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Radiative proton-deuteron capture in a gauge invariant relativistic model
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A relativistic model is developed for the description of the processp1d↔3He1g* . It is based on the
impulse approximation, but is explicitly gauge invariant and Lorentz covariant. The model is applied to
radiative proton-deuteron capture and electrodisintegration of3He at intermediate energies. Results for cross
sections and vector and tensor analyzing powers are presented.@S0556-2813~99!03504-9#

PACS number~s!: 21.45.1v, 25.40.Lw, 25.20.2x
w
an

n
nl
g

or

t.

e
ch
ro

ap

on
n
r
s

th
s
ls
d
is
lu

ia
ve
e

y

ac

V

ved
the
er-
d

ET
n

an
rgy

ot
ex-
in

the
ly
d to
t of
all

the
tri-
he
-

a
is
pa-
ar-
t

-
rgies
e

ar-

f
ng
ch
g in
an

ton
el to

tu
I. INTRODUCTION

Considerable progress has been achieved up to no
theoretical studies of radiative proton-deuteron capture
the reverse process of the photodisintegration of3He in the
nonrelativistic framework. Being limited in space we me
tion here only several studies. Calculations including o
the nucleon Born term@1,2# were not succesful in explainin
the pd capture data, whereas other calculations@3–5# were
restricted to low energies. In@6–8# the effects of different
realistic nucleon-nucleon potentials were investigated. M
references can be found in a recent review article@9#. An
alternative approach was developed in@10#, in which only
selected terms for the amplitude were taken into accoun
included contributions of meson exchange currents~MEC!
and thepd interaction explicitly, and these were found to b
important. Although more phenomenological in its approa
this allowed for reasonably accurate estimates for the c
sections at high energies.

One of the main ingredients in the description of the c
ture process is the nuclear electromagnetic~e.m.! current. In
most calculations it is chosen in the impulse approximati
i.e., it is the sum of the e.m. currents for the free nucleo
Therefore the requirement of gauge invariance is, in gene
not fulfilled. Siegert’s theorem is often applied, as it allow
one to express part of the electric transitions through
one-body charge density operator, thereby reducing con
erably the complexity of the problem. This approach has a
been used in the recent Faddeev calculations reporte
@11,12#. With increasing photon energy, however, th
method becomes less adequate and one is forced to inc
explicitly all contributions to the e.m. current.

Another aspect of the capture reactions at intermed
energies is the large value of the momenta of the invol
particles. For example, at a proton energy of about 200 M
one probes the wave function~WF! of 3He at momenta of
about 350 MeV, implying that relativistic corrections ma
be appreciable.

In this paper we develop a covariant model for the re
tion p1d↔3He1g* , whereg* is a real or virtual~space-
like! photon, at proton energies of up to a few hundred Me

*Permanent address: National Science Center ‘‘Kharkov Insti
of Physics and Technology,’’ 310108 Kharkov, Ukraine.
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Special attention is paid to the construction of a conser
e.m. current. It is known that at small photon energies
reaction amplitude is dominated by radiation from the ext
nal proton, deuteron, and3He legs, and this consideration le
to the development of low-energy theorems~LETs!. For
bremsstrahlung in scattering of charged particles, the L
was derived by Low@13#. For deuteron photodisintegratio
the LET was established by Sakita@14#, and later on ex-
tended@15# to other light nuclei. These LETs are based on
expansion of the amplitude in powers of the photon ene
Eg and on gauge invariance.

In kinematical conditions where the photon energy is n
small one may still assume the dominance of the above
ternal amplitude, however, without applying the expansion
Eg . Imposing gauge invariance restricts to a large extent
so-called internal contributions which are not explicit
present in the external amplitude. We suggest a metho
construct the internal amplitude which accounts for a par
MEC andpd rescattering, and converges to the LET at sm
photon energies.

In our approach we start from the covariant model of@16#,
which was developed for low-energy radiativepd capture.
Aiming at higher energies we supplement this model by
internal amplitude, which turns out to give a sizable con
bution at all energies considered. An important input in t
model is thepd3He vertex function, for which recent calcu
lations @17–19# of the 3He WF are used.

The amplitude obtained in this way may be called
gauge-invariant relativistic impulse approximation. In th
amplitude propagators of all particles are taken as free pro
gators, which might not be appropriate for composite p
ticles like 3He or d. To improve on this we study the effec
of self-energy corrections to the3He propagator. This ap
pears to be important in the capture cross section at ene
of about 200 MeV. The resulting amplitude still has th
shortcoming of being purely real. To account for the unit
ity requirement we include thepd scattering phase shifts in
the channelJP5 1

2
1, which generate the imaginary part o

the amplitude. The latter is crucial for the proton analyzi
powerAy in pd capture. The phase shifts are included in su
a way that gauge invariance is preserved. The rescatterin
the 3

2
2 channel is approximately taken into account via

excited state of the3He.
The model is tested for capture cross sections, and pro

and deuteron analyzing powers. We also extend the mod
te
1890 ©1999 The American Physical Society
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PRC 59 1891RADIATIVE PROTON-DEUTERON CAPTURE INA . . .
virtual ~spacelike! photons and calculate the electrodisin
gration of 3He in the kinematical conditions of NIKHEF an
Saclay experiments where either the proton or the deutero
detected in concidence with the electron. Calculations wit
the same framework for the case of virtual photons in
timelike regime, i.e.,e1e2 production inpd capture, have
been presented earlier@20#.

We should mention that the so-called field-theory a
proach for photonuclear reactions was suggested earlie
@21# and applied in@22# for the 3He photodisintegration
This relativistic formulation is somewhat similar to ou
model and also includes radiation fromp, d, and 3He. The
method for constructing the internal amplitude~called the
contact term in@22#! and its explicit structure is, howeve
different.

The outline of the paper is as follows. In Sec. II we d
scribe the model for thepd↔3Heg* reaction. The conse
quences of gauge invariance are considered and the int
amplitude is derived. The relations between the relativis
pd3He vertex function and the nonrelativistic WF of3He are
also discussed. In Sec. III self-energy corrections to the3He
propagator andpd rescattering effects are considered. T
comparison of the calculations with the radiativepd capture
experiments and with Saclay and NIKHEF data f
3He(e,e8d)p and 3He(e,e8p)d reactions is presented i
Sec. IV. A summary and conclusions are given in Sec. V
Appendix A the half-of-shell e.m. vertex of the deuteron
discussed. Appendix B contains the expression for
gauge-invariant amplitude. Finally, we have collected in A
pendix C the expressions for response functions, cross
tions, and vector and tensor analyzing powers in terms of
matrix elements.

II. DESCRIPTION OF THE MODEL

The four-momenta of the proton, deuteron,3He nucleus,
and ~virtual! photon are denoted byp1 , p2 , p3 , and q re-
spectively. The amplitude for thepd→3Heg* reaction can
be written as

Mlglh ,lpld
5eem* ~lg!ū~pW 3 ,lh!Mmau~pW 1 ,lp!ja~ld!,

~1!

where e is the proton charge,ū(pW 3 ,lh)@u(pW 1 ,lp)# is the
spinor for 3He @proton#, and helicities of the particles ar
denoted byl ’s. The polarization vectors of the photo
em(lg) and the deuteronja(ld) satisfy the Lorentz condi-
tion

q•e~lg!5p2•j~ld!50. ~2!

In the next subsections we will discuss different ingre
ents needed for constructingMlglh ,lpld

.

A. Radiation from external lines

First we consider~virtual! photon radiation from the ex
ternal lines of the particles~first three diagrams of Fig. 1!.
The external amplitude reads
-

is
n
e

-
in

-

nal
c

n

e
-
c-
e

-

Mext
ma5Fa~p3 ,p2 ,p12q!S~p12q,m1!Gm~p12q,p1!

1Fb~p3 ,p22q,p1!Dbr~p22q!Gram~p22q,p2!

1Gm~p3 ,p31q!S~p31q,m3!Fa~p31q,p2 ,p1!,

~3!

whereS(k,m)5(k”2m1 i0)21 is the free propagator of the
spin-12 particle with massm and the deuteron propagator
Dbr(k)5(2gbr1kbkr /m2

2)(k22m2
21 i0)21. The structure

of the pd→3He vertex functionFa will be discussed later.
We note here that in this formulation thes amplitude

~third diagram in Fig. 1! takes into account the pole contr
bution~but not the regular contribution! of the initial-statepd
interaction, and hence takes care of the problem with
orthogonality between initial and final states mentioned
@23#.

