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Importance of the hexadecapole-hexadecapole interaction
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Motivated by the sensitivity of collectiveM1 excitations to the hexadecapole-hexadecapole interaction, we
explore the influence of this and other features of sdgIBM on the ground-state band properties of deformed
rare-earth nuclei. We adopt microscopically motivated choices of the Hamiltonian parameters and work within
the angular-momentum-projected intrinsic state formalism, deriving analytic expressions for observables in
which the dependence on wave functions and parameters of the model is explicit. We find that energies of
ground-state band excitations are insensitive to the hexadecapole-hexadecapole interaction. On the other hand,
its contribution to the deformation energy term in the nuclear binding energy is substantial. Our results indicate
that angular momentum projection is important even for well-deformed nuclei and that at least twog bosons
should be utilized in the corresponding sdgIBM calculations.@S0556-2813~99!04001-7#

PACS number~s!: 21.60.Fw, 21.10.Re, 21.30.2x, 27.70.1q
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I. INTRODUCTION

The interacting boson model withs andd degrees of free-
dom ~sdIBM-1! and the generalization in which neutron a
proton degrees of freedom are distinguished~sdIBM-2! have
provided many insights into the regularities of complex n
clei @1#. Another generalization suggested by microsco
considerations, namely, the inclusion of ag-boson degree o
freedom@2#, also looks phenomenologically useful. An in
creasing body of studies have shown that not only is a se
quantitative description ofE4 data possible within the
sdgIBM-1, but also an improved description of rotation
bands andE2 data is obtained@3–5#.

Applications of the sdgIBM-1 and the sdgIBM-2 hav
been inhibited by their complexity. However, for us, the
attraction lies in the hope that sdgIBM parameters may
more amenable to microscopic interpretation than sdIBM
rameters. It is, for example, possible within the sdgIBM
~but not the sdIBM-2! to reproduce with essentially consta
Hamiltonian parameters a spherical-to-deformed shape t
sition in an isotopic chain@6#. Also, one can accommodate
the sdgIBM-2 the energetics ofM1 scissors states~while
adhering to microscopically motivated values of model p
rameters! without resorting to the use of the somewhat a
ficial Majorana interaction invoked in the sdIBM-2@7#.

In the applications of the sdgIBM-1 and -2 to date, the
has been no consensus about the overall structure of
Hamiltonian. A Hamiltonian of the form~our notation is de-
fined in Sec. II below!

Ĥ5 (
l 52,4

~e lpn̂lp1e lnn̂ln!2 (
k52,4

kkT̂p
~k!
•T̂n

~k! ~1!

would be microscopically reasonable, but the hexadecap
hexadecapole interaction~the k54 term above! has been
omitted in several previous phenomenological studies@4,8#.
A conclusion of our earlier work on the scissors states is
their excitation energies are as sensitive to the hexadeca
hexadecapole interaction as they are to the quadrup
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quadrupole interaction~the k52 term above! @7#. This sen-
sitivity has been confirmed independently@9#. The
implication would appear to be that use of the hexadecap
hexadecapole interaction is strongly indicated. But if this
the case, how critical is knowledge of the poorly know

parameters in the hexadecapole operatorT̂r
(4) and how reli-

able are previous studies in which the hexadecap
hexadecapole interaction is neglected? More generally, th
is the question of the overall compatibility of sdIBM-2 an
sdgIBM-2 results for observables. In this paper, we expl
these issues in connection with the properties of the grou
state band of deformed nuclei using onlymicroscopically
motivatedparameter estimates.

The structure of this paper is as follows. In Sec. II, w
discuss our choice of the sdgIBM-2 Hamiltonian and elec
transition (Ek) operators. For the sake of definiteness,
present explicit expressions for our choices of the rela
model parameters~straight line fits to microscopic esti
mates!. In Secs. III and IV, we review the calculationa
scheme we employ to obtain the ground-state band expe
tion values and transition matrix elements of interest. Sin
we confine our attention to well-deformed nuclei, we calc
late ground-state band observables using an angu
momentum-projected intrinsic state. In Sec. III, our choice
intrinsic state is discussed and closed-form expressions
expectation values and matrix elements in terms of ove
integrals arising from angular momentum projection a
given. In Sec. IV, we consider the analytic evaluation
these overlap integrals via an asymptotic expansion and
tablish the order to which it is necessary, in practice, to ca
out this expansion. In Sec. V, we pin down an intrinsic wa
function of the ground-state band by generalizing the met
of Ref. @7# to include, where feasible, the leading correctio
arising from angular momentum projection. The effect
these 10% or so corrections on our choice of wave funct
is substantial and brings it into line with intrinsic state wa
functions found in other applications of the sdgIBM. In Se
VI, we discuss our findings on the systematics of groun
200 ©1999 The American Physical Society
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state band observables for deformed rare-earth nuclei.
present several approximate analytical results which m
explicit the role of the various ingredients of the sdgIBM-
Our conclusions are given in Sec. VII. In particular, we fi
that sdgIBM-2 calculations for deformed nuclei should co
tain at least twog bosons.

