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Approach towards N-nucleon effective generators of the Poincare´ group
derived from a field theory

A. Krüger and W. Glo¨ckle
Institut für Theoretische Physik II, Ruhr-Universita¨t Bochum, D-44780 Bochum, Germany

~Received 12 December 1997!

It is shown that the ten Hermitian generators of the Poincare´ group derived from standard Hermitian
Lagrangians which describe interacting fields can be block diagonalized by one and the same unitary trans-
formation such that the space of a fixed number of nucleons is separated from the rest of the space. The
existence proof is carried through using a formal power series expansion in the coupling constant to all orders.
In this manner one arrives at effective Hermitian generators of the Poincare´ group which act in the two
subspaces separately.@S0556-2813~99!00304-0#

PACS number~s!: 21.45.1v, 03.30.1p, 03.65.2w, 21.30.Fe
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I. INTRODUCTION

Low-energy nuclear physics below the meson threshol
naturally formulated in terms of a fixed number of nucleon
degrees of freedom. In the overwhelming number of ap
cations a nonrelativistic framework is used. This, however
not sufficient if one investigates for instance electron scat
ing with high three-momentum transfers as one encounte
typical experiments performed nowadays. Also it is still
open question whether relativistic effects play a signific
role when calculating the binding energy of nuclei. In thre
nucleon scattering it has been found recently@1# that the total
nd cross section evaluated with most modernNN forces and
based on rigorous solutions of the 3N Faddeev equation
deviate from the data above'100 MeV nucleon laboratory
energy. That discrepancy reaches about 10% at 300 M
and is very likely caused by the neglect of relativity. On
these grounds a relativistic generalization of the usual Sc¨-
dinger equation forN interacting nucleons is highly desir
able.

In Ref. @2# Dirac proposed three forms of relativist
quantum mechanics for a given number of interacting p
ticles. A realization thereof in the instant form was given
Bakamjian and Thomas@3#. That scheme, however, violate
cluster separability@4#. Being less ambitious and searchin
just for relativistic correction terms to the generators of
Galilean group in leading orders Foldy and Krajcik ha
discussed@5# a 1/c2 expansion of the ten generators of t
Poincare´ group. This scheme has been applied recently i
realistic context in the 3N system@6#. A way to treat the
defect in the Bakamjian and Thomas scheme with respec
the cluster separability has been found by Sokolov@7# and
also worked out by Coester and Polyzou@8#. An extensive
overview over the whole subject is given in Ref.@9#.

There is, however, also another approach to the genera
of the Poincare´ group for a fixed number of particles. Rela
tivistic field theory provides generators which act in the f
space with an infinite number of particles. Thinking of a
plications for nuclear physics one considers interacting fie
of nucleons and mesons. To arrive at generators which a
the space of a fixed number ofN nucleons one has to elimi
nate the mesonic degrees of freedom as well as the one
PRC 590556-2813/99/59~4!/1919~11!/$15.00
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antiparticles. A way to do this has been proposed in Ref.@10#
and worked out in lowest order in the coupling constant fo
field theory of ‘‘scalar nucleons’’ interacting with a scala
meson field. While this has been formulated in the inst
form a corresponding derivation can also be performed in
light front form @11#. Numerical investigations based o
those effective generators determined in leading order in
coupling constant have been carried through in Refs.@12#,
@13#, and@14#.

In this article we want to show that the derivation pr
posed in Ref.@10# can be carried through to arbitrary order
the coupling constant. Thus the effective generators of
Poincare´ group in anN nucleon subspace do exist at least
the sense of a formal series expansion. It will be interest
to investigate whether those generators are automatic
also cluster separable. This is left to a future study.

In Sec. II we formulate our way to derive the effectiv
generators in theN nucleon subspace out of a field theore
cal model of interacting nucleon and meson fields. The e
tence proof is carried through in Sec. III. We discuss
properties of the new generators and outline possible ap
cations in Sec. IV before we briefly summarize in Sec. V

II. CONDITIONS FOR THE EFFECTIVE GENERATORS

We consider a field theory of interacting scalar ‘‘nucl
ons’’ and ‘‘antinucleons,’’ and mesons given by a Hermitia
Lagrangian of the form

L5L01LI , ~1!

whereL0 is the free part and the interacting partLI is linear
in the coupling constantg. We also assume thatLI is linear
in creation and absorption operators for mesons as is the
for often used field theories@see, for instance, Eq.~100!#. In
a standard manner@15# one arrives at the ten Hermitian gen
erators of the Poincare´ group for constant time slices~instant
form!. The Hamiltonian and the three boost operators ca
interactions, whereas the total momentum and angular
mentum operators are the free ones. The latter two leave
planet5const invariant. Thus one has in obvious notatio

H5H01HI , ~2!
1919 ©1999 The American Physical Society
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1920 PRC 59A. KRÜGER AND W. GLÖCKLE
Ki5K0i1KIi , ~3!

Pi5P0i , ~4!

