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Four-nucleon shell-model calculations in a Faddeev-like approach

P. Navrátil * and B. R. Barrett
Department of Physics, University of Arizona, Tucson, Arizona 85721

~Received 25 August 1998!

We use equations for Faddeev amplitudes to solve the shell-model problem for four nucleons in a model
space that includes up to 14\V harmonic-oscillator excitations above the unperturbed ground state. Two- and
three-body effective interactions derived from the Reid93 and Argonne V8’ nucleon-nucleon potentials are
used in the calculations. Binding energies, excitation energies, point-nucleon radii, and electromagnetic and
strangeness charge form factors for4He are studied. The structure of the Faddeev-like equations is discussed
and a formula for the matrix elements of the permutation operators in a harmonic-oscillator basis is given. The
dependence on harmonic-oscillator excitations allowed in the model space and on the harmonic-oscillator
frequency is investigated. It is demonstrated that the use of three-body effective interactions improves the
convergence of the results.@S0556-2813~99!03004-6#

PACS number~s!: 21.45.1v, 21.60.Cs, 21.30.Fe, 27.10.1h
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I. INTRODUCTION

Many different methods have been used to solve the f
body problem in the past. One of the most viable approac
appears to be the Faddeev method@1#. It has been success
fully applied to solve the three-nucleon bound-state prob
for various nucleon-nucleon potentials@2–6#. For solution of
the four-nucleon problem one can employ Yakubovsk
generalization of the Faddeev formalism@7# as done, e.g., in
Ref. @8#. Alternatively, other methods have also been succ
fully used in the past, such as the Green’s function Mo
Carlo ~GFMC! method@9# and the correlated hyperspheric
harmonics expansion method@10#.

On the other hand, when studying the properties of m
complex nuclei one typically resorts to the shell model.
that approach, the harmonic-oscillator basis is used in a t
cated model space. Instead of the free nucleon-nucleon
tential, one utilizes effective interactions appropriate for
truncated model space. Examples of such calculations ar
large-basis no-core shell-model calculations that have
cently been performed@11,12#. In these calculations al
nucleons are active, which simplifies the effective interact
as no hole states are present. The effective interactio
determined for a system of two nucleons in a harmon
oscillator well interacting by the nucleon-nucleon potent
and is subsequently used in many-particle calculations.

In a recent paper we combined the shell-model appro
to the three-nucleon problem with the Faddeev formali
@13#. That allowed us to extend the shell-model calculatio
to a model space of excitations of 32\V above the unper-
turbed ground state and to study the convergence with
spect to the size of the model space. In the present pape
generalize these earlier calculations to the four-nucleon p
lem. We introduce equations for Faddeev amplitudes that
fully antisymmetrized for three nucleons. As the center-
mass term is removed, we are able to work in a model sp
up to an excitation of 14\V above the unperturbed groun
state. For comparison the largest shell-model calculation
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far for 4He are those performed by Ceuleneeret al., in which
a 10\V model space was utilized@14#. The main motivation
for the present work is to test the shell-model approach
the effective interactions derived from realistic nucleo
nucleon (NN) potentials that are used in conventional she
model applications for more complex systems. As the eq
tions that we employ can be conveniently used with thr
body interactions or three-body effective interactions,
investigate, in addition to two-body effective interaction
also three-body effective interactions in the present form
ism. Such effective interactions are not typically used in t
ditional applications. We show that the inclusion of thre
body effective interactions improves the overall converge
of the results. At the same time our work serves as an a
native method to solving the four-nucleon problem. We c
study the convergence properties of the results with incre
ing size of the model space. If convergence is achieved,
results will approach the exact solutions obtained by ot
methods. In our formalism we seek simultaneously solutio
for both the ground state and the excited states. In the p
the variational Monte Carlo method was used to investig
the excited states of4He using realisticNN potentials@15#.
In most four-nucleon calculations with realisticNN poten-
tials, however, only the ground-state properties were ev
ated @8,10#. On the other hand, earlier studies that inves
gated excited-state properties usually did not employ reali
NN potentials@14,16#. Recently, the four-nucleon resona
and scattering states were investigated using realisticNN
potentials in the framework of the resonating group meth
@17# and the correlated-hyperspherical-harmonics met
@18# as well as in the solution of the Faddeev-Yakubov
equations in configuration space@19#.

The present calculation is simplified by using a comp
formula for the matrix elements of the permutation operat
in the harmonic-oscillator~HO! basis. Also, because of th
way we do the model-space truncation, we keep the equ
lence of the Faddeev-like and Schro¨dinger equations
throughout the calculation. In addition to calculation
ground-state and excited-state energies and point-nuc
rms radii, we also evaluate electromagnetic~EM! and
strangeness form factors in the impulse approximation.

In Sec. II we first discuss the Faddeev equations for

-
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PRC 59 1907FOUR-NUCLEON SHELL-MODEL CALCULATIONS IN A . . .
shell-model problem of three nucleons. Then a general
tion to the four-nucleon system is introduced. In Sec. III
present the energy, radii, and form factor results for4He.
Conclusions are given in Sec. IV.

II. SHELL MODEL AND FADDEEV-LIKE FORMALISM

In shell-model studies the one- plus two-body Ham
tonian for theA-nucleon system, i.e.,

H5(
i 51

A pW i
2

2m
1(

i , j

A

VN~rW i2rW j !, ~1!

wherem is the nucleon mass andVN(rW i2rW j ) is the NN in-
teraction, is usually modified by adding the center-of-m
HO potential 1

2 AmV2RW 2, RW 5(1/A)( i 51
A rW i . This potential

does not influence the intrinsic properties of the many-bo
system. It provides, however, a mean field felt by ea
nucleon and allows us to work with a convenient HO bas
The modified Hamiltonian, depending on the HO frequen
V, can be cast into the form

HV5(
i 51

A F pW i
2

2m
1

1

2
mV2rW i

2G
1(

i , j

A FVN~rW i2rW j !2
mV2

2A
~rW i2rW j !

2G . ~2!

The one-body term of the Hamiltonian~2! can be rewritten
as a sum of the center-of-mass term,Hc.m.

V 5PW c.m.
2 /2Am

1 1
2 AmV2RW 2, where PW c.m.5( i 51

A pW i and a term depending
only on the relative coordinates. In the present applicat
we use a basis which explicitly separates center-of-mass
relative-coordinate wave functions. Therefore, the contri
tion of the center-of-mass term is trivial and will be omitte
from now on.