II. MODEL AND ITS PARAMETERS

Our starting point is the sdgIBM-2 model with the Ham
tonianĤ of Eq. ~1!, in which n̂ln(n̂lp) is the number operato
for neutron~proton! bosons of spinl and, in terms of the
corresponding creation operatorsbln

† (blp
† ) and their conju-

gatesb̃ln(b̃lp), the multipole operator (r5n,p)

T̂r
~k!5 (

l ,l 850,2,4
~ tr

~k!! l l 8@blr
† 3b̃l 8r#~k!,

where @•••# (k) denotes coupling to angular momentumk.
Below, when the quantum numberm for thez component of
spin is not suppressed, blr

†→blmr
† and b̃lr→b̃lmr

[(21)l 2mbl (2m)r . By definition, the multipole parameter
(tr

(k)) l l 8 are symmetric inl and l 8 and normalized so tha

(tr
(k))0k515(tr

(k))k0 .
For simplicity, unless indicated otherwise below, w

adopt, forboth the neutron multipole parameters (tn
(k)) l l 8 and

the proton multipole parameters (tp
(k)) l l 8 , the microscopi-

cally motivated estimates of Ref.@7# for thearithmetic aver-
age tll 8

(k)[ 1
2 @(tp

(k)) l l 81(tn
(k)) l l 8#. ~The level of sensitivity to

the difference between neutron and proton multipole par
eters for the ground-state expectation values we cons
does not call for a more careful treatment.! The estimates of
the nontrivial independentt l l 8

(k)’s have been expressed a
functions of P[NnNp /(Nn1Np), where Nn(Np) is the
number of neutron~proton! bosons. The quadrupole param
eters are t22

(2)521.110.24P, t24
(2)50.45, and t44

(2)520.9
10.21P and the hexadecapole parameters aret22

(4)50.6
20.12P, t24

(4)521.110.27P, andt44
(4)50.9520.16P.

For the interaction strengthsk2 and k4 , we likewise
adopt the microscopically motivated estimates of Ref.@7#: in
MeV, k250.1320.007P andk450.1210.006P. As regards
the choice of boson energiese lr ~which were not required in
Ref. @7#!, the most detailed microscopic calculations ava
able @10# yield estimates~denoted below bye lr

0 ) which are
far too large. However, theratios e2r

0 /e4r
0 of these estimates

are of the magnitude expected on microscopic grou
~namely, about 0.8@6#!. Also, the variation of the difference
in the microscopicd-boson energiese2p

0 2e2n
0 across theZ

550–82 andN582–126 shells can account qualitatively f
the systematics ofF-spin admixtures in the 21

1 state@11#. It
would thus seem reasonable to suppose that the microsc
estimates can in large part be corrected by a simple ad
ment, namely, an additive self-energy renormalization.
simplicity, we take this additive renormalization to be t
same for all the bosons. Sinceg-boson energies are expecte
on general microscopic grounds to be about twice the co
sponding pairing gap energy@6#, we sete lr5e lr

0 1@Dp1Dn

2 1
2 (e4p

0 1e4n
0 )#, taking Dp1Dn'2D, whereD is the con-
e
e

.

-

-
er

-

s
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st-
r

e-

ventional estimate of the pairing gap @D
5(11.8 MeV)/AA#. The combinations

e l5
Np

N
e lp1

Nn

N
e ln

can be represented approximately over the interval of inte
as the linear functionse251.9220.18P and e452.12
20.10P ~in MeV!.

We assume that theE2 transition operator is given in
terms of the quadrupole operatorsT̂r

(2) appearing in the

Hamiltonian by the one-body ansatzT̂(E2)5ep
(2)T̂p

(2)

1en
(2)T̂n

(2) , whereep
(2) anden

(2) denote the effectiveE2 bo-
son charges. We adopt the analogous one-body ansatz fo
E4 transition operatorT̂(E4) in terms of the hexadecapol
operatorsT̂r

(4) in the Hamiltonian and effectiveE4 boson
chargeser

(4) .
In our evaluation of reducedEk transition matrix ele-

ments in Sec. VI, we require the neutron and proton para
eters only in the averaged combinations

e~k![
Np

N
ep

~k!1
Nn

N
en

~k!

and

t ~k!̄[S Np

N
ep

~k!tp
~k!1

Nn

N
en

~k!tn
~k!D Y S Np

N
ep

~k!1
Nn

N
en

~k!D .

If we use effectiveE2 boson chargeser5a2rer
F , where the

quadrupole renormalization constantsa2r are taken from
Ref. @10# ~on which the estimates of Ref.@7# for multipole
parameters are based! and the effectiveE2 fermion charges
er

F are standard (ep
F51.7A1/3/100 e b,en

F51.0A1/3/100 e b),
we find that, to within a few percent or so,e(2)50.12 e b
independent of the value ofP ~providedP*2). The combi-
nationst (2) of the quadrupole parameterstr

(2) also agree to
within a few percent with the arithmetic averagest (2) and so
we use the latter.

Effective E4 fermion charges are less well known tha
effectiveE2 charges. Nevertheless, we think it is reasona
to assume that the combinatione(4) of effective E4 boson
charges is approximatelyP independent~like the combina-

tion e(2) of effectiveE2 boson charges! and that, paralleling
our findings fort (2), the combinationst (4) of the hexadeca-
pole parameterstr

(4) coincide to a good approximation wit
the arithmetic averagest (4). In evaluatingE4 transition ma-
trix elements below, we adopt the arithmetic averagest (4)

given earlier and assumee(4) is some~unspecified! constant.
Elsewhere, in the reduction of empirical data on t

summedM1 strength~cf. Sec V!, we require differences
gpl2gnl in neutron and proton bosong factors. We adopt the
spin-independent estimategp2gn51.5620.085P based on
the microscopic results of Ref.@11#.