Ji5J0i , ~5!

where due to Eq.~1!

HI;g,

KIi ;g. ~6!

These ten operators fulfil the Lie algebra of the Poinc´
group

@Pi ,H#50, ~7!

@Ji ,H#50, ~8!

@Pi ,Pj #50, ~9!

@Ji ,Jj #5 i e i jkJk , ~10!

@Ji ,Pj #5 i e i jk Pk , ~11!

@Ji ,K j #5 i e i jkKk , ~12!

@H,Ki #52 iPi , ~13!

@Ki ,K j #52 i e i jkJk , ~14!

@Pi ,K j #52 id i j H. ~15!

Formally one can verify that using the equal time commu
tion relations of the underlying fields. Following the deriv
tion scheme for the generators starting from a field theor
cal Lagrangian density we note that the operators in E
~2!–~5! can be expressed as sums and integrals over par
creation and absorption operators which fulfil the stand
commutation relations equivalent to the equal time comm
tation relations. As a consequence the set of commuta
relations is fulfilled by matrices of those generators with
spect to Fock space states. This matrix form underlies
algebra presented below and in Sec. III.

BecauseLI is assumed to be linear in the creation a
annihilation operators for mesons,HI andKIi will be linear
in these operators too. Hence the eigenstates ofH will nec-
essarily contain an infinite number of mesons in addition
the nucleons~and antinucleons!. The behavior of such an
eigenstate under Lorentz transformation, however, is tra
parent. We regard the operator of four momentum

Pm[~H,P1 ,P2 ,P3! ~16!

and consider a Lorentz transformationT(G,a) defined by

xm→
T

x8m5Gm
nxn1am. ~17!

Related toT is a unitary operatorU(G,a) acting in the Hil-
bert space spanned by the eigenstates ofH. A consequence
of the commutation relations~7!–~15! are the transformation
properties ofPm:
e

-

i-
s.
le
d
-
n

-
ur

o

s-

Pm→
T

P8m5UPmU†5Gn
mPn. ~18!

Because of Eqs.~7! and ~9! there exist simultaneous eigen
states related to the four components of the four-momen
operator, which fulfil

PmuCp&5pmuCp&. ~19!

Applying U and using Eq.~18! one gets

Gn
mPnUuCp&5pmUuCp&. ~20!

This can be rewritten into

PnUuCp&5Gn
mpmUuCp&. ~21!

Thus up to a phase factor we get

UuCp&5uCGp& ~22!

and the ‘‘four-dimensional Schro¨dinger equation’’~19! reads
in the new frame of reference

PmuCGp&5~Gp!muCGp&. ~23!

Therefore the simultaneous eigenstates ofPm in the new
frame are eigenstates in the old frame with Lorentz tra
formed eigenvalues of the overall four momentum.

We pose now the question if one can find a matrix rep
sentation of the Poincare´ algebra being restricted to a sub
space with a fixed number of particles. We want to call su
matrices ‘‘effective.’’ In other words those effective matrice
are block diagonal with respect to the subspace with a fi
number of particles and the rest of the Fock space. If i
possible to find an effective representation of the Poinc´
group one is able to formulate an effective Schro¨dinger equa-
tion in the subspace of a given number of particles, sayN
nucleons and no mesons, as in Eq.~19!. The interesting point
about that is that this equation would be easier to solve t
Eq. ~19! since the number of degrees of freedom is fin
now. In addition, since we assume the Poincare´ algebra to be
fulfilled in that subspace, this effective Schro¨dinger equation
inherits the nice transformation properties of Eq.~23!.

A way to find effective generators is to unitarily transfor
the generators~2!–~5! by an operatorU such that all ten
generators are put into a block diagonal shape at the s
time. One block would refer to theN nucleon subspace, th
other block to the rest and the two blocks would not
coupled. Under a unitary transformation the commutation
lations remain valid, of course. Let us denote the project
on the subspace ofN nucleons byh and the projection on the
rest byL[12h. Then what we are looking for is a unitar
transformationU, the existence of which is needed to b
proved and which is of the form

H→
U

H̃5hH̃h1LH̃L, ~24!

Ki→
U

K̃ i5hK̃ ih1LK̃ iL, ~25!

Pi→
U

P̃i5h P̃ih1L P̃iL, ~26!
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Ji→
U

J̃i5h J̃ih1L J̃iL. ~27!

While H and Ki ~in the instant form! couple theh and L

spaces, this is by assumption no longer the case forH̃ andK̃ i

and the operatorshH̃h,hK̃ ih,h P̃ih, andh J̃ih are effective
generators of the Poincare´ group. Now one can look for
eigenstates ofP̃m whoseL components are zero. Loren
transformations on those states are generated by the effe
operators and we may write down the effective Schro¨dinger
equation

h P̃mhuc̃&5pmhuc̃&. ~28!

In Ref. @10# such a path has been initiated and will
worked out more stringently now. In Ref.@16# Okubo pro-
posed a way to transform an arbitrary Hermitian operato

O5S hOh hOL

LOh LOL
D ~29!

into a block diagonal form by means of a unitary transf
mationU:

O→Õ5UOU †5hÕh1LÕL. ~30!

