is the sdgIBM-2 model with the Hamil- —0-10P (in MeV). N o ,
o~ . LA A We assume that th&2 transition operator is given in
tonianH of Eq. (1), in whichn,(ny;,) is the number operator = () o
for neutron (proton) bosons of spin and, in terms of the €rms of the quadrupole operatolg™ appearing in the
corresponding creation operatdng,(bf,) and their conju- Hamiltonian by the one-body ansat(E2)=e’ T
gatesb;,(by,), the multipole operatorg(=n,p) +eIT?, whereel?) andel?’ denote the effectiv&2 bo-
son charges. We adopt the analogous one-body ansatz for the
E4 transition operatoll (E4) in terms of the hexadecapole
operators'Al'Ef‘) in the Hamiltonian and effectiv&4 boson
chargese!").
where[ - - .](k) denotes coupling to angular momentum In our evaluation of reduceék transition matrix ele-
Below, when the quantum numberfor thez component of ~ments in Sec. VI, we require the neutron and proton param-
spin is not suppressed, blTp—’blep and B|p—>5|mp eters only in the averaged combinations
E(—1)'*"‘b|(_m)p. By definition, the multipole parameters
(t%9),, are symmetric inl and |’ and normalized so that @E%
(t9) 0= 1= (t9);. N
For simplicity, unless indicated otherwise below, we
adopt, forboththe neutron multipole parametersi),,, and
the proton multipole parameters(?); ., the microscopi-
v/

cally motivated estimates of Rdf7] for the arithmetic aver- = %e(pk)tng W“

Tl = > (t5)[bf,xby, 1%,
117=0,2.4

Nn

k
N en’

(k)
€ T

and

N N
e g0 0 (k)
e+ e )

K_1 N

age §7=3[(t5) 1 + {9/ ]. (The level of sensitivity to
the difference between neutron and proton multipole param- )

i iddf we use effectiveE2 boson charges,= « e, where the
eters for the ground-state expectation values we consid p— X2p%p»

does not call for a more careful treatmerithe estimates of duadrupole renormalization constants, are taken from
(K)s Ref. [10] (on which the estimates of Rdf7] for multipole

the nontrivial independent;;’s have been expressed as arameters are basednd the effectiveE2 fermion charges
functions of P=N,N,/(N,+N;), where N,(N,) is the 2; are standarde(g=1 7AY3100 eb eF— 1.0AY3100 ebg)]

number of neutror{proton bosons. The quadrupole param- ~» < o s '
eters aret@=—1.1+0.24°, t2=0.45, andt@)=—0.9 We find that, to within a few percent or sel?)=0.12 eb

+0.21P and the hexadecapole parameters s@%:O(ﬁ independent of the value &f (providedP=2). The combi-

ionst@ )
—0.12P, tgi)= —1.1+0.27, andtgi)=0.95—0.16P. ngthnst of the quaqlrupole p_arame_‘teng also agree to
For the interaction strengths, and r,, we likewise within a few percent with the arithmetic averag€? and so

adopt the microscopically motivated estimates of Ref.in W€ Use the latter.

MeV, «,=0.13—0.00% andx,=0.12+ 0.006P. As regards Effective E4 fermion charges are less well known than
the c,ho?ce of boson energiegj (wHich were not required in effectiveE2 charges. Nevertheless, we think it is reasonable

Ref. [7]), the most detailed microscopic calculations avail-to assume that the combinati@f") of effective E4 boson
able[10] yield estimategdenoted below b)5|0p) which are  charges is approximately independentlike the combina-

far too large. However, theatios €3 /€3, of these estimates tion e® of effectiveE2 boson charggsand that, paralleling
are of the magnitude expected on microscopic groundsur findings fort®), the combinations*) of the hexadeca-
(namely, about 0.86]). Also, the variation of the difference pole parametertl®) coincide to a good approximation with

in the microscopiad-boson energiesgp— €3, across theZ  the arithmetic averagas$?. In evaluatingE4 transition ma-
=50-82 and\=82-126 shells can account qualitatively for trix elements below, we adopt the arithmetic averagés

the systematics df-spin admixtures in the 2 state[11]. It given earlier and assune? is some(unspecifiedi constant.
would thus seem reasonable to suppose that the microscopic Elsewhere, in the reduction of empirical data on the
estimates can in large part be corrected by a simple adjussummedM1 strength(cf. Sec V), we require differences
ment, namely, an additive self-energy renormalization. Fog, —g,, in neutron and proton bosanfactors. We adopt the
simplicity, we take this additive renormalization to be the spin-independent estimatg,—g,=1.56—0.085 based on
same for all the bosons. Singeboson energies are expected the microscopic results of Reff11].