We believe that the above choices of model parame
are appropriate for the study of systematics and should
useful as starting values in detailed analyses of individ
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nuclei. In our investigations, we shall base our conclusi
on the order of magnitude and the qualitative variation of
choices of model parameters.

III. ANGULAR-MOMENTUM-PROJECTED INTRINSIC
STATE FORMALISM

As the intrinsic state of the ground-state band, we ad
the axially symmetric coherent state

u$x0 ,x2 ,x4%&5
1

ANp!Nn!
F (

l 50,2,4
xlbl0p

† GNp

3F (
l 50,2,4

xlbl0n
† GNn

u2&, ~2!

whereu2& denotes the vacuum state~containing no bosons!
and the spin amplitudesxl are subject to the normalizatio
condition ( lxl

251. A significant simplification inherent in
Eq. ~2! is that we take the neutron and proton spin amp
tudes to be identical; in technical terms, our intrinsic state
of maximal F spin @12#. This is an idealization but a well
motivated one: admixtures of nonmaximalF spin in ground-
state band members of well-deformed nuclei do not seem
occur at more than the few percent level@13#, and, in any
event, we shall restrict ourselves below to observables~like
excitation energies andE2 transition strengths!, which are
insensitive to these smallF-spin impurities.

Within the present approximation scheme, individu
membersuFLM

gsb& of a ground-state band are projected out
u$xl%&: to within a normalization constant,uFLM

gsb&
}PM0

L u$xl%&, wherePMK
L denotes the standard angular m

mentum projection operator@14#. In the calculation of expec
tation values and transition matrix elements, we can exp
the maximalF spin of our intrinsic state~through the IBM-2
to IBM-1 projection scheme@13#!, the spherical tensor char
acter of theblmr

† ’s, and Wick’s theorem to derive closed
form expressions involving the overlap integrals

Ik; j~l!5E
0

1

Pk~x!Pj~x!F(
l

xl
2Pl~x!Gl

dx,

where Pk(x) denotes the Legendre polynomial of orderk.
~After the IBM-2 to IBM-1 projection, the calculations pa
allel those described in detail in Refs.@15# and @16#.!

For the expectation valueHL of our Hamiltonian in the
stateuFLM

gsb&, we find, after some routine angular momentu
recoupling algebra,

HL5NH(
l

e lxl
2IL; l~N21!

IL;0~N!
2P(

k,J
kkAJ

~k!
IL;J~N22!

IL;0~N! J ,

~3!

where

AJ
~k!5~2k11! (

j , j 8,l ,l 8
^ j 0 j 80uJ0&^ l0l 80uJ0&

3H j j 8 J

l 8 l kJ ~ tp
~k!! j l ~ tn

~k!! j 8 l 8xjxlxj 8xl 8 .
s
r

pt

-
is

to

l
f

it

Between the states of good angular momentum projected

of u$xl%&, theEk transition operatorT̂(Ek) has reduced ma
trix elements (L8>L)

^L8iT̂~Ek!iL&5A~2L811!~2L11!Ne~k! (
J

BJL8L~k!

3
I0;J~N21!

AIL8;0~N!IL;0~N!
, ~4!

where

BJL8L~k![A2k11(
j ,l

^L80 j 0uJ0&^L0l0uJ0&

3H L8 j J

l L kJ ~ t ~k!! j l xjxl .

After substitution of the overlap integrals above by th
asymptotic expansions~see Sec. IV!, the summations overJ
in Eqs.~3! and~4! can be further reduced analytically via th
method of Appendix A in Ref.@16#. Observe that Eq.~4! can
be written in terms of ratios of the formI0;J(N
2k)/I0;J8(N).

Results similar to Eqs.~3! and ~4! have been obtained
earlier within the context of sdgIBM-1 studies@5#. Our re-
sults represent a modest generalization inasmuch as the
tinction between model parameters for neutrons and pro
is, in principle, retained. More significantly, the projectio
from IBM-2 to IBM-1 is responsible for a different, mor
physical dependence onNp andNn of the expectation value
of the interaction terms in the Hamiltonian.

IV. ASYMPTOTIC EXPANSION OF OVERLAP
INTEGRALS

The overlap integralsIk; j can be evaluated analytically a
an expansion ininversepowers of the average angular m
mentum squared of the intrinsic state

L[N(
l

l ~ l 11!xl
2 ,

which, for well-deformed nuclei, is a large parameter. The
expansions are asymptotic and can be obtained either
Laplace’s method for the asymptotic evaluation of integr
@16# or algebraically@17# ~although their asymptotic charac
ter is then disguised!.

For the two ratios of overlap integrals which arise in o
work, the asymptotic analysis of Ref.@16# yields
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IL;J~N2k!

IL;0~N!
512@ J̄2km1#

1

L
1$ 1

2 J̄22@2~k21!m11m2 /m1212L̄# J̄1km1@m2 /~2m1!212L̄#%
1

L2
1•••, ~5!

I0;J~N2k!

I0;L~N!
512@ J̄2km12L̄#

1

L
1$ 1

2 J̄22@2~k21!m11m2 /m1211L̄# J̄1km1@m2 /~2m1!21#

1@~k22!m1211m2 /m1#L̄1 1
2 L̄2%

1

L2
1•••, ~6!
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whereJ̄[J(J11), mn is thenth moment of the distribution
of spin squared of a deformed intrinsic state boson, i.e.,

mn5(
l

~ l̄ !nxl
2 , ~7!

and it is assumed thatk!N ~in our applications,k50,1,2).
The coefficients in the expansions of Eqs.~5! and ~6! do

not lend themselves to a simple intuitive interpretation a
increase rapidly in complexity with succeeding orders. Ho
ever, these expansions are useful in gauging the magni
of the effect of angular momentum projection and in iden
fying clearly the angular momentum~or state! dependence o
ground-state band properties, which would otherwise be
ficult, because it is, in general, weak.