We follow Okubo for the choice of the unitary operator

U5S hUh hUL

LUh LUL
D

5S ~11A†A!21/2h ~11A†A!21/2A†

2~11AA†!21/2A ~11AA†!21/2L
D , ~31!

whereA has the form

A5LAh. ~32!

Unitary transformations within the subspacesh and L are
put to 1. Using the forms~29! and ~31! the requirement for
block diagonalization is

L~@O,A#1O2AOA!h50. ~33!
ive

-

Since it is a priori not obvious that it will be possible to
block diagonalize each generator using the sameU we label
A with the generator to be block diagonalized. Noting E
~4! and~5! telling thatPi andJi do not connect theh andL
spaces the conditions for the ten operatorsAH , AKi

, APi
,

andAJi
turn out to be

L~@H0 ,AH#1HIAH1HI2AHHIAH!h50, ~34!

L~@K0i
,AKi

#1KIi AKi
1KI i

2AKi
KIi AKi

!h50, ~35!

L@Pi ,APi
#h50, ~36!

L@Ji ,AJi
#h50. ~37!

Here we made use of the assumption thatLI and henceHI
and KIi are linear in the meson operators such thathHIh
505hKIi h. If one and the sameA can be found that fulfils
the set of conditions~34!–~37! the existence of ten effective
generators of the Poincare´ group in the separate subspacesh
andL is proven. In that case we find the following form o
the effective generators:

hÕh5hU~L1h!O~L1h!U †h

5~11A†A!21/2~h1A†!O~h1A!~11A†A!21/2.

~38!

Because these effective generators are derived by a un
transformation they have to fulfil the Poincare´ algebra. Nev-
ertheless we want to show by explicit calculation that this
indeed the case. As we will see now we only require
properties~32! and ~33!.

With the help of the decoupling equation~33! we add
zeros in two ways

hÕh5~11A†A!21/2~h1A†!O~h1A!~11A†A!21/2

5@~11A†A!21/2~h1A†!1~11AA†!21/2

3~2A1L!#O~h1A!~11A†A!21/2

5~11A†A!21/2~h1A†!O@~h1A!~11A†A!21/2

1~L2A†!~11AA†!21/2#. ~39!

Now we regard
@hÕ1h,hÕ2h#5~11A†A!21/2~h1A†!$O1@~h1A!~11A†A!21/21~L2A†!~11AA†!21/2#

3@~11A†A!21/2~h1A†!1~11AA†!21/2~2A1L!#O22O2

3@~h1A!~11A†A!21/21~L2A†!~11AA†!21/2#@~11A†A!21/2~h1A†!

1~11AA†!21/2~2A1L!#O1%~h1A!~11A†A!21/2. ~40!
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We simplify the terms in the brackets in Eq.~40!:

@•••#3@•••#5~h1A!
1

11A†A
~h1A†!

1~h1A!~11A†A!21/2

3~11AA†!21/2~2A1L!~L2A†!

3~11AA†!21/2~11A†A!21/2~h1A†!

1~L2A†!
1

11AA†~2A1L!. ~41!

Due to Eq.~32! this reduces to

@•••#3@•••#5~h1A!
1

11A†A
~h1A†!

1~L2A†!
1

11AA† ~2A1L!

5~h1A!
1

11A†A
~12L1A†!

1~L2A†!
1

11AA† ~2A112h!. ~42!

We use Eq.~32! again to give

@•••#3@•••#5~h1A!
1

11A†A
1~h1A!

1

11A†A
A†

1~L2A†!
1

11AA†2~L2A†!
1

11AA† A

5~h1A!
1

11A†A
1~h1A!A†

1

11AA†

1~L2A†!
1

11AA†2~L2A†!A
1

11A†A

5h
1

11A†A
1AA†

1

11AA†1L
1

11AA†

1A†A
1

11A†A
. ~43!

In the last step we used the following identity:

1

11AA† A5A
1

11A†A
~44!

which can be addressed by applying an operator expan
of the fraction. Next we rearrange the projection operat
and get
on
s

@•••#3@•••#5~12L!
1

11A†A
1AA†

1

11AA†

1~12h!
1

11AA† 1A†A
1

11A†A

5
1

11A†A
2L1AA†

1

11AA†1
1

11AA†

2h1A†A
1

11A†A

5~11AA†!
1

11AA†1~11A†A!
1

11A†A

2L2h51. ~45!

We conclude that

@hÕ1h,hÕ2h#5~11A†A!21/2~h1A†!

3@O1 ,O2#~h1A!~11A†A!21/2.

~46!

Presuming

@O1 ,O2#5O3 ~47!

we get

@hÕ1h,hÕ2h#5~11A†A!21/2~h1A†!

3O3~h1A!~11A†A!21/2

5hÕ3h. ~48!