The shell-model calculations are performed in a fin
model space. Therefore, the interaction term in Eq.~2! must
be replaced by an effective interaction. In general, for
A-nucleon system, anA-body effective interaction is needed
In practice, the effective interaction is usually approxima
by a two-body effective interaction. In the present study
will also employ a three-body effective interaction. As a
proximations are involved in the effective interaction tre
ment, large model spaces are desirable. In that case, the
culation should be less affected by any imprecision of
effective interaction. The same is true for the evaluation
any observable characterized by an operator. In the m
space, renormalized effective operators are required.
larger the model space, the less renormalization is nee
We may take advantage of the present approach to per
shell-model calculations in significantly larger model spa
than are possible in the conventional shell-model approa
At the same time we can investigate the convergence p
erties of effective interactions.
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A. Three-nucleon system

In this subsection we repeat the steps discussed in
@13# that are needed to solve the three-nucleon shell-mo
problem in the Faddeev formalism. For a three-nucleon s
tem, i.e.,A53, a transformation of the coordinates,

rW5A1
2 ~rW12rW2! , ~3a!

yW5A 2
3 @ 1

2 ~rW11rW2!2rW3# , ~3b!

and, similarly, of the momenta, can be introduced that brin
the relative-coordinate part of the one-body HO Hamilton
into the form

H05
pW 2

2m
1

1

2
mV2rW 21

qW 2

2m
1

1

2
mV2yW 2. ~4!

Eigenstates of this Hamiltonian,

unls jt,NLJ,JT&, ~5!

are then used as the basis for the three-nucleon calcula
Heren,l andN,L are the HO quantum numbers correspon
ing to the harmonic oscillators associated with the coor
nates and momentarW,pW andyW ,qW , respectively. The quantum
numberss, t, and j describe the spin, isospin, and angu
momentum of the relative-coordinate partial channel of p
ticles 1 and 2, whileJ is the angular momentum of the thir
particle relative to the center of mass of particles 1 and
The J and T are the total angular momentum and the to
isospin, respectively.

The Faddeev equation for the bound system can be w
ten in the form

H̃uf&5Euf&, ~6!

with

H̃5H01V~rW !T. ~7!

Here,V(rW)5VN(A2rW)2(1/A)mV2rW2 is the potential andT
is given by

T511T ~2 !1T ~1 !, ~8!

with T (1) andT (2) the cyclic and the anticyclic permutatio
operators, respectively. Previously@13#, we derived a simple
formula for the matrix elements ofT (2)1T (1) in the basis
~5!, namely,
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^n1l 1s1 j 1t1 ,N1L1J1 ,JTuT ~2 !1T ~1 !un2l 2s2 j 2t2 ,N2L2J2 ,JT&

52dN1 ,N2(LS
L̂2Ŝ2 ĵ 1 ĵ 2Ĵ1Ĵ2ŝ1ŝ2 t̂1 t̂2~21!LH l 1 s1 j 1

L1
1
2 J1

L S J
J H l 2 s2 j 2

L2
1
2 J2

L S J
J H 1

2
1
2 s1

1
2 S s2

J H 1
2

1
2 t1

1
2 T t2

J
3@~21!s11s21t11t22L12 l 1^N1L1n1l 1Lun2l 2N2L2L&31^n1l 1N1L1LuN2L2n2l 2L&3#, ~9!
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where Ni52ni1 l i12Ni1Li , i[1,2, ĵ 5A2 j 11, and
^N1L1n1l 1Lun2l 2N2L2L&3 is the general HO bracket for tw
particles with mass ratio 3 as defined, e.g., in Ref.@20#. Ex-
pression~9! can be derived by examining the action ofT (1)

andT (2) on the basis states~5!. A similar derivation for a
different basis is described, e.g., in Refs.@21,22#. Let us note
that it follows from the antisymmetry of the two-nucleo
states and from the symmetry properties of the HO brac
that the contributions ofT (2) andT (1) in Eq. ~9! are iden-
tical.

The eigensystem of the operatorT, Eq. ~8!, consists of
two subspaces. The first subspace has eigenstates with e
value 3, which form totally antisymmetric physical state
The second subspace has eigenstates with eigenvalu
which form a not completely antisymmetric, unphysical su
space of states. We found these properties ofT by direct
calculation using the relation~9!. It is, however, a genera
result. The same structure of eigenstates was also obtain
Ref. @23# using a different basis. The eigenvalue structu
follows from the fact that13T has the properies of a projec
tion operator. It is possible to Hermitize the Hamiltonian~7!
on the physical subspace, where it is quasi-Hermitian.
Hermitized Hamiltonian takes the form

H̄5H01T̄ 1/2V~rW !T̄ 1/2, ~10!

whereT̄ operates on the physical subspace only.
The operatorT, Eq. ~8!, is diagonal inN52n1 l 12N

1L. Note that any basis truncation other than one of
type N<Nmax violates, in general, the Pauli principle an
mixes physical and unphysical states. Here,Nmax character-
izes the maximum of total allowed HO quanta in the mo
space and is an input parameter of the calculation. The t
cation into totally allowed oscillator quantaN<Nmax, how-
ever, preserves the equivalence of the Hamiltonians~7! and
~10! on the physical subspace.

B. Four-nucleon system

By relying on the results obtained for the three-nucle
system, as described in the previous subsection, we can
tend the formalism to the four-nucleon system. We use
Hamiltonian ~2! with A54. By introducing the coordinate
~and momentum! transformations

rW5A1
2 ~rW12rW2! , ~11a!

yW5A 2
3 @ 1

2 ~rW11rW2!2rW3# , ~11b!
ts

en-
.

0,
-

in
e

e

e

l
n-

n
x-
e

zW5
A3

2
@ 1

3 ~rW11rW21rW3!2rW4# , ~11c!

we obtain the one-body part of the Hamiltonian~2! in the
form

H05
pW 2

2m
1

1

2
mV2rW 21

qW 2

2m
1

1

2
mV2yW 21

oW 2

2m
1

1

2
mV2zW 2,

~12!

with the center-of-mass term omitted.
A possible generalization of the Faddeev equation~6! for

four identical particles can be written in the form

H̃uc~123!4&5Euc~123!4&, ~13!

with

H̃uc~123!4&[H0uc~123!4&1 1
2 ~V121V131V23!

3~ uc~123!4&1uc~432!1&1uc~134!2&1uc~142!3&)

~14!

and

~ uc~123!4&1uc~432!1&1uc~134!2&1uc~142!3&)

5~12T142T242T34!uc~123!4&[T4uc~123!4&. ~15!

Here, uc (123)4& is a four-fermion Faddeev amplitude com
pletely antisymmetrized for particles 1, 2, and 3. There
three other equations that can be obtained from Eq.~13! by
permuting particle 4 with particles 1, 2, and 3. Their su
then leads to the Schro¨dinger equation. We note that th
present equations are different from the traditional Fadde
Yakubovski equations@7#, which combine Faddeev ampli
tudes depending on two sets of relative coordinates. We
working with a complete orthonormal basis. It is, therefo
sufficient and convenient to use a single set of coordina
defined by the relations~11!. Unlike the Faddeev amplitude
used typically in the Faddeev-Yakubovski equations,
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amplitudes appearing in Eq.~13! are antisymmetrized with
respect to the first three particles. Those amplitudes are
tained, as described below, in a straightforward manner w
the help of our three-nucleon HO formalism introduced e
lier. The present equations allow us to employ easily r
three-body interactions or three-body effective interactio
The latter property makes them particularly useful for t
present extension of shell-model calculations for four nuc
ons. At the same time, the use of Faddeev amplitudes a
symmetrized for particles 1, 2, and 3 allows us to reduce
dimmension of the basis significantly.

