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Canonical treatment of fluctuations and random phase approximation correlations
at finite temperature
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The static path plus random phase approximation~SPA1RPA! to the partition function is formulated exactly
in a canonical ensemble, for the case of a density decomposition of an arbitrary two-body Hamiltonian. The
canonical mean field plus RPA approach is also discussed. Numerical results are shown for a quadrupole
interaction, where excellent agreement with the exact canonical results for a light nucleus is obtained. An
effective canonical mean field plus RPA approach is in this case also developed, which avoids the sharp phase
transition of the ordinary mean field and provides a reliable estimate of full SPA1RPA results.
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I. INTRODUCTION

The path integral representation of the partition funct
~PF! obtained with the Hubbard Stratonovich transformat
@1# constitutes a powerful tool for describing strongly corr
lated finite Fermi systems at finite temperature. In particu
the static path approximation~SPA! @2–6#, obtained by con-
sidering just time-independent fields in the path integral, p
vided for the first time a fully microscopic treatment of larg
amplitude statistical shape and pairing fluctuations in hot
clei @4#, which had been previously introduced in a quali
tive way by means of semimacroscopic Landau-type p
scriptions @7–9#. These fluctuations are essential f
describing the strong attenuation, due to finite size effects
the sharp phase transitions exhibited by the thermal m
field approximations. The SPA1RPA approach@10–15#, to
be denoted for brevity as correlated~C! SPA, includes in
addition small amplitude quantumlike fluctuations and
able to yield a very accurate evaluation of the PF for a w
range of temperatures, improving the SPA at low tempe
tures and providing in principle an alternative to Mon
Carlo–type evaluations of the full path integral@16,17#, at
least for effective interactions with a few separable term
The CSPA was recently extended to the evaluation
strength functions@13,15# and adapted to deal with repulsiv
forces@14#.

The SPA and CSPA were originally derived in the gra
canonical~GC! ensemble@10–13#, which involves statistical
fluctuations in the particle number. These become n
negligible in small systems such as finite nuclei, where
canonical ensemble with fixed proton and neutron partic
number is in principle required for a correct description
thermodynamic averages@18#. In this work we rigorously
formulate, in Sec. II, the full CSPA in a canonical ensemb
for a densitylike decomposition of an arbitrary two-body i
teraction. In addition, we derive the mean field plus RP
treatment @19# in a canonical ensemble, obtained as t
saddle point approximation to the CSPA. This approa
though unable to avoid the sharp phase transition of
mean field, may in principle provide a reliable estimate
PRC 590556-2813/99/59~1!/185~9!/$15.00
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the PF well away from transitional regions with minimu
numerical effort and deserves consideration. We sho
mention that both exact and approximate canonical S
treatments~i.e., without the effects of quantum fluctuation!
were previously considered in Refs.@6,18#.

In Sec. III the present methods are applied to
quadrupole-quadrupole interaction, where comparison w
exact canonical results is made for a light deformed nucl
within the s-d shell. We also derive in this case aneffective
mean field1RPA approach, which includes the RPA corr
lations in the treatment of Ref.@20# and extends it to a ca
nonical ensemble. This approach avoids the sharp defor
to spherical transition of the conventional mean field and
able to reproduce full CSPA results for most observab
with good accuracy. Conclusions are finally drawn in S
IV.

II. FORMALISM

A. Canonical CSPA

We consider a Hamiltonian of the form

H5H02 1
2 (

n
vnQn

2 , ~1!

whereH0 andQn are standard one-body operators

Qn5(
k,k8

Qkk8
n ck

†ck8 . ~2!

Equation~1! corresponds then to a particular density deco
position of an arbitrary two-body interaction@16#. We start
from the auxiliary field path integral representation of the
obtained with the Hubbard-Stratonovich transformation@1#

Z5E D@x#Tr T̂ expH 2E
0

b

dtH@x~t!#J , ~3!