Thus we arrive indeed at the desired result that the effec
operators in theh space fulfil the same algebra as the orig
nal ones

@O1 ,O2#5O3⇒@hÕ1h,hÕ2h#5hÕ3h, ~49!

whenever we transform three operatorsO1 ,O2 ,O3 by a
transformation given by Eqs.~31!, ~32!, and~33!.

III. PROOF OF THE EXISTENCE OF A

We now want to show that in the case of the ten gene
tors H, Ki ,Pi , andJi we can find one operatorA that satis-
fies Eqs.~32! and ~34!–~37!. We note that the conditions
~34!–~37! are nonlinear in theA’s. One can linearize them
by searching forA in the form of a Taylor expansion in th
coupling constant

A5 (
n51

`

Angn. ~50!

The term of orderg0 is absent since for a free theory (g
→0) the generators are already block diagonal andU51 is
achieved withA50. It is easy to rewrite the set under th
assumption~50! by equating equal powers ofg. Keeping in
mind that we assumedhHIh505hKIi h we get the result
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@H0 ,AH1
#52HIh, ~51!

@H0 ,AH2
#52LHIAH1

, ~52!

@H0 ,AHn11
#52LHIAHn

1 (
n51

n21

AHn
HIAHn-n

, n>2,

~53!

@K0i
,AKi 1

#52KI i
h, ~54!

@K0i
,AKi 2

#52LKI i
AKi 1

, ~55!

@K0i
,AKi n11

#52LKI i
AKi n

1 (
n51

n21

AKi n
KI i

AKi n2n
, n>2,

~56!

@Pi ,APi n
#50, n>1, ~57!

@Ji ,AJi n
#50, n>1. ~58!

Let us introduce a shorthand notation. An arbitrary eigens
of H0 in the L space describing a certain number of non
teracting particles with momentump is simply denoted by
uL&. Its energy, the eigenvalue toH0 , is denoted byEL .
The projection operator into theL space is then given by

L[E
L

d3pLuL&^Lu, ~59!

whered3pL stands for all momentum integrations. Similar
we denote an arbitrary state in theh space byuh&, its energy
by Eh and the projection operator into theh space by

h[E
h
d3phuh&^hu. ~60!

Since, as stated above, the generators~2!–~5! can be ex-
pressed in terms of particle creation and annihilation ope
tors, it follows from the basic commutation relations that w
can write:

~L1h!G5G~L1h!5G, ~61!

G being any of the ten generators. Then it is very conven
to use the following notation:

E
h,L

d3pLd3ph

1

EL2Eh
uL&^LuBuh&^hu[

1

EL2Eh
LBh,

~62!

whereB is an arbitrary operator.
The set~51!–~53! can now be solved recursively. Not

that according to Eq.~32! A connects theL and theh spaces.
Using now the notation~62! one finds the following expres
sions forAHn

:

AH1
52

1

EL2Eh
LHIh, ~63!
te
-

a-

nt

AH2
52

1

EL2Eh
LHIAH1

h, ~64!

AHn11
52

1

EL2Eh
LHIAHn

h

1 (
n51

n21
1

EL2Eh
LAHn

HIAHn2n
h, n>2. ~65!

These expressions are formal solutions to Eqs.~51!–~53! and
are used to carry out our existence proof. If one wants
calculateAHn

explicitly special care is needed when perform
ing the integrations over the energy denominators in E
~63!–~65! as they may vanish. As an example we refer
Sec. IV where this is briefly addressed in the case of part
production. In this sense the above expressions are a s
bolic notation forAHn

.
With the help of the Lie algebra~7!–~15! we will now

show by induction thatAHn
given by Eqs.~63!–~65! satisfies

also Eqs.~54!–~58! and therefore one and the sameA block
diagonalizes all ten generators.

First we look at Eq.~57!. Because of

@Pi ,L#5@Pi ,h#50 ~66!

one has the following identity for any operatorB(H):

FPi ,
1

EL2Eh
LB~H !h G5

1

EL2Eh
L@Pi ,B~H !#h.

~67!

Further, sincePi commutes withH0 andH, it also commutes
with HI[H2H0 . Consequently we get

@Pi ,AH1
#52FPi ,

1

EL2Eh
LHIhG

52
1

EL2Eh
L@Pi ,HI #h50. ~68!

By induction this carries over toAH2
andAHn

with n>3 and
we can write

APi
5AH . ~69!

The proof of Eq.~58! using AH is very similar. Equations
~66!–~68! remain valid replacingPi by Ji andJi commutes
with H andH0 . Consequently we can also put

AJi
5AH . ~70!

The proof thatAHn
solves the set~54!–~56! is the difficult

one. We need the following relations. From

@H,Ki #52 iPi ~71!

and the linear dependence ofH andKi ong @see Eqs.~2!, ~3!,
and~6!# we find easily by equating operators related to eq
powers ing

@H0 ,K0i
#52 iPi , ~72!
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@H0 ,KI i
#5@K0i

,HI #, ~73!