We start the four-nucleon calculation using the basis

uN1iJ1T1 ,nzl zJ4 ,JT& , ~16!
b-
th
-
l

s.

-
ti-
e

with the three-fermion part given by the antisymmetriz
eigenstates ofT, Eq. ~8!, corresponding to eigenvalue 3, e.g

uN1iJ1T1&5( cnls jtNLJ 3

N1iJ1T1 unls jt,NLJ3 ,J1T1&, ~17!

whereN152n1 l 12N1L and i counts the eigenstates ofT
with eigenvalue 3 for a givenN1 andJ1 ,T1. Further,nz ,l z
are the HO quantum numbers corresponding to the harm
oscillator associated with the coordinatezW and the momen-
tum oW andJ4 is the angular momentum of the fourth partic
relative to the center of mass of particles 1, 2, and 3.

As in the case of the three-particle transposition opera
~9!, a compact formula can be derived for the matrix e
ments of the four-particle transposition operators in the ba
~16!, e.g.,
It may
ion
we

rackets
ct
ring in

al
^N1Li LJ1LT1L ,nzLl zLJ4L ,JTuT141T241T34uN1Ri RJ1RT1R,nzRl zRJ4R,JT&

5dNL ,NR( cnLl LsL j LtLNLLLJ3L

N1Li LJ1LT1L cnRl RsRj RtRNRLRJ3R

N1Ri RJ1RT1R L̂1L
2 L̂1R

2 Ŝ1L
2 Ŝ1R

2 L̂2
2Ŝ2

2 ĵ L ĵ RĴ3LĴ3RĴ4LĴ4RĴ1LĴ1RT̂1LT̂1R

3~21!T1L2T1R1S1L1S1RH 1
2 sR S1R

1
2 S2 S1L

J H 1
2 tR T1R

1
2 T T1L

J H l L sL j L

LL
1
2 J3L

L1L S1L J1L

J H l R sR j R

LR
1
2 J3R

L1R S1R J1R

J
3H L1L S1L J1L

l zL
1
2 J4L

L2 S2 J
J H L1R S1R J1R

l zR
1
2 J4R

L2 S2 J
J L̂82~21!L8H l R L2 L8

l zR LR L1R
J H l R L2 L8

l zL l 8 L1L
J F ŝLŝRt̂L t̂RH 1

2
1
2 sR

1
2 S1L sL

J
3H 1

2
1
2 tR

1
2 T1L tL

J ~21! l zR1L1L~~21! l zL^n8l 8nzLl zLL8unzRl zRNRLRL8&8^nLl LNLLLL1Lun8l 8nRl RL1L&3

1~21! tR2tL1sR2sL1LR2 l L2LL^nzLl zLn8l 8L8uNRLRnzRl zRL8&8^NLLLnLl LL1LunRl Rn8l 8L1L&3!

2d l L ,l R
dsL ,sR

d tL ,tR
dNL ,n8dLL ,l 8~21!LR1 l zR^nzLl zLNLLLL8uNRLRnzRl zRL8&8G , ~18!

whereNX52nX1 l X12NX1LX12nzX1 l zX , X[L or R, and, e.g., the expression^nzLl zLNLLLL8uNRLRnzRl zRL8&8 denotes
a general HO bracket for two particles with mass ratio 8, as defined in Ref.@20#. Similarly, as in Eq.~9! the brackets for two
particles with mass ratio 3 also appear in the relation~18!. In the derivation of expression~18! we relied on the antisymmetry
of the basis states with respect to particles 1, 2, and 3. The calculation was facilitated by application of the operators2T13 and
2T23. The relation~18! appears to be nonsymmetric. However, its numerical evaluation leads to a symmetric matrix.
also appear that the angular momentum sums in Eq.~18! can be summed up. In fact, it is possible to simplify the express
by introducing a 15j coefficient of the fifth kind as defined, e.g., in Ref.@24#, but as such coefficients are seldomly used,
prefer to keep the summations in the explicit form. On the other hand, a significant simplification of expression~18! can be
obtained, when the symmetry relations of different terms are exploited. First, it follows from the properties of the HO b
and from the antisymmetry of the two-nucleon states that the contributions ofT14 andT24 are identical. Second, using the fa
that the states~16! are antisymmetrized for the particles 1, 2, and 3 it follows that all three permutation operators appea
Eq. ~18! give identical contributions to expression~18!. The computation ofT34 is the simplest. In that case a parti
summation of the angular momentum coefficients can be performed, yielding a compact expression
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^N1Li LJ1LT1L ,nzLl zLJ4L ,JTuT34uN1Ri RJ1RT1R,nzRl zRJ4R,JT&

5dNL ,NR( cnls jtNLLLJ 3L

N1Li LJ1LT1L cnls jtNRLRJ 3R

N1Ri RJ1RT1R Ĵ3LĴ3RĴ4LĴ4RĴ1LĴ1RT̂1LT̂1R~21!T1L1T1R1J3L1J3RH 1
2 t T1R

1
2 T T1L

J
3K̂2H j J3L J1L

J3R K J4L

J1R J4R J
J H LL l zR K

J4R J3L
1
2
J H LR l zL K

J4L J3R
1
2
J H l zL LR K

l zR LL L8
J

3L̂82~21!LR1 l zL1L8^nzLl zLNLLLL8uNRLRnzRl zRL8&8 . ~19!
-
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Thus, by multiplying expression~19! by 3 we obtain the
same matrix element as from Eq.~18!. We note that a gen
eralization of the evaluation of the permutation operator m
trix element~19! to a system more complex than the pre
ently studiedA54 system is straightforward. Its simplicit
suggests that the present formalism can be extended to
tems withA.4.

Similarly, as for the operatorT, Eq. ~8!, eigenstates of the
operatorT4 defined by the relation~15! can be subdivided
into two subspaces. A physical subspace is spanned by
tally antisymmetric states, in this case corresponding to
genvalue 4, and a spurious subspace is spanned by eige
tors corresponding to eigenvalue 0. It is possible
symmetrize the HamiltonianH̃ appearing in Eq.~13! on the
physical subspace. The symmetrized Hamiltonian then ta
the form

H̄5H01T̄4
1/2 1

2 ~V121V131V23!T̄4
1/2, ~20!

whereT̄4 operates only on the physical subspace. In our c
culations, described later, we diagonalize the symmetri
Hamiltonian~20! in the physical basis formed by the eige
states ofT̄4.

The operatorT4, Eq. ~15! is diagonal inN52n1 l 12N
1L12nz1 l z . A basis truncation defined by a restriction o
the totally allowed oscillator quantaN<Nmax preserves the
equivalence of the Hamiltonians~14! and~20! on the physi-
cal subspace.