H~x!5H01(
n

xn
2

2vn
2xnQn , ~4!
185 ©1999 The American Physical Society
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186 PRC 59N. CANOSA, R. ROSSIGNOLI, AND P. RING
where T̂ denotes the time ordering operator,b5T21, and
H(x) is a linearizedone-bodyHamiltonian. Employing a
Fourier expansion ofx(t) in the interval@0,b#

xn~t!5xn1 (
nÞ0

xn
neivnt, vn52pn/b, ~5!

Eq. ~3! can be expressed as an integral over the coeffici
xn ,xn

n . Here xn[x0
n denotes thestatic coefficients, which

represent the time average ofxn(t) in @0,b#. In the CSPA,
one retains the exact integration overxn , in order to take into
account large amplitude static fluctuations, while the rema
ing coefficients are integrated out in the saddle point
proximation for each value ofxn . The last step includes
small amplitude quantumlike fluctuations which account
the RPA correlations. The final result can be cast
@10,13,14#

Z CSPA5E d~x!Z~x!CRPA~x!, ~6!

whered(x)5)n(2pvn /b)21/2dxn and

Z~x!5Tr exp@2bH~x!#, ~7!

CRPA~x!5 )
n51

`

Det@dnn81vnRnn8~x,ivn!#21

~8!

5 )
a.0

va sinh@b«a/2#

«a sinh@bva/2#
. ~9!

HereRnn8(x,v) is a thermal response matrix, which, in th
running single particle~SP! basis whereH(x) is diagonal,
i.e.,

H~x!5«01(
k

«kak
†ak , ak

†5(
k8

Wk8kck8
† , ~10!

Qn5(
k,k8

Q̃kk8
n ak

†ak8 , Q̃kk8
n

5@W†QnW#kk8 ,

~11!

with «05(nxn
2/2vn , can be expressed as

Rnn8~x,v!5 (
kÞk8

Q̃kk8
n Q̃k8k

n8 pk2pk8

«k2«k81v

5(
a

Q̃a
n Q̃a

n8*
pa

«a1v
, ~12!

where a denotes all pairskÞk8, with «a[«k2«k8 , pa
[pk2pk8 and

pk5^ak
†ak&x52b21] ln Z~x!/]«k , ~13!

the SP occupation probabilities. In Eq.~9!, va(x) are the
finite temperature RPA energiesaroundH(x), defined as the
eigenvalues of
ts

-
-

r
s

Aaa8~x!5«adaa81pa(
n

vnQ̃a
n* Q̃a8

n , ~14!

which can be determined as the roots of

Det@dnn81vnRnn8~x,va!#50 ~15!

for the nontrivial casesvaÞ«a .
Equation ~6! can in principle be applied ifCRPA(x)

.0;x. This determines a breakdown temperature, norm
very low, below which it is no longer applicable due to th
appearance of imaginary RPA energies withbuva(x)u.2p
at unstable values ofx, where the small amplitude approx
mation for the quantum fluctuations no longer holds. T
SPA is obtained if the factorCRPA(x) is neglected. Within a
finite configuration space, the SPA coincides with the CS
at high temperatures, whereC RPA(x)→12(b2/24)(ava

2

2«a
2 , with pa ~and henceva2«a) of orderb.

All previous expressions are general and can be applie
both the grand canonical and canonical ensembles, as the
expression~12! for the response matrix is valid in both cas
if @Qn ,N#50, @H0 ,N#50 ~see Appendix A!. Only Z(x)
andpk will be different. In the GC case, we should obvious
add a term2mN to H(x) and Eq.~13! becomes the usua
Fermi probability.

In the canonicalcase, we may evaluate the PF forN par-
ticles as

ZN~x!5
1

2p i R dz
Z~x,z!

zN11
, ~16!

where the integration path encloses the origin and

Z~x,z!5Tr zN̂exp@2bH~x!#5(
N

zNZN~x!

