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Approach towards N-nucleon effective generators of the Poincargroup
derived from a field theory
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It is shown that the ten Hermitian generators of the Poingameip derived from standard Hermitian
Lagrangians which describe interacting fields can be block diagonalized by one and the same unitary trans-
formation such that the space of a fixed number of nucleons is separated from the rest of the space. The
existence proof is carried through using a formal power series expansion in the coupling constant to all orders.
In this manner one arrives at effective Hermitian generators of the Poimgatg which act in the two
subspaces separate[f§s0556-28139)00304-0

PACS numbds): 21.45+v, 03.30+p, 03.65-w, 21.30.Fe

I. INTRODUCTION antiparticles. A way to do this has been proposed in Réf
and worked out in lowest order in the coupling constant for a
Low-energy nuclear physics below the meson threshold igield theory of “scalar nucleons” interacting with a scalar
naturally formulated in terms of a fixed number of nucleonicmeson field. While this has been formulated in the instant
degrees of freedom. In the overwhelming number of appliform a corresponding derivation can also be performed in the
cations a nonrelativistic framework is used. This, however, idight front form [11]. Numerical investigations based on
not sufficient if one investigates for instance electron scatterthose effective generators determined in leading order in the
ing with high three-momentum transfers as one encounters ifOUPIING constant have been carried through in R2],
typical experiments performed nowadays. Also it is still an[13]' an_d[14].. L
open question whether relativistic effects play a significant In tr_ns article we want to show that the d¢r|vat|on pro-
role when calculating the binding energy of nuclei. In three-posed in Ref|10] can be carried through to arbitrary order in

nucleon scattering it has been found recefitlythat the total the_ coqplmg constant. Thus the effective generators of Fhe
: : Poincaregroup in anN nucleon subspace do exist at least in
nd cross section evaluated with most modsiN forces and

based . luti f thayaradd i the sense of a formal series expansion. It will be interesting
ased on rigorous solutions o addeev equations 4, investigate whether those generators are automatically

deviate from the data above100 MeV nucleon laboratory 4154 cluster separable. This is left to a future study.

energy. That discrepancy reaches about 10% at 300 MeV |, gec. || we formulate our way to derive the effective

and is very likely caused by the neglect of relativity. On all generators in thél nucleon subspace out of a field theoreti-

these grounds a relativistic generalization of the usual SCth:a| model of interacting nucleon and meson fields. The exis-

dinger equation foN interacting nucleons is highly desir- tence proof is carried through in Sec. lll. We discuss the

able. properties of the new generators and outline possible appli-
In Ref. [2] Dirac proposed three forms of relativistic cations in Sec. IV before we briefly summarize in Sec. V.

guantum mechanics for a given number of interacting par-

ticles. A realization thereof in the instant form was g_iven bY || CONDITIONS FOR THE EFFECTIVE GENERATORS

Bakamijian and Thomggs]. That scheme, however, violates

cluster separability4]. Being less ambitious and searching We consider a field theory of interacting scalar “nucle-

just for relativistic correction terms to the generators of theons” and “antinucleons,” and mesons given by a Hermitian

Galilean group in leading orders Foldy and Krajcik havelLagrangian of the form

discussed5] a 1£? expansion of the ten generators of the

Poincaregroup. This scheme has been applied recently in a L=Lot Ly, (1)

realistic context in the R system[6]. A way to treat the

defect in the Bakamjian and Thomas scheme with respect tohere L, is the free part and the interacting pdjtis linear

the cluster separability has been found by Sokdidivand  in the coupling constarg. We also assume thd}, is linear

also worked out by Coester and Polyz@]. An extensive in creation and absorption operators for mesons as is the case

overview over the whole subject is given in REJ]. for often used field theorigsee, for instance, E¢100)]. In
There is, however, also another approach to the generatogsstandard mannét 5] one arrives at the ten Hermitian gen-

of the Poincargyroup for a fixed number of particles. Rela- erators of the Poincamgroup for constant time slicemstant

tivistic field theory provides generators which act in the full form). The Hamiltonian and the three boost operators carry

space with an infinite number of particles. Thinking of ap-interactions, whereas the total momentum and angular mo-

plications for nuclear physics one considers interacting fieldsnentum operators are the free ones. The latter two leave the

of nucleons and mesons. To arrive at generators which act iplanet=const invariant. Thus one has in obvious notation