C. Effective interactions

From solving two-nucleon systems in a HO well, intera
ing by soft-core potentials, one learns that excitations up
about 300\V (Nmax5300) are required to get almost exa
solutions. We anticipate, therefore, that at least the sa
number of excitations should be allowed to solve the ma
nucleon system. The Faddeev formulation has the obv
advantage compared with the traditional shell-model
proach that the center-of-mass coordinate is explicitly
moved. Even then, it is not feasible to solve the eigenva
problem either for Eqs.~10! or ~20! in such a large space. O
the other hand, shell-model calculations are always p
formed by employing effective interactions tailored to a sp
cific model space. In practice, these effective interactions
never be calculated exactly, because, in general, anA-body
effective interaction is required for anA-nucleon system. We
-
-

ys-

to-
i-
ec-

o
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l-
d

-
to

e
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-
-
e
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n

may, however, take advantage of the present approac
perform shell-model calculations in significantly larg
model spaces than are possible in a conventional shell-m
approach. At the same time we can investigate converge
properties of effective interactions. If convergence
achieved, we should obtain the exact solution, since by c
struction the effective interactions that we employ satisfy
conditionVeff→V for Nmax→`.

Usually, the effective interaction is approximated by
two-body effective interaction determined from a tw
nucleon system. In the present calculations we replace ma
elements of the potentialV(rW) by matrix elements of an ef
fective two-body interaction, derived in a straightforwa
manner for each relative-coordinate partial channel. The
evant two-nucleon Hamiltonian is then

H2[H021V5
pW 2

2m
1

1

2
mV2rW 21VN~A2rW !2

mV2

A
rW 2,

~21!

which can be solved as a differential equation or, alter
tively, can be diagonalized in a sufficiently large harmon
oscillator basis. For a four-nucleon system we setA54 in
Eq. ~21!, which implies that we are dealing with a boun
state problem.

To construct the two-body effective interaction we em
ploy the Lee-Suzuki@25# similarity transformation method
which gives an effective interaction in the formPVeffP
5PVP1PVQvP, with v the transformation operator sa
isfying v5QvP, andP andQ512P, the projectors on the
model and the complementary spaces, respectively. Our
culations start with exact solutions of the Hamiltonian~21!
and, consequently, we construct the operatorv and, then, the
effective interaction directly from these solutions. Let us d
note the relative-coordinate two-nucleon HO states, wh
form the model space, asuaP&, and those which belong to
the Q space, asuaQ&. Then theQ-space components of th
eigenvectoruk& of the Hamiltonian~21! can be expressed a
a combination of theP-space components with the help
the operatorv:

^aQuk&5(
aP

^aQuvuaP&^aPuk&. ~22!

If the dimension of the model space isdP , we may choose a
setK of dP eigenevectors, for which the relation~22! will be
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satisfied. Under the condition that thedP3dP matrix ^aPuk&
for uk&PK is invertible, the operatorv can be determined
from Eq.~22!. In the present application we select the lowe
states obtained in each channel. Their number is given by
number of basis states satisfying 2n1 l<Nmax. Once the
operatorv is determined, the effective Hamiltonian can
constructed as follows:

^gPuH2 effuaP&5 (
kPK

F ^gPuk&Ek^kuaP&

1(
aQ

^gPuk&Ek^kuaQ&^aQuvuaP&G . ~23!

It should be noted thatPuk&5(aP
uaP&^aPuk& for uk&PK is

a right eigenvector of Eq.~23! with the eigenvalueEk .
This Hamiltonian, when diagonalized in a model-spa

basis, reproduces exactly the setK of dP eigenvaluesEk .
Note that the effective Hamiltonian is, in general, qua
Hermitian. It can be Hermitized by a similarity transform
tion determined from the metric operatorP(11v†v)P. The
Hermitian Hamiltonian is then given by@26#

H̄2 eff5@P~11v†v!P#1/2H2 eff@P~11v†v!P#21/2.
~24!

Finally, the two-body effective interaction used in th
present calculations is determined from the two-nucleon
fective Hamiltonian~24! asV2 eff5H̄2 eff2H02. We note that
the interactionV121V131V23 in Eq. ~20! is then replaced by
T 1/2V2 effT 1/2, which is evaluated in a straightforward way
the basis~16!.

As pointed out before, the structure of the Hamiltoni
~20! allows us to employ easily three-body effective intera
tions in addition to the above-discussed two-body effect
interactions. We can replaceV121V131V23 in Eq. ~20! by
V3 eff , which can be derived from the three-nucleon solutio
in a similar manner as the two-body effective interaction
derived from the two-nucleon solutions. To findV3 eff we
solve the three-nucleon system described by the Hamilto
~10! with V(rW)5VN(A2rW)2(1/A)mV2rW 2. As A54 we are
dealing with a bound three-nucleon problem. It can be sol
in a three-nucleon model space characterized byN3 max'30

FIG. 1. The dependence of the ground-state and the first-exc
010 state energies, in MeV, on the maximal number of HO ex
tations allowed in the model space. The two-body effective inte
tion utilized was derived from the Reid93NN potential. Results for
\V514, 17, 19, and 22 MeV are presented.
t
he
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@13#. First, we compute the two-body effective interactio
appropriate for the model space defined byN3 max, as dis-
cussed earlier in this subsection. Then the three-nucleon
tem is solved in the same space. Afterwards we construct
three-body effective interaction for a model space defined
Nmax,N3 max. In the present paper we use model spaces
to Nmax514. The effective interaction is constructed exact
as described above, using Eqs.~22!, ~23!, and~24! with H2 eff
replaced byH3 eff . The energiesEk and the statesuk& corre-
spond to the three-nucleon system eigenstates, however
the statesuaP& and uaQ& are three-nucleon basis states~17!
with the model-space conditionN1[2n1 l 12N1L<Nmax
and theQ-space conditionNmax,N1<N3 max. The three-
body effective interaction is computed for different thre
nucleon channels characterized byJ1 , T1, and parity and is
obtained from the Hermitized effective Hamiltonian
V3 eff5H̄3 eff2H0, whereH0 is given by Eq.~4!. The inter-
action V3 eff then replacesV121V131V23 in Eq. ~20!. We
note that by construction in the limitNmax→N3 max the three-
body effective interaction approaches the two-body effect
interactionV3 eff→T 1/2V2 effT 1/2 and withNmax→` the effec-
tive interaction approaches the bare interactionV2 eff→V.

III. APPLICATION TO 4He

In the present paper we use the Reid93NN potential@27#
and the Argonne V8’NN potential, introduced in Ref.@9#.
We work in the isospin formalism; the charge-invariant p
tentialVN5 1

3 Vpp1 1
3 Vnn1 1

3 Vnp is used for eachT51 wave
in the calculations with the Reid93 potential. The Coulom
potential is added toVpp in this case. On the other hand, th
calculations with the Argonne V8’ potential, which is isop
invariant, do not include the Coulomb potential.