For the moment we neglect explicit off-shell effects in t
e.m. vertices and self-energy contributions to the propaga
~in Sec. III self-energy corrections to the3He propagator are
considered!. Correspondingly the e.m. vertex function fo
spin-12 particles is chosen in the form

Gm~p2q,p!5Gm~p,p1q!

5Zgm2 i
smnqn

2m
F2~q2!

1ZF̃1~q2!~qmq”2q2gm!, ~4!

where F1(q2) and F2(q2) are, respectively, the Dirac an
Pauli e.m. form factor~FF!, F̃1(q2)[@12F1(q2)#/q2, and
Z51(2) for theproton (3He). Note that this vertex obey
the Ward-Takahashi~WT! identity for the half-off-shell case
@24#.

The expression for the half-off-shellgdd vertex is more
involved. It can be written as~see Appendix A for details!

Gram~p22q,p2!

52gra~2p22q!m1~p22q!rgma

1F̃1~q2!gra@q2~2p22q!m2q•~2p22q!qm#

1F2~q2!~qrgma2qagmr!

1
F3~q2!

2m2
2 Fqrqa~2p22q!m

2
1

2
q•~2p22q!~qagmr1qrgma!G , ~5!

and fulfills the WT identity for the half-of-shell case:

FIG. 1. Diagrams corresponding to the external amplitude.
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qmGram~p22q,p2!ja~ld!

5@D21~p2!ra2D21~p22q!ra#ja~ld!

5@2q•~2p22q!gra1~p22q!rqa#ja~ld!,

~6!

whereD21(k)ra5(m2
22k2)gra1krka is the inverse propa

gator.
In Eq. ~5!, Fi(q

2) are related to the charge, magnetic, a
quadrupole e.m. FFs of the deuteron~see, e.g.,@25#!:

GC~q2!5F1~q2!1
2

3
hGQ~q2!,

GM~q2!5F2~q2!,

GQ~q2!5F1~q2!2F2~q2!1~11h!F3~q2!,

h52
q2

4m2
2

. ~7!

B. Internal radiation amplitude

Apart from the external amplitude there are other m
complicated processes, such as initial-statepd rescattering
and MEC. This contribution~henceforth called the interna
amplitudeM int) can be constrained by imposing the gau
invariance requirement for the total amplitudeM5Mext
1M int .

ContractingMext with the photon momentum and impo
ing gauge invariance for the total amplitude leads to the
lowing condition:

qmM int
ma52qmMext

ma5Fa~p3 ,p2 ,p12q!

1Fa~p3 ,p22q,p1!22Fa~p31q,p2 ,p1!.

~8!

So far we have not specified the form of thepd3He vertex
function. For the case where at most one particle is off
mass shell it has the following general structure:
-

e

l-

s

Fa~k3 ,k2 ,k1!5f1
a ~k3 ,k2 ,k1!1f2,p

a ~k3 ,k2 ,k1!
k” 12m1

2m1

1
k” 32m3

2m3
f2,h

a ~k3 ,k2 ,k1!, ~9!

where the last two terms contribute when the proton or
lion are off their mass shells, and momentum conserva
implies k35k11k2 . The Dirac structure off1

a can be writ-
ten as

f1
a ~k3 ,k2 ,k1!5~gaG12k1

aH112k2
aH21!g5 , ~10!

and f2,p
a and f2,h

a are expressed similarly in terms o
G2,p ,H12,p ,H22,p andG2,h ,H12,h ,H22,h , respectively.

In the following we will use a more restricted form@16#,
in which the vertex is expressed only through the relativepd
four-momentumQa5(Mr /m1)k1

a2(Mr /m2)k2
a @whereMr

5m1m2 /(m11m2) is the reduced mass of thepd system#.
The vertex then becomes

f1
a ~k3 ,k2 ,k1!5@gaG1~Q2!2QaH1~Q2!#g5 ,

f2,p
a ~k3 ,k2 ,k1!5f2,h

a ~k3 ,k2 ,k1!5f2
a ~k3 ,k2 ,k1!

5@gaG2~Q2!2QaH2~Q2!#g5 , ~11!

whereG1(Q2) andH1(Q2) can be directly related with the
nonrelativistic WF. For the3He, proton, and deuteron dia
grams in Fig. 1 the relative momenta take the valuesQ3

a

5(Mr /m1)p1
a2(Mr /m2)p2

a , Q1
a5Q3

a2(Mr /m1)qa, and
Q2

a5Q3
a1(Mr /m2)qa, respectively.

Using the structure of this vertex and the Dirac equat
for initial and final spinors one obtains, from Eq.~8!
qmM int
ma5H @gaG2~Q1

2!2Q1
aH2~Q1

2!#
q”

2m1
2

q”

m3
@gaG2~Q3

2!2Q3
aH2~Q3

2!#1qaFMr

m1
H1~Q1

2!2
Mr

m2
H1~Q2

2!G
1ga@G1~Q1

2!1G1~Q2
2!22G1~Q3

2!#2Q3
a@H1~Q1

2!1H1~Q2
2!22H1~Q3

2!#J g5 . ~12!
n-
Now one can write an finite-difference identity for the com
bination appearing on the right-hand side of Eq.~12!,

G1~Q1
2!1G1~Q2

2!22G1~Q3
2!

5G18 ~Q1
2!~Q1

22Q0
2!1G18 ~Q2

2!~Q2
22Q0

2!

22G18 ~Q3
2!~Q3

22Q0
2!, ~13!
G18 ~Qi
2!5@G1~Qi

2!2G1~Q0
2!#/~Qi

22Q0
2!, ~14!

wherei 51,2,3 and the four-momentumQ0 , used as the ex-
pansion point, is in principle arbitrary.

If we chooseQ0
25Q3

2 , then from Eqs.~12! and ~13! it
follows that a solution for the internal amplitude can be co
structed asM int

ma5M int
ma(1)1M int

ma(2), i.e.,
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M int
ma~1!5H @gaG2~Q1

2!2Q1
aH2~Q1

2!#
gm

2m1

2
gm

m3
@gaG2~Q3

2!2Q3
aH2~Q3

2!#J g5

1gmaFMr

m1
H1~Q1

2!2
Mr

m2
H1~Q2

2!Gg5 , ~15!

M int
ma~2!5

Mr

m1
~q22p1!mR1

a1
Mr

m2
~q22p2!mR2

a

1
Mr

m11m2
~q12p3!m~R1

a1R2
a!, ~16!

where we used the notation Ri
a5@gaG18 (Qi

2)
2Q3

aH18 (Qi
2)#g5 ~for i 51,2), andH18 (Qi

2) is defined simi-
larly to Eq. ~14!. In deriving Eq.~16! the relations

Q1
25D1

Mr

m1
q•~q22p1!, Q2

25D1
Mr

m2
q•~q22p2!,

Q3
25D2

Mr

m11m2
q•~q12p3! ~17!

have also been used, where

D5Mr~m11m22m3!S 11
m3

m11m2
D'2Mr~ u«hu2u«du!

~18!

accounts for the difference between the binding energie
the deuteron and3He. Note that the amplitude in Eq.~16!
remains finite in the special case whenQ1

2→Q3
2 or Q2

2

→Q3
2 .

Of course one could choose, instead ofQ0
25Q3

2 in Eq.
~16!, Q0

25Q1
2 , or Q0

25Q2
2 , or an ‘‘averaged’’ momentum

Q0
25x1Q1

21x2Q2
21x3Q3

2 , ~19!

with parametersxi , independent ofqm, satisfying the condi-
tion x11x21x351. For real photons all choices lead to th
same transition amplitude.

To verify this we apply again Eq.~13! for the averageQ0
2

~and similar equation forH1) in Eq. ~12! and find the am-
plitude M int(2) in a different form~marked by ‘‘tilde’’!