5e2b«0)
k

@11ze2b«k#, ~17!

is the GC PF, withz5ebm. The canonical probability~13!
becomes

pk5
1

2p iZN~x!
R dz

Z~x,z!pk~z!

zN11
, ~18!

pk~z!5@11z21eb«k#21, ~19!

wherepk(z) is the Fermi probability. Equation~16! can be
explicitly evaluated as

ZN~x!5
1

2pE2p

p

~z0eia!2NZ~x,z0eia!da ~20!

5
1

L11 (
j 52L/2

L/2

~z0eia j !2NZ~x,z0eia j !,

a j5
2p j

L11
, ~21!
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where Eq.~21! holds in a finite SP configuration space
dimensionL for 0<N<L, andz0 , in principle an arbitrary
constant, is to be close for numerical feasibility to the va
determined by the constraint

(
k

pk~z0!5N, ~22!

which fixesz in the GC ensemble and determines the ma
mum of z2NZ(x,z). In this way, the integrand in Eq.~20!
acquires an approximate Gaussian shape aroundz5z0 and
cancellations are avoided. In fact, for not too low tempe
tures~i.e., larger than half the average SP level spacing! Eqs.
~20!, ~21! can be accurately evaluated in the stationary ph
approximation@18#,

ZN~x!'z0
2NZ~x,z0!/~2psN

2 !1/2, ~23!

sN
2 5(

k
pk~z0!@12pk~z0!#, ~24!

where sN
2 is the GC number fluctuation andz0 the value

determined by Eq.~22!. We should mention that the canon
cal PF may also be evaluated by means of recursive met
@21#.

If the decomposition ~1! is such that @Qn ,Nt#
50, @H0 ,Nt#50, whereNt ,t5p,n, denote the proton and
neutron number operators, the whole formalism can be
plied in a canonical ensemble with fixedNp andNn . In this
caseH(x)5Hp(x)1Hn(x) and

Z~x!5ZNp
~x!ZNn

~x!, ~25!

where the canonical PFZNt
(x) for proton or neutron can be

obtained with the previous methods.

B. Canonical mean field1RPA

Let us consider now the full saddle point approximati
to Eq. ~3!, where all variables, including the static coef
cients, are integrated in the Gaussian approximation arou
~static! stationary point of the integrand. These are det
mined by the self-consistent equations

xn5vn^Qn&x , ^Qn&x5(
k

Q̃kk
n pk , ~26!

which represent the finite temperature Hartree equationin
both the GC or canonical ensembles. The type of statistics is
determined bypk . At a solution of Eq.~26!, Z(x) becomes
the Hartree PF. The full saddle point approximation arou
this point leads to the mean field1RPA ~CMFA! PF,

Z CMFA5Z~x!C0~x!CRPA~x!, ~27!

where@see Eqs.~A2!,~A3!#

C0~x!5Det@dnn81vnRnn8
0

~x!#21/2, ~28!
e

i-

-

e

ds

p-

a
r-

d

Rnn8
0

~x![2
]^Qn&x

]xn8

5 (
kÞk8

Q̃kk8
n Q̃k8k

n8 pk2pk8

«k2«k8

2b(
k,k8

Q̃kk
n Q̃k8k8

n8 Ckk8 ,

~29!

with Ckk8 the correlation

Ckk852
1

b

]pk

]«k8

5^ak
†akak8

† ak8&x2pkpk8

5dtktk8Fdkk8pk1~12dkk8!
pke

b«k2pk8e
b«k8

eb«k2eb«k8
2pkpk8G .

~30!

