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Four-nucleon shell-model calculations in a Faddeev-like approach
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We use equations for Faddeev amplitudes to solve the shell-model problem for four nucleons in a model
space that includes up to A2 harmonic-oscillator excitations above the unperturbed ground state. Two- and
three-body effective interactions derived from the Reid93 and Argonne V8’ nucleon-nucleon potentials are
used in the calculations. Binding energies, excitation energies, point-nucleon radii, and electromagnetic and
strangeness charge form factors fbte are studied. The structure of the Faddeev-like equations is discussed
and a formula for the matrix elements of the permutation operators in a harmonic-oscillator basis is given. The
dependence on harmonic-oscillator excitations allowed in the model space and on the harmonic-oscillator
frequency is investigated. It is demonstrated that the use of three-body effective interactions improves the
convergence of the resulfsS0556-28139)03004-9

PACS numbes): 21.45+v, 21.60.Cs, 21.30.Fe, 27.1h

. INTRODUCTION far for “He are those performed by Ceuleneeal, in which
Many different methods have been used to solve the fewa 102 () model space was utilizgd 4]. The main motivation
body problem in the past. One of the most viable approachefer the present work is to test the shell-model approach and
appears to be the Faddeev methadl It has been success- the effective interactions derived from realistic nucleon-
fully applied to solve the three-nucleon bound-state problemmucleon NN) potentials that are used in conventional shell-
for various nucleon-nucleon potentig@s-6]. For solution of model applications for more complex systems. As the equa-
the four-nucleon problem one can employ Yakubovski'stions that we employ can be conveniently used with three-
generalization of the Faddeev formali$if] as done, e.g., in body interactions or three-body effective interactions, we
Ref.[8]. Alternatively, other methods have also been succesinvestigate, in addition to two-body effective interactions,
fully used in the past, such as the Green’s function Montelso three-body effective interactions in the present formal-
Carlo (GFMC) method[9] and the correlated hyperspherical ism. Such effective interactions are not typically used in tra-
harmonics expansion meth¢io]. ditional applications. We show that the inclusion of three-
On the other hand, when studying the properties of mordody effective interactions improves the overall convergence
complex nuclei one typically resorts to the shell model. Inof the results. At the same time our work serves as an alter-
that approach, the harmonic-oscillator basis is used in a trumative method to solving the four-nucleon problem. We can
cated model space. Instead of the free nucleon-nucleon pstudy the convergence properties of the results with increas-
tential, one utilizes effective interactions appropriate for theing size of the model space. If convergence is achieved, our
truncated model space. Examples of such calculations are thesults will approach the exact solutions obtained by other
large-basis no-core shell-model calculations that have remethods. In our formalism we seek simultaneously solutions
cently been performed11,12. In these calculations all for both the ground state and the excited states. In the past,
nucleons are active, which simplifies the effective interactiorthe variational Monte Carlo method was used to investigate
as no hole states are present. The effective interaction ihe excited states ofHe using realistidNN potentials[15].
determined for a system of two nucleons in a harmonicin most four-nucleon calculations with realistdN poten-
oscillator well interacting by the nucleon-nucleon potentialtials, however, only the ground-state properties were evalu-
and is subsequently used in many-particle calculations.  ated[8,10]. On the other hand, earlier studies that investi-
In a recent paper we combined the shell-model approachated excited-state properties usually did not employ realistic
to the three-nucleon problem with the Faddeev formalisSmNN potentials[14,16. Recently, the four-nucleon resonant
[13]. That allowed us to extend the shell-model calculationsand scattering states were investigated using reallétt
to a model space of excitations of /2@ above the unper- potentials in the framework of the resonating group method
turbed ground state and to study the convergence with rg17] and the correlated-hyperspherical-harmonics method
spect to the size of the model space. In the present paper j&8] as well as in the solution of the Faddeev-Yakubovski
generalize these earlier calculations to the four-nucleon prokequations in configuration spaf#9].
lem. We introduce equations for Faddeev amplitudes that are The present calculation is simplified by using a compact
fully antisymmetrized for three nucleons. As the center-of-formula for the matrix elements of the permutation operators
mass term is removed, we are able to work in a model spade the harmonic-oscillatofHO) basis. Also, because of the
up to an excitation of 174() above the unperturbed ground way we do the model-space truncation, we keep the equiva-
state. For comparison the largest shell-model calculations dence of the Faddeev-like and ScHioger equations
throughout the calculation. In addition to calculation of
ground-state and excited-state energies and point-nucleon
*On leave of absence from the Institute of Nuclear Physics, Acadrms radii, we also evaluate electromagnetiEM) and
emy of Sciences of the Czech Republic, 250 68 Rear Prague, strangeness form factors in the impulse approximation.
Czech Republic. In Sec. Il we first discuss the Faddeev equations for the
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shell-model problem of three nucleons. Then a generaliza- A. Three-nucleon system

tion to the four-nucleon system is introduced. In Sec. lll we |, this subsection we repeat the steps discussed in Ref.

present the energy, radii, and form factor results fote. [13] that are needed to solve the three-nucleon shell-model

Conclusions are given in Sec. IV. problem in the Faddeev formalism. For a three-nucleon sys-
tem, i.e.,A=3, a transformation of the coordinates,

Il. SHELL MODEL AND FADDEEV-LIKE FORMALISM

N
In shell-model studies the one- plus two-body Hamil- r—\/:(rl ), (33
tonian for theA-nucleon system, i.e.,
J= 3 [4(F1+Ta)—Tal, (3b
A 5_2 A
= 0 r—r.
H _2‘1 2m +i2<j n(ri= ), @ and, similarly, of the momenta, can be introduced that brings

the relative-coordinate part of the one-body HO Hamiltonian
.. into the form
wherem is the nucleon mass andy(r;—r;) is the NN in-
teraction, is usually modified by adding the center-of-mass

HO potential :AAmQO2R?, R=(1/A)S2 ,r;. This potential pz 1 ., q* 1 .

does not influence the intrinsic properties of the many-body Ho=5 + oM "+ 5 -+ omQy = 4)
system. It provides, however, a mean field felt by each

nucleon and allows us to work with a convenient HO basis. ) o

The modified Hamiltonian, depending on the HO frequencyEigenstates of this Hamiltonian,

(), can be cast into the form

Inlsjt, NLT,JT), (5)
b2
HQ:iZI ﬁﬁL Emﬂzriz} are then used as the basis for the three-nucleon calculation.
Heren,| andV, £ are the HO quantum numbers correspond-
A . . mo? . . ing to the harmonic oscillators associated with the coordi-
+Z4j UN(ri— 1) = 5= (1= rj)z}- (2} nates and momentap andy,q, respectively. The quantum

numberss, t, andj describe the spin, isospin, and angular
momentum of the relative-coordinate partial channel of par-
The one-body term of the Hamiltonia@) can be rewritten ticles 1 and 2, while7 is the angular momentum of the third
as a sum of the center-of-mass tenhﬂl;?m.: '55 [2Am particle relative to the center of mass of particles 1 and 2.
+1AMO2R?, where |5c.m.=EiA=15i and a term depending LZZ;ir?nri-srpiLeticgﬁ/ total angular momentum and the total
only on the rglativg coord.in.ates. In the present application The ’Faddeev equ.ation for the bound system can be writ-
we use a basis which explicitly separates center-of-mass aqgn in the form
relative-coordinate wave functions. Therefore, the contribu-
tion of the center-of-mass term is trivial and will be omitted
from now on. ~