the space of a fixed number bif nucleons one has to elimi-

nate the mesonic degrees of freedom as well as the ones for H=Hy+H,, 2
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Ki =Ko+ Kji (3) T,
o R Pr—Pu=UPHUT=T #P". (18)
Pi=Poi, (4) Because of Egg.7) and (9) there exist simultaneous eigen-
states related to the four components of the four-momentum
Ji=Joi, (5) operator, which fulfil
where due to Eq(l) PHW )= pH| P ). (19)
H~g, Applying U and using Eq(18) one gets
Ki~g (6) T *PPU|W ) =p*U|WP ). (20)
These ten operators fulfil the Lie algebra of the Poincarerhis can be rewritten into
group
P"U|W y=T" p*U|¥ ). (21
[P H]=0, () = d
Thus up to a phase factor we get
[Ji,H]=0, (8
UWp)=|¥rp) (22
[Pi,P;]1=0, 9 . . . . o
and the “four-dimensional Schdinger equation’(19) reads
[3;,9;1=i € dk. (10)  inthe new frame of reference
[Ji.Pj]=i€i Py, 11 PAW ) = (D) Wrp). 23
I Kl=ie K 12 Therefore the simultaneous eigenstatesPdf in the new
[Ji K=l €Ky, 12 frame are eigenstates in the old frame with Lorentz trans-
H K le—ip 13 formed eigenvalues of the overall four momentum.
[H.Ki]=—iP;, (13 We pose now the question if one can find a matrix repre-
K K= —ied 14 sentation of the Poincaralgebra being restricted to a sub-
[Ki.Kj]==Teijd. (14 space with a fixed number of particles. We want to call such
. matrices “effective.” In other words those effective matrices

Formally one can verify that using the equal time commuta
tion relations of the underlying fields. Following the deriva-
tion scheme for the generators starting from a field theoreti

cal Lagrangian density we note that the operators in Eqst

(2)—(5) can be expressed as sums and integrals over partic

creation and absorption operators which fulfil the standan%
commutation relations equivalent to the equal time commu-
tation relations. As a consequence the set of commutatio
relations is fulfilled by matrices of those generators with re-,
spect to Fock space states. This matrix form underlies ou

algebra presented below and in Sec. Il

Becausel, is assumed to be linear in the creation and
annihilation operators for mesorid; andK;; will be linear
in these operators too. Hence the eigenstatds wfill nec-

essarily contain an infinite number of mesons in addition to

the nucleons(and antinucleons The behavior of such an
eigenstate under Lorentz transformation, however, is tran
parent. We regard the operator of four momentum

P#=(H,P,P5,P3) (16)

and consider a Lorentz transformati®fl’,a) defined by

T
XK—x"#=T*# x"+ak. 17
Related toT is a unitary operatod (I',a) acting in the Hil-
bert space spanned by the eigenstateBl.of consequence
of the commutation relation&)—(15) are the transformation
properties ofP#:

are block diagonal with respect to the subspace with a fixed
number of particles and the rest of the Fock space. If it is
possible to find an effective representation of the Poincare
group one is able to formulate an effective Salinger equa-
ion in the subspace of a given number of particles, Nay
jucleons and no mesons, as in EtP). The interesting point
out that is that this equation would be easier to solve than
g. (19 since the number of degrees of freedom is finite
ow. In addition, since we assume the Poinadgebra to be
ulfilled in that subspace, this effective ScHioger equation
pherits the nice transformation properties of E23).

A way to find effective generators is to unitarily transform
the generatorg2)—(5) by an operatoi{/ such that all ten
generators are put into a block diagonal shape at the same
time. One block would refer to thl nucleon subspace, the
other block to the rest and the two blocks would not be

coupled. Under a unitary transformation the commutation re-

‘J‘gtions remain valid, of course. Let us denote the projection

on the subspace ®f nucleons by, and the projection on the
rest byA=1- 5. Then what we are looking for is a unitary
transformationi/, the existence of which is needed to be
proved and which is of the form

U ~ ~
H—H=nyH7n+AHA,

(24)
Z/{~ ~ ~
KiHKi:ﬂKiﬂ‘FAKiA, (25)
u~ ~ ~
Pi—’Pi:ﬂPi77+APiA: (26)
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u
Ji—J3i=ndin+t AJA. (270 Since it isa priori not obvious that it will be possible to

block diagonalize each generator using the safwvee label

While H andK; (in the instant form couple thep and A A with the generator to be block diagonalized. Noting Egs.