M̃ int
ma~2!5

Mr

m1
~q22p1!m@~x21x3!R1

a2x1R2
a12x1R3

a#

1
Mr

m2
~q22p2!m@~x11x3!R2

a2x2R1
a12x2R3

a#

1
Mr

m11m2
~q12p3!m

3@2~x11x2!R3
a1x3R1

a1x3R2
a#. ~20!

This reduces to Eq.~16! if x15x250 andx351.
of

Using Eq. ~19!, and a relation m1Q1
21m2Q2

2

2(m11m2)Q3
25Mrq

2 which follows from Eq. ~17! and
energy-momentum conservation, one obtains

Q1
22Q0

2522q•Q3FMr

m1
~12x1!1

Mr

m2
x2G ,

Q2
22Q0

252q•Q3FMr

m2
~12x2!1

Mr

m1
x1G ,

Q3
22Q0

252q•Q3S Mr

m1
x12

Mr

m2
x2D . ~21!

Finally we consider the contraction ofM̃ int(2) with the
photon polarization vector. As a result of the conditionq•e
50, the momentump3

m can be replaced byp1
m1p2

m in Eq.
~20!. Then the four-momentum in front ofR1

a reduces to

22Q3
mFMr

m1
~12x1!1

Mr

m2
x2G , ~22!

and comparing this expression with the first relation in E
~21! one observes that the factor in square brackets involv
x1 andx2 cancels in the amplitude Eq.~20! with the similar
factor in the definition ofR1

a . Similar cancellations occur in
the terms related toR2

a andR3
a . Also G1(Q0

2) andH1(Q0
2)

drop out due to a cancellation between the three differ
contributions and one arrives at

emM̃ int
ma~2!5

Q3•e

Q3•q
$ga@G1~Q1

2!1G1~Q2
2!22G1~Q3

2!#

2Q3
a@H1~Q1

2!1H1~Q2
2!22H1~Q3

2!#%g5 .

~23!

The seeming singularity atQ3•q50 is fictitious because any
differenceQi

22Qj
2 ( iÞ j 51,2,3) is proportional toQ3•q @as

can be seen from Eq.~21!#.
This expression does not depend onxi and onQ0

2 , which
is what we set out to prove. Although Eq.~20! looks differ-
ent from Eq.~16!, they give identical results when contracte
with em .

In the case of thevirtual photons Eq.~20! does not lead to
Eq. ~23!, and Eq.~16! and Eq.~20! give different results. A
convenient choice for the average momentum in this cas
Q0

25Q3
2 because this variable is a function of only the i

variant energys5m3
21q•(q12p3) ~or the incoming proton

energy! and does not depend on the scattering angle@see Eq.
~17!#.

It is of interest to consider the limit of small photon e
ergies. From Eq.~17! it is seen that forq→0 one hasQ1

2

5Q2
25Q3

2→D. The finite differences introduced in Eq.~14!
then reduce to the derivativeG18 (Qi

2)5dG1(Q2)/
dQ2uQ25D . This case would correspond to the situati
where all particles in thepd3He vertex are on their mas
shells. Although this is excluded because of ener
momentum conservation, this limit may be used for derivi
a soft-photon approximation@15# for real photons. To obtain
the soft-photon amplitude one has to expandG1(Qi

2) and
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H1(Qi
2) aroundD and keep terms of orderq21 and q0 in

Mext and terms of orderq0 in M int . As a check of our results
we verified thatM5Mext1M int reproduces the amplitude o
@15# whenq→0.

One consequence of the internal amplitude derived ab
is a cancellation of the terms proportional to the ‘‘negativ
energy’’ componentsf2

a with the corresponding terms in th
external amplitude which are related to thegm part of the
e.m. vertex. For the proton amplitude we have, e.g.,

f2
a ~p3 ,p2 ,p12q!

p” 12q”2m1

2m1
S~p12q,m1!gm

5f2
a ~p3 ,p2 ,p12q!

gm

2m1
. ~24!

This term exactly cancels the first term in Eq.~15!. A similar
cancellation occurs between the second term in Eq.~15! and
the f2

a contribution from the3He diagram. As a result, th
f2

a terms contribute only to the part of the amplitude rela
to the anomalous magnetic moments of the proton and
lion. In fact, this cancellation is not very surprising if on
recalls the derivation of the LET for bremsstrahlung@13#
~see also@26#!. There negative-energy contributions due
gauge invariance also did not contribute in the leading ord
q21 and q0, and appeared in the amplitude only in high
orders.

It is seen from the structure ofM int that it can be com-
bined with the external amplitude into a sum of ‘‘effective
proton, deuteron, and3He terms: M5Mext1M int[A11A2
1A3 , where each amplitudeAi is gauge invariant by itself
i.e., qmA1

ma5qmA2
ma5qmA3

ma50. Expressions forAi are
given in Appendix B. Note that we checked explicitly th
fulfillment of gauge invariance in the numerical calculation

Of course we realize that the above construction of
internal amplitude is not unique, and terms which are ga
invariant themselves and vanish in the limitq→0 may be
added toM int . In the method outlined above one particul
ambiguity stems from the choice of the reference pointQ0

2 .
A possible choice isQ0

25D, which cannot be cast in th
form of Eq.~19! with constant parametersxi . This results in
a different amplitudeM int(2) ~denoted below by a caret!:

M̂ int
ma~2!5

Mr

m1
~q22p1!mR̂1

a1
Mr

m2
~q22p2!mR̂2

a

1
2Mr

m11m2
~q12p3!mR̂3

a , ~25!

where

R̂i
a5@gaĜ18 ~Qi

2!2Q3
aĤ18 ~Qi

2!#g5 ,

Ĝ18 ~Qi
2!5@G1~Qi

2!2G1~D!#/~Qi
22D!. ~26!

The cross sections for this amplitude, however, prove un
isfactory ~factor of 30 too large! when compared with cap
ture data at energies about 200 MeV. The reason is the
lowing: the functionsG1(Qi

2) and H1(Qi
2) are rapidly

varying when going from the pointQ25D.0 to the values
Qi

2 which are negative in the physical region. The finite d
ve
-

d
e-

rs
r

.
e
e

t-

l-

ferences in Eq.~26! then become very large and the choi
Q0

25D would be the most unfortunate. Only in the limit o
q→0 does Eq.~25! become equivalent to Eq.~16! and both
amplitudes converge to the LET. This implies that the a
plitudes in Eq.~16! and Eq. ~25! coincide in the leading
order ofq0, but differ in higher orders.

In the calculation we include the dominant compone
@17–19# of the 3He WF, i.e. apn pair in the deuteron state o
in the 1S0 ~quasi! boundd* state, coupled to a proton. Th
pd→pd* capture mechanism via the spin-flip3S113D1
→1S0 transition has been shown@16# to be important and is
therefore included explicitly. The corresponding amplitu
~see Fig. 1, last graph! can be written as

Md*
ma5Q~p3 ,p22q,p1!D~p22q!Gma~p22q,p2!,

~27!

whereD(k)5(k22m2*
21 i0)21 and the e.m. vertex has th

form

Gma~p22q,p2!52
i

m1
mv«marnqr~p2!nF~q2!. ~28!

Heremv5mp2mn is the isovector magnetic moment of th
nucleon,m2* is the mass of thed* ,F(q2) is the transition
form factor, andQ(p3 ,p22q,p1) is the pd* 3He vertex
function. This contribution is gauge invariant by itself, an
does not affect the above discussion on the internal am
tude.

C. 3He vertex function

In order to relate the invariant function
G6(Q2),H6(Q2) to the overlap integral̂du3He& we recall
that the latter is written as@19#

cpd~rW !5 (
LMLSMS

CLML SMS

1/2mh C1md1/2mp

SMS RL~r !YLML
~ r̂ !

~r 5urWu, r̂ 5rW/r !, ~29!

where rW is the relativepd coordinate,R0(r )@R2(r )# is the

S@D# radial WF corresponding to the total spin1
2 @ 3

2 #, and
mh , md , and mp are the spin projections for helion, deu
teron, and proton, respectively.

In momentum space this WF can be represented in
form

cpd~pW !52
1

A3
xmh

* H u~p!sW jW~md!