Our calculation progresses in several steps. The mo
space is characterized by the conditionN<Nmax, N52n
1 l 12N1L12nz1 l z . First, the three-nucleon antisymme
trized basis is constructed by diagonalizingT, Eq. ~8!, in the
basis~5! for all N1[2n1 l 12N1L<Nmax and all J1 ,T1.
Then the four-nucleon antisymmetrized basis is calculated
diagonalizingT4, Eq. ~15!, in the basis~16! for N5N1
12nz1 l z<Nmax with N even for positive-parity states andN
odd for negative-parity states. We present results forJ50
andT50 only, but for both parities. We note that the fou

ed
-
c-

FIG. 2. The dependence of the point-nucleon rms radius of
ground state and the first-excited 010 state, in fm, on the maxima
number of HO excitations allowed in the model space. The tw
body effective interaction utilized was derived from the Reid93NN
potential. Results for\V514, 17, 19, and 22 MeV are presented
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1912 PRC 59P. NAVRÁTIL AND B. R. BARRETT
nucleon basis computation is independent ofV and is done
only once. The next step is the effective interaction calcu
tion. The two-body effective interaction is derived from Eq
~22!–~24!. The condition for the relative-coordinate two
body effective-interaction model space is then 2n1 l
<Nmax. When solving the two-nucleon relative-coordina
Hamiltonian~21! in the full space, we truncate the HO bas
by keeping the states typically up ton5152. The two-body
effective interaction is constructed for all partial-wave cha
nels up toj 56. The resulting effective interaction is finall
used as input for the four-nucleon calculation, where
Hamiltonian~20! is diagonalized. Instead of a two-body e
fective interaction, we may use a three-body effective int
action, as discussed in the previous section. The three-b
effective is computed only for the most important thre
nucleon channelsJ1T1. In particular, we evaluated the thre
body effective interaction forJ151/2,3/2, T151/2, and for
both positive and negative parity. For the channels w
higherJ1 the two-body effective interaction corresponding
Nmax is used instead. For the parameterN3 max characterizing
the three-nucleon full space, we usedN3 max528 for J1

FIG. 3. The dependence of the ground-state and the first-exc
010 state energies, in MeV, on the maximal number of HO ex
tations allowed in the model space. Results obtained using the
body ~dashed line! and three-body~solid line! effective interaction
derived from the Reid93NN potential are compared. Harmonic
oscillator energies of\V517 and 19 MeV were used.

FIG. 4. The dependence of the point-nucleon rms radius of
ground state and the first-excited 010 state, in fm, on the maxima
number of HO excitations allowed in the model space. Results
tained using the two-body~dashed line! and three-body~solid line!
effective interaction derived from the Reid93NN potential are
compared. Harmonic-oscillator energies of\V517 and 19 MeV
were used.
-
.

-

e

r-
dy
-

h

51/2 andN3 max524 for J153/2. We also performed calcu
lations with the inclusion of the three-body effective intera
tion for J155/2 and found it to have little effect.

Let us remark that the present method for solving
four-nucleon shell-model problem is fully equivalent to th
standard shell-model approach. In particular, it is straightf
ward to transform the relative-coordinate two-body effect
interaction used in the present calculations to the tw
particle basis used for the shell-model input by the stand
transformation@28#. We used the transformed interaction
for the model spaces up to an 8\V space to test our results
The shell-model diagonalization was then performed by e
ploying the many-fermion-dynamics shell-model code@29#,
which can be utilized for calculations with model spac
comprising up to 9 major HO shells, i.e.,Nmax58 for 4He.
We obtained the same results from both the Faddev-like
culation and the standard shell-model calculation. T
Faddeev-like calculation has, obviously, much smaller

ed
-
o-

e

b-

FIG. 5. The dependence of the ground state, the first-exc
010 state, and the first-excited 020 state energies, in MeV, on th
maximal number of HO excitations allowed in the model space.
the positive-parity states the results were obtained using the th
body effective interaction derived from the Reid93NN potential.
Energies of the 020 state were calculated using a two-body effe
tive interaction derived from the Reid93NN potential. Harmonic-
ocillator energies of\V517 and 19 MeV were used.

FIG. 6. The dependence of the point-nucleon rms radius of
ground state, the first-excited 010 state, and the first-excited 020
state, in fm, on the maximal number of HO excitations allowed
the model space. For the positive-parity states the results were
tained using the three-body effective interaction derived from
Reid93 NN potential. Energies of the 020 state were calculated
using a two-body effective interaction derived from the Reid93NN
potential. Harmonic-oscillator energies of\V517 and 19 MeV
were used.



W
u

ria

g
–9
e
a

n
a
H
t

iv
em
m
he

u-
nd-
of

no-
s

our

the

93
.
ra-

he
rgies
red
n-

m-
state
s

its
n-

nd
mil-
d in

it
ci
te
-
ine

th
l
ee

-

ited
ci-
two-

.

.

es

he

. 9.

PRC 59 1913FOUR-NUCLEON SHELL-MODEL CALCULATIONS IN A . . .
mension and can be extended to larger model spaces.
also note that we applied the discussed formalism to fo
electron system in a related study recently@30#. Our results
compared well with those obtained by the stochastic va
tional method@31#.

A. Energies and point-nucleon rms radii

Our results for the ground-state and excited-state ener
and point-nucleon rms radii are presented in Figs. 1
where the dependences on the model-space size and th
energy are shown. A summary of the largest model-sp
(Nmax514 for the positive-parity states andNmax513 for the
negative-parity states! results is given in Table II. Let us
mention an unusual feature of the present calculatio
namely, the convergence from below for the ground-st
energy. It is caused by the asymmetric treatment of the
terms that are added and subtracted to the Hamiltonian in
process of evaluating the effective interaction. Our effect
interaction is computed for a two- or three-nucleon syst
bound in a HO potential. Therefore, artificial binding fro
this potential is included in the effective interaction and t

FIG. 7. The dependence of the ground-state and the first-exc
010 state energies, in MeV, on the maximal number of HO ex
tations allowed in the model space. The three-body effective in
action derived from the Argonne V8’NN potential was used. Re
sults for \V516, 19, and 22 MeV are presented. The dotted l
represents the result,225.92 MeV, of the GFMC calculation@34#.

FIG. 8. The dependence of the point-nucleon rms radius of
ground state and the first-excited 010 state, in fm, on the maxima
number of HO excitations allowed in the model space. The thr
body effective interaction derived from the Argonne V8’NN po-
tential was used. Results for\V516, 19, and 22 MeV are pre
sented.
e
r-

-

ies
,

HO
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four-body effects coming from the entire four-nucleon calc
lation may not completely compensate for this spurious bi
ing in a particular model space. We note that this type
overbinding in the no-core shell-model calculations was
ticed in previous studies@32,33,12#. This effect decreases a
the model-space size increases, as is demonstrated in
earlier three-nucleon shell-model calculations@13#.