The shell-model calculations are performed in a finite H|¢)=E|#), (6)
model space. Therefore, the interaction term in @§.must
be replaced by an effective interaction. In general, for any;i
A-nucleon system, aA-body effective interaction is needed.
In practice, the effective interaction is usually approximated
by a two-body effective interaction. In the present study we
will also employ a three-body effective interaction. As ap-
proximations are involved in the effective interaction treat-
ment, large model spaces are desirable. In that case, the cglare, () =V, (1/2r) — (L/A)MQ2r2 is the potential and”
culation should be less affected by any imprecision of thgs given by
effective interaction. The same is true for the evaluation of
any observable characterized by an operator. In the model
space, renormalized effective operators are required. The T=1+T )+ T, ®)
larger the model space, the less renormalization is needed.
We may take advantage of the present approach to perform
shell-model calculations in significantly larger model spacesvith 7(*) and7{~) the cyclic and the anticyclic permutation
than are possible in the conventional shell-model approactaperators, respectively. Previou$h3], we derived a simple
At the same time we can investigate the convergence progermula for the matrix elements af(~)+7(*) in the basis
erties of effective interactions. (5), namely,

H=Ho+V(NT. 7
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where N,=2n,+1;+2N+L;, i=1,2, j=2j+1, and N T

(N1L1nq14L|n,l N, L,L )5 is the general HO bracket for two z= 5 [5(ratratra) —ra], (119

particles with mass ratio 3 as defined, e.g., in R28)]. Ex-

pression(9) can be derived by examining the actionBf")

and 7(7) on the basis state&). A similar derivation for a e obtain the one-body part of the Hamiltoniéd) in the

different basis is described, e.g., in Rgf&1,22. Let us note  form

that it follows from the antisymmetry of the two-nucleon

states and from the symmetry properties of the HO brackets

that the contributions of (™) and 7{*) in Eq. (9) are iden- p2 1 .42 1 52 1 )

tical. Hozﬁ'f' EmQZr 2+ﬁ+§m92y2+ﬁ+§m9222,
The eigensystem of the operat®; Eq. (8), consists of (12)

two subspaces. The first subspace has eigenstates with eigen-

value 3, which form totally antisymmetric physical states.

The second subspace has eigenstates with eigenvalue \Qin the center-of-mass term omitted.

which form a not completely antisymmetric, unphysical sub- 5 possible generalization of the Faddeev equat®rfor

space of states. We found these propertiesTddy direct  foyr jdentical particles can be written in the form
calculation using the relatio(®). It is, however, a general

result. The same structure of eigenstates was also obtained in
Ref. [23] using a different basis. The eigenvalue structure

. \ H =E : 13
follows from the fact thatt 7 has the properies of a projec- |¥11294) = ElY11234) (13
tion operator. It is possible to Hermitize the Hamiltoni@h
on the physical subspace, where it is quasi-Hermitian. The i,
Hermitized Hamiltonian takes the form
H=Hq+TYA/(r)T*?, (10 H Y1232y =Ho| 1232 +3(V12+Viz+ V)

_ . X (| 1294) + | Wa321) + [ ¥W1342) + | ¥(1423))

where7 operates on the physical subspace only. (14)

The operator?, Eq. (8), is diagonal inN=2n+1+2N
+ L. Note that any basis truncation other than one of the
type N<No violates, in general, the Pauli principle and ;4
mixes physical and unphysical states. HeéMgg, character-
izes the maximum of total allowed HO quanta in the model
space and is an input parameter of the calculation. The tru
cation into totally allowed oscillator quanté<N,,,, how- 1 Viazaa) F [ ¥iasa1) + [ Viasa) ¥ ¥aaza))
ever, preserves the equivalence of the Hamiltoni@snd = (1= T4~ Tos— T3 Y(1294) = Tal Y(1294) - (15
(10) on the physical subspace.

Here, |¢(123)4) is a four-fermion Faddeev amplitude com-
pletely antisymmetrized for particles 1, 2, and 3. There are
By relying on the results obtained for the three-nucleonthree other equations that can be obtained from(Eg). by
system, as described in the previous subsection, we can egermuting particle 4 with particles 1, 2, and 3. Their sum
tend the formalism to the four-nucleon system. We use th¢hen leads to the Schdinger equation. We note that the
Hamiltonian (2) with A=4. By introducing the coordinate present equations are different from the traditional Faddeev-

B. Four-nucleon system

(and momentumtransformations Yakubovski equation$7], which combine Faddeev ampli-
R o tudes depending on two sets of relative coordinates. We are
r= \/g(rl—rz) , (119  working with a complete orthonormal basis. It is, therefore,

sufficient and convenient to use a single set of coordinates
R L defined by the relation€l1). Unlike the Faddeev amplitudes
y=\/§[%(rl+r2)—r3], (11  used typically in the Faddeev-Yakubovski equations, the
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amplitudes appearing in E@l3) are antisymmetrized with with the three-fermion part given by the antisymmetrized
respect to the first three particles. Those amplitudes are okeigenstates of, Eqg.(8), corresponding to eigenvalue 3, e.g.,
tained, as described below, in a straightforward manner with
the help of our three-nucleon HO formalism introduced ear-
lier. The present equations allow us to employ easily real IN3id T =, cMNaaTy Inlsjt VLT3, 3,T (17)

. . h . . i ' 3 '
three-body interactions or three-body effective interactions. e NISJWLT s T2/

The latter property makes them particularly useful for thewhereN1=2n+I +2N+ £ andi counts the eigenstates &f
present extension of shell-model calculations for four nucleyity eigenvalue 3 for a giveN, andJ;,T,. Further,n,,I,

ons. At the same time, the use of Faddeev amplitudes antgre the HO quantum numbers corresponding to the harmonic
symmetrized for particles 1, 2, and 3 allows us to reduce th@gjjator associated with the coordinateand the momen-

dimmension of the basis significantly. > . .
. . . tumo and.7, is the angular momentum of the fourth particle
We start the four-nucleon calculation using the basis : :
relative to the center of mass of particles 1, 2, and 3.
As in the case of the three-particle transposition operators
(9), a compact formula can be derived for the matrix ele-
ments of the four-particle transposition operators in the basis
|N1iJ1T1,nZIZj4,JT>, (16 (16), e.g.,

(N I T nal oy Ta AT Tiat+ Tog+ TaaNarigI1RT 1R MRl 2 T4R I T)

Ny i dg T N1 gJ1pT RO R P2 A2 R282 % S N N % A A A A

:6 ClLL_lLlL ClR_lRlR L L SSL J TT
NL,NRE N1 SLi LN, £ Tay Ol e gtV Lpag — IL- IRPILOIR 2SI LirT3LTsrTa TarI 1 d1rT 1L T 1R

b st i IR sr r

s 4 5 SR Sir||z tkr Tir ) )
X (= 1)Ta T St S 1 Loy JaplLe 3 Tm
3 S Sujlz T Tu
Li Si Ju Lir Sir Jd1r

I-1L S1L JlL LlR S1R ‘JlR

- , lR L2 L’ IR L2 L’ A A A o~ % Sr
X{la 3 Ju lr 3 i L'Z(—l)"{ }| , S.SrtLtR
l,r Lr Lig)la 1" Ly 1 S, s