2
1

A2
v~p!@3sW p̂jW~md! p̂2sW jW~md!#J

3Y00~ p̂!xmp
, ~30!

wherejW (md) are the deuteron polarization vectors@Appen-
dix C, Eq. ~C8!#, u(p)5R0(p), v(p)5R2(p), and
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RL~p!5 i LA2

p E
0

`

j L~pr !RL~r !r 2dr. ~31!

The relation betweenG6(Q2),H6(Q2) in Eq. ~10! and com-
ponentsu,v reads@16# as

G1~Q2!5NFu~ uQW u!1
1

A2

QW 2

a2
v~ uQW u!G ~QW 21a2!,

H1~Q2!5
1

m2
NFu~ uQW u!1

1

A2

QW 2

a2S 11
6m1m2

QW 2 D v~ uQW u!G
3~QW 21a2!,

G2~Q2!5N
1

A2

QW 2

a2
v~ uQW u!~QW 21a2!,

H2~Q2!5
1

m2
N

1

A2

QW 2

a2S 11
6m1m2

QW 2 D v~ uQW u!~QW 21a2!,

~32!

with the normalization constantN5pAm3 /(6m1Mr) and
a5A2Mr(m11m22m3)'AD.

This relation has been obtained in@16# in the nonrelativ-
istic limit following the formalism developed previously fo
the deuteron@27# ~see also@28#!. Strictly speaking, the func
tions G2 and H2 cannot be obtained unambiguously fro
the nonrelativistic WF of3He. In particular, the last two
equations in Eqs.~32! are based on certain assumptio
about the negative energy part of the fermion propagator
low energies.

The pd* 3He vertexQ(p3 ,p22q,p1)5I (Q2*
2) is related

@16# to the overlap integralcpd* (pW )5^d* u3He&:

cpd* ~pW !5
1

A3
xmh

* w~p! Y00~ p̂!xmp
,

I ~Q2!5pAm3 /~6m1Mr* !w~ uQW u!~QW 21a* 2!, ~33!

where the variablesQ2* , Mr* , anda* can be obtained from
respectively,Q2 , Mr , anda for the deuteron amplitude b
changingm2 to m2* .

The effective number ofpd pairs andpd* pairs is given,
respectively, by the integrals

Npd5E
0

`

@ uu~p!u21uv~p!u2#p2dp,

Npd* 5E
0

`

uw~p!u2p2dp. ~34!

Two models for the3He WF have been used in calcul
tions. The first model~called model ‘‘a’’! is a recent calcu-
lation @19# with the Argonne v18NN1Urbana IX 3N inter-
action. This calculation yieldsNpd51.33 andNpd* 51.28.
Here the~quasibound! d* WF was replaced by a bound W
by multiplying the NN potential in the 1S0 channel by a
factor which was determined so as to make the normaliza
at

n

of the overlap function̂ d* u3He& maximal. The sumNpd
1Npd* 52.61 gives the bulk of the normalization but do
not exhaust it.

The second one~called model ‘‘b’’! is the parametrization
in @16#, which was based on calculations in Ref.@17# with
the Argonne v14NN1Urbana VII 3N interaction. In the
model@16# thepd andpd* pairs are assumed to occur in3He
with equal probability, and together to saturate the norm
ization integral, i.e.,Npd5Npd* 53/2.

D. Electromagnetic form factors

In order to calculate the e.m. FFs of the proton we us
the extended vector meson dominance model@29#. The deu-
teron FFs were taken from the calculation in@18# with Ar-
gonneNN interaction~including 3N forces, MEC and rela-
tivistic corrections! and we used the parametrization of th
FFs of the3He as given in@30#. For the FF of the transition
d→1S0 we used an approximation consistent with treati
1S0 as a quasibound state. The FF is calculated as the
teron electric FF with only theS component of the WF
~model from@31# has been used!. The reason is that theq2

dependence of the threshold deuteron electrodisintegratio
known to be strongly influenced by the MEC. At the sam
time at the relatively smalluq2u,0.15 GeV2 the effect of the
MEC is opposite to that of theD wave in the deuteron@32#,
and theq2 dependence is approximately governed by theS
component.

At the real photon point the FFs are normalized to

F1
p~0!5F1

h~0!5GC~0!51, F2
p~0!5mp21,

F2
h~0!5

m3

m1
mh22, GM~0!5

m2

m1
md , GQ~0!5m2

2Qd ,

~35!

where Qd50.2859 fm2 is the quadrupole moment of th
deuteron and the magnetic moments of the proton, deute
and 3He ~in nuclear magnetons! are mp52.7928, md
50.85774, andmh522.12755, respectively.

III. ADDITIONAL EFFECTS IN THE 3He CONTRIBUTION

So far the propagators for the proton, deuteron, and he
were taken as the propagators of elementary spin-1/2
spin-1 fields. For composite objects this may be a poor
proximation and in this section we investigate the effects
possible modifications. These may occur because of the
ternal structure, which is manifested in possible resonan
and decay modes. One can expect these effects to be
important for propagation in the continuum where the inva
ant massW is larger than the mass of the free particle; the
fore we will focus on the3He contribution for whichW3

5As.m3 .

A. 3He self-energy

The modification of the propagatorS(p) for a spin-12 par-
ticle with massm is most easily discussed in terms of th
self-energy S(p), in terms of which S(p)5@p”2m
1S(p)#21. The self-energy can be written asS(p)
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5A(p2)p”1B(p2)m, with ~complex! scalar functionsA(p2)
andB(p2) that must satisfy the conditions

A~m2!1B~m2!5A~m2!12m2@A8~m2!1B8~m2!#50,
~36!

in order to leave the pole position~at the physical massm)
and the residue at the pole unchanged. The prime ab
stands for the derivatived/dp2.

If we make the assumption thatA(p2)52B(p2), where
A(p2) vanishes atp25m2, then the conditions of Eq.~36!
are automatically fullfilled. In this case the propagator b
comes

S~p!5@11a~p2!#
p”1m

p22m2 , ~37!

where we have introduced a parametera(p2)5@1
1A(p2)#2121, which vanishes atp25m2. We will treat
a(p2) as an adjustable phenomenological parameter in
3He self-energy when comparing calculations with the
perimental data in Sec. IV.

Intimately related to the self-energy are the so-called o
shell effects in the e.m. vertex. In constructing the ver
care should be taken of the WT identityq•G(p1q,p)
5Z@S21(p1q)2S21(p)# (Z52 is the charge of the3He).
For initial on-mass-shell and final off-shell states the e
vertex can be written as

Gm~p8,p!u~p!5H Zgm@11a~p82!#211 i
k

2m
smnqnJ u~p!

~38!

for a real photon with momentumq andp85p1q. It should
be noted that since the magnetic contribution is not fixed
the WT identity, this construction of the vertex is not uniqu
We have opted for a choice which is most convenient for
application where only the convection current part of t
vertex is modified.

The contraction of the e.m. vertex with the propaga
leads to

S~p8!Gm~p8,p!u~p!

5
Z~p1p8!m

p822m2
u~p!1

1

p822m2

3FZ1@11a~p82!#
p” 81m

2m
kG ismnqnu~p!.

~39!

The first term on the right-hand side is the same as
would obtain with the unmodified propagator and vertex
thus appears thatS(p) modifies only the anomalous mag
netic momentk, which is replaced bykeff5k@11a(p2)#.
In general, for any e.m. vertex satisfying the WT ident
only the magnetic part of the productS(p8)Gm(p8,p)u(p)
gets modified. One gets a similar expression for the ini
off-shell and final on-shell states. These results can easil
generalized for virtual photons.
ve
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Note that the construction of the internal amplitude for t
p1d→3He1g* reaction in Sec. II B remains unchange
and independent ofa(p2).

B. Effect of pd rescattering

Another aspect to include is the effect of the initial-sta
pd rescattering. In the channel with quantum numbersJP

5 1
2

1 the latter can be approximately taken into account
modifying thepd3He vertexF to

C lS~ uQW u,E!5@11 iTlS~E!#F lS~ uQW u!'ASlS~E!F lS~ uQW u!,
~40!

where l is the angular momentum,S is the total proton-
deuteron spin, and where the partialT matrix is defined in
terms of thepd scattering phase shiftd lS(E) and the inelas-
ticity parameter h lS(E) via the S matrix SlS(E)
5h lS(E)e2id lS(E)5112iTlS(E) @6#. This creates a complex
function with a phase related to thepd phase shift, as should
be expected from unitarity arguments@33#.