on general microscopic grounds to be about twice the corre- We believe that the above choices of model parameters
sponding pairing gap enerd®], we sete|p=ePp+[Ap+ Ay are appropriate for the study of systematics and should be
—%(engr egn)], taking A,+A,~2A, whereA is the con- useful as starting values in detailed analyses of individual
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nuclei. In our investigations, we shall base our conclusion8etween the states of good angular momentum projected out

on the order of magnitude and the qualitative variation of oulof |{x,}), the Ek transition operatoil (EK) has reduced ma-
choices of model parameters. trix elements ['=L)

IIl. ANGULAR-MOMENTUM-PROJECTED INTRINSIC
STATE FORMALISM

L'IT(EK)LY= (2L +1)(2L+1)Ne® >, By, (k
As the intrinsic state of the ground-state band, we adopt (LITCERIL) = 3 ) EJ: sk

the axially symmetric coherent state

Zo.3(N—1)
1] " o o (N o) @
X0, X2, Xg}) = —— xb}, L;olN) L0
|{ 01472 4}> \/WEI:;,ZA | IOP}
N where
X 2 XIbITOn |_>v (2)
1=0,2,4
where|—) denotes the vacuum stateontaining no bosons L
and the spin amplitudes are subject to the normalization By(k)= V2k+1j§|: (L'0j0]J0)(LOI0[J0)
condition E|x|2=1. A significant simplification inherent in ’
Eqg. (2) is that we take the neutron and proton spin ampli- L j 3 T
tudes to be identical; in technical terms, our intrinsic state is X | L k ()X

of maximal F spin[12]. This is an idealization but a well-
motivated one: admixtures of nonmaxintakpin in ground-
state band members of well-deformed nuclei do not seem t
occur at more than the few percent ley&B], and, in any
event, we shall restrict ourselves below to observalliks
excitation energies anB2 transition strengths which are
insensitive to these smah-spin impurities.

Within the present approximation scheme,
membergd®&Y) of a ground-state band are projected out of ~K)/Zo;r(N). _
[{x}): to within a normalization constant,l(DEf\fl’ R_esult_s _S|m|lar to Egs(3) and (4) have l:_>een obtained
OCPIKA0|{XI}>1 where PkAK denotes the standard angular mo- earlier within the context of sngBM-.l st.ud|é§]. Our re- _

sults represent a modest generalization inasmuch as the dis-

mentum projection operatpt4]. In the calculation of expec- > b del f d
tation values and transition matrix elements, we can exploifnction between model parameters for neutrons and protons

the maximalF spin of our intrinsic statéthrough the IBM-2 IS, in principle, retained. More significantly, the projection
to IBM-1 projection schem§l3]), the spherical tensor char- from IBM-2 to IBM-1 is responsible for a different, more
acter of theb], 's, and Wick's theorem to derive closed- Physical dependence dd, andN,, of the expectation value

form expressions involving the overlap integrals of the interaction terms in the Hamiltonian.

Rfter substitution of the overlap integrals above by their
asymptotic expansionsee Sec. |V, the summations ovel
in Egs.(3) and(4) can be further reduced analytically via the
method of Appendix A in Ref.16]. Observe that Eq4) can
individualP€ Written in terms of ratios of the formZ,;(N

A
dx, IV. ASYMPTOTIC EXPANSION OF OVERLAP

INTEGRALS

1
Ik;j()\):JO P (X)P;j(x) EIZ X{Py(x)

where P, (x) denotes the Legendre polynomial of order

(After the IBM-2 to IBM-1 projection, the calculations par-  The overlap integralg,; can be evaluated analytically as

allel those described in detail in Refd5] and[16].) an expansion innversepowers of the average angular mo-
For the expectation valuel, of our Hamiltonian in the mentum squared of the intrinsic state

state| ®J5P), we find, after some routine angular momentum

recoupling algebra,

B Ju(N-1) 1o TLa(N=2) A=ND 1(1+1)x2,
HL‘N[ZG'X TN e A T ) |

()

which, for well-deformed nuclei, is a large parameter. These
expansions are asymptotic and can be obtained either via