@HI ,KI i
#50. ~74!

Further one has

@K0i
,C~H0!#5 iPi

]

]H0
C~H0!, ~75!

whereC depends onH0 only. Because of the free state k
nematics it is also easily seen that

@K0i
,L#5@K0i

,h#50. ~76!

Using all that one verifies that

FK0i
,

1

EL2Eh
LB~H !h G

5FK0i
,

1

H02Eh
LB~H !h G

5FK0i
,

1

H02Eh
GLBh

1
1

EL2Eh
L@K0i ,B#h1LBFK0i

,
1

EL2H0
Gh ~77!

5
1

EL2Eh
L@K0i

,B#h. ~78!

This enables us now to show thatAH1
solves Eq.~54!:

@K0i
,AH1

#5FK0i
,2

1

EL2Eh
LHIh G

52
1

EL2Eh
L@K0i

,HI #h

52
1

EL2Eh
L@H0 ,KI i

#h

52
1

EL2Eh
L~EL2Eh!KI i

h52LKI i
h.

~79!

Next let us verify thatAH2
from Eq. ~64! solves Eq.~55!:

@K0i
,AH2

#52FK0i
,

1

EL2Eh
LHIAH1

h G
52

1

EL2Eh
L@K0i

,HIAH1
#h

52
1

EL2Eh
L@H0 ,KI i

#AH1
h

2
1

EL2Eh
LHI@K0i

,AH1
#h. ~80!
Using Eq.~79! and applyingH0 this can be rewritten as

@K0i
,AH2

#52
1

EL2Eh
LKI i

~EL2H0!AH1
h

1
1

EL2Eh
LHIKI i

h. ~81!

Further using Eq.~74! we get

@K0i
,AH2

#52
1

EL2Eh
LKI i

@~EL2H0!AH1
2HI #h

52
1

EL2Eh
LKI i

~ELAH1
2@H0 ,AH1

#

2AH1
H02HI !h

52LKI i
AH1

2
1

EL2Eh
LKI i

3~2@H0 ,AH1
#2HI !h

52LKI i
AH1

. ~82!

The last step follows from Eq.~51! and provesAH2
5AKi 2

.

Due to the structure of the set~54!–~56! it turns out that
the proof forAH3

andAH4
should also be treated separate

Since the algebra is rather lengthy and the steps used fo
general caseAHn

, n>5 include all the ones for the simple

casesn53 andn54 we leave the verification for those sim
pler cases to the reader.

We embark now in the proof thatAHn11
, n>4 is a solu-

tion of Eq. ~56! provided everyAHn
, n<n is a solution of

the set~54!–~56!. From Eq.~65! we get

@K0i
,AHn11

#5
1

EL2Eh
LFK0i

,S 2HIAHn

1 (
n51

n21

AHn
HIAHn2nD Gh. ~83!

Using Eq.~73! this can be rewritten as
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@K0i
,AHn11

#5
1

EL2Eh
LS 2@H0 ,KI i

#AHn
2HI@K0i

,AHn
#

1 (
n51

n21

@K0i
,AHn

#HIAHn-n

1 (
n51

n21

AHn
@H0 ,KI i

#AHn-n

1 (
n51

n21

AHn
HI@K0i

,AHn-n
# Dh. ~84!
et

ti-
The first term in Eq.~84! is changed as

2
1

EL2Eh
L@H0 ,KI i

#AHn
h

52LKI i
AHn

h2
1

EL2Eh
LKI i

~Eh2H0!AHn
h. ~85!

Inserting this into Eq.~84! and using the assumption tha
AHn

, n<n solves the set~54!–~56! we get
@K0i
,AHn11

#52LKI i
AHn

1
1

EL2Eh
LS 2KI i

~Eh2H0!AHn
1FHIL8KI i

AHn-1
2HI (

n51

n22

AHn
KI i

AHn-1-nG
1F2KI i

h8HIAHn-1
2KI i

AH1
HIAHn-2

1 (
n53

n21 S 2KI i
AHn-1

1 (
n851

n22

AHn8
KI i

AHn-1-n8D HIAHn-nG
1 (

n51

n21

AHn
@H0 ,KI i

#AHn-n
1F (

n51

n23

AHn
HIS 2KI i

AHn-n-1
1 (

n851

n2n22

AHn8
KI i

AHn-n-1-n8D 2AHn-2
HIKI i

AH1

2AHn-1
HIKI iG D h1

1

EL2Eh
L~KI i

L8HIAHn-1
2KI i

L8HIAHn-1
!h. ~86!
The square brackets are inserted to group the terms tog
resulting from the commutators withK0i . Moreover we
added a zero at the end and used the identity

AHn
HILKI i

5AHn
HIKI i

~87!

which is valid becauseAH has anh projector on the right.
Equation~86! can be simplified by means of the two iden
ties

2KI i
LHI1HILKI i

2KI i
hHI52KI i

HI1HILKI i

52HIhKI i
~88!

and

1

EL2Eh
LS KI i

~H02Eh!AHn
1KI i

L8HIAHn-1

2KI i (n53

n21

AHn-1
HIAHn-n

2KI i
AH1

HIAHn-2Dh50.