This procedure can be justified by considering a separa
model for thepd Tmatrix. When constructing the amplitud
for the diagram of Fig. 1 where the photon is radiated fro
the 3He, it was implied that theT matrix was approximated
by the pole contribution from the3He bound state only:

Tab~Q,Q8;P!'VB
ab~Q,Q8;P!

5F̄a~Q!~P” 2m3!21Fb~Q8!, ~41!

where P5(As,0W ),F̄a(Q)5g0Fa(Q)†g0 is the 3He→pd
vertex. The pole contribution is expressed through the ve
Fa(Q)[Fa(Q;s5m3

2) which is a real function dependen
on the relativepd momentumQ.

We will treat nowVB(E) as the interaction kernel in th
Bethe-Salpeter equation for thepd system:

T̃~E!5VB~E!1
i

~2p!4
VB~E! ^ G~E! ^ T̃~E!, ~42!

where E5As2m3 is the excitation energy or ‘‘off-
shellness’’ of the helion, the integration over the interme
ate relative momentum is implied, deuteron tensor indi
are supressed, andG(E) is the product of the free proton an
deuteron propagators.

The separable form forVB(E) results in a separable solu
tion for T̃:

T̃ab~Q,Q8;P!5F̄a~Q!~P” 2m3!21Cb~Q8;E!, ~43!

where

C~E!5F1
i

~2p!4
F ^ G~E! ^ T̃~E!. ~44!

This generates a complex-valued vertexCa(Q;E) which
in addition contains a dependence on the invariant mas
the intermediate3He and reduces toFa(Q) at zero energy.
To relateC(E) to the on-shellT matrix we pick out the
contribution to the integral in Eq.~44! coming from the pole
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part of the propagatorG(E). After applying Cutkosky’s
rules and partial wave decomposition one then obtains
~40!. Now we identifyT̃ with the measured on-shellT matrix
which is expressed through thepd scattering phase shifts an
inelasticity parameters.

In implementing this in the calculation of the photon r
diative amplitude care should be taken of the counter te
~or the internal amplitude! introduced to obey gauge invar
ance~see Sec. II B!. Since there is no unique procedure
follow, we have opted for one particular choice. Part of t
contributions from the proton and deuteron diagrams of F
1 ~for which the excitation energyE15E250) are current
conserving by themselves. For these magnetic terms
original real vertexFa(Q) is used. For the correspondin
contribution from the helion diagram in Fig. 1~where the
excitation energyE3'2/3Tp is positive and large!, we use
the modifiedCa(Q3 ;E3) instead ofFa(Q3).

Gauge invariance closely relates the convection-cur
contribution from the different external radiation diagram
with the internal one. For this reason we use the modifi
vertexCa(Q;E3) in all of these terms. These contribution
to the amplitude combined can be put in the form

Ca~Q1 ;E3!F ~2p12q!m

D1
2

Mr

m1

S 2Q32
Mr

m1
qD m

Q1
22Q3

2
G ~45!

1Ca~Q2 ;E3!F ~2p22q!m

D2
1

Mr

m2

S 2Q31
Mr

m2
qD m

Q2
22Q3

2
G

~46!

1Ca~Q3 ;E3!F 2
~2p31q!m

D3
1

Mr

m1

S 2Q32
Mr

m1
qD m

Q1
22Q3

2

2
Mr

m2

S 2Q31
Mr

m2
qD m

Q2
22Q3

2
G , ~47!

which closely resembles the equivalent terms in Eqs.~B4!,
~B5!, and~B7! of Appendix B.

In order to have an idea of the effect ofpd rescattering on
other partial waves, we included the intermediate3

2
2 reso-

nance,R3/22, situated at 14 MeV excitation energy and wi
a decay width of 10 MeV. This resonancelike structure h
been observed in thepd phase shift analysis@34# and in other
reactions ~see @35# and references therein!. For the pd
→R3/22 and R3/22→g3He vertices the following couplings
have been used, respectively:

Fra~p31q,p2 ,p1!52
i

2m3
G1~s!~p” 2gra2p2

rga!g5 ,

Gmb~p3 ,p31q!52
i

2m3
G2~s!~q”gmb2qbgm!. ~48!

The corresponding amplitude can be written as
q.

s

.

he

nt

d

s

MR
ma5Gmb~p3 ,p31q!Sbr~p31q!Fra~p31q,p2 ,p1!,

~49!

where Sbr(p31q) is the Rarita-Schwinger propagator in
cluding the decay width.

For many observables the inclusion ofpd rescattering is
only of secondary importance. It is crucial, however, for t
vector analyzing powerAy . Since the corresponding spin
density matrix is imaginary, nonvanishing values forAy are
obtained only if the matrix elements have nontrivial compl
phases. As a result of the low excitatation energy of the3

2
2

resonance, it has a sizable effect onAy and some other spin
observables inpd capture at small energies in the range
about 5 –20 MeV. At higher energies it has a small effec

IV. RESULTS OF CALCULATIONS AND DISCUSSION

Before comparing to the experimental data, we first stu
in Fig. 2 the importance of some of the ingredients of t
model to thepd→g3He cross sections at energies abo
100 MeV. First, one notices that the internal amplitudeM int
has a substantial effect at angles less then 120°. As a re
the calculation including only the external radiation~dashed
lines! would strongly underestimate the data~shown in Fig. 3
and Fig. 4!. The calculations are performed in the Coulom

FIG. 2. Cross sections for thepd→3Heg reaction at proton
laboratory energies 100, 200, and 500 MeV, calculated with
wave function@19#. Solid lines, default calculations; dotted line
calculations without the negative-energy componentsG2 , H2 in
the pd3He vertex; and dashed lines, calculations without the int
nal amplitude.
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gauge; of course only the total amplitude includingM int is
independent of the photon gauge. The large contribution
the internal amplitude persists at small energies down
'10 MeV. This goes in line with nonrelativistic calcula

FIG. 3. Cross sections for thepd→3Heg reaction at proton
laboratory energies 100, 150, 350, and 500 MeV. The points
from @38#, @39#, and@1#. Solid lines are the default calculations fo
the wave function@19#. Dotted lines show the effect of the3He
self-energy, and dashed lines are calculations includingpd scatter-
ing phase shifts.

FIG. 4. Cross section and analyzing powerAy for proton labo-
ratory energy 200 MeV. Notation for the curves is the same a
Fig. 3.
of
to

tions, where the MECs have been shown to be importan
small energies~see, e.g.@9#!. Note that the large effect of the
internal contribution for the electron asymmetry in th
3He(e,e8p)d reaction had been noticed earlier in@40#. Sec-
ond, the contribution of the negative-energy componentsG2

andH2 in the pd3He vertex turns out to be small. This ca
be explained by the partial cancellation of these terms in
external and internal amplitude, as was mentioned in S
II B. The effect of G2 and H2 increases with energy a
expected, though we do not ascribe too much significanc
this as thepd3He vertex was calculated on the basis of
nonrelativistic 3He WF.

In Appendix C we collected definitions of the variou
observables which are discussed in this section. We will re
to calculations based on the expressions in Sec. II as ‘
fault.’’ Apart from this we will also present results obtaine
either by including the self-energy correction~Sec. III A! or
by including the phase shifts~Sec. III B!, and compare them
to the experimental data.

Figures 3 and 4 show the angular distributions and
proton analyzing power for thepd→g3He at the proton
laboratory energyTp in the interval 100–500 MeV. The de
fault calculation is in qualitative agreement with experime
However, at energies less than 350 MeV it underpredicts
cross sections at angles larger than 90°. The analyz
powerAy is identically zero since the matrix elements are
real valued.

The effect of the self-energy is shown by the dotted lin
The self-energy is parametrized using the values fora(p2)
as given in Table I. An excellent fit to the observed cro
sections is obtained. At energies exceeding 150 MeV, wh
theD-wave contribution to the cross section is dominant, t
parameter efficiently enhances the cross section atug larger
than 90°. At 100 MeV the effect ofa(p2) on the cross sec
tion is only minor, probably reflecting the dominance
electric radiation at these energies. The parametera(p2) has
been chosen real for simplicity. Taking complex values fo
strongly affectsAy and a good fit to both cross section an
analyzing power at 200 MeV could be obtained, but sin
this would introduce another free parameter in the fit,
have not explored this freedom further.