Equation ~30! is valid for «kÞ«k8 ~see Appendix B! and
holds in both the canonical and GC ensembles, but in
latter reduces toCkk85dkk8pk(12pk), whereas in the ca-
nonical case off diagonal terms do not vanish. Note that

~pk2pk8!/~«k2«k8!→b@Ckk82pk~12pk!#

in Eq. ~29! for «k→«k8 , as seen from Eq.~30!. Equation
~29! differs from the limit of the response matrix~12! for
v→0 due to the last sum in Eq.~29!, which contains the
diagonal terms stemming from the variations of the pro

abilities pk . In a basis whereQ̃kk8
n8 5dkk8Q̃kk

n8 if «k5«k8 , we
can rewrite Eq.~29! as

Rnn8
0

~x!5Rnn8~x,0!2(
k

]pk

]xn8

Q̃kk
n . ~31!

Equation~27! is strictly applicable only around a stab
nondegenerate mean field. If the mean field solution brea
continuous symmetry ofH, it will exhibit a continuous de-
generacy and the determinant in Eq.~28! will vanish. In
these cases the static variablesxn naturally include the reori-
entation of the mean field and the Gaussian approxima
should be applied just to the ‘‘intrinsic’’ variables~see next
section!. The factorC0(x) will in any case diverge at the
mean field phase transitions, so that the Gaussian approx
tion ~27! will be reliable only well away from critical re-
gions. It may nevertheless be employed to obtain ex
asymptotic expressions for highT ~see next section!.

On the other hand, static variables associated with re
sive terms@vn,0 in Eq. ~1! with Qn Hermitian, equivalent
to vn.0 andQn anti-Hermitian# can be treated within the
CSPA in the present saddle point approximation~see Ref.
@14#!, which for these variables is always reliable except
very low temperatures~where in any case the CSPA is n
longer applicable!.

III. APPLICATION

We consider a quadrupole interaction

H5H02 1
2 xQ†Q5H02 1

2 x(
m

Qm
r2 , ~32!
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Q0
r 5Q0 , Q6m

r 5~ i
1!

Qm6Qm
†

A2
, m51,2, ~33!

whereH0 is a spherical SP Hamiltonian,Qm quadrupole SP
operators, andQm

r the Hermitian partners.

A. CSPA

Equation~6! will lead in this case to a five-dimensiona
integral over variablesx5$xm%, which includes all possible
orientations of the deformed linearized SP Hamiltonian

H~x!5H02(
m

xm
2

2x
2xmQm

r . ~34!

The CSPA PF can then be written as

Z CSPA5
1

~2pxT!5/2E d5xZ~x!CRPA~x! ~35!

FIG. 1. The average quadrupole energy^V&5
1
2 x^Q†

•Q& vs
temperature for20Ne, according to canonical CSPA and SPA~top!,
and standard@CMFA, Eq. ~42!# and effective@CEMFA, Eq. ~49!#
canonical mean field plus RPA~center!. The exact canonical re
sults, as well as canonical~C! and grand canonical~GC! mean field
results~MFA! for the deformed~d! and spherical~s! solutions are
also depicted. Bottom: Quadrupole deformation parameter in
canonical and grand canonical mean field approximations, and
erage potential deformation in the canonical CSPA and SPA.
deformation obtained from the effective mean field Eqs.~48! is also
depicted~EMFA!.
5
1

2pxT

1

6E2`

`

dx̃0E
2`

`

dx̃2 m~ x̃!Z~ x̃!CRPA~ x̃!,

~36!

where in Eq.~36! we integrated out the orientation variable
with x̃m50 for m561,22 and

m~ x̃!5A 2p

~xT!3
ux̃2~3x̃0

22 x̃2
2!u, ~37!

the ensuing ‘‘intrinsic’’ measure fulfilling

1

2pxT

1

6E2`

`

dx̃0E
2`

`

dx̃2m~ x̃!e2~ x̃0
2
1 x̃2

2
!/2xT51. ~38!

Setting (x̃0 ,x̃2)5\vb(cosg,sing), we recover the ordinary
quadrupole deformation parametersb,g, with

H~ x̃!5H01
b2

2x8
2\vb~cosgQ0

r 1singQ2
r !, ~39!