spaces, this is by assumption no longer the casklfandK; (4) and(5) telling FhatPi andJ; do not connect they and A

and the operatorgH », 7K 5, 7P, 7, and7J; 5 are effective ~ SPaces the conditions for the ten operaids, Ax, Ap,

generators of the Poincamgroup. Now one can look for andAJi turn out to be

eigenstates oP* whose A components are zero. Lorentz

transformations on those states are generated by the effective

operators and we may write down the effective Sdimger

equation A([Ko, Ak, 1+ KAk, + K —Ag KiiAg ) =0, (35
7PE ) =p l v). (28)

In Ref. [10] such a path has been initiated and will be
worked out more stringently now. In Rdf16] Okubo pro-

A([Ho,Au]+HA4+H —AyH Ay =0, (34

A[P;,Ap]7=0, (36)

posed a way to transform an arbitrary Hermitian operator A[J;,A;]n=0. (37
|
Here we made use of the assumption tBatand henceH,
_ nOn 7nOA 29 and K;; are linear in the meson operators such thét, »
A0y AOA (29 =0=yK,; ». If one and the sama can be found that fulfils

the set of condition$34)—(37) the existence of ten effective
generators of the Poincageoup in the separate subspaegs
into a block diagonal form by means of a unitary transfor-and A is proven. In that case we find the following form of

mationis: the effective generators:
0—O=1oU'= 3O n+ ADA. 30 707=nUA~+7)O(A+ U 7
=(1+ATA) YA 5+ AHO(5+A)(1L+ATA) 12
We follow Okubo for the choice of the unitary operator (39
gy  UA Because these effective generators are derived by a unitary
= ( AU ALIA) transformation they have to fulfil the Poincaakgebra. Nev-
Y

ertheless we want to show by explicit calculation that this is
(1+ATA) Y2 (1+ATA)~2aT indeed the case. As we will see now we only require the
C(1+AANT2A (14 AAT 124 | (3D properties(32) and (33). . .

( ( With the help of the decoupling equatig83) we add
zeros in two ways

whereA has the form

707=(1+ATA) Y4 5+ ANHO(n+A)(1+ATA) 12
=[(1+ATA) YA p+ AN+ (1+AAT) 12

A=AAn. (32

Unitary transformations within the subspacgsand A are X(—A+A)]O(n+A)(1+ATA)~12

ut to 1. Using the form$29) and (31) the requirement for _ _
Elock diagonaglaization isS ) and(3h | =(1+ATA) Y+ ANO[(n+A)(1+ATA) "2

+(A—ANH(1+AAH 2], (39
A([O,A]+0—-AOA) 5»=0. (33 Now we regard

[701%,7027]=(1+ATA) " Y 7+ AN{O[ (+A)(L+ATA) Y2+ (A - AT)(1+AAT) 17
X[(1+ATA) Y2+ AT+ (1+AAT) YA —A+A)]0,— 0,
X[(p+A)(1+ATA) "2+ (A —AT)(1+AA) "2 [(1+ATA) Y5+ AT)
+(1+AAN YA — A+ A)]OH(p+A)(1+ATA) 12 (40)
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We simplify the terms in the brackets in E@0): 1 ;
Lo XL I A ) g A F AR T AT

1
1+ATA

1
[+ DXL 1= (A o pra (AT +(1_,,)1+1\AT+ATA
+(p+A)(L+ATA) "2 1

1
—A+AAT +
1+ATA A+AA 1+AAT 1+AAT

X (1+AAN) YA — A+ A)(A—AT)

X (1+AAN) Y21+ ATA) "V 5+ AT) ATA 1
K 1+ATA

1
YN _
T A)1+AA( A “ =(1+AA" 1 +(1+ATA !
= )1+AAT ( )1+ATA
Due to Eq.(32) this reduces to —A—n=1. (45)

We conclude that

1
X ]= t
Lo DXL 1=t A gma (1 + A [ 7017, 70,7]=(1+ATA) Y4 n+A")

X[041,0,](p+A)(1+ATA) 12

1
+(A—AT)m(—A+A) .