Curiously enough, the values fora(p2) given in Table I
show a resonance like trend with the maximum near the p
production threshold. This suggests that the phenomenol
cal parametera(p2) might be related to the virtual produc
tion of the pion in thepd→3Heg process. In a model for the

re

in

TABLE I. Values used for the parametera(p2) ~see Sec. III A!.
Tp

lab is quoted for proton capture on the deuteron.

Tp
lab @MeV# Tpd

cm @MeV# Eg
cm @MeV# a

100 65.9 70 1.0
150 98.3 102 1.3
200 130.3 133 1.4
300 193.3 192 1.2
350 224.4 221 1.0
400 255.0 249 0.7
450 285.5 277 0.5
500 315.6 305 0.3
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3He self-energy where the3He propagator is dressed wit
pion loops, the imaginary part of the self-energy grows l
early with the pion momentum starting at the threshold. A
plication of a dispersion relation results in a cusplike str
ture, at the same position, for the real part of the self-ene
This could explain the peak observed in the fitted values
a(p2). However, in preliminary calculations using a simp
one-pion loop model, the order of magnitude of the peak w
not reproduced.

The inclusion ofpd rescattering has a relatively sma
effect on the calculated cross section~dashed curves!. As
argued above, it is of crucial importance for the vector a
lyzing power. As is shown in Fig. 4 a reasonable agreeme
is obtained forAy at 200 MeV. The agreement forAy at
other energies is unfortunately not as good, and results
not shown. The reason is probably that at 200 MeV theSand
the D components of the WF are both large and of com
rable magnitude. Since forAy relative phases between th
matrix elements for different spin projections are importa
the calculation is rather accurate at this energy. At low
energies the cross section is dominated by theS wave, and
contributions, which have relatively small effects on t
cross section, will strongly affectAy .

In Fig. 5 we present the deuteron analyzing powersTk
and the proton analyzing powerAy at small deuteron energ
10 MeV ~the equivalent proton energy is 5 MeV). The d
fault calculation ~without self-energy and phase shifts!,
shown by the solid lines, gives a reasonable description
all Tk , exceptiT11 for which the calculation predicts zero
Including the 3

2
2 resonance, where we takeG1(s)G2(s)5

21, gives quite a good agreement foriT11, andAy as well

FIG. 5. Deuteron analyzing powersTk and proton analyzing
powerAy at the deuteron laboratory energy 10 MeV. Data are fr
@41#. Solid lines show results of the default calculation for the wa
function@19#; dashed lines include the32

2 resonance with excitation
energy 14 MeV and width 10 MeV.
-
-
-
y.
f

s

-

re

-

t,
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~see two lower panels in Fig. 5!. This indicates that thepd
interaction in the3

2
2 state may be responsible for the typic

behavior of the vector analyzing powersiT11 andAy at small
energies.

Results forT20 and Ayy5(21/A2)T202A3T22 at higher
energies are shown in Fig. 6. The strength of the resona
has been chosen the same as in Fig. 5~though, in general, it
may depend on the energy!. This contribution affectsAyy at
backward angles and, in particular, changes the trend ofAyy
at 45 MeV.

In the experiments disscused above neither the pro
deuteron, or3He contribution was close to the correspondi
pole; i.e., the intermediate states in the diagrams on Fig
are always far off shell. The cross section is therefore a re
of an interference between different terms in the total am
tude.

It is also of interest to test the model in conditions whe
either the proton or the deuteron contribution dominat
These conditions are realized in experiments on the elec
disintegration of3He, where either the proton or the de
teron is detected in coincidence with the electron. Figur
presents the exclusive cross sections for the3He(e,e8p)d
and the3He(e,e8d)p reactions.

The 3He(e,e8p)d experiments with detection of the pro
ton have been performed at Saclay@44# and NIKHEF @43#.
The experimental arrangement is such that the ene
momentum transfer is kept constant while the angle betw
knocked-out proton andqW varies. The WF of3He is probed
at high missing momentum~the deuteron recoil momentum!
pmis5upW 12qW u.230 MeV ~NIKHEF! and 300 MeV
~Saclay!. Our calculation~two top panels in Fig. 7! overpre-
dicts the experiment at 250 MeV,pmis,450 MeV and gives

FIG. 6. Deuteron tensor analyzing powers at deuteron labora
energies 19.8 and 45 MeV. Data are from@42# and @11#, respec-
tively. Notation for the curves is the same as in Fig. 5.
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a reasonable description at higherpmis. Inclusion of the self-
energy in the3He propagator and thepd phase shifts has a
minor effect and does not improve the agreement.

Calculations of this reaction have also been performed
Refs.@6,46,47# in a nonrelativistic framework. In@6# the pd
interaction has been included; however, no better agreem
with the data was obtained~Fig. 13 in @6#!. A good descrip-
tion of the NIKHEF data has been achieved in@47#, where
the inital and final 3N states are calculated exactly in th
Faddeev approach. Based on these calculations, we can
clude that the above discrepancy in Fig. 7 may be due
neglect ofoff-shell pdrescattering in our model.

At the NIKHEF kinematics@45# for the 3He(e,e8d)p re-
action~lower panel in Fig. 7! the deuteron is detected in th
direction ofqW , and as the energy transfer approximately c
responds to quasifree knock-out of the deuteron~i.e., q0

'qW 2/2m2), the deuteron contribution is enhanced. In th
kinematics one probes only two response functions~RFs!,
WT(s,q2,ug50) andWL(s,q2,ug50), wheres andq2 vary.
The missing momentumpmis5upW 22qW u ~the momentum of
the recoil proton! varies from' 10 to 200 MeV. As is seen
from Fig. 7 ~lower panel! the two models for the3He WF
give different results, in particular, the WF of ‘‘b’’ yields
larger cross section at smallpmis. In these conditions the1S0
diagram also becomes important. On the whole, the desc
tion of these data with the Argonne v18 WF~model ‘‘a’’ ! is
good.

FIG. 7. Cross sections for the3He electrodisintegration: two
upper panels show the (e,e8p) reaction in (q,v) kinematics; lower
panel, (e,e8d) reaction in parallel kinematics. Discontinuity in th
upper panel shows the change in the calculation from ‘‘left’’
‘‘right’’ kinematics which corresponds to the conditions of th
NIKHEF experiment@43#. Data in the middle and the bottom ar
from @44# and@45#, respectively. Solid~dashed! lines are the default
calculations with the wave function from@19# ~@16#!.
in

nt

on-
to

-

p-

From the two models of the3He WFs which have been
used, the one calculated with the Argonne v18NN interac-
tion @19# gives better overall agreement with th
3He(e,e8d)p andpd capture data.

Finally we note that in@20# the capture reaction for the
timelike virtual photons (e1e2 production! has been studied
in the same approach. We checked that the inclusion of
3He self-energy orpd phase shifts has a small effect on th
response functions the dilepton production. Only the tra
verse response function is influenced to the same exten
the cross section for real photons.

V. CONCLUSIONS

A covariant and gauge-invariant model for the reactio
p1d↔3He1g* has been developed. The model is a gen
alization of the approach@16# to higher energies, and i
based on the assumption of the dominance of the radia
from the external particle lines. An important element of t
model is an additional internal amplitude needed to ens
gauge invariance. The contribution of this amplitude is s
able, especially for real photons.

Results of calculations have been compared with exp
ments for the radiativepd capture and the electrodisintegr
tion of 3He. Some of the results for theg13He→p1d have
been presented in a previous publication@20#.

In general, the model seems to account for the ba
mechanism of these reactions over a wide range of energ
In order to improve the description of the capture cross s
tion at high energies 100–500 MeV, additional mechanis
have been included. In particular the introduction of a se
energy correction in the3He propagator leads to a redistr
bution of the strength in the angular dependence of the c
sections and brings the calculation very close to the d
This effect has been included via a phenomenological
rametera(p2), which appears to have a resonancelike d
pendence as a function of the proton energy, peaking at
pion-production threshold. Eventhough this is suggestive,
were unable to reproduce this feature in a simple one-p
loop calculation for the3He self-energy.