Laplace’s method for the asymptotic evaluation of integrals

A¥=(2k+1) X, (j0j’0]J0)(I0I'0|JO) [16] or algebraically{17] (although their asymptotic charac-

Bt ter is then disguised

iojrd © © For the two ratio; of overllap integrals .which arise in our

x{l, | k](tp )it (B XX X X work, the asymptotic analysis of R¢fL6] yields

where
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M—1—[F—|<m ]£+{1J_2—[2(k—1)m +my/m;—1—L]3+kmy[m,/(2m )—1—?]}i+-.- (5)
IL;O(N) - 1 A 2 1 2 1 1 2 1 A2 ’
Io;J(N_k) e _ 1 1—2 _
—————=1-[J-kmy—L]—+{33°—[2(k=1)m;+m,/m;—1+L]I+kmym,/(2m;)—1]
Zo.L(N) A

— 1
+[(k—2)m1—1+m2/m1]L+%LZ}P+-~-, (6)

whereJ=J(J+1), m, is thenth moment of the distribution — —. o
of spin squared of a deformed intrinsic state boson, i.e., O(k)(r)E% (1)'(5010[kO) (t™)jix; .
- Terms of order 14?2 introduce a dependence arandL’ in
my=2> (D7, (7) M, so that it can no longer be identifiétb within a con-
! stant of proportionality as an intrinsic quadrupole-
hexadecapole moment of the ground-state band. The behav-
and it is assumed th&<N (in our applicationsk=0,1,2).  jor for E2 transitions of such small state-dependent
The coefficients in the expansions of E¢S) and(6) do  modifications(which, for the reasons given above, we ig-
not lend themselves to a simple intuitive interpretation anchorg has been explored within sdgIBM-1 in R¢§].
increase rapidly in complexity with succeeding orders. How-  |n the calculation of the moment of inertliawe have to
ever, these expansions are useful in gauging the magnitudstract the dependence of the expectation valyeon the
Of the effeCt Of angular momentum projection and in identi-angl_”ar momentum quantum num~berin the ratiosIL_j(N
fying clearly the angular momentufor state¢ dependence of _y)/7, . ,(N) in H_, we keepL-dependent terms of order
ground-state band properties, which would otherwise be dif4/A2, which is the first order in which-dependent terms are
ficult, because it is, in general, weak. _ encountered, antl-dependent terms of orderAly [omitted
ground-state band, we find it sufficient in our calculations tO0ground-state band excitation energEs=H, —H,_, con-
retain only_ the firsF two terms _in the e>_<pan_sions 01_‘ E_(@. form to a rotational spectruri=#%2/(21)L(L+1)] with a
and (6). With the first term(which survives in the limitA  gyictly constanti.e., state-independennoment of inertid.

—), we recover the results of the unprojected intrinsicThe result forl, which is fairly lengthy, is given in the Ap-
state formalism; the term of orderAthus gives the leading pendix.

correction arising from angular momentum projection. For
N=10 (appropriate to the nuclei of interest to)umnd rea- V. DETERMINATION OF THE WAVE FUNCTION  {x,}
sonable choices of the spin amplitudesidentified in Sec. . o o
V below), this leading correction is significant, being typi- A conventional variational determination of the wave
cally between 10% and 20% of the unprojected result. As wdunction{x} is confronted by the difficulty that reliable mi-
are dealing with a Poincarasymptotic expansion, the cor- Croscopic estimates of a crucial ingredient of the variational
rection due to all higher orders inALjis of the same order of functionalH, , namely, the combinatiom, of boson ener-
and (6), we estimate to be a few percent or so of the unthe average ok, ande, is constrained by the moment of
projected resu|t_ We discard the terms of Ordena_/and inertial: a value Of€2+ €y which is some 20% smaller than
higher because they are comparable with the uncertaintig§at obtained with our renormalized estimates pande, is
already introduced by our neglect Bfspin admixtures. implied [see Eq.(10) and the related discussiprinfortu-
Up to terms of order 2, reduced matrix elements of the Nnately, this improved knowledge of treimof €, and e, is

Ek transition operator between members of the ground-statgtill not sufficient for a definitive variational determination of
band are given by the rigid rotor relation {x|} because the variational functional dependsgmand e,

separately(More precisely, the variational solution fap is
sensitive toe,, whereas that fox, is sensitive to the differ-
encee,— €,.) Instead, we choose to fix the two independent
amplitudes x, and x, using the empirical data on the

in which M, is the state-independenground-state-band symmed\ 1 strengths;B(M1,0f —1.") and its centroid en-
“moment”: ergy