L, S J L, S J

N=

1 1t

2 2 R

X[ LTt ](_1)|ZR+L1L((_1)|ZL<n’|/nZleLL/lanlz RCRLYe(NLLALLL Ly "1 nRlRL 1 )3
2 a

+(— D) RTESRS LR Ly 1y 'L | NRCrgrl L Ye(NLLLNLT Ly Rl g’ Ly )s)

=0 1%, sg Ot trON i O (= 1)SRYR(N, 4 MLLL | NRLRNR] zRL,>8] , (18)

whereNy=2ny+ly+ 2Ny + Lyx+2n,4+1,x, X=L or R, and, e.g., the expressién, |, N, £, L'|NgLrNrlrL")g denotes

a general HO bracket for two particles with mass ratio 8, as defined in &#f.Similarly, as in Eq(9) the brackets for two
particles with mass ratio 3 also appear in the relafit®). In the derivation of expressidii8) we relied on the antisymmetry

of the basis states with respect to particles 1, 2, and 3. The calculation was facilitated by application of the cp@igtamd

—T53. The relation(18) appears to be nonsymmetric. However, its numerical evaluation leads to a symmetric matrix. It may
also appear that the angular momentum sums in(Eg).can be summed up. In fact, it is possible to simplify the expression

by introducing a 1p coefficient of the fifth kind as defined, e.g., in RE24], but as such coefficients are seldomly used, we
prefer to keep the summations in the explicit form. On the other hand, a significant simplification of exp(&8sicemn be
obtained, when the symmetry relations of different terms are exploited. First, it follows from the properties of the HO brackets
and from the antisymmetry of the two-nucleon states that the contributiohg, ahd7,, are identical. Second, using the fact

that the state§l6) are antisymmetrized for the particles 1, 2, and 3 it follows that all three permutation operators appearing in
Eqg. (18) give identical contributions to expressiqa8). The computation of7;, is the simplest. In that case a partial
summation of the angular momentum coefficients can be performed, yielding a compact expression
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% t TlR
% T TlL

(Ngi 31 Tan Nl Ta I T Tag Nigi rI1RT 1R 2RI R T4R I T)

= Ny ildn Ty NiRrIIRTIR %7 %7 %7 %7 3 3 F F Ty +Tirt JaL+ -
= Oy Ne CrisitV; £, 5, Crisitilrd g 3L 3RTaLTard 1 darT 1 Tap(— 1) 27 aRT AL TR

i J
J JaL 1L [ﬁL l,r K][LR I, K][IzL Lr K]

XK2 T K T ,
Jir T 3| |Jae Tr 3|l Lo L
Jir Jar J

XL/ 2(—=1) SR (ny 1 NLLLL | NrLrNarl AL V- (19

Thus, by multiplying expressioil9) by 3 we obtain the may, however, take advantage of the present approach to
same matrix element as from E@.8). We note that a gen- perform shell-model calculations in significantly larger
eralization of the evaluation of the permutation operator mamodel spaces than are possible in a conventional shell-model
trix element(19) to a system more complex than the pres-approach. At the same time we can investigate convergence
ently studiedA=4 system is straightforward. Its simplicity properties of effective interactions. If convergence is
suggests that the present formalism can be extended to syasehieved, we should obtain the exact solution, since by con-
tems withA>4. struction the effective interactions that we employ satisfy the
Similarly, as for the operatdf, Eq.(8), eigenstates of the conditionVeg—V for Nypa— .
operator7, defined by the relatior§l5) can be subdivided Usually, the effective interaction is approximated by a
into two subspaces. A physical subspace is spanned by téwo-body effective interaction determined from a two-
tally antisymmetric states, in this case corresponding to einucleon system. In the present calculations we replace matrix
genvalue 4, and a spurious subspace is spanned by eigenvedements of the potential(r) by matrix elements of an ef-
tors corresponding to eigenvalue 0. It is possible tofective two-body interaction, derived in a straightforward
symmetrize the Hamiltoniahl appearing in Eq(13) on the  manner for each relative-coordinate partial channel. The rel-
physical subspace. The symmetrized Hamiltonian then takesvant two-nucleon Hamiltonian is then
the form

~2 2
— — — Hy=Hort V= + Sma2r 24y (\/2F)—mr*2
H=Ho+ T"*3 (Vio+ Vit Vo9 LM% (20) co T am 2 § A

(21)

whereT, operates only on the physical subspace. In our CaIi/\/hich can be solved as a differential equation or, alterna-

culat!ons., descrlped later, we dlag_onallze the symmgtrlzeﬂvely, can be diagonalized in a sufficiently large harmonic
HamﬂtonEm(ZO) in the physical basis formed by the eigen- oscillator basis. For a four-nucleon system we Aet4 in

states of7,. o _ Eq. (21), which implies that we are dealing with a bound-
The operatorT,, Eq.(15) is diagonal inN=2n+1+2N" giate problem.
+L+2n,+1,. A basis truncation defined by a restriction on T4 construct the two-body effective interaction we em-
the totally allowed oscillator quantsl<Npm. preserves the ploy the Lee-Suzuk[25] similarity transformation method,
equivalence of the Hamiltoniarid4) and(20) on the physi-  \yhich gives an effective interaction in the foriRVP
cal subspace. =PVP+PVQuwP, with » the transformation operator sat-
isfying w=QuwP, andP andQ=1- P, the projectors on the
C. Effective interactions model and the complementary spaces, respectively. Our cal-
. . . culations start with exact solutions of the Hamiltonig1)
From solving two-nucleon systems in a HO well, interact-

. . - nd, consequently, we construct the operat@nd, then, the
ing by soft-core potentials, one learns that excitations up tcszective interaction directly from these solutions. Let us de-

solutions. We anticipate, therefore, that at least the sam

number of excitations should be allowed to solve the many}She Q space, asag). Then theQ-space components of the

nucleon system. The Faddeev formulation has the obvious. L

advantage compared with the traditional shell-model apglgenve_ctortk) of the Hamiltonian(21) can be_expressed as
proach that the center-of-mass coordinate is explicitly red comblnatlor) of theP-space components with the help of
moved. Even then, it is not feasible to solve the eigenvaluéhe operator:

problem either for Eqg.10) or (20) in such a large space. On

the other hand, shell-model calculations are always per- (aQ|k)=E (ag|o|ap){ap|k). (22)
formed by employing effective interactions tailored to a spe- ap

cific model space. In practice, these effective interactions can

never be calculated exactly, because, in generalA-Body  If the dimension of the model spaceds, we may choose a

effective interaction is required for aknucleon system. We setk of dp eigenevectors, for which the relati¢22) will be
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FIG. 1. The dependence of the ground-state and the first-excited FIG. 2. The depenc_jence Qf tge point-n_ucleon rms radius_ of the
00 state energies, in MeV, on the maximal number of HO exci-ground state and the first-excited O state, in fm, on the maximal

tations allowed in the model space. The two-body effective interachumPer of HO excitations allowed in the model space. The two-

tion utilized was derived from the Reid98N potential. Results for Pody effective interaction utilized was derived from the Reitei8
#0=14, 17, 19, and 22 MeV are presented. potential. Results foh () =14, 17, 19, and 22 MeV are presented.