The imaginary part of the amplitude has been genera
through thepd scattering phase shifts as required by unitar
arguments. Only rescattering in the12

1 channel has been
included. This allows us to reproduce the proton analyz
powerAy at Tp5200 MeV; however, we failed at energie
100 and 150 MeV. At small energies, Td
510 MeV,19.8 MeV, and 45 MeV, the approach describ
tensor analyzing powersT20, T21, and T22 resonably well.
The vector analyzing powersiT11 andAy are reproduced by
including the 3

2
2 resonance with the excitation energ

14 MeV and width 10 MeV. With only a single strengt
parameter an excellent description of bothiT11 and Ay at
10 MeV is obtained.

Comparison with the3He(e,e8d)p reaction shows an al
most perfect agreement between the calculation and the
KHEF data in parallel kinematics. For the3He(e,e8p)d re-
action in the (q,v) kinematics description of the experime
is worse, especially at missing momenta less than 400 M
This shortcoming, which is probably related to the ‘‘of
shell’’ rescattering effects which have been neglected in
model, remains to be investigated in detail.
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APPENDIX A: gdd HALF-OFF-SHELL VERTEX

The fully-off-shell e.m. vertex function for the spin-1 pa
ticle was considered in Ref.@14#; it contains 14 independen
functionsgi(p82,p2,q2). We are interested in the half-off
shell vertex corresponding to the initial particle on shell a
final particle off shell. In this case the vertex becomes
Gram~p8,p!ja5$gra@~p1p8!mg12qmg2#1@qrgma2qagmr#g32@qrgma1qagmr#g4

2@qagmr1~p1p8!rgma#g52@qagmr2~p1p8!rgma#g62p8rqa@~p1p8!m~g72g8!

1qm~g102g9!#1prqa@2~p1p8!m~g111g12!1qm~g131g14!#%ja , ~A1!
s

where q5p2p8 and the conditionsp25m2 and p•j50
have been used. There are ten independent combinatio
functions gi(p82,m2,q2) in this equation, we denote them
f i(p82,m2,q2), where f i5gi for i 51, . . . ,6 , f 75g72g8 ,
f 105g102g9 , f 115g111g12, and f 145g131g14.

Charge conjugation imposes the relations1 gi(p82,p2,q2)
5gi(p

2,p82,q2) for i 51,3,6,7,10,11,12 andgi(p82,p2,q2)
52gi(p2,p82,q2) for i 52,4,5,8,9,13,14. These relations a
of particular importance for the on-mass-shell case (p25p82

5m2), as they result in the constraints

g25g45g55g85g95g135g1450. ~A2!

Correspondingly one has

f 2~m2,m2,q2!5 f 4~m2,m2,q2!

5 f 5~m2,m2,q2!

5 f 14~m2,m2,q2!50, ~A3!

and using the conditionj8* •p850 one recovers the on-she
vertex

j8r* Gram~p8,p!ja5j8r* @gra~p1p8!m f 1

1~qrgma2qagmr!~ f 31 f 6!

2qrqa~p1p8!m f 11#ja . ~A4!

The functionsf 1,3,6,11(m
2,m2,q2) can further be identified

with the deuteron e.m. form factors in Eq.~7!:

f 1~m2,m2,q2!52F1~q2!, ~A5!

f 3~m2,m2,q2!1 f 6~m2,m2,q2!5F2~q2!,

f 11~m2,m2,q2!52
F3~q2!

2m2
.

1In @14# f 14 is erroneously indicated as an even function andf 12 as
an odd one.
of
For the half-off-shell vertex in Eq.~A1! one has to impose
the WT identity Eq.~6!. The latter takes the form

gra@q•~p1p8! f 12q2f 2#

1p8rqa@2 f 412 f 62q•~p1p8! f 72q2f 10#

1prqa@22 f 422 f 52q•~p1p8! f 111q2f 14#

52graq•~p1p8!1p8rqa. ~A6!

As a consequence the following relations forf i(p82,m2,q2)
hold:

q•~p1p8!~11 f 1!2q2f 250,

2 f 412 f 51q•~p1p8! f 112q2f 1450, ~A7!

2 f 412 f 62q•~p1p8! f 72q2f 1051. ~A8!

Note thatq•(p1p8)5m22p82, and this product vanishe
on shell. As a result of Eq.~A3!, Eqs. ~A7! are trivially
satisfied whenp825m2. From Eq.~A8! we get the additional
constraint~when puttingp825m2)

2 f 6~m2,m2,q2!2q2f 10~m2,m2,q2!51 ~A9!

and, from the second equation in Eqs.~A5!,

f 3~m2,m2,q2!5F2~q2!2
1

2
2

q2

2
f 10~m2,m2,q2!.

~A10!
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Now we neglect the dependence off 1 , f 3 , f 6 , f 7 ,
f 10, f 11, and f 14 on the off-shell variablep82. Using Eqs.
~A7!, ~A8!, and~A5! we find the remaining functions

f 2~p82,m2,q2!5q•~p1p8!
12F1~q2!

q2
,

f 4~p82,m2,q2!5
1

2
q•~p1p8! f 7~p82,m2,q2!,
-
pi

so

ta

en
n

(

f 4~p82,m2,q2!1 f 5~p82,m2,q2!5
1

2
q•~p1p8!

F3~q2!

2m2
.

~A11!

In this way all functions are expressed in terms of t
on-shell form factors and the functionsf 7 and f 10 which
remain unconstrained.

The off-shell vertex takes the form
Gram~p8,p!ja5H 2gra~p1p8!m1p8rgma1gra@~p1p8!mq22q•~p1p8!qm#
12F1~q2!

q2
1~qrgma2qagmr!F2~q2!

1Fprqa~p1p8!m2
1

2
@qagmr1~pr1p8r!gma#q•~p1p8!GF3~q2!

2m2
1p8r@2qa~p1p8!m

1gmaq•~p1p8!# f 7~m2,m2,q2!1p8r~q2gma2qmqa! f 10~m2,m2,q2!J ja . ~A12!
Contributions fromf 7 and f 10 are gauge invariant them
selves and it is not possible to fix them without microsco
calculations. It is seen that thef 10 term gives no contribution
for real photons and we put it equal to zero. We will al
make the assumptionf 75F3(q2)/2m2

2 , which allows one to
obtain the quadrupole part in the simpler form

Fqrqa~p1p8!m2
1

2
~qagmr1qrgma!q•~p1p8!GF3~q2!

2m2
.

~A13!

Finally, we arrive at the vertex in Eq.~5! of Sec. II A. This
vertex reduces to the on-mass-shell form whenp825m2 and
satisfies the half-off-shell WT identity.

APPENDIX B: GAUGE-INVARIANT AMPLITUDE

In this appendix we present the expression for the to
amplitude.

It is convenient first to separate the convection curr
and the normal magnetic moment current of the proton. O
can use the identity

~p” 12q”2m1!gmu~pW 1 ,lp!

5@~2p12q!m1~qm2q”gm!#u~pW 1 ,lp!. ~B1!

A similar identity can be applied to the3He term.
For further convenience we introduce the notationi

51,2,3)

f6
a ~ i !5@gaG6~Qi

2!2Qi
aH6~Qi

2!#g5 ~B2!
c

l

t
e

and (i 51,2)

f̂1
a ~ i !5@gaG1~Qi

2!2Q3
aH1~Qi

2!#g5 , ~B3!

where the difference betweenf1 andf̂1 is only in the term
proportional toH1 .

After adding the internal amplitudeM int(1)1M int(2) to
Mext we obtain the total amplitude in the formM5A11A2
1A3 .

The effective proton contributionA1 takes the form

A1
ma5f1

a ~1!
~2p12q!m

D1

2f̂1
a ~1!

Mr

m1

@2Q32~Mr /m1!q#m

~Q1
22Q3

2!

1gma
Mr

m1
H1~Q1

2!g51f1~1!

3Fqm2q”gm

D1
1S~p12q,m1!

3S 2 i
smnqn

2m1
F2~q2!1G̃mD G

1f2
a ~1!