~89!

The second one is just a consequence of Eq.~53!. Using Eqs.
~88! and ~89! we find
her
@K0i

,AHn11
#52LKI i

AHn
1

1

EL2Eh
L

3F2HIh8KI i
AHn21

2HI (
n51

n22

AHn
KI i

AHn-1-n

1 (
n53

n21

(
n851

n22

AHn8
KI i

AHn-1-n8
HIAHn-n

1 (
n51

n21

AHn
@H0 ,KI i

#AHn-n
1 (

n51

n23

AHn
HI

3S 2KI i
AHn-n-1

1 (
n851

n2n22

AHn8
KI i

AHn-n-1-n8D
2AHn-2

HIKI i
AH1

2AHn-1
HIKI iGh. ~90!

Next we exchange the orders of summation

(
n53

n21

(
n851

n22

AHn8
KI i

AHn-1-n8
HIAHn-n

5 (
n851

n23

(
n51

n2n822

AHn8
KI i

AHn
HIAHn-n8-1-n

~91!

and
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(
n51

n23

AHn
HI (

n851

n2n22

AHn8
KI i

AHn-n-1-n8

5 (
n51

n23

AHn
HI (

n8511n

n22

AHn8-n
KI i

AHn-1-n8

5 (
n852

n22

(
n51

n821

AHn
HIAHn8-n

KI i
AHn-1-n8

. ~92!

Using Eq.~91! we can group together some terms from E
~90! taking Eq.~74! and the set~51!–~53! into account:

(
n53

n21

(
n851

n22

AHn8
KIi AHn-1-n8

HIAHn-n

2 (
n851

n23

AHn8
KI i

HIAHn-n8-1
2AHn-2

KI i
HIAH1

2AHn-1
KI i

HI
l
ds
.

5 (
n851

n23

(
n51

n2n822

AHn8
KI i

AHn
HIAHn-n8-1-n

2 (
n851

n23

AHn8
KI i

HIAHn-n8-1
2AHn-2

KI i
HIAH1

2AHn-1
KI i

HI

51 (
n851

n23

AHn8
KI i

@H0 ,AHn-n8
#1AHn-2

KI i
@H0 ,AH2

#

1AHn-1
KI i

@H0 ,AH1
#

5 (
n851

n21

AHn8
KI i

@H0 ,AHn-n8
#. ~93!

Similarly the expression~92! can be grouped together wit
two more terms from Eq.~90!
(
n51

n23

AHn
HI (

n851

n2n22

AHn8
KI i

AHn-n-1-n8
2LHIh8KI i

AHn-1
2LHI (

n851

n22

AHn8
KI i

AHn-1-n8

5 (
n852

n22 S 2LHIAHn8
1 (

n51

n821

AHn
HIAHn8-n

D KI i
AHn-1-n8

2LHIh8KI i
LAHn-1

2LHIAH1
KI i

AHn-2

5 (
n852

n22

@H0 ,AHn811
#KI i

AHn-1-n8
1@H0 ,AH1

#KI i
AHn-1

1@H0 ,AH2
#KI i

AHn-2

5 (
n853

n21

@H0 ,AHn8
#KI i

AHn-n8
1@H0 ,AH1

#KI i
AHn-1

1@H0 ,AH2
#KI i

AHn-2

5 (
n851

n21

@H0 ,AHn8
#KI i

AHn-n8
. ~94!
.
nd

t

e

Again we used the set~51!–~53! several times. Inserting al
that into Eq.~90! that expression simplifies greatly and lea
to the desired result

@K0i
,AHn11

#52LKI i
AHn

1
1

EL2Eh
L (

n51

n21

@AHn
KI i

@H0 ,AHn-n
#

1AHn
@H0 ,KI i

#AHn-n

1@H0 ,AHn
#KI i

AHn-n
#h

52LKIi AHn

1
1

EL2Eh
L (

n51

n21

AHn
h8KI i

L8AHn-n

3~EL82Eh1Eh82EL81EL2Eh8!h
52LKI i
AHn

1 (
n51

n21

AHn
KI i

AHn-n
. ~95!

This is our final result stating thatAHn11
solves Eq.~56! for

n>4 provided thatAHn
, n51,2,3,4 is a solution of Eqs

~54!–~56!. This, however, is the induction assumption a
has been shown before.

We conclude that

AKin
5AHn

, n>1 ~96!

and hence

AKi
5AH . ~97!

Together with Eqs.~69! and ~70! we arrive at the importan
result thatAH solves the set of all Eqs.~34!–~37! and all
indices on theA’s can be omitted. In practice one will us
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the recursion relations~63!–~65! for calculatingA since they
are easier to solve than the ones resulting from Eqs.~54!–
~56! and further the conditions~57! and~58! are not specific
enough.