With the exception of the moment of inertiaI of the
ground-state band, we find it sufficient in our calculations
retain only the first two terms in the expansions of Eqs.~5!
and ~6!. With the first term~which survives in the limitL
→`), we recover the results of the unprojected intrin
state formalism; the term of order 1/L thus gives the leading
correction arising from angular momentum projection. F
N*10 ~appropriate to the nuclei of interest to us! and rea-
sonable choices of the spin amplitudesxl ~identified in Sec.
V below!, this leading correction is significant, being typ
cally between 10% and 20% of the unprojected result. As
are dealing with a Poincare´ asymptotic expansion, the co
rection due to all higher orders in 1/L is of the same order o
magnitude as the term of order 1/L2, which, using Eqs.~5!
and ~6!, we estimate to be a few percent or so of the u
projected result. We discard the terms of order 1/L2 and
higher because they are comparable with the uncertain
already introduced by our neglect ofF-spin admixtures.

Up to terms of order 1/L, reduced matrix elements of th
Ek transition operator between members of the ground-s
band are given by the rigid rotor relation

^L8iT̂~Ek!iL&5A2L11^L0k0uL80&Mk ,

in which Mk is the state-independentground-state-band
‘‘moment’’:

Mk5Ne~k!Ō~k!~0!H 11@m1132Ō~k!~1!/Ō~k!~0!#
1

LJ .

Above,
d
-
de
-

f-

o

r

e

-

es

te

Ō~k!~r ![(
j ,l

~ j̄ !r^ j 0l0uk0&~ t ~k!! j l xjxl .

Terms of order 1/L2 introduce a dependence onL andL8 in
Mk , so that it can no longer be identified~to within a con-
stant of proportionality! as an intrinsic quadrupole
hexadecapole moment of the ground-state band. The be
ior for E2 transitions of such small state-depende
modifications~which, for the reasons given above, we i
nore! has been explored within sdgIBM-1 in Ref.@5#.

In the calculation of the moment of inertiaI, we have to
extract the dependence of the expectation valueHL on the
angular momentum quantum numberL. In the ratiosIL; j (N
2k)/IL;0(N) in HL , we keepL-dependent terms of orde
1/L2, which is the first order in whichL-dependent terms ar
encountered, andL-dependent terms of order 1/L3 @omitted
in Eq. ~5! because of their complexity#. To this order,
ground-state band excitation energiesEL[HL2HL50 con-
form to a rotational spectrum@5\2/(2I )L(L11)# with a
strictly constant~i.e., state-independent! moment of inertiaI.
The result forI, which is fairly lengthy, is given in the Ap-
pendix.

V. DETERMINATION OF THE WAVE FUNCTION ˆxl‰

A conventional variational determination of the wav
function $xl% is confronted by the difficulty that reliable mi
croscopic estimates of a crucial ingredient of the variatio
functional HL , namely, the combinatione l of boson ener-
gies, arenot available. In Sec. VI B below, we shall see th
the average ofe2 and e4 is constrained by the moment o
inertia I: a value ofe21e4 which is some 20% smaller tha
that obtained with our renormalized estimates ofe2 ande4 is
implied @see Eq.~10! and the related discussion#. Unfortu-
nately, this improved knowledge of thesumof e2 ande4 is
still not sufficient for a definitive variational determination o
$xl% because the variational functional depends one2 ande4
separately.~More precisely, the variational solution forx2 is
sensitive toe2 , whereas that forx4 is sensitive to the differ-
encee42e2.! Instead, we choose to fix the two independe
amplitudes x2 and x4 using the empirical data on th
summedM1 strength( iB(M1,01

1→1i
1) and its centroid en-

ergy

Ec5

(
i

EiB~M1,01
1→1i

1!

(
i

B~M1,01
1→1i

1!
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compiled in@18# and@19#, respectively.~Specifically, we use
below the data given in these papers for the Nd, Sm, Gd,
and Er isotopes.! Via sum rules, these two observables a
related directly to ground-state expectation values and th
happen to be fairly reliable microscopic estimates for
model parameters to which these expectation values are
sitive ~i.e., the interaction strengthskk and the differences in
bosong factorsgpl andgnl). These observables also have t
advantage of being sensitive to theg-boson admixture in the
ground state.

The relevant sum rules are the sdgIBM generalizat
@7,20# of the Ginocchio sum rule@21# for M1 strength,

(
i

B~M1,01
1→1i

1!5
3

4p
~gp2gn!2

P

N21 (
l 52,4

l ~ l 11!nl
g.s.,

where nl
g.s. denotes the ground-state occupation number

both neutron and proton bosons of spinl, and the energy-
weighted sum rule~a generalization to the present choice
Hamiltonian of the sum rule derived in Ref.@20#!

(
i

EiB~M1,01
1→1i

1!5
3

8p
~gp2gn!2

3 (
k52,4

k̄kk^01
1 ,Np ,Nnu

3T̂p
~k!
•T̂n

~k!u01
1 ,Np ,Nn&.