satisfied. Under the condition that tHgx dp matrix { ap|k) [23]. Fir.st, we compute the two-bod_y effective intergction
for |k) e K is invertible, the operatow can be determined @Ppropriate for the model space defined My, as dis-
from Eq.(22). In the present application we select the lowestcussed earlier in this subsection. Then the three-nucleon sys-
states obtained in each channel. Their number is given by thH€M is solved in the same space. Afterwards we construct the
number of basis states satisfyingi2I<N,.,. Once the three-body effective interaction for a model space defined by

operatore is determined, the effective Hamiltonian can be Nmax<Nzmax In the present paper we use model spaces up
constructed as follows: to Nihox=14. The effective interaction is constructed exactly,

as described above, using E(22), (23), and(24) with H,
replaced byH; .. The energie€, and the statefk) corre-

(7elHz eff|“P>:k§E:K (7plK)Ex(klap) spond to the three-nucleon system eigenstates, however, and
the stategap) and|ag) are three-nucleon basis statd3)
with the model-space conditioN;=2n+1+2N+ L<N

+§4 (velEklag)(aglwlap)|. (23 4pg theQ—spacepconditiori\lmax<1leN3max. The three-
° body effective interaction is computed for different three-
It should be noted tha®|k) ==, |ap){ep|k) for [kye Lis  nucleon channels characterized by T,, and parity and is

a right eigenvector of E¢23) with the eigenvalud, . obtained from the Hermitized effective Hamiltonian as
This Hamiltonian, when diagonalized in a model-spaceVs = Hze— Ho, WhereH is given by Eq.(4). The inter-
basis, reproduces exactly the gétof dp eigenvaluesk, . action V3 o then replacesd/ ,+Vq3+Vys in Eq. (20). We

Note that the effective Hamiltonian is, in general, quasi-note that by construction in the limiN,,— N3 max the three-
Hermitian. It can be Hermitized by a similarity transforma- body effective interaction approaches the two-body effective
tion determined from the metric operat®(l+ ' w)P. The  interactionVs e— THA, o7 and withN . the effec-
Hermitian Hamiltonian is then given H26] tive interaction approaches the bare interacing— V.

Haer=[P(1+ 0 0)PTYH, o P(1+ 0 w)P] Y2 (24 lll. APPLICATION TO  *He
. o , , In the present paper we use the Reid®8 potential[27]
Finally, the two-body effective interaction used in the 504 the Argonne V8NN potential, introduced in Ref9].
present calculations is determined from the two-nucleon efyya work in the isospin formalism; the charge-invariant po-
fective Hamiltonian24) asV er=Ha e~ Hoo. We note that  tential V=3V pp+ 3 Van+ 3 Vy, is used for eacii =1 wave
thﬁ 'ntefaggowl_ﬁ Vig+Vo3in Eq.(20) is then replaced by in the calculations with the Reid93 potential. The Coulomb
TY2V, T, which is evaluated in a straightforward way in potential is added t¥,,, in this case. On the other hand, the
the basig16). calculations with the Argonne V8’ potential, which is isopin
As pointed out before, the structure of the Hamiltonianinvariant, do not include the Coulomb potential.
(20) allows us to employ easily three-body effective interac-  Qur calculation progresses in several steps. The model
tions in addition to the above-discussed two-body effectivespace is characterized by the conditibir=N,,,, N=2n
interactions. We can replacé;,+Vig+ Vo3 in Eq. (20) by +1+2N+ £+2n,+1,. First, the three-nucleon antisymme-
V3¢, Which can be derived from the three-nucleon solutionsrized basis is constructed by diagonalizifigEq. (8), in the
in a similar manner as the two-body effective interaction ispasis(5) for all N;=2n+1+ 2N+ £L<N . and allJ;, T;.
derived from the two-nucleon solutions. To finter We  Then the four-nucleon antisymmetrized basis is calculated by
solve the three-nucleon system described by the Hamiltoniagiagonalizing Z;, Eq. (15), in the basis(16) for N=N,
(10) with V(r)=Va(y/2r) — (L/A)MQ?r 2. As A=4 we are  +2n,+1,<Np,,with N even for positive-parity states ahtl
dealing with a bound three-nucleon problem. It can be solveddd for negative-parity states. We present resultsJfei0
in a three-nucleon model space characterizedNpy,,~30 andT=0 only, but for both parities. We note that the four-
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FIG. 3. The dependence of the ground-state and the first-excited G- 5. The dependence of the ground state, the first-excited
0"0 state energies, in MeV, on the maximal number of HO eXCi_OJ’O_state, and the flrst-exc_lteq*o state energies, in MeV, on the
tations allowed in the model space. Results obtained using the twdh'@ximal number of HO excitations allowed in the model space. For
body (dashed lingand three-bodysolid line) effective interaction the posmve_-par_lty statt_es the r_esults were obtal_ned using th_e three-
derived from the Reid93N potential are compared. Harmonic- Pody effective interaction derived from the Reid8BN potential.
oscillator energies 0k Q=17 and 19 MeV were used. Energies of the 00 state were calculated using a two-body effec-

tive interaction derived from the Reid98N potential. Harmonic-

nucleon basis computation is independentfind is done ocillator energies o2 =17 and 19 MeV were used.

only once. The next step is the effective interaction calcula-

tion. The two-body effective interaction is derived from Eqgs. =1/2 andNj .= 24 for J;=3/2. We also performed calcu-
(22)—(24). The condition for the relative-coordinate two- |ations with the inclusion of the three-body effective interac-
body effective-interaction model space is them+2  tjon for J,=5/2 and found it to have little effect.

<Npnax- When solving the two-nucleon relative-coordinate | et us remark that the present method for solving the
Hamiltonian(21) in the full space, we truncate the HO basis four-nucleon shell-model problem is fully equivalent to the
by keeping the states typically up to=152. The two-body standard shell-model approach. In particular, it is straightfor-
effective interaction is constructed for all partial-wave chan-ward to transform the relative-coordinate two-body effective
nels up toj =6. The resulting effective interaction is finally interaction used in the present calculations to the two-
used as input for the four-nucleon calculation, where thearticle basis used for the shell-model input by the standard
Hamiltonian(20) is diagonalized. Instead of a two-body ef- transformation[28]. We used the transformed interactions
fective interaction, we may use a three-body effective interfor the model spaces up to an@ space to test our results.
action, as discussed in the previous section. The three-bodphe shell-model diagonalization was then performed by em-
effective is computed only for the most important three-ploying the many-fermion-dynamics shell-model cd@s],
nucleon channel3; T;. In particular, we evaluated the three- which can be utilized for calculations with model spaces
body effective interaction fod, =1/2,3/2, T,=1/2, and for  comprising up to 9 major HO shells, i.&\.=8 for *He.
both positive and negative parity. For the channels withwe obtained the same results from both the Faddev-like cal-
higherJ, the two-body effective interaction corresponding to culation and the standard shell-model calculation. The
Nmax iS used instead. For the parameltéy .. characterizing  Faddeev-like calculation has, obviously, much smaller di-
the three-nucleon full space, we uséf =28 for J;
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Ny FIG. 6. The dependence of the point-nucleon rms radius of the
ground state, the first-excited"0 state, and the first-excited 0