IV. APPLICATION

We now want to outline how the results of Sec. III can
applied in the case of nucleon-nucleon scattering. We takh
to be the projector on the subspace of two nucleons. F
simple field theoretical example we refer to Ref.@10#. There
two real scalar fieldsF andF8 are introduced,

F~x!5
1

A2p3E d3q
1

A2Eq

~aqe
2 iqx1aq

†eiqx!,

F8~x!5
1

A2p3E d3q
1

A2vq

~bqe
2 iqx1bq

†eiqx!, ~98!

where
n-
iz
tio

v

o
nt

he

o
ft
a

Eq[Aq21m0
2,

vq[Aq21m0
2. ~99!

These two fields are interacting via

LI~x!5gF2~x!F8~x!, ~100!

g being the coupling constant.F and F8 refer to scalar
‘‘nucleons’’ and mesons andm0 andm0 are the bare nucleon
and meson masses respectively. In Ref.@10# the effective
generators of this model are calculated up to second o
using Eqs.~38! and ~50!. The result is

h P̃mh5hF E d3q aq
†qmaqGh, ~101!

h J̃mh5hF i E d3q aq
†S ]

]qk
ql2

]

]ql
qkDaqGh, ~102!
hH̃h5hF E d3qaq
†Eqaq2

g2

4~2p!3E d3q1d3q2d3q18d
3q28aq

18
†

aq
28

†
aq1

aq2

d3~q11q22q182q28!

AEq
18
Eq

28
Eq1

Eq2

3S 1

vq22q
28

2
2~Eq2

2Eq
28
!2

1
1

vq12q
18

2
2~Eq1

2Eq
18
!2D Gh1O~g4!, ~103!

hK̃mh5hF i

2E d3q aq
†S Eq

]

]qm
1

]

]qm
EqDaq2

g2

4~2p!3E d3q1d3q2d3q18d
3q28aq

18
†

aq
28

†
aq1

aq2

1

AEq
18
Eq

28
Eq1

Eq2

3E d3kS d3~q22q282k!
i

vk
22~Eq2

2Eq
28
!2

]

]km
d3~q12q181k!

1d3~q12q182k!
i

vk
22~Eq1

2Eq
18
!2

]

]km
d3~q22q281k!D Gh1O~g4!. ~104!
ried
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In Eqs. ~103! and ~104! we neglected vacuum and self e
ergy terms which should be treated by suitable renormal
tion procedures and also nucleon antinucleon annihila
contributions are not included. In Ref.@10# it is shown by
explicit verification that the effective generators given abo
fulfil the Lie algebra up to defects of orderg4. This has to be
the case, since the unitary transformation conserves the c
mutation relations, and because of the nonlinearity prese
Eqs.~13! and~14! the error has to be of orderO(g4), if the
effective generators are determined up to orderO(g2) only.
Also the operator products~matrix multiplications! up to that
order are well defined. It will be interesting to pursue t
expansion of the effective generators to orderO(g4) to see
the emergence of vertex corrections~form factors! and to see
which role they play for the fulfilment of the algebra. Als
renormalization will be an interesting issue. This will be le
a-
n

e

m-
in

to a forthcoming article. Renormalization for theh space
corresponding to one nucleon has already been car
through in lowest order@O(g2)# and leads nicely to the ex
pected mass renormalization@17#. We find due to self-
energies expressions forH̃ and K̃ i where bare masses ar
replaced by the physical masses in second order.

It is important to note that the operators~101!–~104! are
well defined Hilbert space operators. This is obvious beca
of the Yukawa-type forces inH̃ andK̃ i . Note that this is not
the case for the original generators defined through ma
elements in the full Fock space.

Let us now draw our attention to the formulation of sca
tering theory. We assume a more realistic field theoret
model that guarantees baryon conservation. For this purp
we defineuCE& (1) to be a scattering state developing fro
two initially free nucleons described byuCE&0
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uCE&~1 !5 lim
e→0

i e
1

E2H1 i e
uCE&0. ~105!

We perform an Okubo transformation

uC̃E&[UuCE&~1 !5 lim
e→0

i eU
1

E2H1 i e
U†UuCE&0

5 lim
e→0

i e
1

E2H̃1 i e
UuCE&0. ~106!

From Eq.~31! we have

uC̃E&5 lim
e→0

i e
1

E2H̃1 i e
@11F~A!#uCE&0 ~107!

with

F~A!5211~11A†A!21/22~11AA†!21/2A. ~108!

We expandF(A) and get

F~A!52A2
1

2
A†A1

1

2
AA†A1

3

4
A†AA†A

2
3

4
AA†AA†A1•••. ~109!

As long asF(A)huCE&0 is no eigenstate of the full effectiv
Hamiltonian or of the free Hamiltonian and has a finite nor
we can conclude

uC̃E&5 lim
e→0

i e
1

E2H̃1 i e
uCE&0 ~110!

and hence

uC̃E&[huC̃E& ~111!

since H̃ is block diagonal. According to Eq.~110! we can

calculate uC̃E& in this case from an ‘‘effective Lippmann
Schwinger equation’’ and therefore write

uC̃E&~1 ![uC̃E&, ~112!