We find it convenient to work with the spin-weighted sum
ground-state boson occupation numberfractions

Os[(
l

l ~ l 11!nl
g.s./N

and theM1 centroid energyper boson, Ec /N @irritating fac-
tors of N21 then appear in the combination (N21)/N51
2m1 /L#. Within our angular-momentum-projected intrins
state approximation scheme, we find that, to order 1/L,

Os5(
l

l̄ xl
2 I0;l~N21!

I0;0~N!
5m12~m22m1

2!
1

L
, ~8!

Ec

N
5

1

2Os

~N21!

N (
J

F(
k

k̄kkAJ
~k!GI0;J~N22!

I0;0~N!

5
1

2m1
(

k52,4
k̄kkO p

~k!~0!O n
~k!~0!H 11@ 1

2 k̄1m2 /m1

2O p
~k!~1!/O p

~k!~0!2O n
~k!~1!/O n

~k!~0!#
1

LJ , ~9!

where, paralleling the definition ofŌ(k)(r ), O r
(k)(r )

[( j ,l( j̄ ) r^ j 0l0uk0&(tr
(k)) j l xjxl .

Empirical values ofOs and Ec /N vary in a reasonably
well-behaved fashion withP, consistent with the fact that th
pertinent model parameters and the variational solution
the wave function$xl% prior to angular momentum projectio
can be characterized as functions ofP. For P.Psat.2.5 ~the
domain of interest to us!, the values ofOs appear to saturate
y,

re
e
en-

n

f

f

r

We consequently assume that the spin amplitudesxl take on
approximately constant valuesxl

sat for P.Psat. We find it
convenient to parametrize the spin amplitudesxl

sat in terms of
the saturation valueOs

sat of Os and the ratior of (x2
sat)2 to

(x4
sat)2. Neglecting terms of order 1/L in Eq. ~8!, we have

x4
sat5AOs

sat/~2016r !, x2
sat5Arx4

sat,

x0
sat5A12~x2

sat!22~x4
sat!2.

We fix r and Os
sat by requiring that, using Eqs.~8! and ~9!

with the terms of order 1/L included, we reproduce simulta
neously the empirical data onOs andEc /N for P.Psat. Our
scheme for the determination of$xl

sat% ~with its neglect of
1/L corrections in the parametrization of$xl

sat% but their
inclusion in observables! is akin to the projection-after-
variation approximation.

In view of the simplifications we have made, the unce
tainties in the empirical values ofOs and Ec /N, and the
neglect within the IBM of the fragmentation ofM1 strength
due to coupling to noncollective degrees of freedom, it
appropriate only to delineate reasonable ranges for the va
of r and Os

sat ~for which eyeball comparisons suffice!. Our
findings on the range of acceptable values ofOs

sat and r are
summarized in Fig. 1. Where definite values are requi
below @Figs. 2–4 and the evaluation of the binomial dist
bution in Eq.~12!#, we shall adoptOs

sat53.5 andr 55 for
which (x2

sat)250.35 and (x4
sat)250.07.

VI. GROUND-STATE BAND SYSTEMATICS

In Figs. 2 and 3, we compare our theoretical estimates
the inverse of the moment of inertia 1/I and
AB(E2;01

1→21
1)(5M2), respectively, with empirical val-

ues inferred from good rotors~which we take to mean nucle
for which the ratio of excitation energiesE4

1
1 /E2

1
1>3.25).

FIG. 1. Admissible ranges ofOs
satandr. The solid~dashed! lines

indicate the minimum and maximum values ofOs
satcompatible with

data onEc(Os) for fixed r. For comparison, the locus of point
corresponding to (x2

sat)250.35 is included~dotted line!.
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Our prediction for the systematics ofAB(E4;01
1→41

1)
(5M4) in units of the combinatione(4) of effective E4
charges is given in Fig. 4. We underestimate
AB(E2;01

1→21
1) data, but there is an encouraging simila

ity as regards the variation withP. There is an even stronge
qualitative resemblance in theP dependence for our estima
of the inverse of the moment of inertia and empirical valu
~even though they are significantly overestimated!. We view
this as evidence that use of theP-independent wave function
$xl

sat% is adequate for the study of the systematics of w
deformed nuclei.

A. Reduced matrix elements

For reasonable choices of the quadrupole parame
(tr

(2)) j l and wave function $xl%, our result for

AB(E2;01
1→21

1) is weakly dependent on the quadrupo
parameters (tr

(2))22 ~which are the counterparts within sdg
IBM of the quadrupole parameters in sdIBM, usually d
noted byxr) and thed-boson amplitudex2 but almost com-
pletely insensitive to the remaining quadrupole parame
~which have no counterpart in sdIBM! and theg-boson am-
plitudex4 . In fact, to an accuracy of 10% or so, our estima
for

AB~E2;01
1→21

1!'Ne~2!$2x0
satx2

sat1~ t ~2!!22~x2
sat!2%,

where we have dropped the 1/L correction inM2 and re-

tained inŌ(2)(0) only the largest two terms. In effect, th

FIG. 2. Comparison with data on the inverse of the momen
inertia I ~in units of \2) for the heavy rare-earth nucle
154–158Sm,158–162Gd,160–166Dy, and 164–172Er ~the even-even nucle
in this mass region for whichE4

1
1 /E2

1
1>3.5). The unlabeled solid

~dot-dashed! line is the theoretical estimate to leading~next-to-
leading! order in the 1/L expansion. We identify the empirica
value of \2/2I as the coefficienta of the linear term in a fit of
ground-state-band excitation energiesEL

1
1 ~taken from@22#! to the

quadraticaL̄1bL̄2 in L̄[L(L11). ~Since we restrict ourselves t
good rotors, the values obtained in this way do not differ sign
cantly from those deduced via the simple relation\2/I 5E2

1
1/3.)
e

s

-

rs

-

rs

expression forB(E2;01
1→21

1)’s reduces to one which
would have been obtained within sdIBM-2.