1 .
— _ T Presuming
(7;+A)—1.—1+AA(1 A+A"

1 [01,0,]=03 (47)
+(A—AT)m(—A+ 1- 7). (42 we get

0.7, 70,7]=(1+ATA) " Y3 5+ AT
We use Eq(32) again to give (7017 7O27]1=( ) )

X Og(p+A)(1+ATA) 12

1 1 =7037. 48
[+ 1% 1=+ A) g + (7+A) T arg AT 7087 48

Thus we arrive indeed at the desired result that the effective

operators in they space fulfil the same algebra as the origi-
_ At (A _nat
A=A AAT A AT AATA nal ones

1 1 01,0,]=03=[ 70, 7,70,7]= 70 49
:(77+A)m+(7]+A)AT1+—AA‘F [ 1> 2] 3 [77 17,7 277] nY3n, ( )

whenever we transform three operatddg,0,,05 by a
transformation given by Eq$31), (32), and(33).

1 1
_af _ _aft
FA=AN T AAr (A ADATTATA
1 1 1 I1l. PROOF OF THE EXISTENCE OF A
=g~ +AAT +A
1+ATA 1+AAT 1+AAT

We now want to show that in the case of the ten genera-
torsH, K;,P;, andJ; we can find one operatdk that satis-
fies Egs.(32) and (34)—(37). We note that the conditions
(34)—(37) are nonlinear in thé\’s. One can linearize them
by searching foA in the form of a Taylor expansion in the
coupling constant

1
+ ATAm . (43

In the last step we used the following identity:

A= A,g". (50)
v=1

1+ AATATATIATA “9

The term of orderg® is absent since for a free theorg (

—0) the generators are already block diagonal &@rdl is
which can be addressed by applying an operator expansiarchieved withA=0. It is easy to rewrite the set under the
of the fraction. Next we rearrange the projection operatorassumption50) by equating equal powers of Keeping in
and get mind that we assumegH, »=0= K,; » we get the result
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Ho,An. 1= —H,7, 51
[Ho An, ] 17 (5D Ay =— AH,Ay. 7, (64)
2 Er—E, 1
[Ho.An,]1=—AH Ay, (52) .
n—1 AHn+1=_EATAHIAHn77
7
[HO,AHM]=—AH,AHnJrZ1 Aq HA, , n=2, o
(53 + > AAL HA, 7 n=2. (65
v=1 EA_ E77 v n—-v
[Koi’AKil] =~ Kiym (54) These expressions are formal solutions to Ef#—(53) and
are used to carry out our existence proof. If one wants to
[Ko, A, 1= = AK A (59 calculateAy_explicitly special care is needed when perform-
ing the integrations over the energy denominators in Eqs.
n-1 (63)—(65) as they may vanish. As an example we refer to
[Ko Ak, 1=—AK A + 2 A KA, n=2, Sec. IV where this is briefly addressed in the case of particle
" novslow " (56) production. In this sense the above expressions are a sym-
bolic notation forA, .
n
[P;,Ap ]=0, n=1, (57) With the help of the Lie algebr&7)—(15) we will now
'n show by induction tha#,; given by Eqs(63)—(65) satisfies
[J,,A, ]=0, n=1 (58) also Eqs(54)—(58) and therefore one and the saddlock
A ' ' diagonalizes all ten generators.

First we look at Eq(57). Because of
Let us introduce a shorthand notation. An arbitrary eigenstate a(e7)

of Hy in the A space describing a certain number of nonin- [Pi,A]=[P;,7]=0 (66)
teracting particles with momentuim is simply denoted by

|A). Its energy, the eigenvalue td,, is denoted byE, . one has the following identity for any operat8(H):

The projection operator into th& space is then given by

1
Pi ’?E,]AB(HM EA—EWA[Pi ,B(H) 7.

A= @palaxal, (59 (67

Further, sincd®; commutes wittH, andH, it also commutes

whered3p, stands for all momentum integrations. Similarly ™
with Hi=H—H,. Consequently we get

we denote an arbitrary state in thespace by 7), its energy
by E, and the projection operator into thgspace by

1
[Pi An,]=~— Pi,—AHH?}
1 E,—E
nEJ”d%nlanI- (60) b

1
=g =g APiHIn=0. (69

Since, as stated above, the generai@s-(5) can be ex-
pressed in terms of particle creation and annihilation operag

. ; . . y induction this carries over td,_andAy with n=3 and
tors, it follows from the basic commutation relations that we 2 n

we can write

can write:
(A+7)G=G(A+7)=G, 61) Ap,=An - (69)
G being any of the ten generators. Then it is very convenient € Proof of Eq.(58) using Ay, is very similar. Equations
to use the following notation: (66)—(68) remain valid replacind®; by J; andJ; commutes
with H andH,. Consequently we can also put
1 1
d3p,d® A)AIB = AB7, A=Ay, 70)
[ Eorep =g ANAlBI (= g A L =An (
(62) The proof thatAHn solves the set54)—(56) is the difficult
whereB is an arbitrary operator. one. We need the following relations. From

The set(51)—(53) can now be solved recursively. Note
that according to E32) A connects thé\ and thez spaces.
Using now the notatior§62) one finds the following expres-
sions forAHn:

[H,Ki]:—ipi (71)

and the linear dependencetdfandK; ong[see Eqgs(2), (3),
and(6)] we find easily by equating operators related to equal
powers ing

An =~ g g, A 63 [Ho.Kg]=—iP;, (72

7
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[HO,K|i]=[Koi,H|],
[H K, ]=0.