In Fig. 1 we present the calculated dependence of
ground-state energy and the first-excited 010 state energy on
the model-space size, characterized byNmax. The two-body
effective interaction employed was derived from the Reid
NN potential. Results for\V514,17,19,22 MeV are shown
The corresponding dependence of the point-nucleon rms
dius is presented in Fig. 2. A slow convergence with t
increasing model-space size can be observed for ene
with a significantly faster rate for the ground state compa
to the first-excited 010 state. Also, a much stronger depe
dence of the excited state on the HO energy\V is apparent.
The results of the point-nucleon rms-radius calculation de
onstrate even more the differences between the ground
and the first-excited 010 state. While the ground-state radiu
has almost converged and shows little\V dependence, the
first-excited 010 state displays a strong dependence of
energy on\V and a steady increase of its radius with i
creasing model-space size.

Let us remark that in our approach we obtain the grou
state as well as the excited states by diagonalizing the Ha
tonian. This implies that the excited states are expande
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e
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FIG. 9. The dependence of the ground-state and the first-exc
010 state energies, in MeV, on the maximal number of HO ex
tations allowed in the model space. Results obtained using the
body ~dashed line! and three-body~solid line! effective interaction
derived from the Argonne V8’NN potential are compared
Harmonic-oscillator energies of\V516 and 22 MeV were used
The dotted line represents the result,225.92 MeV, of the GFMC
calculation@34#.

TABLE I. Absolute value of the ground-state energy differenc
obtained in the calculations with HO energies of\V516 MeV and
\V522 MeV with the two-body~second row! and the three-body
~third row! effective interactions in different model spaces. T
effective interactions were derived from the Argonne V8’NN po-
tential. The corresponding energy dependence is shown in Fig

Nmax 6 8 10 12 14

uDE2 effu 1.311 1.466 1.265 1.037 0.834
uDE3 effu 0.778 0.782 0.676 0.601 0.550
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the same harmonic-oscillator basis used for the ground s
While such an approach has technical advantages, it m
not be physically sound. Cautious interpretation of t
excited-state results is, therefore, necessary. The significa
different convergence rate of the ground state and of
first-excited 010 state manifests the different nature of t
two states. Let us note that if the model-space size w
increased up to the point at which total convergence of
excited state was achieved, our procedure would yield
lated three- and one-body clusters with an infinite rms rad
and a total energy of the three-nucleon system. It is poss
though, that we could observe a metastability prior to
onset of the cluster separation, as the resonance is shar
low lying. The present model-space sizes, however, are
yet sufficient to arrive at that point. That we have n
reached this point can be seen from the lack of converge
and, in particular, from the rather small rms radius, wh
shows a significant increase withNmax and a strong depen
dence onV.

The importance of the three-body effective interaction c
be judged from the results shown in Fig. 3. The ground-s
and excited 010 state energies obtained in a calculation t
employs the three-body effective interaction is compared
calculation performed by using only the two-body effecti
interaction. Results for two different values of the HO e
ergy,\V517 and 19 MeV, are presented. The dashed li
connect the two-body effective interaction calculation resu
that are identical to those in Fig. 1 that correspond to H
energies of\V517 and 19 MeV. The solid lines connect th
results obtained in calculations with the three-body effect
interaction. It is apparent that the three-body effective int
action improves the convergence considerably. It is es
cially true for the ground state. The difference between
Nmax56 and Nmax514 energies is significantly smaller i
the calculation that employs the three-body effective inter
tion. It can also be seen that the two-body effective inter
tion results approach the three-body effective interaction
sults in the largest spaces used in our calculations.
addition, the dependence on the HO energy decreases i
three-body effective interaction calculation compared to
two-body effective interaction calculation. This holds f
both the ground state and the first-excited 010 state. How-
ever, the inclusion of the three-body effective interacti
clearly has a larger overall impact on the ground-state
sults.

The influence of the three-body effective interaction
the point-nucleon rms radius is depicted in Fig. 4. Again
observe a better stability of the radii computed using
three-body effective interaction. In particular, the groun
state point-nucleon rms radius shows convergence in b
the model-space-size dependence and the HO-frequenc
pendence. On the other hand, the three-body effective in
action does not improve the convergence of the excited s
in any significant way in the model spaces that we employ

In Fig. 5 we show the calculated energies of the first 020
state obtained using two-body effective interactions in mo
spaces up toNmax513. For a comparison, the results for th
ground state and the first-excited 010 state from Fig. 3 are
also presented. It is interesting to note that the 020 state
shows a better convergence and stability with respect to
Nmax change as well as a weaker dependence on\V than the
te.
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first-excited 010 state. This observation is confirmed also
the point-nucleon rms radius calculation as can be see
Fig. 6. In the experiment, the 020 excitation energy, 21.01
MeV, is higher than the excitation energy of the first 010
state, 20.21 MeV. Though in our calculations their positio
are reversed, it is visible from Fig. 5 that the extrapolation
larger Nmax leads to correct ordering of the two states.
possible interpretation of this observation is that the exci
010 state is associated with a radial excitation and, thus,
more sensitive to the HO basis used in our calculations.

The energy and radius results, obtained using the Argo
V8’ NN potential, are presented in Figs. 7 and 8, resp
tively. The three-body effective interaction was used in c
culating these results, for three different HO energies,\V
516, 19, and 22 MeV. The dotted line represents the va
225.92 MeV obtained for the ground state, using the GFM
@34#. Similarly, as in the calculations with the Reid93NN
potential, we get the best convergence for the ground s
for the highest value of\V, while for the excited state the
best results are obtained for the lowest\V. The same dis-
cussion, given earlier, for the excited-state convergence
ing the Reid93NN potential, is also valid for the calculation
using the V8’NN potential. The energy convergence is ve
slow and there is no sign of convergence of the poi
nucleon rms radius of the excited 010 state. A significant
dependence on\V prevails for all the model spaces studie
On the other hand, the ground-state energy shows good
vergence and approaches the GFMC result, in particular
the \V522 MeV calculation. The ground-state poin
nucleon rms radius is almost\V independent and con
verged. It agrees with the GFMC value of 1.485 fm.

We note that results on the first-excited 010 state ob-
tained using the resonating group method were reporte
Ref. @17#. The Bonn potential employed in that work give
very similar results for the ground state as those obtai
using the Argonne V8’. It is, therefore, reasonable to mak
comparison for the excited-state results. The first-exci
010 state energy reported in Ref.@17# was 26.42 MeV,
which is about 10% below our result ofNmax514 and\V
516 MeV calculation. The reported rms radius, 3.02 fm,
slightly above our calculation.

In order to further compare the convergence and theV
dependence of the results obtained with two- and three-b
effective interactions, we present a similar calculation as t
of Fig. 3, obtained using the Argonne V8’NN potential and
a largerV difference, in Fig. 9. The solid lines correspond
the three-body effective interaction calculations, also sho
in Fig. 7, while the dashed lines connect the two-body eff
tive interaction results. Two HO energies of\V516 and 22
MeV were used. The dotted line represents the GFMC res
Again we observe a better stability of the three-bo
effective-interaction results with respect to the model-sp
size changes, a smallerV dependence, and a faster conve
gence, in particular for the ground state. In Table I we sh
the absolute value of the ground-state energy differences
tained in the calculations with HO energies of\V516 MeV
and\V522 MeV for both the two-body and the three-bod
effective-interaction calculations in different model spac
We can see that the differences obtained with the three-b
effective interaction are almost 2 times smaller in mod
spaces withNmax56 –10. The differences decrease with t
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TABLE II. Results for the ground-state and excited-state energies and point-nucleon rms radii, as well as the excitation energEx),
obtained in the largest model spaces used in the present study,Nmax514 ~13! for the positive-~negative-! parity states, respectively, ar
presented. All the states have isospinT50. The positive-parity-state calculations were performed using the three-body effective intera
Results for different HO energies are given in separate columns. The GFMC ground-state results@34# are shown for comparison.