1

2pxT
m~ x̃!dx̃0dx̃25

1

A2p~x8T!5
b4usin 3gudbdg,

~40!

wherex85x/(\v)2. In the absence of rotational frequenc
the integral ~36! can be reduced to the sector 0<g

<p/3, b.0, i.e., 0< x̃2<A3x̃0 , x̃0.0, with a multiplicity
factor 6. The factorCRPA( x̃) is to be evaluated with the ful
response matrix~29! constructed with all five operatorsQm

r .
In what followsb will denote the deformation parameter.

B. Conventional mean field1RPA

Equation~35! takes into account both shape and orien
tion fluctuations around the mean field, determined by
equations

xm5x^Qm
r &x , ~41!

which imply the identity of potential and density deform
tions. Thesphericalnondegenerate solutionxm50;m will
be the unique solution at sufficiently highT(T.Tc). The
ensuing CMFA PF~27! is obtained in this case integratin
Eq. ~35! in the Gaussian approximation around the origin

Z CMFA5Z~0!C0~0!CRPA~0!, T.Tc , ~42!

where all quantities are evaluated forH(x)5H0 , with

C0~0!5Det@dmm81xRmm8
0

~0!#21/2, ~43!

and m,m8 running over all five indexes. Equation~42! will
not be reliable forT nearTc , but provides nevertheless exa
asymptotic expressions for highT. In this limit we may ne-
glect CRPA(0) in Eq. ~42!, i.e.,

Z CMFA'Z~0!C0~0!, T@Tc , ~44!

which is just the Gaussian approximation to the SPA.

e
v-
e
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FIG. 2. Top: The SPA and
CSPA free energy potentials~53!,
~54! vs deformation forg50 at
the indicated temperatures. Bo
tom: Comparison between the ca
nonical ~C! and grand canonica
~GC! SPA potentials ~53! and
~56!. C~SP! depicts the saddle
point approximation~55!.
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On the other hand, the deformed solutions (xÞ0) of Eq.
~41! are continuously degenerate, representing reorientat
of the solutions of the intrinsic equations

x̃m5x^Qm
r & x̃ , m50,2. ~45!

This entails the vanishing of the determinant in Eq.~28!
when taken with respect to all five variables, as well as of
lowest RPA energies determined by Eq.~15! ~Goldstone
modes@22#!. One could attempt a naive saddle point a
proximation in the intrinsic variables of Eq.~36!, which
would lead to

Z CMFA5Z~ x̃!m~ x̃!C0
i ~ x̃!CRPA~ x̃!, T,Tc , ~46!

C0
i ~ x̃!5Det@dmm81xRmm8

0
~ x̃!#21/2, m,m850,2,

~47!

where x̃ is a deformed solution of Eq.~45!, but unfortu-
nately, Eq.~46! is feasible only for a triaxial solution, a
m( x̃) vanishes for the normal case of axially symmetric s
lutions ~prolate or oblate!. An alternative effective mean
field1RPA which takes into account the important effects
the measure in Eq.~36! is discussed below.

C. Effective mean field1RPA

The maximum ofZ( x̃)m( x̃) is determined by the equa
tion

x̃m5x^Qm
r & x̃1xT

] ln m~ x̃!

] x̃m

, m50,2 ~48!

whose solution is nonspherical~nor axial! at any temperature
as m( x̃) vanishes in these cases. The sharp deformed
spherical transition of the ordinary mean field is thus avoid
ns

e

-

-

f

to
d

@20#. The solution of Eq.~48! represents approximately th
average SPA intrinsicpotentialdeformationŝ x̃m& @20#, and
approaches the ordinary mean field forT→0. The full
Gaussian approximation around this solution yields

Z CEMFA5Z~ x̃!m~ x̃!C80
i ~ x̃!CRPA~ x̃!, ~49!

C80
i ~ x̃!5DetFdmm81xRmm8

0
~ x̃!2xT

]2 ln m~ x̃!