Further one has

d

[KoiaC(Ho)]:iPimo

C(Ho),

A. KRUGER AND W. GLOCKLE
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(73 Using Eq.(79) and applyingH, this can be rewritten as
(74)
1
[Koi,AH2]= - ﬁAK“(EA_ HO)AH177
(75
+EA_E77AH|K|i7]. (81)

where C depends orH, only. Because of the free state ki-

nematics it is also easily seen that

[KOivA]:[KOivn]ZO'
Using all that one verifies that
AB(H)n}

K 1
% E-E,

A[Kg;,.B]lp+AB

Ko,

Er—E, EA—HJ”

EA_EWA[KOPB] UB

This enables us now to show thél;:,l solves Eq(54):

[KOiaAHl]: Koia_ AHn

E,—E

7

EA_E”A[KOiaHl]n

Er—E,

A(EA_E‘”)Kliﬂ: _AK|i77.

(76) Further using Eq(74) we get

1
[Ko, A, 1=~ EAKH[(EA_ Ho)Ay,—Hiln

EA_ EnAK|i(EAAHl_[HO’AH1]

— Ay Ho—H)7

! AK
E,—E,

(77 =~ AK A~

(78) X(—=[Ho,Ay,]=H)7

:_AKIiAHl' (82)

The last step follows from Eq51) and provesAy =Ay, .
2
Due to the structure of the sé4)—(56) it turns out that
the proof forAH3 andAH4 should also be treated separately.
Since the algebra is rather lengthy and the steps used for the
general caséy , n=5 include all the ones for the simpler

caseqn=3 andn=4 we leave the verification for those sim-
pler cases to the reader.
We embark now in the proof thaﬁHnH, n=4 is a solu-

tion of Eq. (56) provided everyAy , v<n is a solution of

(79) the set(54)—(56). From Eq.(65) we get

Next let us verify thalAH2 from Eq. (64) solves Eq(55):

1
—AHIAH177

[KOi!AHz]: - Koi’ EA_E
7

- EA_EWA[KOileAHl]n

EA_ EnA[HO’Kli]AHln

1
Er—g, MHilKo An, 17

(Ko, 1= g—gA

E,—E

KO_,( _H|AH
7 1 n

7. (83

n—1
+ 21 AHVH,AHHV)

(80) : : .
Using Eq.(73) this can be rewritten as
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1
[Koi:AHnH]: EATA( _[HOiKIi]AHn_HI[KOiaAHn]
7

n—-1
+ 2 [KoAu JHiAY

Er—E,

n—1
+ 21 An [Ho Ky JAy

n—-1
) AHVH.[Koi,AHn_V]) 7 (84)

:_AKliAHnﬂ_

FECTIVE ... 1925

The first term in Eq(84) is changed as

A[Ho. K JAy 7

1
EA_E”AKli(En_HO)AHnn' (85)

Inserting this into Eq{84) and using the assumption that
AHV' v=<n solves the set54)—(56) we get

1 n-2
(Ko Au_, J= —AK Ay + ﬁ/\ — K| (E,~Ho)Ay +|HA'K Ay — ngl AHVK,iAHn_l_V}
n—-1 v—2
+| =Ky 7' HAy  —K Ay HAL + 23 ( KAyt > Ay, KiAn, , [HIAG
V= v =1
n—1 n—-3 n—v—2
£ 2 AuHo KiJAG H 2 Ay HI K Ay b 3 A K A A HK A
v= v= v =1
_AHn-lHIKIi ) 77+ EA—E”A(KIiA’HIAHn-l_KliA,HlAHn-l) n. (86)
|
The square brackets are inserted to group the terms together
resulting from the commutators witKy; . Moreover we — [Ko,An 1= —AK Ay +=—FA
) . A
added a zero at the end and used the identity K
n—-2

AHnHIAKli:AHnHIKli (87)

which is valid becausé, has an» projector on the right.
Equation(86) can be simplified by means of the two identi-
ties

_KIiAHI+HIAK|i_K|i7]H|:_KliHI+HIAKIi

=—H7K, (88)
and

Next we

EA—EWA Kli(HO_ EW)AHn—'_ KIiA’HIAHn-l
n-1

- Kli 23 AHV—lHIAHn-V_ KIiAHlHIAHn-Z n= 0.