FIG. 4. The dependence of the point-nucleon rms radius of thetate, in fm, on the maximal number of HO excitations allowed in
ground state and the first-excited O state, in fm, on the maximal the model space. For the positive-parity states the results were ob-
number of HO excitations allowed in the model space. Results obtained using the three-body effective interaction derived from the
tained using the two-bodgdashed lingand three-bodysolid line) Reid93 NN potential. Energies of the ® state were calculated
effective interaction derived from the Reid98N potential are  using a two-body effective interaction derived from the Reitig8
compared. Harmonic-oscillator energies7ol =17 and 19 MeV  potential. Harmonic-oscillator energies 6f)=17 and 19 MeV
were used. were used.
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FIG. 7. The dependence of the ground-state and the first-excited FIG. 9. The dependence of the ground-state and the first-excited
0" 0 state energies, in MeV, on the maximal number of HO exci-0*0 state energies, in MeV, on the maximal number of HO exci-
tations allowed in the model space. The three-body effective intertations allowed in the model space. Results obtained using the two-
action derived from the Argonne V&8IN potential was used. Re- body (dashed lingand three-bodysolid line) effective interaction
sults forAQ)=16, 19, and 22 MeV are presented. The dotted linederived from the Argonne V8NN potential are compared.
represents the resul;25.92 MeV, of the GFMC calculatiof84]. Harmonic-oscillator energies df{)=16 and 22 MeV were used.

The dotted line represents the resut25.92 MeV, of the GFMC

mension and can be extended to larger model spaces. \Wa'culation[34]

also note that we applied the discussed formalism to four- ) i
electron system in a related study recefi8@]. Our results four-body effects coming from the entire four-nucleon calcu-

compared well with those obtained by the stochastic varial@tion may not completely compensate for this spurious bind-
tional method31]. ing in a particular model space. We note that this type of

overbinding in the no-core shell-model calculations was no-
_ _ ) ticed in previous studiel$32,33,13. This effect decreases as
A. Energies and point-nucleon rms radii the model-space size increases, as is demonstrated in our

Our results for the ground-state and excited-state energicrlier three-nucleon shell-model calculatigas].
and point-nucleon rms radii are presented in Figs. 1-9, [N Fig. 1 we present the calculated dependence of the
where the dependences on the model-space size and the HtPund-state energy and the first-excitedOstate energy on
energy are shown. A summary of the largest model-spac1e model-space size, characterizedN\py,,. The two-body
(N,= 14 for the positive-parity states ait,,,= 13 for the  effective interaction employed was derived from the Reid93
negative-parity stat¢sresults is given in Table Il. Let us NN potential. Results foti{)=14,17,19,22 MeV are shown.
mention an unusual feature of the present calculations!he corresponding dependence of the point-nucleon rms ra-
namely, the convergence from below for the ground-statélius is presented in Fig. 2. A slow convergence with the
energy. It is caused by the asymmetric treatment of the H@NCreasing model-space size can be observed for energies
terms that are added and subtracted to the Hamiltonian in th&ith a significantly faster rate for the ground state compared
process of evaluating the effective interaction. Our effectivd© the first-excited 00 state. Also, a much stronger depen-
interaction is computed for a two- or three-nucleon systenflence of the excited state on the HO enefigy is apparent.
bound in a HO potential. Therefore, artificial binding from The results of the point-nucleon rms-radius calculation dem-
this potential is included in the effective interaction and theonstrate even more the differences between the ground state
and the first-excited 00 state. While the ground-state radius
3.00 has almost converged and shows littl€ dependence, the
[ o first-excited 0°0 state displays a strong dependence of its
L6 ,/x/"/i/’////' energy onA{) and a steady increase of its radius with in-
19\7/, creasing model-space_ size. _
22~ Let us remark that in our approach we obtain the ground
V8 state as well as the excited states by diagonalizing the Hamil-
tonian. This implies that the excited states are expanded in

)
\\
\

Radius [fm]
N
S
S

TABLE I. Absolute value of the ground-state energy differences
[ obtained in the calculations with HO energiesidi =16 MeV and
1.00 ‘ ’ ‘ ‘ ‘ #Q =22 MeV with the two-body(second row and the three-body
4 6 8 10 12 14 16 (third row) effective interactions in different model spaces. The
Niax effective interactions were derived from the Argonne X8\ po-

) ) tential. The corresponding energy dependence is shown in Fig. 9.
FIG. 8. The dependence of the point-nucleon rms radius of the

ground state and the first-excited @ state, in fm, on the maximal 6 8 10 12 14
number of HO excitations allowed in the model space. The three- mex
body effective interaction derived from the Argonne V8N po- |AE, 1.311 1.466 1.265 1.037 0.834