] x̃m] x̃m8
G21/2

,

with m,m850,2. Equation~49! remains normally stable fo
all temperatures withC80

i ( x̃).0;T. Accurate estimates o
the PF and its first derivatives can be obtained just from
~49! as will be seen below. Moreover, Eq.~49! can be ex-
tended to temperatures lower than in the CSPA, as confi
rations well away from the mean field are avoided at lowT.
Nonetheless, there may still exist a breakdown temperatu
the lower RPA energy is complex at the effective mean fie

D. Results

Numerical results for20Ne in thes-d shell are shown in
Figs. 1–5, where theexactcanonical PF has been calculate
by a full diagonalization of the Hamiltonian~32!. We em-
ployed the SP energies~all quantities in MeV! «1/25
24.212, «3/250, «5/2525.083, with x570/A1.4 and \v
541.2/A1/3. The RPA correction factor in the CSPA ha
been evaluated exactly in terms of the RPA energies us
Eq. ~9!.

We first consider the average quadrupole ene
1
2 x^Q†

•Q&, where

^Q†
•Q&5Z21Tr@exp~2H/T!Q†

•Q#52T] ln Z/]x,
~50!



-

190 PRC 59N. CANOSA, R. ROSSIGNOLI, AND P. RING
FIG. 3. The normalized distri-
butions ~57! for s50 ~a! and s
51 ~b! at the indicated tempera
tures.
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is the canonical average. The highT limit of this quantity can
be obtained from Eqs.~43!,~44!, which lead to

^Q†
•Q&'2T(

m
@~11xR0!21R0#mm ~51!

and hence to a non-negligible value of the differen
^Q†Q&x2^Q†Q&x50 even forT quite aboveTc , which be-
haves asT21 for high T. This is the fluctuation effect seen a
the SPA level. At the mean field level, such difference ob
ously vanishes forT.Tc . Note that in acanonical mean
field, Wick’s theorem no longer holds and we should eva
ate Eq.~50! as

^Q†
•Q&x[Z21~x!Tr$exp@2H~x!/T#Q†

•Q%

5^Q†&x•^Q&x

1(
k,k8

$Qkk8
†

•Qk8k pk~12pk8!

1Ckk8@Qkk
†
•Qk8k82Qkk8

†
•Qk8k#%, ~52!

where the last line vanishes in a GC ensemble.
T.Tc , x50 and^Q&050 but the sum in Eq.~52! does not
vanish and approaches Eq.~51! for x50 for T@Tc .

As seen in Fig. 1, the CSPA results for the quadrup
energy, obtained using Eq.~50! with the CSPA PF~36!, are
practically coincident with the exact ones forT above the
CSPA breakdown (T'0.5 MeV). There is an appreciabl
attenuation of the deformed to spherical transition presen
the mean field approximations, as well as a non-neglig
difference with the spherical average even forT.3 MeV.
The canonical SPA results@here evaluated as the SPA ave
age of Eq.~52! @6## also provide the correct highT behavior,
but the RPA correlations are important for an accurate ag
ment at lowT. It is also seen that non-negligible differenc
exist between canonical and GC mean field results. In
canonical case the critical temperature is larger and the
formed to spherical transition is of first order type~see be-
low!.

It is actually remarkable that results obtained with t
effective mean field1 RPA, Eq.~49!, are almost of the sam
accuracy as those of CSPA, as seen in the central pa
e

-

-

r

e

in
le

e-

e
e-

el,

except for a narrow region aroundTc . Moreover, Eq.~49!
can be extended to lower temperatures, the breakdown
curring at T'0.15 MeV. Results from the conventiona
spherical mean field1RPA, Eq.~42!, although providing the
correct highT limit, are not reliable even up toT54 MeV
and diverge atT5Tc , being in fact almost coincident with
those from Eq.~44! as the RPA correction is small fo
T.Tc . The poor accuracy of Eq.~42! in this region reflects
the flatness of the spherical maxima ofZ(x) ~see below!,
which makes a conventional Gaussian evaluation inadequ