The effectiveE2 boson charges are the model paramet
to whichAB(E2;01

1→21
1) is most sensitive. Our values fo

AB(E2;01
1→21

1) can be brought approximately into lin
with the data forP*3.5 by a modest 10% increase in o
microscopically motivated choice of the effectiveE2 boson
charges.

Our result forAB(E4;01
1→41

1) displays some sensitivity
to the hexadecapole parameters (tr

(4))24, but the dependence
on the remaining hexadecapole parameters is weak. Para
ing our approximation ofAB(E2;01

1→21
1) above, we find

that, to an accuracy of 15% or so, our result f
AB(E4;01

1→41
1) may be approximated by

AB~E4;01
1→41

1!'Ne~4!$2x0
satx4

sat12~ t ~4!!24x2
satx4

sat%.

Neither of the above two important contributions
AB(E4;01

1→41
1) has a counterpart within sdIBM. The im

plication is that collectiveB(E4;01
1→41

1)’s cannot be suc-
cessfully mocked up within sdIBM. Instead, the introducti
of a g boson is crucial.

B. Inverse of the moment of inertia 1/I

Our estimate of 1/I is dominated by the leading term~of
order L0) in the noninteracting boson contributionDsb @in-
troduced in Eq.~A1!#. Decomposinge2 and e4 into their
semisum and semidifference, we find that, for wave fu
tions in the vicinity of our choice$xl

sat%, this leading term

Dsb
~0![~e12e0!/m1'

~e21e4!

2

~x0
sat!2

m1
sat

~10!

to an accuracy of 10% or so. We infer that we can eas
improve on our estimate of 1/I by modifying our choice of
single-boson energies. For example, a further decreas
about 10% in all the renormalized energiese lr is enough to
achieve agreement with data forP*3.5. Given the uncer-
tainties in the additive renormalization of single-boson en
giese lr , discussed in Sec. II, a change of this magnitude
not unreasonable. Another possibility is to leave our e
mates ofg-boson energies unchanged and to sharply red
the d-boson energies by some 40% or so. With this mod
cation, the variational solution for$xl% for P.3 is not too
dissimilar from our wave function$xl

sat%. However, the ratio
e2r /e4r is then about 0.5, which is difficult to reconcile wit
the value of about 0.8 anticipated on microscopic groun
@6#.

Since angular momentum projection raises the degene
of members of the intrinsic state band, we believe that
positive sign of the next-to-leading order contribution~in the
1/L expansion! to our estimate of 1/I in Fig. 2 is correct.
However, it is apparent that inclusion of this next-to-leadi
order contribution worsens slightly the agreement with
data. This is presumably a consequence of the fact that,
our present choice of single-boson energies, we overestim
the magnitude of the leading order contribution to 1/I . With
a more felicitous choice of single-boson energies, it wo
lie below the empirical data.

f

-
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The effect of the hexadecapole-hexadecapole interac
on 1/I is small. Near midshell, it is also small in relation
the impact of the quadrupole-quadrupole interaction on 1I .
To leading order in the 1/L expansion, the contribution
D int(k) of the quadrupole-quadrupole interaction (k52) and
the hexadecapole-hexadecapole interaction (k54) to N/(2I )
are given by

D int
~0!~k!5Sk P kkO p

~k!~0!O n
~k!~0!, ~11!

where~see the Appendix!

FIG. 3. Comparison with data~from @23#! on AB(E2;01
1→21

1)
for the heavy rare-earth nuclei154Sm,158,160Gd,160–164Dy, and
164–170Er @the even-even nuclei in this mass region for whi
E4

1
1 /E2

1
1>3.5 andB(E2;01

1→21
1) is measured#. The solid~dot-

dashed! line is the theoretical estimate to leading~next-to-leading!
order in the 1/L expansion.

FIG. 4. Systematics ofAB(E4;01
1→41

1)/(Ne(4)). The solid
~dot-dashed! line is the theoretical estimate to leading~next-to-
leading! order in the 1/L expansion.
on

Sk[
2

m1
H 12

1

2m1
FO p

~k!~1!

O p
~k!~0!

1
O n

~k!~1!

O n
~k!~0!

2
k̄

2G J .

For the range ofP of interest, theSk’s have approximately
constant values less than unity. A simple and surprisin
good estimate of theSk’s is obtained by retaining in
O r

(k)(r ) only the term (11d r0)( k̄) rx0xk , which is always
50% or more of the full result forO r

(k)(r ): then, Sk

5(2/m1)$12 k̄/(4m1)%, which, for m1.3.5, implies that
S2.10.3 and S4.20.2. When the full expression fo
O r

(k)(r ) is used, we find that, for reasonable wave functio
S2(S4) increases from about 0.15 (20.15) to about 0.2
(20.1) asP increases from 3 to 4.5. Over the same range
values of P, the ratio uD int

(0)(4)/D int
(0)(2)u decreases from

about 0.4 to about 0.1 anduD int
(0)(4)u decreases from abou

10% or so ofN/(2I ) to a few percent or so.
Since the dependence ofO r

(2)(0) onx4 is weak, the effect
of the g-boson degree of freedom onD int

(0)(2) is negligible.
The influence of theg boson on the moment of inertia i
confined to the dependence of the noninteracting boson
tribution Dsb

(0) on theg-boson energye4 @cf. Eq. ~10!#. In the
absence of the g-boson degree of freedom,Dsb

(0)

5e2(x0
sat)2/m1

sat. For our choices ofe2 ande4 , inclusion of
the g-boson contribution enhancesDsb

(0) by about 20% or so.