Argonne V8’ NN potential

State Variable \V516 MeV \V519 MeV \V522 MeV GFMC
01

1 E @MeV# 226.62 226.30 226.07 225.92(8)
A^r 2& @fm# 1.481 1.485 1.485 1.485~10!

02
1 E @MeV# 25.77 24.89 23.93

Ex @MeV# 20.86 21.42 22.14
A^r 2& @fm# 2.906 2.777 2.658

01
2 E @MeV# 26.70 26.17 25.59

Ex @MeV# 19.93 20.14 20.48
A^r 2& @fm# 2.349 2.263 2.186

Reid93NN potential

State Variable \V517 MeV \V519 MeV
01

1 E @MeV# 225.69 225.47
A^r 2& @fm# 1.487 1.489

02
1 E @MeV# 25.00 24.39

Ex @MeV# 20.69 21.08
A^r 2& @fm# 2.873 2.787

01
2 E @MeV# 25.91 25.54

Ex @MeV# 19.78 19.93
A^r 2& @fm# 2.339 2.281
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the
enlargement of the model space forNmax>8. We note that
by construction the present two- and three-body effecti
interaction calculations would become identical forNmax
528.

In Table II we present a summary of our results obtain
in the largest model spaces used in the present study,
Nmax514 for the positive-parity states andNmax513 for the
negative-parity states. The positive-parity state results w
obtained using the three-body effective interaction. For
Argonne V8’ NN potential calculations we also include th
GFMC ground-state results@34# for a comparison. We note
that the Faddeev-Yakubovski equation solution giv
225.03 MeV@8# for the NijmegenNN potential@35#, which
gives comparable results to the Reid93NN potential for the
three-nucleon problem. The experimental binding energy
4He is 28.296 MeV. The discrepancy between the exp
mental and calculated values is usually attributed to the
three-nucleon forces that were not taken into account ei
in our calculation or in the other calculations, which we d
cussed. We note that the difference in the binding ener
obtained using the V8’ and the Reid93NN potentials is
mainly due to the Coulomb interaction included in
isospin-invariant manner only in the calculations with t
Reid93NN potential.

B. Charge form factors

A sensitive test of the wave functions obtained in o
calculations is the evaluation of charge form factors. Us
the formalism of Ref.@36#, we calculated the charge EM an
strangeness form factors in the impulse approximation.
one-body contribution to the charge operator is given by
~15! in Ref. @36#, e.g.,
-

d
.g.,
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M̂00
~a!~q! [1]5

1

2Ap
(
k51

A H GE
~a!~t !

A11t
j 0~qrk!

1@GE
~a!~t !22GM

~a!~t !#2t
j 1~qrk!

qrk
sk•L kJ ,

~25!

wheret5q2/4mN
2 , L k is thekth nucleon orbital momentum

andGE
(a)(t) andGM

(a)(t) are the one-body electric and ma
netic form factors, respectively. The superscript~a! refers to
(T50) for the isoscalar EM form factor or to~s! for the
strangeness form factor. We use the parametrization of
one-body form factors as discussed in Ref.@36#:

GE
~p!~t !5GV

D~t!, ~26a!

GM
~p!~t !5mpGV

D~t!, ~26b!

GE
~n!~t !52mntGV

D~t!jn~t!, ~26c!

GM
~n!~t !5mnGV

D~t!, ~26d!

GE
~s!~t !5rstGV

D~t!js~t!, ~26e!

GM
~s!~t !5msGV

D~t!, ~26f!

with

GV
D~t!5~11lV

Dt!22, ~27a!

jn5~11lnt!21, ~27b!
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js5~11lE
~s!t !21. ~27c!

The isoscalar EM form factor is given byGE,M
(T50)5 1

2 @GE,M
(p)

1GE,M
(n) #, and for the parameters appearing in Eqs.~26! and

~27!, one has numericallymp52.79, mn521.91, lV
D

54.97, andln55.6. Following Ref.@36#, we also set the
strangeness radiusrs522.0 andlE

(s)5ln . Limits on these
parameters are to be determined in the experiments a
Thomas Jefferson Accelerator Facility~TJNAF!. The first
strangeness magnetic-moment measurement was reporte
cently @37# and an experimental valuems510.23, obtained
with a large error. We use this value in our calculations.

Our charge form factor calculations are presented in F
10–13. The charge form factors given in the figures w
calculated using the one-body operator~25! as FC

(a)(q)

52Ap^ f ,010uM̂00
(a)(q) [1] u i ,010&. We show only results ob

tained with the Argonne V8’NN potential; the Reid93NN
potential gives almost identical results for the charge fo
factors, when the same HO energy\V is employed. Our
calculated elastic EM charge form factor is given in Fig.

FIG. 10. The elastic EM charge form factor~solid line! and the
EM charge form factor corresponding to the transition to the fi
excited 010 state~dotted line! calculated in the impulse approx
mation using the three-body effective interaction derived from
Argonne V8’ NN potential in theNmax514 model space and\V
522 MeV.

FIG. 11. The elastic EM charge form factor~solid line! and the
EM charge form factor corresponding to the transition to the fi
excited 010 state~dotted line! calculated in the impulse approx
mation using the three-body effective interaction derived from
Argonne V8’ NN potential in theNmax514 model space and\V
519 MeV.
he

re-

s.
e

together with the inelastic EM charge form factor corr
sponding to the transition to the first-excited 010 state.
These results were obtained using the HO energy\V522
MeV and the three-body effective interaction in theNmax
514 model space. In this calculation we obtained the b
description of the ground state. The calculation of the ela
charge form factor in the impulse approximation can be
rectly compared to that presented in Fig. 2 of Ref.@36#,
performed using variational Monte Carlo~VMC! wave func-
tions and the Argonne V14NN potential. There, the mini-
mum was obtained atq'3.55 fm21, while the experimental
minimum is at q'3.2 fm21. The difference can be ex
plained with the help of meson-exchange-current contri
tions. The elastic charge EM form factor obtained in o
calculation compares well with that obtained by the VM
wave functions. It is shifted further to higherq; namely, we
get the minimum atq'3.75 fm21. We note that a second

-

e

-

e

FIG. 12. The elastic strangeness charge form factor~solid line!
and the strangeness charge form factor corresponding to the tr
tion to the first-excited 010 state~dotted line! calculated in the
impulse approximation using the three-body effective interact
derived from the Argonne V8’NN potential in theNmax514 model
space and\V522 MeV. Values of the strangeness radiusrs

522.0 and the strangeness magnetic momentms50.23 were em-
ployed.