tential was used. Results fér()=16, 19, and 22 MeV are pre-  |AE; 4 0.778 0.782 0.676 0.601 0.550
sented.
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the same harmonic-oscillator basis used for the ground statéirst-excited 0°0 state. This observation is confirmed also in
While such an approach has technical advantages, it mighhe point-nucleon rms radius calculation as can be seen in
not be physically sound. Cautious interpretation of theFig. 6. In the experiment, the ® excitation energy, 21.01
excited-state results is, therefore, necessary. The significantMeV, is higher than the excitation energy of the first@®
different convergence rate of the ground state and of thétate, 20.21 MeV. Though in our calculations their positions
first-excited 070 state manifests the different nature of theare reversed, it is visible from Fig. 5 that the extrapolation to
two states. Let us note that if the model-space size wertrger Ny leads to correct ordering of the two states. A
increased up to the point at which total convergence of th@0ssible interpretation of this observation is that the excited
excited state was achieved, our procedure would yield iso0 "0 state is associated with a radial excitation and, thus, it is
lated three- and one-body clusters with an infinite rms radiugnore sensitive to the HO basis used in our calculations.
and a total energy of the three-nucleon system. It is possible, The energy and radius results, obtained using the Argonne
though, that we could observe a metastability prior to theV8 NN potential, are presented in Figs. 7 and 8, respec-
onset of the cluster separation, as the resonance is sharp dii¢gly. The three-body effective interaction was used in cal-
low lying. The present model-space sizes, however, are ndwlating these results, for three different HO energfeQ,
yet sufficient to arrive at that point. That we have not=16, 19, and 22 MeV. The dotted line represents the value
reached this point can be seen from the lack of convergence 25.92 MeV obtained for the ground state, using the GFMC
and, in particular, from the rather small rms radius, which[34]. Similarly, as in the calculations with the Reid®8&\
shows a significant increase with,,, and a strong depen- potential, we get the best convergence for the ground state
dence on). for the highest value ofi (), while for the excited state the
The importance of the three-body effective interaction carbest results are obtained for the lowégt. The same dis-
be judged from the results shown in Fig. 3. The ground-stateussion, given earlier, for the excited-state convergence us-
and excited 00 state energies obtained in a calculation thating the Reid93NN potential, is also valid for the calculations
employs the three-body effective interaction is compared to &sing the V8'NN potential. The energy convergence is very
calculation performed by using only the two-body effectiveslow and there is no sign of convergence of the point-
interaction. Results for two different values of the HO en-nucleon rms radius of the excited”0 state. A significant
ergy,7Q0=17 and 19 MeV, are presented. The dashed lineslependence ofi{) prevails for all the model spaces studied.
connect the two-body effective interaction calculation result$On the other hand, the ground-state energy shows good con-
that are identical to those in Fig. 1 that correspond to HOvergence and approaches the GFMC result, in particular for
energies ofi ) =17 and 19 MeV. The solid lines connect the the #Q =22 MeV calculation. The ground-state point-
results obtained in calculations with the three-body effectivenucleon rms radius is almost() independent and con-
interaction. It is apparent that the three-body effective interverged. It agrees with the GFMC value of 1.485 fm.
action improves the convergence considerably. It is espe- We note that results on the first-excited @ state ob-
cially true for the ground state. The difference between thdained using the resonating group method were reported in
Nmax=6 and N..,=14 energies is significantly smaller in Ref.[17]. The Bonn potential employed in that work gives
the calculation that employs the three-body effective interacvery similar results for the ground state as those obtained
tion. It can also be seen that the two-body effective interacusing the Argonne V8'. It is, therefore, reasonable to make a
tion results approach the three-body effective interaction recomparison for the excited-state results. The first-excited
sults in the largest spaces used in our calculations. 970 state energy reported in Rdfl7] was —6.42 MeV,
addition, the dependence on the HO energy decreases in thdich is about 10% below our result &f,,,=14 and# ()
three-body effective interaction calculation compared to the=16 MeV calculation. The reported rms radius, 3.02 fm, is
two-body effective interaction calculation. This holds for slightly above our calculation.
both the ground state and the first-excitetiOOstate. How- In order to further compare the convergence and{(he
ever, the inclusion of the three-body effective interactiondependence of the results obtained with two- and three-body
clearly has a larger overall impact on the ground-state reeffective interactions, we present a similar calculation as that
sults. of Fig. 3, obtained using the Argonne VBIN potential and
The influence of the three-body effective interaction ona larger(} difference, in Fig. 9. The solid lines correspond to
the point-nucleon rms radius is depicted in Fig. 4. Again wethe three-body effective interaction calculations, also shown
observe a better stability of the radii computed using then Fig. 7, while the dashed lines connect the two-body effec-
three-body effective interaction. In particular, the ground-tive interaction results. Two HO energies/of) =16 and 22
state point-nucleon rms radius shows convergence in bothWeV were used. The dotted line represents the GFMC result.
the model-space-size dependence and the HO-frequency d&gain we observe a better stability of the three-body
pendence. On the other hand, the three-body effective inteeffective-interaction results with respect to the model-space
action does not improve the convergence of the excited statize changes, a small€r dependence, and a faster conver-
in any significant way in the model spaces that we employedgence, in particular for the ground state. In Table | we show
In Fig. 5 we show the calculated energies of the firsSO0 the absolute value of the ground-state energy differences ob-
state obtained using two-body effective interactions in modetained in the calculations with HO energiesfidl =16 MeV
spaces up td,,,=13. For a comparison, the results for the and#Q =22 MeV for both the two-body and the three-body
ground state and the first-excited @ state from Fig. 3 are effective-interaction calculations in different model spaces.
also presented. It is interesting to note that theDOstate  We can see that the differences obtained with the three-body
shows a better convergence and stability with respect to theffective interaction are almost 2 times smaller in model
Nmax Change as well as a weaker dependencg@rthan the  spaces withN,,,=6—10. The differences decrease with the
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TABLE II. Results for the ground-state and excited-state energies and point-nucleon rms radii, as well as the excitation Epergies (
obtained in the largest model spaces used in the present $ydys 14 (13) for the positive-(negative} parity states, respectively, are
presented. All the states have isospifs 0. The positive-parity-state calculations were performed using the three-body effective interaction.
Results for different HO energies are given in separate columns. The GFMC ground-state[ 8d$@ts shown for comparison.

Argonne V8’ NN potential

State Variable hQ=16 MeV Q=19 MeV 7 Q=22 MeV GFMC
0y E [MeV] —26.62 —26.30 —26.07 —25.92(8)
(r?) [fm] 1.481 1.485 1.485 1.4880)
05 E [MeV] -5.77 —4.89 -3.93
E, [MeV] 20.86 21.42 22.14
W(r?) [fm] 2.906 2.777 2.658
0, E [MeV] —6.70 -6.17 —5.59
E, [MeV] 19.93 20.14 20.48
J(r?) [fm] 2.349 2.263 2.186

Reid93NN potential

State Variable hQ=17 MeV A =19 MeV
07 E [MeV] —25.69 —25.47
V(r?)y [fm] 1.487 1.489
05 E [MeV] —5.00 —4.39
E, [MeV] 20.69 21.08
(r?) [fm] 2.873 2.787
0, E [MeV] —-5.91 —5.54
E, [MeV] 19.78 19.93
V(r?) [fm] 2.339 2.281
enlargement_ of the model space fgf,,,=8. We note that_ R 1 A Gga)(,,) .
by construction the present two- and three-body effective- M3 (q)!*1= > io(ary)
interaction calculations would become identical fidf, .« 2\mk=1 | 1+7
=28. .
~ InTable Il we present a summary of our results obtained +[G<Ea)(7-)—2G§\;'|")(r)]27]1(qu) oLyl
in the largest model spaces used in the present study, e.g., Mg

Nmax= 14 for the positive-parity states amd,,,,= 13 for the (25)
negative-parity states. The positive-parity state results were

obtained using the three-body effective interaction. For th§yherer= q2/4mZ, L, is thekth nucleon orbital momentum,
Argonne V8 NN potential calculations we a_lso include the andG(Ea)(T) andGﬁj")(T) are the one-body electric and mag-
GFMC ground-state resul{34] fgr a comparison. We note  hetic form factors, respectively. The supersctgtrefers to
that the Faddeev—Yakl_J_bovsk| equation solut|on_ glves(T:O) for the isoscalar EM form factor or t(s) for the
—25.03 MeV([8] for the NijmegerNN potential[ 35], which g4 0 qeness form factor. We use the parametrization of the

gives comparable results to the Reid98! potential for the ne-body form factors as discussed in R&6];
three-nucleon problem. The experimental binding energy o?

“He is 28.296 MeV. The discrepancy between the experi- GP(7)=GY(7), (263
mental and calculated values is usually attributed to the real

Fhree—nucleon.forces. that were not taken into aqcount elyher GW)(TFM,;G\?(T), (26b)
in our calculation or in the other calculations, which we dis-

cussed. We note that the difference in the binding energies G (1) = — up7GR(P) £x(7), (260

obtained using the V8 and the Reid98N potentials is

mainly due to the Coulomb interaction included in an (), D
isospin-invariant manner only in the calculations with the G ()= paGy(7), (269
Reid93NN potential.
GE(7)=pstGY(7)&4(7), (260
B. Charge form factors
’ G(1)=uG(7), (26f)

A sensitive test of the wave functions obtained in our
calculations is the evaluation of charge form factors. Usingwith
the formalism of Ref[36], we calculated the charge EM and
strangeness form factors in the impulse approximation. The G\D,(r)=(1+)\\D,q-)*2, (279
one-body contribution to the charge operator is given by Eq.
(15) in Ref.[36], e.g., E=(1+N,7) L (27b
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FIG. 10. The elastic EM charge form fact@olid line) and the

EM charge form factor corresponding to the transition to the first-

excited 0'0 state(dotted ling calculated in the impulse approxi-
mation using the three-body effective interaction derived from th
Argonne V8’ NN potential in theN,,,=14 model space antl(}
=22 MeV.