C. g-boson admixture

The influence of ag-boson admixture onB(E2)’s and
B(E4)’s within a ground-state band has been discus
above in Sec. VI A. In much the same way as theg-boson
amplitude is essential to collectiveB(E4;01

1→41
1)’s, the

magnitude of the contribution of the hexadecapo
hexadecapole interaction to observables, which, to lead
order in the 1/L expansion, is proportional to
O n

(4)(0)O p
(4)(0) @see, for example, Eqs.~9! and ~11!#, is

crucially determined by theg-boson amplitude: the dominan
terms inO n

(4)(0)O p
(4)(0) are all proportional to (x4

sat)2.
Because of the weighting of the ground-state occupa

numbersnl
g.s. by the spin squaredl ( l 11), theg-boson con-

tribution to the summedM1 strength is substantial even wit
our choice of wave function$xl

sat%. Within the unprojected
intrinsic state formalism@nl

g.s.5N(xl
sat)2#, the g-boson con-

tribution is about 40% of the summedM1 strength. Includ-
ing angular momentum projection corrections of order 1/L,

nl
g.s.5Nxl

2H 12~ l̄ 2m1!
1

L
1•••J ,

which, for N.10, implies a 40% or so reduction in th
g-boson ground-state occupation number~corrections of or-
der 1/L2 are a few percent or so!. The effect on theg-boson
contribution to the summedM1 strength is that it is reduce
to about 30% or so of the total summed strength.

The truncation to configurations containing no more th
one g boson commonly used in numerical diagonalizatio
of sdgIBM Hamiltonians may be suspect for nuclei near m
shell (N.10). In the unprojected intrinsic state approxim
tion, the probabilitypk of finding k g bosons in a member o
the ground-state band is given by the binomial distributio
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pk5S N

k D ~x4
2!k~12x4

2!N2k, ~12!

which, for (x4)2.0.07, implies that the probability for thre
or moreg bosons is negligible~a few percent or so! but that
p2 is substantial:p2*0.1 ~0.2! for N510 ~15!. Elimination
of spurious components of the intrinsic state by angular m
mentum projection will reduce these estimates ofp2 but, for
N.15, not by more than 25% or so~the corresponding re
duction inn4

g.s.). Thus, despite the smallness of ourg-boson
probability amplitudex4

sat, it would seem that the inclusion
of configurations with as many astwo g bosons is necessar
to determine ground-state-band wave functions with an
curacy of 10% or so.

D. Hexadecapole-hexadecapole interaction

As discussed above~Sec. VI B!, the contribution of the
hexadecapole-hexadecapole interaction to the inverse o
moment of inertia 1/I is small and negative. Thus, the omi
sion of this interaction in previous sdgIBM studies is jus
fied in as far as the description of the ground-state b
spectrum is concerned.

By contrast, the impact of the hexadecapole-hexadeca
interaction on the deformation energy per bosonED of the
ground state~required for binding energy estimates@1#! is
non-negligible. In terms of the expectation valuesHL of our
HamiltonianĤ @see Eq.~3!#, ED5HL50 /N. To leading order
in the 1/L expansion, this deformation energy per boson
given by

ED
~0!5(

l
e lxl

22P(
k

kkO p
~k!~0!O n

~k!~0!. ~13!

The two contributions toE D
(0) from the noninteracting and

interacting parts of the Hamiltonian, respectively, are se
rately about 0.5 MeV or so, but as a result of the cancella
between them,ED

(0) itself is only of the order of 100 keV o
so. This is the same order of magnitude as the contributio
the hexadecapole-hexadecapole interaction toED

(0) .
In a previous work@7#, in which angular momentum pro

jection was omitted, we concluded on the basis of the m
tipolarity weighting in an expression for theM1 centroid
energyEc that the effect of the hexadecapole-hexadecap
interaction on the energetics of orbitalM1 excitations in
deformed nuclei is comparable to that of the quadrupo
quadrupole interaction. This conclusion is not changed
the inclusion of angular momentum projection. The lead
angular momentum projection correction@given in Eq.~9!#
leaves the magnitude of the hexadecapole-hexadecapol
teraction term inEc essentially unchanged forN>10. The
quadrupole-quadrupole interaction term inEc is enhanced
but only by about 20% at most~whenN>10).

The contribution of the hexadecapole-hexadecapole in
action to the above observables shows the same depend
on the hexadecapole parameters (tr

(4)) l j as our result for
B(E4;01

1→41
1): there is a little sensitivity only to the pa

rameters (tr
(4))24.
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VII. CONCLUSIONS

We find that angular momentum projection even f
rather well-deformed nuclei has a substantial effect. Ty
cally, the correction due to angular momentum projection
between 10% and 20% of the unprojected result, but,
some instances, it is even larger. For example, angular
mentum projection can lead to a 40% or so reduction
g-boson occupation numbers for members of the grou
state band.