In the bottom panel we plot the mean field deformatio
together with the CSPA and SPA averagepotentialdeforma-
tions. The latter remain roughly constant@note that for high
T, ^b2&1/2→(5x8T)1/2 in the SPA or CSPA, as seen from E
~35!#, which gives rise to large differences with th
mean field predictions. The effective deformatio

b5Ax̃0
21 x̃2

2/\v obtained from the solution of Eqs.~48! is
close to the average SPA potential deformation, being alm
coincident for lowT.

In the top panel of Fig. 2 we depict the intrinsic fre
energy potentials

FSPA~ x̃!52T ln Z~ x̃!, ~53!

FCSPA~ x̃!52T ln@Z~ x̃!C RPA~ x̃!#, ~54!

whereZ( x̃) is the canonical PF, forg50 ~oblate shapesb
.0,g5p/3 correspond of course tob,0,g50). The mini-
mum of Eq.~53! determines the canonical mean field. AtT
51 MeV, the SPA potential exhibits the expected doub
well shape with an absolute prolate minimum, while atT
51.8 MeV it becomes almost flat for20.2,b,0.3, entail-
ing large shape fluctuations. The RPA correction decrea
the free energy;b but its effect on the potential shape
rather small forT not too close to the breakdown. It slightl
favors deformation, such that atT51.8 the CSPA potentia
at g50 still exhibits a shallow prolate minimum. For highe
T the RPA effects are nevertheless negligible. Asg in-
creases, the well atb.0 (,0) becomes shallowe
~deeper!, approaching of course a symmetric potential atg
5p/6.
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In the lower panel we compare the exact canonical va
of FSPA with the saddle point approximation~23!

FSPA~ x̃!'2T ln )
t

~z0
t !2NtZt~ x̃,z0

t !/~2psNt

2 !1/2,

~55!

with z0
t( x̃) determined for each x̃ by the constraint

(kpk(z0
t)5Nt @Eq. ~22!#. Results are almost coincident e

cept for the region of largeb ~of small thermodynamic
weight! where the average SP level spacing is larger thaT
~as seen forT51 MeV andb.0.5). There is, however, a
non-negligible difference with the ordinary GC free ener
potential, obtained neglecting the fluctuation in Eq.~55!, i.e.,
settingz0

t5ebmt,

FSPA~ x̃!'(
t

2T ln Zt~ x̃,mt!1mt Nt , ~56!

whose minimum determines the GC mean field@Eqs. ~45!
with pk the Fermi probabilitypk(z0)#. At fixed T, the number
fluctuationssNt

2 are larger for small deformations~due to the

smaller level spacing! and increase the actual canonical fr
energy for smallb, unfavoring the spherical shape and i
creasingTc in the canonical case. Moreover, due to this
fect the canonical potential develops a very flat maxim
between the spherical and prolate minima forT just below
Tc , which disappears together with the prolate minimum
T5Tc , making the final transition first order. These effec
can also be seen through the probabilitiespk , which in the
canonical case are smaller~larger! than in the GC case at th
sameT for levels above~below! the Fermi level, leading to a
retardation of thermal effects.

The important effects of the measurem( x̃) in Eq. ~36! are
seen in Fig. 3, which depicts the normalized distributions

FIG. 4. Square of the RPA energies~in MeV2) as a function of
deformation forg50, at T51 MeV ~top! andT51.8 MeV ~bot-
tom!. Dashed ines depict the square of the pair energies«2 in Eq.
~9!.
e

-

t

P~ x̃!}Z~ x̃!ms~ x̃!, ~57!

where the ‘‘intrinsic’’ distribution corresponds tos50
whereas the actual one tos51. At low T there are no sig-
nificant differences, but atT51.8 MeV, the first one be-
comes flat aroundb50 while the second remains peaked
bÞ0, exhibiting an approximate Gaussian shape for alT
which justifies the effective mean field approach~49!.