FIG. 13. The ratio of the elastic EM and strangeness cha
form factors~solid line! and the EM and strangeness charge fo
factor corresponding to the transition to the first-excited 010 state
~dotted line! calculated in the impulse approximation using t
three-body effective interaction derived from the Argonne V8’NN
potential in theNmax514 model space and\V522 MeV. Values of
the strangeness radiusrs522.0 and the strangeness magnetic m
mentms50.23 were employed.
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minimum appears in our calculated elastic charge form fa
at q'7.25 fm21. The second minimum at a similar positio
was found in the VMC calculations presented in Ref.@38#.
To examine the form factor dependence on\V, we repeated
these calculations for different choices of the HO energy
Fig. 11 we show the result obtained with\V519 MeV. All
other characteristics are the same as in the calculation of
10. The minimum here is shifted further to higherq; we have
it at q'3.85 fm21. The difference between the two resu
is rather small but still it shows that our calculation is n
completely converged and, in particular, the description
the high-transferred-momentum part of the form factors
quires the use of even larger model spaces than we
ployed. We note that the inelastic form factor has a stron
V dependence than the elastic form factor. As discusse
the previous subsection, convergence of the excited state
not been achieved in our calculations within the mo
spaces employed. Therefore, our calculated inelastic f
factors must be taken with some degree of caution. Le
remark that, in addition to the transition form factor, we a
computed the form factor of the first-excited 010 state. That
form factor was also evaluated in Ref.@17# in the resonating
group method approach using the Bonn potential. Simila
as in that work, our calculated 02

1 form factor is almost an
order of magnitude smaller than the ground-state form fa
for a wide range ofq. The first minimum is shifted in our
calculation to largerq, more or less to the position of th
transition form factor minimum, and the second minimum
shifted to smallerq compared to our ground-state form fa
tor.

Our calculated elastic strangeness form factor and the
elastic EM charge form factor corresponding to the transit
to the first-excited 010 state are shown in Fig. 12. Thes
results were obtained using the same wave functions as t
used for calculations presented in Fig. 10; namely, we
\V522 MeV, the model-space size characterized byNmax
514, and the three-body effective interaction was employ
The elastic form factor can be compared with the impu
approximation VMC result of Fig. 3 in Ref.@36#. Similarly,
as for the EM elastic form factor, our calculation compa
well with VMC result. We note, however, the different valu
of strangeness magnetic moment used in Ref.@36# (ms
520.2).

Finally, in Fig. 13 we present the ratio of the EM an
strangeness form factors from Figs. 10 and 12. The ratio
the elastic charge form factors is particularly interesting, a
can be experimentaly obtained from the measurement of
parity-violating left-right asymmetry for scattering of pola
ized electrons from a4He target. Experiments of this typ
are now under preparation at TJNAF.

IV. CONCLUSIONS

In the present study we used equations for Faddeev
plitudes, antisymmetrized for three nucleons, to solve
shell-model problem for the four-nucleon system. We p
formed calculations in larger model spaces, up to a HO
citation of 14\V above the unperturbed ground state, than
any other shell-model study so far. The main motivation
the present work was to test the shell-model approach
the effective interactions that we want to apply to more co
r
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plex systems, e.g.,p-shell nuclei, in particular. The effective
interactions that we employed were derived from realis
NN potentials, i.e., the Reid93 and the Argonne V8’. In a
dition to the two-body effective interactions, we also com
puted the three-body effective interactions and demonstr
that their use significantly improves the convergence of
results.

Our calculations depend on the model-space size and
the HO frequencyV. The effective interactions were con
structed in such a way that in the large model-space limit
effective interactions approach the bareNN interaction. Thus
our results should converge to the exact solutions. The
pendence on the model-space size andV was investigated.
We found quite different behavior of the ground state and
first-excited 010 state. Our ground-state energy and poi
nucleon radius results begin to converge and are close t
in agreement with those obtained by the GFMC method.
the first-excited 010 state, our results, the point-nucleon r
dius, in particular, show large model-space andV depen-
dence. This implies that significantly larger model spac
would still be needed in order to obtain the exact solutio
The nature of the 02

1 state is discussed in the literatu
@14,16#. The Coulomb interaction plays an important role
the description of this state. In the present calculations
did not include the isospin breaking. Our formalism is qu
general, however, and allows the use of interactions
break the isospin symmetry. On the other hand, the ca
lated properties of the 01

2 state show better convergence b
havior. In the model spaces studied, we obtained lower
citation energy of the 01

2 state than of the 02
1 state, contrary

to experiment. The extrapolation of the model-space dep
dence of these two energies to larger model spaces sh
however, that the correct ordering of the states will be o
tained. Apparently, the 02

1 state is associated with a radi
excitation and, thus, it is more sensitive to the HO basis u
in the expansion.

A sensitive test of our calculated wave functions is t
computation of the charge EM and strangeness form fact
Our impulse-approximation results show little dependen
on the NN potential and our best results are close to
corresponding form factors obtained using the VMC wa
functions and the Argonne V14NN potential. In particular,
we observe both the first and the second minima in the e
tic charge form factor in positions close to those obtain
using the VMC calculations. In addition to the elastic char
form factors, we also evaluated the form factors for the tr
sition to the 02

1 state in the impulse approximation.
In general, the energy scales of the bound 0s nucleons are

significantly different from the scattering energies of t
resonances. This difference can only be accounted for wi
largeNmax in our approach. Consequently, the results for
excited states and the transition form factors obtained wit
the limited model spaces of the present work should be ta
with some caution. In the future we would like to apply th
formalism, discussed in the present paper, to a more ex
sive study of the negative-parity states of4He. In particular,
it is desirable to use still larger model spaces to investig
the excited-state convergence properties.

The most important result of the present work is, ho
ever, the successful use of the three-body effective inte
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tion. This three-body effective interaction can be compu
for more complex nuclei as well and, in principle, used, af
a transformation to an appropriate three-nucleon basis
standard shell-model calculations. A more practical
proach, however, is to make use of the three-body effect
interaction knowledge for the renormalization of the tw
body effective interaction. Work in this direction is und
way. In addition, the present formalism may be used to co
pute the four-body effective interaction for nuclei withA
.4. We plan to extend the shell-model Faddeev-like
proach that we have successfully applied to three- and f
nucleon systems to systems with more than four nucleo
ys

ys

ar

pe

.

c

d
r
in
-

e-
-

-

-
r-
s,

using also a formalism of equations for components w
lower degree of antisymmetry than the full wave functi
developed in Ref.@39#.
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@13# P. Navrátil and B. R. Barrett, Phys. Rev. C57, 562 ~1998!.
@14# R. Ceuleneer, P. Vandepeutte, and C. Semay, Phys. Rev. C38,

2335 ~1988!.
@15# J. Carlson, V. R. Pandharipande, and R. B. Wiringa, Nu

Phys.A424, 47 ~1984!.
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