(89

The second one is just a consequence of(E8). Using Egs.

(88) and (89) we find and

—Hiy’ KIiAanl_ H, 21 AHuKliAHn-l-y

n-1 v-2

+2 2 A KAy Lo AL
v=3 =1 v i v-1-v v
n—-1 n-3

+ Zl Ay [Ho. Ky JAy  + 21 Ay H

n—-v—2
_KIiAHn-V-1+ Vgl AHV’KIiAHn-V-l-V')

X
_AHn-zHIKIiAHl_AHn_1H|KIi 7. (90)
exchange the orders of summation
n-1 v-2
E E AH rKl-AH ,H|AH
v=3 ,/ =1 4 | v-1-v n-v
n-3 n—v' -2
= 2 21 AHV'KIiAHvHIAHn-y'-l.V (91)
v'=1 V=
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n-3 n—v-2 n-3 n-»'-2
2 AnH 2 Ay KA =2 2 ALKALHAL,
v'=1 v =1
n—3 n—2 n-3
=2, AnHy El An, KiAg = 3 A KiHAG A KA,
v =1+v »'=1 - !
n-2 »' -1 _AHanIiHI
=22 AHAL KA (92 '
2 14
Using Eq.(91) we can group together some terms from Eg. =+ Vgl An, KilHo A 1+ An K [Ho A,
(90) taking Eq.(74) and the set51)—(53) into account:
n-1 -2 +Au  Ki[Ho Ay, ]
2 Z Ag KiAy  HA,
’ =2 Ay K [Ho.Ay_ 1. (93)
n—-3 v'=1
-~ Z Ag KiHAL  —An K HAG
v =1
Similarly the expressioni92) can be grouped together with
~An, KiH two more terms from E¢(90)
n—-3 n—v—2 n-2
EAHHEAHKAH —AH 7K Ay —AHEAHKAH
v'=1 v'=1
n—-2 v =1
= 2 _AH|AH”,+ El AHVHIAHV'-U KliAHn-l-V'_AHI77,KIiAAHn-l_AHIAHlKIiAHn-Z
v =2 =
n—2

S [HO'AHV’+1]K'iAHn-1-u’+[H0’AH1]K'iAHn-1+[HO’AHz]K'iAHn-z

H

[Ho An  IK ) Ay +[Ho, Ay 1K Ay +[Ho, An IK Ay )
V=3

-1
= E [Ho.An  IKi Ay - (94
v =1
|
Again we used the séb61)—(53) several times. Inserting all n-1
that into Eq.(90) that expression simplifies greatly and leads =—AK; Ay + > An KAy (95
to the desired result v=1

This is our final result stating that solves Eq(56) for
(Ko, An 1= —AK| Ay . 9 ¥ -q( )
n=4 provided thatAHV, v=1,2,3,4 is a solution of Egs.

(54)—(56). This, however, is the induction assumption and
+ E._E A; [An Ki[Ho,An ] has been shown before.
7Y We conclude that

n—1

TAy [Ho K 1Ay Ac —A,. n=1 (96)
+[Ho. Ay 1K\ An_ 177
and hence
= — AKjiAy

AKi:AH . (97)
n—-1

AE AH 77 K| A’AH

E A—E, Together with Eqs(69) and (70) we arrive at the important
result thatAy solves the set of all Eq$34)—(37) and all

X(Ey—E,+E, —Ex +EA—E, )7 indices on theA’s can be omitted. In practice one will use
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the recu_rsion relation®3)—(65) for calcula_tingA since they Eq= P+ m2,

are easier to solve than the ones resulting from Egd—

(56) and further the condition&7) and(58) are not specific

enough. P 0= VGP+ i (99

V. APPLICATION These two fields are interacting via
We now want to outline how the results of Sec. Ill can be Li(x)=gP2(x)D'(x), (100

applied in the case of nucleon-nucleon scattering. We take

to be the projector on the subspace of two nucleons. For g being the coupling constantb and ®' refer to scalar

simple field theoretical example we refer to Rgf0]. There  “nucleons” and mesons anahg and i are the bare nucleon

two real scalar field® and®’ are introduced, and meson masses respectively. In Ré&D] the effective
generators of this model are calculated up to second order