As conjectured in Ref.@7#, we find that use of the intrinsic
state formalism without angular momentum projection lea
one to overestimate the summedM1 strength and underest
mate theM1 centroid energy: in the case of the summedM1
strength, the leading angular momentum projection corr
tion is always negative~since it is opposite in sign to the
variancem22m1

2 of the spin squared of an intrinsic sta
boson! and, in the case ofEc , it is positive for all reasonable
wave functions. There have been several studies within
unprojected intrinsic state formalism of the influence
F-spin admixtures on the summedM1 strength@24,25#. It
would seem that the inclusion of the corrections arising fr
angular momentum projection is at least as important.

Introduction of ag-boson degree of freedom allows one
accommodate collectiveB(E4)’s. Contrary to claims in the
literature, we find that differences in sdIBM-2 and sdgIBM
results forB(E2)’s of the ground-state band of deforme
nuclei should be marginal; with a microscopically motivat
choice of parameters, the contributions of the additio
terms in the sdgIBM-2E2 transition operator are negligible
However, theg-boson degree of freedom does influence
moment of inertia of the ground-state band: it enhances
nificantly the noninteracting boson contribution. The size
our g-boson amplitude suggests that the truncation to c
figurations containing at most oneg boson commonly used
in numerical diagonalizations of sdgIBM Hamiltonians m
be inadequate for nuclei near midshell; inclusion of config
rations with twog bosons is indicated.

With a microscopically motivated choice of the sdgIBM
parameters, the impact of the hexadecapole-hexadecapo
teraction on the excitation energies of the ground-state b
of deformed nuclei is negligible. This finding is consiste
with the intuitively plausible expectation that th
hexadecapole-hexadecapole interaction should not be im
tant in determining the structure of the spectrum at excitat
energies well below the threshold for the excitation of twog
bosons ('3 MeV). On the other hand, we find that th
deformation energy of the ground state used in binding
ergy estimates is very sensitive to the hexadecap
hexadecapole interaction because of a cancellation betw
the contributions of the noninteracting and interacting pa
of the Hamiltonian.

In a previous study within the IBM-2 of binding energie
of astrophysical significance, the deformation energy w
for simplicity, omitted@26#. On the basis of the current work
we estimate that the deformation energy near midshel
somewhere between a few hundred keV and a couple
MeV in magnitude, which is comparable to the rms error
the mass formula of Ref.@26#. Conceivably, an improved
mass formula could be obtained by inclusion of the deform
tion energy, but given the present uncertainties in the sin
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boson energiese lr , reliable calculation of deformation ene
gies beyond an order of magnitude estimate is not poss
For example, the 10% or so reduction in the choice of
boson energies, which is a reasonable modification sugge
by our comparison with moments of inertia for deform
nuclei, is enough to change the sign of the deformation
ergy. It would also be necessary to take into account
influence ofF-spin admixtures on the cancellation betwe
the noninteracting and interacting contributions to the de
mation energy.
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APPENDIX: THE MOMENT OF INERTIA I

It is convenient to work with the inverse of the moment of inertia for which our result is of the form (I in units of \2)

1

I
5

2

N
~Dsb1D int!, ~A1!

where we distinguish between a contributionDsb which arises from the noninteracting or single-boson part of our Hamilton
Ĥ and a contributionD int which arises from the interaction part ofĤ. To the order in 1/L which we work,

Dsb5
1

m1
H e12e02F2S 11m12

m2

m1
D ~e12e0!1

m2

m1
~e22e1!G 1

LJ ,

D int5
P

m1
H 2v02v11F2S m2

m1
21D ~2v02v1!22m1v11

m2

m1
~v22v1!G 1

LJ ,

where

ej[
1

mj
(

l
~ l̄ ! je lxl

2 , v j[
1

mj
(

k
kkH(

J
~ J̄! jAJ

~k!J [(
k

kkaj
~k! .

The summations overJ in the aj
(k)’s may be evaluated analytically~as in Appendix A of Ref.@16#! to yield

a0
~k!5O p

~k!~0!O n
~k!~0!,

m1 a1
~k!5O p

~k!~0!O n
~k!~1!1O p

~k!~1!O n
~k!~0!2

k̄

2
O p

~k!~0!O n
~k!~0!,

m2 a2
~k!5

k̄2

2
O p

~k!~0!O n
~k!~0!22k̄@O p

~k!~0!O n
~k!~1!1O p

~k!~1!O n
~k!~0!#1O p

~k!~2! O n
~k!~0!1O p

~k!~0!O n
~k!~2!

1
6k̄

k̄12
O p

~k!~1!O n
~k!~1!2

2

k̄22
$O p

~k!~1!@O n
~k!~2!2O n

~k!~1,1!#1O n
~k!~1!@O p

~k!~2!2O p
~k!~1,1!#%

1
2

k̄~ k̄22!
@O p

~k!~2!2O p
~k!~1,1!#@O n

~k!~2!2O n
~k!~1,1!#,

where

O r
~k!~s,t ![(

j ,l
~ j̄ !s~ l̄ ! t^ j 0l0uk0&~ tr

~k!! j l xjxl

andO r
(k)(s)[O r

(k)(s,0)@5O r
(k)(0,s)#. Higher orders in the 1/L expansion introduce aL̄ dependence intoDsb and D int .
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@25# P. Navrátil, J. Dobĕs, and B. R. Barrett, Phys. Rev. C53, 2794

~1996!.
@26# E. D. Davis, A. F. Diallo, B. R. Barrett, and A. B. Balantekin

Phys. Rev. C44, 1655~1991!.