(L'|T(EK)||LY= y2L+ 1(LOKO|L'0) M,

— — — 1 + +
M=NePOW(0){ 1+[my+3- 0 (1)/0%(0) 15 . 2 EB(M10 1,
Eo=

> B(M1,0/ —1")

Above,
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compiled in[18] and[19], respectively(Specifically, we use 4
below the data given in these papers for the Nd, Sm, Gd, Dy, .
and Er isotope$.Via sum rules, these two observables are L 0. too big
related directly to ground-state expectation values and ther: y
happen to be fairly reliable microscopic estimates for the
model parameters to which these expectation values are sel
sitive (i.e., the interaction strengthg, and the differences in
bosong factorsg,, andg, ). These observables also have the 0O sat
advantage of being sensitive to thdoson admixture in the s
ground state.

The relevant sum rules are the sdglBM generalization
[7,20] of the Ginocchio sum rul€21] for M1 strength,

E. too small

3 P T~ N\ L
;- =— - 2 9.s. - -
2 BMLO —11)= 2 (gp=an? =, 2, 11+ Dnf*, : -
3 T T T T —
where nf* denotes the ground-state occupation number of 3 4 5 6 7 8
both neutron and proton bosons of spjrand the energy- r

weighted sum ruléa generalization to the present choice of

I sat . .
Hamiltonian of the sum rule derived in RER0]) FIG. 1. Admissible ranges @;" andr. The solid(dasheglines

indicate the minimum and maximum values@§' compatible with
data onE.(O,) for fixed r. For comparison, the locus of points

3 . o :
2 EB(M1 ()l 1I )= 87T(gp gn)> corresponding tox§*)2=0.35 is includeddotted ling.
. We consequently assume that the spin amplitugieake on
X > kr(0F Ny, Ny approximately constant values® for P>Pg,. We find it
k=24 convenient to parametrize the spin amplitugin terms of
X F00. 50105 Ny Ny the saturation valu®" of Og and the ratior of (x3%)2 to

(x52. Neglecting terms of order A/in Eg. (8), we have
We find it convenient to work with the spin-weighted sum of

ground-state boson occupation numbractions X% JOSY(20+6r),  x$= \rx$
0.=2, I(1+1)n%S/N xS 11— (3892 — (x5%2.
|

We fix r and O by requiring that, using Eq<8) and (9)
with the terms of order ¥ included, we reproduce simulta-
neously the empirical data ddg andE./N for P> Pg,. Our
scheme for the determination ¢k’ (with its neglect of
1/A corrections in the parametrization ¢k} but their

2 Zog(N=1) 1 inclusion in observablgsis akin to the projection-after-
O.= Z Ix2 AT 1—(m2—mi)X, (8)  variation approximation.

0:0 In view of the simplifications we have made, the uncer-

tainties in the empirical values dd4 and E./N, and the

and theM 1 centroid energyer bosonE. /N [irritating fac-
tors of N—1 then appear in the combinatiof{1)/N=1
—m,/A]. Within our angular-momentum-projected intrinsic
state approximation scheme, we find that, to ordér, 1/

E_: 1 (N_l)z 2 K AL Zoy(N—2) neglect within the IBM of the fragmentation & 1 strength
N 20, N F|% V] Zo,o(N) due to coupling to noncollective degrees of freedom, it is
appropriate only to delineate reasonable ranges for the values
E PP O(k)(o)o(k)(o){:H_[ K+m,/m, qf r and O (for which eyeball comparisons sufficeOur
2m1k findings on the range of acceptable valuesOdf' andr are

1 summarized in Fig. 1. Where definite values are required
—O(k)(l)/O(")(O)—Oﬁ,k)(l)/ng)(O)]—], (99  below[Figs. 2-4 and the evaluation of the binomial distri-
P P A bution in Eq.(12)], we shall adopO$*=3.5 andr=5 for

_ which (x5?)2=0.35 and %)2=0.07.
where, paralleling the definition ofO®M(r), ©¥(r)