Veff[H̃2H0 , ~113!

uC̃E&~1 !5uCE&01
1

E2H01 i e
VeffuC̃E&~1 !. ~114!

Note thatH0 is not transformed. What are the conditio
allowing for our assumption~110!? We concentrate on th
first term of Eq.~109!

F~A!>2A. ~115!

From the discussion in Sec. III we know that

A5 (
n51

`

Angn ~116!
,

and from Eqs.~63!–~65! we see that overall energy denom
nators are a common feature ofAn :

An5Lanh
1

EL2Eh
. ~117!

We again used our notation~62! andan is a string of opera-
tors. According to Eqs.~107!, ~115!, and~117! we have the
following contributions to the second part in Eq.~107!:

lim
e→0

i e
1

E2H̃1 i e
E

L
dLuL&^Lu

an

EL2E
uCE&0

5 lim
e→0

i e~G01G0VeffG01••• !

3E
L

dLuL&^Lu
an

EL2E
uCE&0. ~118!

Since we assumed an interaction conserving the baryon n
ber theL states in Eq.~118! contain two nucleons and a

arbitrary number of mesons andNN̄ pairs. Then we distin-
guish two cases.

~1! E,2m01m0 . In this caseEL can never be equal toE
and therefore the denominator cannot vanish. We end
with integrals being finite after renormalization. Cons
quently the multiplication withi e gives zero.

~2! E>2m01m0 . In this case the energy denominat
can vanish and the formal expression in Eq.~117! will have
two contributions. One is a principal value integral in E
~118! which leads to a finite result and therefore does
contribute. The second part is proportional tod(EL2E) giv-
ing a discrete contribution atEL5E. The corresponding
eigenstate toH0 leads to an 1/i e coming from G0 in Eq.
~118! and therefore gives a nonvanishing contribution.

The additional terms in Eq.~109! do not have the struc
ture ~117! and hence do not contribute. We conclude that o
assumption~110! is only valid at energies below the meso
production threshold. The result is that effective scatter
states in theh space are equivalent to those in the full spa
and can be obtained as solutions of an effective Lippm
Schwinger equation for scattering at energies below
threshold of particle production. If we go to higher energ
the solution of this Eq.~110! is no longer equivalent to the
original scattering states since Eq.~110! neglects nonvanish
ing contributions coming from Eq.~108!. In this case theh
space has to be augmented by including an additional me
This is also left to a future investigation.

V. SUMMARY

The matrices of the ten generators of the Poincare´ group
~2!–~5! with respect to Fock space states are nondiago
and connect states for nucleons, antinucleons, and mes
The generators can be constructed according to often u
Lagrange densities. The matrices can be blockdiagonal
at the same time by a single unitary transformation. Ther
the blocks are defined by two projection operators wh
span the Fock space, one refering to a fixed number of nu
ons and the other to the rest of the space. As a consequ
the resulting unitarily transformed generators act in th
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two spaces separately and specifically we gained effec
generators in the space ofN nucleons which are represent
tions of the Poincare´ algebra. This result has been prov
using a~formal! power series expansion in the coupling co
stant. We see the importance of that result in the existe
proof. Clearly in practice this series has to be truncated a
usually done in evaluatingNN forces in low orders of meson
exchanges. We would also like to note that our proof in S
III relies only on the forms~2!–~5! for the ten Hermitian
generators together with interactions~6! being linear in a
coupling constant and the additional requirementshHIh
5hKIi h50.

Results of numerical studies in Refs.@12–14# using the
effective generators Eqs.~101!–~104! are promising. They
show for instance that the relativistic energy-momentum
lation of a two body state is rather well fulfilled if one solve
the Schro¨dinger equation using the effective Hamiltonian
frames where the total momentum of the two-body system
different from zero. They also show that contributions to t
relativistic Hamiltonian which remain undetermined in t
scheme of a 1/c2 expansion of the Poincare´ generators@5#
e

e

-
ce
is

c.

-

is
e

can now be determined for a given field theory and are
ferent from zero. In fact in the numerical examples stud
@12# they are as important as those enforced by the Poin´
algebra. Thus the scheme discussed in this article prov
interesting structural insight.

In addition one can pose now various questions. One
the effective generators, the Hamiltonian in the space oN
nucleons, will containNN but also many body forces. Wil
they fulfil the cluster separability? Since the effective ge
erators are constructed in a power series expansion in
coupling constant one encounters in all ordersgn with n
>4 meson exchange diagrams together with vertex cor
tions for instance. The question then arises whether the P
caré algebra for the ten effective generators, which is f
filled in each order ing, requires all the terms of a certai
order ing or whether subgroups fulfil the algebra separate
In the first case the Poincare´ algebra would impose condi
tions on the acceptable vertex corrections which would p
the role of strong form factors. Further investigations of th
type are planned including renormalization.
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