B (x) 1 J &3 1 (age 1%+ toia) using Egs(38) and(50). The result is
X)= q aqe a,e'"),
V273 V2E, _ .
. . NPmy= 71“ d*q ay0mag| 7, (100)
O’ (x)= fd3q — (bge "+ Dble™), (99
2 2 3 p= Hd3 T(i ~ 2 aladn oz
where omn="7 qay &qkq' (?Chqk q| 7»
- 92 SO+ Gp—a— )
_ 34t _ 3 3 37437t AT
9,79 "0 %
X 1 + ! +0(g* (103
2 — _ > > — — 2 n g’),
©®q,-q) (qu Eqé) g -q (qu Eqi)
- i—fd3 e 9, % ¢ a__gz fd3 g, Pasalala, ag e
nMmn=17 2 qaq q&qm aqm q/“%q 4(277)3 010702 ql q2 qi qé d, %, (—Eq'Eq’Eq Eq
1 M2 1 M2

i g
XJ dsk( 8= —k) — ——8%(ty—0; +K)

wi—(Eq,—Eq)? Knm

J
+é\°’(q1—<1£—k)w2_ zmrﬁ(qz—qhk) n+0(g%). (104)

k—(Eq,

qi)

In Egs. (103 and (104 we neglected vacuum and self en- to a forthcoming article. Renormalization for the space
ergy terms which should be treated by suitable renormalizacorresponding to one nucleon has already been carried
tion procedures and also nucleon antinucleon annihilatiothrough in lowest ordef©(g?)] and leads nicely to the ex-
contributions are not included. In R4fL0Q] it is shown by pected mass renormalizatidii7]. We find due to self-
explicit verification that the effective generators given aboveenergies expressions fot and Ri where bare masses are
fulfil the Lie algebra up to defects of ordgf. This has to be replaced by the physical masses in second order.

the case, since the unitary transformation conserves the com- It is important to note that the operatais01)—(104) are
mutation relations, and because of the nonlinearity present iwell defined Hilbert space operators. This is obvious because
Egs.(13) and(14) the error has to be of ordéd(g%), if the  of the Yukawa-type forces ifl andK; . Note that this is not
effective generators are determined up to or@g?) only.  the case for the original generators defined through matrix
Also the operator productsnatrix multiplications up to that  elements in the full Fock space.

order are well defined. It will be interesting to pursue the Let us now draw our attention to the formulation of scat-
expansion of the effective generators to ord¥g®) to see tering theory. We assume a more realistic field theoretical
the emergence of vertex correctiaffisrm factors and to see  model that guarantees baryon conservation. For this purpose
which role they play for the fulfilment of the algebra. Also we define|¥¢)(*) to be a scattering state developing from
renormalization will be an interesting issue. This will be left two initially free nucleons described By ¢)°
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and from Eqs(63)—(65) we see that overall energy denomi-

|‘1’E>(+):imi me’E)O- (105  nators are a common feature A&f :
1
We perform an Okubo transformation szAaynE £ (117
AT Eq
~ 1
|[We)=U|Pe) P =limieU WU*UWE)O We again used our notatid2) anda, is a string of opera-
=0 le tors. According to Egs(107), (115, and(117) we have the
1 following contributions to the second part in E4.07):
= Iimie~—_U|\IfE>°. (106) 1 a
<0 E-Htle Iimie~—f dA|A)(A| gz [We)
— —H+ielA -
From Eqg.(31) we have o E-Htlie A
_ 1 :||m|E(Go+G0VeﬁGOJF)
|We)=limie————[1+F(A)]|¥e)° (107 0
e—0 E-—H+ | € a
X | dAJANA| =——=|Pg)°. 118
with [oamaigpwee s

F(A)=—1+(1+ATA)"2—(1+AA") YA, (108  Since we assumed an interaction conserving the baryon num-
ber the A states in Eq(118 contain two nucleons and an

arbitrary number of mesons amdiN pairs. Then we distin-
1 1 3 guish two cases.
F(A)=—-A- EATA+ EAATA+ ZATAATA (1) E<2my+ uo. In this caseE,, can never be equal
and therefore the denominator cannot vanish. We end up
with integrals being finite after renormalization. Conse-
quently the multiplication with e gives zero.