=3;,(1)"(J010[kO) (t5%) ; Xy , VI. GROUND-STATE BAND SYSTEMATICS

Empirical values ofOg and E./N vary in a reasonably
well-behaved fashion witR, consistent with the fact that the  In Figs. 2 and 3, we compare our theoretical estimates for
pertinent model parameters and the variational solution fothe inverse of the moment of inertia 11/ and
the wave functior{x;} prior to angular momentum projection B(E2;0; —2;)(=.M,), respectively, with empirical val-
can be characterized as functiondofFor P> Pg,~2.5(the  ues inferred from good rotoKsvhich we take to mean nuclei
domain of interest to ysthe values oD, appear to saturate. for which the ratio of excitation energi£4l+ /E21+>3.25).
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0.4 expression forB(E2;0; —2;)’s reduces to one which
would have been obtained within sdIBM-2.
The effectiveE2 boson charges are the model parameters
.................. - to which B(E2;0; —2;) is most sensitive. Our values for
03 e VB(E2;0; —2]) can be brought approximately into line
Dsb ......................... Wi.th the dgta forP~>,.3.5 by a modest 10% inqrease in our
+ _F|_ o microscopically motivated choice of the effecti&? boson
0.1 __|:|- + + charges.
+ + Our result for\B(E4;0, —47) displays some sensitivity
+ + :I: to the hexadecapole parameten‘j;‘)()m, but the dependence
on the remaining hexadecapole parameters is weak. Parallel-
0.1 ing our approximation of/B(E2;0; —2;) above, we find
that, to an accuracy of 15% or so, our result for

D,, e VB(E4;0; —4]) may be approximated by

0.0 | | | ! B(E4;0; —47)~Ne@{2x3%54 2(1@),,,x52%5.

N/2l) [MeV]

2P Neither of the above two important contributions to

FIG. 2. Comparison with data on the inverse of the moment ofVB(E_4;0_1+_>4D has "’.‘ Counterpflrt W'fh'n sdIBM. The im-
inertia | (in units of #2) for the heavy rare-earth nuclei Plication is that collectiveB(E4;0; —4;)’s cannot be suc-
154-158y, 1581635 160-16yy  and 184-17%r (the even-even nuclei  cessfully mocked up within sdIBM. Instead, the introduction
in this mass region for whick, /E,: >3.5). The unlabeled solid of a g boson is crucial.

(dot-dashed line is the theoretical estimate to leadirigext-to-
leading order in the 1A expansion. We identify the empirical B. Inverse of the moment of inertia 11
value of £%/21 as the coefficient of the linear term in a fit of

ground-state-band excitation energlﬁ_&1 (taken from[22]) to the Our estimate of 1/is dominated by the leading tertof

o — _ i order A% in the noninteracting boson contributi@y, [in-
quadraticalL +bL“ in L=L(L+1). (Since we restrict ourselves t0 qoquced in Eq.(A1)]. Decomposinge, and e, into their
good rotors, the values obtained in this way do not differ Signiﬁ'semisum and semidifference. we find that. for wave func-
cantly from those deduced via the simple relaticill =E21+/3.) tions in the vicinity of our choice{xfa}, this leading term

Our prediction for the systematics_oﬂB(E4;01+—>4f) 0)_ / ~(62+ €4) (X392
(=M,) in units of the combinatiore™® of effective E4 Dep =(e1—€0)/m~—> =

charges is given in Fig. 4. We underestimate the

VB(E2;0] —27) data, but there is an encouraging similar- 5 an accuracy of 10% or so. We infer that we can easily
ity as regards the variation with. There is an even stronger jmprove on our estimate of by modifying our choice of
qualitative resemblance in tiiedependence for our estimate sjngle-boson energies. For example, a further decrease of
of the inverse of the moment of inertia and empirical valuesspout 10% in all the renormalized energigs is enough to
(e_ven though they are significantly overestimatétle View  achieve agreement with data f&=3.5. Given the uncer-
this as evidence that use of tRendependent wave function tainties in the additive renormalization of single-boson ener-

{x7?} is adequate for the study of the systematics of well-gjes €, discussed in Sec. II, a change of this magnitude is

(10

deformed nuclei. not unreasonable. Another possibility is to leave our esti-
mates ofg-boson energies unchanged and to sharply reduce
A. Reduced matrix elements the d-boson energies by some 40% or so. With this modifi-