1

2m1
F2 i

smnqn

2m1
F2~q2!1G̃mG , ~B4!

whereD15(p12q)22m1
2 and G̃m[F̃1(q2)(qmq”2q2gm).

The effective3He contribution reads
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A3
ma5F2

~2p31q!m

D3
1

Mr

m1

@2Q32~Mr /m1!q#m

~Q1
22Q3

2!

2
Mr

m2

@2Q31~Mr /m2!q#m

~Q2
22Q3

2!
Gf1

a ~3!

1F2
2qm1gmq”

D3
1S 2 i

smnqn

2m3
F2~q2!12G̃mD

3S~p31q,m3!Gf1
a ~3!

1F2 i
smnqn

2m3
F2~q2!12G̃mG 1

2m3
f2

a ~3!, ~B5!

with D35(p31q)22m3
2 and the same notation forG̃m as in

Eq. ~B4!.
Finally, the effective deuteron contribution can be writt

in the form

A25A2~ch!1A2~mag!1A2~quad!, ~B6!

with charge, magnetic, and quadrupole terms given, res
tively, by

A2
ma~ch!5F ~2p22q!m

D2
2F̃1~q2!S ~2p22q!m

D2
q21qmD G

3F qa

m2
2
f1~2!•~p22q!1f1

a ~2!G
1gmaFf1~2!•~p22q!

m2
2

2
Mr

m2
H1~Q2

2!g5G
1

Mr

m2

@2Q31~M /m2!q#m

Q2
22Q3

2
f̂1

a ~2!, ~B7!

A2
ma~mag!5

F2~q2!

D2
~qrgma2qagmr!

3F ~p22q!r

m2
2

f1~2!•~p22q!2f1~2!rG ,

~B8!

and

A2
ma~quad!5

F3~q2!

2m2
2 F ~2p22q!m

D2
qrqa1

1

2
~qagmr1qrgma!G

3F ~p22q!r

m2
2

f1~2!•~p22q!2f1~2!rG . ~B9!

In the above formulasD25(p22q)22m2
2 and

f1~2!•~p22q!5@~m11m3!G1~Q2
2!

2~p22q!•Q2H1~Q2
2!#g5 . ~B10!
c-

It is now straightforward to verify that all terms are sep
rately gauge invariant, i.e., satisfy the requirementsqmAi

ma

50 for i 51,2,3.

APPENDIX C: CROSS SECTIONS AND ANALYZING
POWERS

We use standard kinematics for the reactionp1d→3He
1g* . In particular, for virtual photons the orientation of th
lepton plane is determined by the out-of-plane anglef with
respect to the reaction plane. Calculations for thepd capture
are performed in the center-of-mass frame and those for e
tron scattering in the laboratory frame of the3He.

First we define the RFs, which contain all hadronic info
mation, as follows:

WT5
1

6 (
polar

~ uJxu21uJyu2!, WL5
1

6

uq2u

q0
2 (

polar
uJzu2,

WTT5
1

6 (
polar

~ uJyu22uJxu2!,

WLT52
1

6

Auq2u
q0

(
polar

2A2 Re~JzJx* !, ~C1!

whereq0 is the~virtual! photon energy, and the componen
of the e.m. currentJm[ū(pW 3 ,lh)Mmau(pW 1 ,lp)ja(ld) are
evaluated in the system with theOZ axis alongqW . In these
expressions gauge invariance has been used to eliminat
charge component of the current. Note that RFs depend
three variables,Wi5Wi(s,q2,ug), whereug is the photon
angle with respect to the proton direction ands5(m1
1m2)212m2Tp is the invariant energy. These definition
are chosen to be consistent with definitions used previou
in @23,26,20# for the production ofe1e2 pairs. In the latter
caseq2 in Eq. ~C1! is positive.

The p1d→3He1g cross section then reads

ds

dVg
5

am1m3qc8

4ppcs
WT~s,0,ug!, ~C2!

whereqc85(s2m3
2)/2As stands for the real photon momen

tum, pc is the proton c.m. momentum, anda is the fine-
structure constant.

In terms of RFs one can also express the cross section
the reaction e13He→e81p1d. The cross section for
3He(e,e8d)p in the laboratory frame is~see, e.g.,@36#!

ds

dEe8dVe8dVd8

5
sMm1upW 2u

16p3m3f rec,d

~STvT1SLvL

1STTvTT cos 2f1SLTvLT cosf!.

~C3!

Here sM is the Mott cross section, f rec,d

5u11(upW 2uq02E2uqW ucosud)/upW2um3u is the recoil factor,ud is
the angle between the photon and deuteron momenta, an
electron kinematical factors are@36#
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vT5
1

2
l1tan2

ue

2
, vL5l2, vTT52

1

2
l,

vLT52
l

A2
S l1tan2

ue

2 D 1/2

, l[
uq2u

qW 2
. ~C4!

The 3He(e,e8p)d cross section is calculated from E
~C3! using the relation

ds

dEe8d Ve8d Vp8

5
d s

d Ee8d Ve8d Vd8

upW 1u f rec,d

upW 2u f rec,p

, ~C5!

with the corresponding recoil factorf rec,p5u 11(upW 1uq0

2E1uqW ucosup)/upW1um3 u.
RFs in electron scatteringSi are traditionally defined@36#

somewhat differently from Eq.~C1!. Using time reversal one
can obtain the relations

ST53WT , SL53
qW 2

uq2u
WL ,

STT53WTT , SLT523
uqW u

Auq2u
WLT , ~C6!

between the two sets of RFs, where factor of 3 accounts
the deuteron spin degeneracy.

It is convenient to introduce the following set of polariz
tion vectors for the timelike or spacelike photon~where the
OZ axis is alongqW ):

e* ~61!5
1

A2
~0,71,i ,0!, e* ~0!5

1

Auq2u
~ uqW u,0,0,q0!,

~C7!

and for the deuteron~moving in the direction specified by th
unit vectornW 2)

j~l!5F upW 2u
m2

@nW 2•jW~l!#,jW~l!1nW 2S E2~pW 2!

m2
21D @jW~l!•nW 2#G ,

jW~61!5
1

A2
~71,2 i ,0!, jW~0!5~0,0,1!. ~C8!

Here the helicity states are specified byl561,0. These vec-
tors satisfy the Lorentz condition, Eq.~2!, are mutually or-
thogonal, and are normalized as follows:j* (ld)•j(ld)
521 ~for all ld),e* (lg)•e(lg)521 ~for lg561), and
e* (0)•e(0)52q2/uq2u.

Using Eq.~C7! we can rewrite RFs in Eq.~C1! through
the products of the currentJ with e* (l):
or

uJxu21uJyu25uJ•e* ~11!u21uJ•e* ~21!u2,

uJyu22uJxu252 Re$J•e* ~11!@J•e* ~21!#* %,

uq2u

q0
2

uJzu25uJ•e* ~0!u2,

Auq2u
q0

A2 Re~JzJx* !

5
q2

uq2u
Re$J•e* ~0!@J•e* ~21!2J•e* ~11!#* %,

~C9!

where use has been made of current conservation. Thes
lations in particular show that the RFs defined in Eq.~C1!
are Lorentz invariant.

To calculate the RFsSi for electron scattering in the labo
ratory frame one can first calculateWi in the c.m. frame and
then use Eq.~C6!.

Finally, we will need the following analyzing powers fo
vector polarized proton beam:

Ay5 i (
ld ,lh ,lg

~Mlp521Mlp511* 2Mlp511Mlp521* !S21,

~C10!

and tensor- and vector-polarized deuteron beams

T205
1

A2
(

lp ,lh ,lg

$uMld511u2

1uMld521u222uMld50u2%S21, ~C11!

T225A3 (
lp ,lh ,lg

~Mld521Mld511* !S21, ~C12!

T215A3

2 (
lp ,lh ,lg

~Mld50Mld521*

2Mld511Mld50* !S21, ~C13!

iT115 iA3

2 (
lp ,lh ,lg

~Mld50Mld511*

1Mld521Mld50* !S21, ~C14!

where

S5 (
lp ,lh ,lg ,ld

uMlglh ,lpld
u2. ~C15!

These expressions are consistent with definitions of Ref.@37#
~Chap. 4!.
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