(2) E=2my+ ug. In this case the energy denominator
As long asF (A) 7| We)? is no eigenstate of the full effective can vanish and the formal expression in EtL7) will have
Hamiltonian or of the free Hamiltonian and has a finite norm,two contributions. One is a principal value integral in Eq.
we can conclude (118 which leads to a finite result and therefore does not
contribute. The second part is proportional(d , — E) giv-
ing a discrete contribution aE,=E. The corresponding
eigenstate tdH, leads to an 1€ coming from G, in Eg.
(118 and therefore gives a nonvanishing contribution.
and hence The additional terms in E¢109 do not have the struc-

ture (117 and hence do not contribute. We conclude that our

|{I}E>E 7]|§,E> (111) assumption110 is only valid at energies below the meson
production threshold. The result is that effective scattering

states in they space are equivalent to those in the full space
~ ) ] ) and can be obtained as solutions of an effective Lippmann
calculate|Wg) in this case from an “effective Lippmann Schwinger equation for scattering at energies below the

We expand-(A) and get

3
- ZAATAATA+ el (109

~ 1
|We)=limie————|Wg)° (110
e—-0 E—H+ie

sinceH is block diagonal. According to Eq110) we can

Schwinger equation” and therefore write threshold of particle production. If we go to higher energies
~ ~ the solution of this Eq(110) is no longer equivalent to the
[We)H=|Pg), (112 original scattering states since E410) neglects nonvanish-
- ing contributions coming from Eq108). In this case they
Veg=H—Hy, (113 space has to be augmented by including an additional meson.

This is also left to a future investigation.

|‘E'E>(+>:|‘I’E>07L Veﬁ|E’E>(+)- (114

E—Hgtie V. SUMMARY
Note thatH, is not transformed. What are the conditions The matrices of the ten generators of the Poincaeip
allowing for our assumptiori110? We concentrate on the (2)—(5) with respect to Fock space states are nondiagonal
first term of Eq.(109 and connect states for nucleons, antinucleons, and mesons.
The generators can be constructed according to often used
F(A)=-A. (119  Lagrange densities. The matrices can be blockdiagonalized
at the same time by a single unitary transformation. Thereby
the blocks are defined by two projection operators which
@ span the Fock space, one refering to a fixed number of nucle-
A= E A,g" (116 ons and the other to the rest of the space. As a consequence
=1 ' the resulting unitarily transformed generators act in these

From the discussion in Sec. Il we know that
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two spaces separately and specifically we gained effectivean now be determined for a given field theory and are dif-
generators in the space Nfnucleons which are representa- ferent from zero. In fact in the numerical examples studied
tions of the Poincaralgebra. This result has been proven[12] they are as important as those enforced by the Poincare
using a(formal) power series expansion in the coupling con-algebra. Thus the scheme discussed in this article provides
stant. We see the importance of that result in the existencgteresting structural insight.

prOOf. Clearly in pl‘aCtice this series has to be truncated as is In addition one can pose now Various questions_ One Of
usually done in evaluatiniyN forces in low orders of meson tne effective generators, the Hamiltonian in the spacél of
excha_mges. We would also like to note that our proof_ i_n Secnucleons, will contairNN but also many body forces. Wil

Il relies only on the forms(2)—(5) for the ten Hermitian hey fyifil the cluster separability? Since the effective gen-
generators together with mterac;p(ﬁ) bemg linear ina  grators are constructed in a power series expansion in the
coupling constant and the additional requirementd, » coupling constant one encounters in all ordgfswith n

= 7K,in=0. =4 meson exchange diagrams together with vertex correc-

Results of numerical studies in Refd.2—14 using the tions for instance. The question then arises whether the Poin
ffectiv nerators E 1)—(104) are promising. Th , ' . . i
effective generators Eq¢10)—(104 are promising °y care algebra for the ten effective generators, which is ful-

show for instance that the relativistic energy-momentum re-, . . . :
lation of a two body state is rather well fulfilled if one solves filled n each order irg, requires aII. the terms of a certain
the Schradinger equation using the effective Hamiltonian in ©rder ing or whether subgroups fulfil the algebra separately.
frames where the total momentum of the two-body system i&" the first case the Poincasgebra would impose condi-
different from zero. They also show that contributions to thefions on the acceptable vertex corrections which would play
relativistic Hamiltonian which remain undetermined in the the role of strong form factors. Further investigations of that

scheme of a 1fcexpansion of the Poincamgenerator§5]  type are planned including renormalization.
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