For reasonable choices of the quadrupole paramete

). -
(tp )y and wave function {xj, our result for % %o ien about 0.5, which is difficult to reconcile with
VB(E2;0; —2,) is weakly dependent on the quadrupole ihe yalue of about 0.8 anticipated on microscopic grounds
parameterstff))zz (which are the counterparts within sdg- [g].
IBM of the quadrupole parameters in sdiBM, usually de-  Since angular momentum projection raises the degeneracy
noted byy,) and thed-boson amplitudex, but almost com-  of members of the intrinsic state band, we believe that the
pletely insensitive to the remaining quadrupole parametergositive sign of the next-to-leading order contributigmthe
(which have no counterpart in sdIBMind theg-boson am-  1/A expansioh to our estimate of 1/in Fig. 2 is correct.
plitudex,. In fact, to an accuracy of 10% or so, our estimateHowever, it is apparent that inclusion of this next-to-leading
for order contribution worsens slightly the agreement with the
— o usat sat, (D) sat.2 data. This is pre_sumab_ly a consequence _of the fact that,_ with
B(E2;0; —27)~Ne®{2xg%:™ (1) x5}, our present choice of single-boson energies, we overestimate
o the magnitude of the leading order contribution tb. With
where we have dropped theAl/correction inM; and re- 3 more felicitous choice of single-boson energies, it would
tained inO®)(0) only the largest two terms. In effect, the lie below the empirical data.

r?tion, the variational solution fdx} for P>3 is not too
issimilar from our wave functiofix;®}. However, the ratio
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i 5o 2 1 [op@) of@ K
T & m| " 2m of0) 00 2]
¥
0.15— :I: +_.|_. For the range oP of interest, theS,’s have approximately
~ + constant values less than unity. A simple and surprisingly

) [eb]

o —— — ¢ —
T ——
s+ —
. ——

good estimate of theS/'s is obtained by retaining in
O(k)(r) only the term (H 5r0)(k) XoXk, Which is always
0.1 50% or more of the full result forO(k)(r) then, S,
=(2/m){1—k/(4m,)}, which, for m;=3.5, implies that
S,=+0.3 and S;=—0.2. When the full expression for
0.05 09(r) is used, we find that, for reasonable wave functions,
S,(S,) increases from about 0.15-(0.15) to about 0.2
(—0.1) asP increases from 3 to 4.5. Over the same range of
values of P, the ratio |D{9(4)/D{®)(2)| decreases from
0.0 T T T 1 about 0.4 to about 0.1 arld{?(4)| decreases from about
5 6 / 8 9  10% or so ofN/(21) to a few percent or so.
2P Since the dependence 6?(0) onx, is weak, the effect
FIG. 3. Comparison with datdrom [23]) on B(E2;0; —2;)  Of the g-boson degree of freedom Cmu(r%)(z) is negligible.
for the heavy rare-earth nuclet®sm15816Gq 160-16hy and  The influence of theg boson on the moment of inertia is
164-17¢ [the even-even nuclei in this mass region for which confined to the dependence of the noninteracting boson con-
Ess /E;+=3.5 andB(E2; 0; —27) is measurefl The solid(dot-  tribution D( on theg-boson energy, [cf. Eq.(10)]. In the
dashedlline is the theoretical estimate to leadifiext-to-leading ~ absence of the g-boson degree of freedomD{))
order in the 1A expansion. = ,(xg)2/m3?. For our choices ok, ande,, inclusion of
the g-boson contribution enhanc&x?) by about 20% or so.
The effect of the hexadecapole-hexadecapole interaction
on 14 is small. Near midshell, it is also small in relation to C. g-boson admixture
the impact of the quadrupole-quadrupole interaction dn 1/
To leading order in the IN expansion, the contributions
Dint(k) of the quadrupole-quadrupole interactidn~<2) and
the hexadecapole-hexadecapole interactich4) to N/(21)
are given by

+
1

VB(E2;0}» 2

The influence of ag-boson admixture oB(E2)’s and
B(E4)’s within a ground-state band has been discussed
above in Sec. VIA. In much the same way as thboson
amplitude is essential to collectiiB(E4;0; —4;)’s, the
magnitude of the contribution of the hexadecapole-
hexadecapole interaction to observables, which, to leading
D{Y(K) =S P k 0¥(0)0(0), (1) order in the 1A expansion, is proportional to

0{P(0)0M(0) [see, for example, Eqg9) and (11)], is
crucially determined by thg-boson amplitude: the dominant

where(see the Appendix terms inO {1(0)0 Y(0) are all proportional toxG*)2.
Because of the weighting of the ground-state occupation
0.8 numbersn* by the spin squaret{l + 1), theg-boson con-

tribution to the summeM 1 strength is substantial even with
our choice of wave functiofx;®}. Within the unprojected
intrinsic state formalisnin?*=N(x®)2], the g-boson con-
tribution is about 40% of the summed1 strength. Includ-
ing angular momentum projection corrections of ordeX,1/

1
:NX| 1 (I ml)_ T

which, for N=10, implies a 40% or so reduction in the
g-boson ground-state occupation numbesrrections of or-

02 der 1/A2 are a few percent or $0The effect on the-boson
contribution to the summel 1 strength is that it is reduced
to about 30% or so of the total summed strength.