E=(1+A\D 7)1, (270
The isoscalar EM form factor is given i< ,%=3[GE},
+G{",1, and for the parameters appearing in E@§) and
(27), one has numerically u,=2.79, u,=—1.91, A}
=4.97, and\,=5.6. Following Ref.[36], we also set the
strangeness radiys,= —2.0 and\ Y=\ ,. Limits on these
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FIG. 12. The elastic strangeness charge form faolid line)
and the strangeness charge form factor corresponding to the transi-
tion to the first-excited 00 state(dotted lin@ calculated in the
impulse approximation using the three-body effective interaction
derived from the Argonne V8NN potential in theN .= 14 model
space andh()=22 MeV. Values of the strangeness radips
—2.0 and the strangeness magnetic momeyst 0.23 were em-

ployed.

together with the inelastic EM charge form factor corre-
sponding to the transition to the first-excited @ state.
These results were obtained using the HO enérf=22
MeV and the three-body effective interaction in thg,.,
=14 model space. In this calculation we obtained the best
description of the ground state. The calculation of the elastic

parameters are to be determined in the experiments at th#]arge form factor in the impulse approximation can be di-

Thomas Jefferson Accelerator Faciliff JNAF). The first
strangeness magnetic-moment measurement was reported
cently[37] and an experimental valyg;= +0.23, obtained
with a large error. We use this value in our calculations.

rectly compared to that presented in Fig. 2 of Re&¥6],
ferformed using variational Monte CafflgMC) wave func-
tions and the Argonne V1AIN potential. There, the mini-
mum was obtained af~3.55 fm !, while the experimental

Our charge form factor calculations are presented in FigSminimum is atq~3.2 fm 1. The difference can be ex-
10-13. The charge form factors given in the figures wergyained with the help of meson-exchange-current contribu-
calculated using the one-body operat®5) as F&(q)  tions. The elastic charge EM form factor obtained in our
=27 (f,070|M{@(q)H]i,070). We show only results ob- calculation compares well with that obtained by the VMC
tained with the Argonne V8NN potential; the Reid9N  wave functions. It is shifted further to highgr namely, we
potential gives almost identical results for the charge formget the minimum ag~3.75 fm . We note that a second
factors, when the same HO energy) is employed. Our
calculated elastic EM charge form factor is given in Fig. 10

10° £
030} o o Vg
-0.40 +
: 050 + Fes/lFe
104 = -0.60 +
-0.70 +
106 -0.80 ' t t t f ; ¢
0 1 2 3 4 5 6 7 8
107 1 : : : : ! : 1 q [fm"]
0 1 2 3 4 5 6 7 8 i )
g [fm] FIG. 13. The ratio of the elastic EM and strangeness charge

form factors(solid line) and the EM and strangeness charge form
FIG. 11. The elastic EM charge form fact@olid line) and the  factor corresponding to the transition to the first-excitéd Gstate
EM charge form factor corresponding to the transition to the first-(dotted ling calculated in the impulse approximation using the
excited 0°0 state(dotted ling calculated in the impulse approxi- three-body effective interaction derived from the Argonne W&
mation using the three-body effective interaction derived from thepotential in theN,,,,= 14 model space and() =22 MeV. Values of
Argonne V8’ NN potential in theN,,,=14 model space antl(} the strangeness radipg= —2.0 and the strangeness magnetic mo-
=19 MeV. ment u,=0.23 were employed.
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minimum appears in our calculated elastic charge form factoplex systems, e.gp-shell nuclei, in particular. The effective
atq~7.25 fm 1. The second minimum at a similar position interactions that we employed were derived from realistic
was found in the VMC calculations presented in H88]. NN potentials, i.e., the Reid93 and the Argonne V8'. In ad-
To examine the form factor dependencefdi, we repeated dition to the two-body effective interactions, we also com-
these calculations for different choices of the HO energy. Iputed the three-body effective interactions and demonstrated
Fig. 11 we show the result obtained witlf)=19 MeV. All  that their use significantly improves the convergence of the
other characteristics are the same as in the calculation of Figegits.
10. The minimum here is shifted further to higlgwe have Our calculations depend on the model-space size and on
itat q~3.85 fm *. The difference between the two results \he HO frequency. The effective interactions were con-
is rather small but still it shows that our calculation is NOt gy cted in such a way that in the large model-space limit the
completely converged and, in particular, the description Of e iy interactions approach the barl interaction. Thus
the high-transferred-momentum part of the form factors req, - oq 115 should converge to the exact solutions. The de-
quires the use of even larger model spaces than we em- d the model-space size &havas investigated
ployed. We note that the inelastic form factor has a :strongePen ence on the pace 9 '
Q) dependence than the elastic form factor. As discussed iﬁ/e found quite different behavior of the ground state and-the
the previous subsection, convergence of the excited state h ESt'eXC'tEd _OLO state. Our_ ground-state energy and point-
not been achieved in our calculations within the modelntcleon radius results begin to converge and are close to or
spaces employed. Therefore, our calculated inelastic forri @greement with those obtained by the GFMC method. For
factors must be taken with some degree of caution. Let ythe first-excited 00 state, our results, the point-nucleon ra-
remark that, in addition to the transition form factor, we alsodius, in particular, show large model-space dnddepen-
computed the form factor of the first-excited O state. That dence. This implies that significantly larger model spaces
form factor was also evaluated in R€L7] in the resonating Would still be needed in order to obtain the exact solutions.
group method approach using the Bonn potential. SimilarIyThe nature of the p state is discussed in the literature
as in that work, our calculated;Oform factor is almost an [14,16. The Coulomb interaction plays an important role in
order of magnitude smaller than the ground-state form factothe description of this state. In the present calculations we
for a wide range ofy. The first minimum is shifted in our did not include the isospin breaking. Our formalism is quite
calculation to largelq, more or less to the position of the general, however, and allows the use of interactions that
transition form factor minimum, and the second minimum isbreak the isospin symmetry. On the other hand, the calcu-
shifted to smallerg compared to our ground-state form fac- lated properties of the 0 state show better convergence be-
tor. havior. In the model spaces studied, we obtained lower ex-
Our calculated elastic strangeness form factor and the irgitation energy of the D state than of the D state, contrary
elastic EM charge form factor corresponding to the transitiorto experiment. The extrapolation of the model-space depen-
to the first-excited 00 state are shown in Fig. 12. These dence of these two energies to larger model spaces shows,
results were obtained using the same wave functions as thobewever, that the correct ordering of the states will be ob-
used for calculations presented in Fig. 10; namely, we hadained. Apparently, the D state is associated with a radial
hQ)=22 MeV, the model-space size characterized\pys, ~ excitation and, thus, it is more sensitive to the HO basis used
=14, and the three-body effective interaction was employedin the expansion.
The elastic form factor can be compared with the impulse A sensitive test of our calculated wave functions is the
approximation VMC result of Fig. 3 in Ref36]. Similarly, = computation of the charge EM and strangeness form factors.
as for the EM elastic form factor, our calculation comparesOur impulse-approximation results show little dependence
well with VMC result. We note, however, the different value on the NN potential and our best results are close to the
of strangeness magnetic moment used in R86] (us  corresponding form factors obtained using the VMC wave
=-0.2). functions and the Argonne V1M N potential. In particular,
Finally, in Fig. 13 we present the ratio of the EM and we observe both the first and the second minima in the elas-
strangeness form factors from Figs. 10 and 12. The ratio ofic charge form factor in positions close to those obtained
the elastic charge form factors is particularly interesting, as itising the VMC calculations. In addition to the elastic charge
can be experimentaly obtained from the measurement of thierm factors, we also evaluated the form factors for the tran-
parity-violating left-right asymmetry for scattering of polar- sition to the § state in the impulse approximation.
ized electrons from &He target. Experiments of this type In general, the energy scales of the bouischOcleons are