0.0 : : : | The truncation to configurat_ions cont_aining no more Fhan

5 6 7 8 9 one g boson commonly used in numerical diagonalizations

op of sdgIBM Hamiltonians may be suspect for nuclei near mid-
L shell (N>10). In the unprojected intrinsic state approxima-
FIG. 4. Systematics of/B(E4;0; —4;)/(Ne™). The solid tion, the probabilityp, of finding k g bosons in a member of
(dot-dasheyl line is the theoretical estimate to leadifigext-to-  the ground-state band is given by the binomial distribution
leading order in the 1A expansion.
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N ) ) VII. CONCLUSIONS
_ k N—k
= X3)“(1—x , 12 ) S
P (k)( oA 3 (12 We find that angular momentum projection even for
rather well-deformed nuclei has a substantial effect. Typi-
cally, the correction due to angular momentum projection is

. e between 10% and 20% of the unprojected result, but, in
or moreg bosons is negligibl¢a few percent or 9adbut that ; .
some instances, it is even larger. For example, angular mo-

p, is substantialp,=0.1 (0.2) for N=10 (15). Elimination C 0 N
of spurious components of the intrinsic state by angular mo[nentum projection can lead to a 40% or so reduction in

mentum projection will reduce these estimatepgbut, for g-boson occupation numbers for members of the ground-

N=15, not by more than 25% or dthe corresponding re- state banq. . ) o
duction inng®). Thus, despite the smallness of aiboson As conjectured in Ref.7], we find that use of the intrinsic

sat state formalism without angular momentum projection leads

probability amplitudex;™, it would seem that the inclusion . .
of configurations with as many &wo gbosons is necessary one to overestlmatg the Sumr."b’“l strength and underesti-
ate theM 1 centroid energy: in the case of the sumnhéd

to determine ground-state-band wave functions with an ac! X >
curacy of 10% or so. strength, the leading angular momentum projection correc-

tion is always negative(since it is opposite in sign to the
variancemz—mf of the spin squared of an intrinsic state
D. Hexadecapole-hexadecapole interaction boson and, in the case d&., it is positive for all reasonable
As discussed abovéSec. VIB), the contribution of the Wave functions. There have been several studies within the

hexadecapole-hexadecapole interaction to the inverse of théProjected intrinsic state formalism of the influence of
moment of inertia 1/is small and negative. Thus, the omis- F-Spin admixtures on the summed1 strength[24,25. It
sion of this interaction in previous sdgIBM studies is justi-W0U|d seem that the inclusion of the corrections arising from

fied in as far as the description of the ground-state ban@ngular momentum projection is at least as important.
spectrum is concerned. Introduction of ag-boson degree of freedom allows one to
By contrast, the impact of the hexadecapole-hexadecapoReccommodate collectivB(E4)’s. Contrary to claims in the
interaction on the deformation energy per bosbnof the  literature, we find that differences in sdIBM-2 and sdgIBM-2
ground state(required for binding energy estimatgs]) is ~ results forB(E2)’s of the ground-state band of deformed
non-negligible. In terms of the expectation valis of our ~ nuclei should be marginal; with a microscopically motivated

P _ : choice of parameters, the contributions of the additional
HamiltonianH [see Eq(3)], £, =H, —o/N. To leading order terms in the sdgIBM-ZE2 transition operator are negligible.

in the 1/A expansion, this deformation ener er boson is .
given by P 9y p However, theg-boson degree of freedom does influence the
moment of inertia of the ground-state band: it enhances sig-
o ) . . nificantly the noninteracting boson contribution. The size of
E(D):EI €)X _sz kO H(0)01(0). (13)  our g-boson amplitude suggests that the truncation to con-
figurations containing at most orgeboson commonly used
in numerical diagonalizations of sdgIBM Hamiltonians may
The two contributions 16 from the noninteracting and ® iadeduate for nuclel near Midshell inclusion of configu-
interacting parts of the Hamiltonian, respectively, are sepa-“" = . . ; . L
gp b y b With a microscopically motivated choice of the sdgIBM-2

rately about 0.5 MeV or so, but as a result of the cancellation ) .
between them& () itself is only of the order of 100 keV or parameters, the |mpgct.of the hexadecapole—hexadecapole In-
b raction on the excitation energies of the ground-state band

Sr?' ;hls IZ the sa:mﬁ ord(ejr of ngr."tUde as tr(lee)contrlbuuon %8 deformed nuclei is negligible. This finding is consistent
the hexadecapole-hexadecapole mteracuoﬁrf ' with the intuitively plausible expectation that the

_Inaprevious work7], in which angular momentum pro- oy a4ecapole-hexadecapole interaction should not be impor-
jection was omitted, we concluded on the basis of the muly,ny in determining the structure of the spectrum at excitation
tipolarity weighting in an expression for thi1 centroid  gngrgies well below the threshold for the excitation of vo
energyE, that the effect of the hexadecapole-hexadecapolg cons €3 MeV). On the other hand, we find that the
interaction on the energetics of orbitd1 excitations in  yeformation energy of the ground state used in binding en-
deformed nuclei is comparable to that of the quadrupoleg gy estimates is very sensitive to the hexadecapole-
quadrupole interaction. This conclusion is not changed by,eyadecapole interaction because of a cancellation between

the inclusion of angular momentum projection. The leadinge contributions of the noninteracting and interacting parts
angular momentum projection correctipgiven in EQ.(9)] ¢ the Hamiltonian.

Ieave_s the magnitude of the hexadecapole-hexadecapole in- |, 4 previous study within the IBM-2 of binding energies
teraction term inE. essentially unchanged f&d=10. The o astrophysical significance, the deformation energy was,
quadrupole-quadrupole interaction term By is enhanced  for simplicity, omitted[26]. On the basis of the current work,
but only by about 20% at moswhenN=10). ~ we estimate that the deformation energy near midshell is
The contribution of the hexadecapole-hexadecapole intetsomewhere between a few hundred keV and a couple of
action to the above observables shows the same dependenggy in magnitude, which is comparable to the rms error of
on the hexadecapole parametet§’}; as our result for the mass formula of Ref26]. Conceivably, an improved
B(E4;0, —47): there is a little sensitivity only to the pa- mass formula could be obtained by inclusion of the deforma-
rameters (24))24. tion energy, but given the present uncertainties in the single-

which, for (x,)2=0.07, implies that the probability for three
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APPENDIX: THE MOMENT OF INERTIA |

It is convenient to work with the inverse of the moment of inertia for which our result is of the fbrim @nits of #2)

1 2
T N( Dsot Dint), (A1)

where we distinguish between a contributidg, which arises from the noninteracting or single-boson part of our Hamiltonian
H and a contributiorD;,; which arises from the interaction part Bf. To the order in 1A which we work,

i

my mo 1
m—l_l (2vg—vq)—2mu+ m_l(UZ_vl) NG

2

b 1 1 m, m,
=—1e;,—€y— +m;— —|(e;—ey)+ —(e,—e
6= m, | &1 €0 1 m, (e1—€p) ml( »—€1)

2

P
Dint:E{ 200_01+

where

1
m;

. 1 -
ejz—El (Dlex?, szﬁzk Kk[; (J)JA(JK))EEK K@y .
J

The summations ovet in the aj(k)’s may be evaluated analyticallas in Appendix A of Ref[16]) to yield

ag?=0'(0)0(0),

k
m; 2= 09(0)01(1)+ 01O (0) - 50500 (0),

% _
m, 85" =5-09(0)0}1(0) ~ 2K OF(0) 01 (1) + O (1) O F(0)]+0"(2) OF(0) + O(0)01(2)

+%@L”(l)@&”(l)—V_iz{o;“(1)[0<nk><2>—0‘nk><1,1>]+OL”(l)[o(pk)(m—ng)u,l)]}

+ [0P(2)-0P(LDIONV(2) - 0P (1,D)],

k(k—2)

where
oﬁ,kks.nzg (D} 010]kOY (1) %%

and 0(s)=0¥(s,0[=0%(0s)]. Higher orders in the IV expansion introduce & dependence int®, and Dy
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