are now under preparation at TINAF. significantly different from the scattering energies of the
resonances. This difference can only be accounted for with a
IV. CONCLUSIONS largeN ., in our approach. Consequently, the results for the

excited states and the transition form factors obtained within

In the present study we used equations for Faddeev anthe limited model spaces of the present work should be taken
plitudes, antisymmetrized for three nucleons, to solve thavith some caution. In the future we would like to apply the
shell-model problem for the four-nucleon system. We performalism, discussed in the present paper, to a more exten-
formed calculations in larger model spaces, up to a HO exsive study of the negative-parity states‘fe. In particular,
citation of 14:() above the unperturbed ground state, than init is desirable to use still larger model spaces to investigate
any other shell-model study so far. The main motivation forthe excited-state convergence properties.
the present work was to test the shell-model approach and The most important result of the present work is, how-
the effective interactions that we want to apply to more com-ever, the successful use of the three-body effective interac-
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tion. This three-body effective interaction can be computedising also a formalism of equations for components with
for more complex nuclei as well and, in principle, used, afterlower degree of antisymmetry than the full wave function
a transformation to an appropriate three-nucleon basis, ideveloped in Ref[39].

standard shell-model calculations. A more practical ap-
proach, however, is to make use of the three-body effective-
interaction knowledge for the renormalization of the two-
body effective interaction. Work in this direction is under We thank Gintautas P. Kamuntaitis for useful com-
way. In addition, the present formalism may be used to comments concerning the symmetries present in Efs.and
pute the four-body effective interaction for nuclei wih  (18). This work was supported in part by NSF Grant No.
>4, We plan to extend the shell-model Faddeev-like apPHY96-05192. P.N. also acknowledges partial support from
proach that we have successfully applied to three- and foura grant of the Grant Agency of the Czech Republic, No.
nucleon systems to systems with more than four nucleon02/96/1562.

ACKNOWLEDGMENTS

[1] L. D. Faddeev, Zh. Eksp. Teor. Fi39, 1459 (1960 [Sov. [21] E. P. Harper, Y. E. Kim, and A. Tubis, Phys. Rev.6C126

Phys. JETPL2, 1014(1961)]. (1972.

[2] G. L. Payne, J. L. Friar, B. F. Gibson, and I. R. Afnan, Phys.[22] W. Glockle, The Quantum Mechanical Few-Body Problem
Rev. C22, 823(1980. (Springer-Verlag, New York, 1983

[3] G. L. Payne, J. L. Friar, and B. F. Gibson, Phys. Rev2Z: [23] V. A. Rudnev and S. L. Yakovlev, Phys. At. Nud@d8, 1662
832(1980. (1995. _ _

[4] C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys.[24] A. P.Yutsis, I. B. Levinson, and V. V. Vanagaddathematical
Rev. C31, 2266(1985. Apparatus of the Theory of Angular Momentitarael Pro-

[5] J. L. Friar, G. L. Payne, V. G. J. Stoks, and J. J. de Swart, _ dram for Scientific Translations, Jerusalem, 1062
Phys. Lett. B311, 4 (1993. [25] K. Suzuki and S. Y. Lee, Prog. Theor. Phgd, 2091(1980.

v . [26] K. Suzuki, Prog. Theor. Phy$8, 246 (1982; K. Suzuki and
[6] g.gc;ggg,(?é;)lber, H. Kamada, and W. Gitile, Phys. Lett. R. Okamotojbid. 70, 439 (1983,

[7] 0. A. Yakubovsky, Sov. J. Nucl. PhyS, 937 (1967, [27] V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen, and J. J.

81W. Glockl dH. K da. Phvs. R LTt 971 (199 de Swart, Phys. Rev. @9, 2950(1994).
[8] W. Gloc e_ and H. Kamada, . ys. Rev. Letl, ( 3'_ [28] A. G. M. van Hees and P. W. M. Glaudemans, Z. Phy814,
[9] B. S. Pudliner, V. R. Pandharipande, J. Carlson, S. C. Pieper, 323(1983

gnd R. B. Wiringa, Phys. Rev. 86, 1720(1997; R. B. Wir-  159] 3 p_ vary and D. C. Zheng, “The Many-Fermion-Dynamics
inga, Nucl. PhysA631, 70c(1998. Shell-Model Code,” lowa State University, 199@npub-

[10] M. Viviani, A. Kievsky, and S. Rosati, Few-Body Sydig, 25 lished.
(1995. [30] P. Navrdil, B. R. Barrett, and W. Glokle, Phys. Rev. (&9,
[11] D. C. Zheng, J. P. Vary, and B. R. Barrett, Phys. Re\6@C 611(1999.
2841(1994; D. C. Zheng, B. R. Barrett, J. P. Vary, W. C. [31] K. Varga and Y. Suzuki, Phys. Rev. &2, 2885(1995; K.
Haxton, and C. L. Songbid. 52, 2488(1995. Varga, Y. Ohbayasi, and Y. Suzuki, Phys. Lett. 386, 1
[12] P. Navrdil and B. R. Barrett, Phys. Rev. 64, 2986 (1996, (1997).
57, 3119(1998. [32] D. C. Zheng, B. R. Barrett, J. P. Vary, and R. J. McCarthy,
[13] P. Navrdil and B. R. Barrett, Phys. Rev. &7, 562 (1998. Phys. Rev. 49, 1999(1994).
[14] R. Ceuleneer, P. Vandepeutte, and C. Semay, Phys. R&8,. C [33] D. C. Zheng, B. R. Barrett, J. P. Vary, and H. ¥ar, Phys.
2335(1988. Rev. C51, 2471(1995.
[15] J. Carlson, V. R. Pandharipande, and R. B. Wiringa, Nucl.[34] S. C. PiepeKprivate communication
Phys.A424, 47 (1984). [35] M. M. Nagels, T. A. Rijken, and J. J. de Swart, Phys. Rev. D
[16] A. Cstt0 and G. M. Hale, Phys. Rev. 65, 2366(1997. 17, 768(1978.
[17] H. M. Hofmann and G. M. Hale, Nucl. Phy&613, 69 (1997). [36] M. J. Musolf, R. Schiavilla, and T. W. Donnelly, Phys. Rev. C
[18] M. Viviani, S. Rosati, and A. Kievsky, Phys. Rev. Ledl, 50, 2173(1994.
1580(1998. [37] B. Mueller et al, Phys. Rev. Lett78, 3824(1997.
[19] F. Ciesielski and J. Carbonell, Phys. Rev58& 58 (1998; F. [38] R. Schiavilla, V. R. Pandharipande, and D. O. Riska, Phys.
Ciesielski, J. Carbonell, and C. Gignoux, Nucl. Php&31, Rev. C41, 309(1990.
653c(1998. [39] G. P. Kamuntaviius, Few-Body Systl, 91 (1986; Sov. J.

[20] L. Trlifaj, Phys. Rev. C5, 1534(1972. Part. Nucl.20, 109(1988.