Figure 4 depicts the squared RPA energies at fixedT for
g50. The largest contribution to the RPA correction forT
,Tc is provided by the two lowest modes~continuation of
the Goldstone modes for arbitraryb,g), which for g50 are
degenerate and vanish at the self-consistent mean field
coming imaginary for smaller and oblate deformations. T
largest imaginary value is actually attained at a triax
shape. ForT51.8 MeV the lowest mode is still imaginar
for oblate as well as nearby triaxial shapes, although for h
T all modes become real. They are also real for largeubu at
any T, except for strictly axial shapes~of no weight in the
CSPA integral!. The canonical effects on the RPA energi
are small and visible mainly in the two lowest modes, as th

FIG. 5. Specific heatCv5dE/dT ~top! and canonical entropy
S5 ln Z1E/T ~center! vs temperature according to exact, CSP
SPA, CEMFA, and canonical MFA results. Bottom: The logarith
of the corresponding level densities~in MeV21) obtained from the
saddle point approximation~58! as a function of excitation energy
The exact microcanonical result is also depicted.
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vanish at self-consistent mean field of the ensemble con
ered. The main consequence is a retardation of therma
fects.

Finally, we depict in Fig. 5 the specific heatCv
5dE/dT, the canonical entropyS5 ln Z1E/T and the level
density obtained in the saddle point approximation

r~E!5eS/A2pT2Cv, ~58!

whereE52] ln Z/]T 21. CSPA results are almost exact fo
all quantities above the breakdown temperature, while th
from the effective mean field approximation~49! provide an
accurate estimate of the entropy and level density. The S
results are not accurate at lowT, although its prediction of
the level density is correct when plotted in terms of the c
responding energy. Note, however, that none of the pre
approximations is able to describe the lowT peak in the
exact Cv at T'0.25 MeV ~below the CSPA breakdown!
which is due to the comparatively small energy differen
between the ground and first excited states (Jp501 and
21). This effect could be described in principle by applyin
angular momentum projection~see Ref.@6# for angular mo-
mentum projected SPA!.

For completeness, we have also plotted, in addition to
exact smoothed level density determined by Eq.~58!, the
exactmicrocanonicallevel density for an energy bin of 0.
MeV, whose average agrees well with Eq.~58! for excitation
energies above 5 MeV. In this region all approximatio
except for the mean field, yield an accurate prediction of
average density.

IV. CONCLUSIONS

We have formulated the CSPA and mean-field1RPA in a
general form which enables a direct implementation in a
nonical ensemble for a standard density decomposition
two-body interaction. The canonical formalism does not i
ply a significant increase in numerical effort in comparis
with the GC treatments. The excellent agreement with
exact canonical results for a quadrupole interaction indic
that a high degree of accuracy can be achieved with
canonical CSPA. Moreover, we have also developed in
case a simple effective saddle-point approximation to
CSPA, which practically reproduces the CSPA results
level densities and first derivatives of the PF without a
integration, and which can be extended to lower tempe
tures. The present techniques pave the way for an applica
of the CSPA to more realistic forces, where use of the
proximation ~27! for variables associated with repulsive
weak attractive terms would help to reduce the final num
of integration variables. Finally, we remark that all prese
methods are easily applicable within large configurat
spaces, as the RPA correction can be evaluated with Eq~8!
without explicitly determining the RPA energies.
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APPENDIX A

The response matrix in Eq.~8! is given in general by

Rnn8~x,v!5dnn81vn (
KÞK8

^KuQnuK8&

3^K8uQn8uK&
PK2PK8

EK2EK81v
~A1!

~see Ref.@15#!, where uK& are the many-body eigenstate
H(x)uK&5EKuK& and PK5e2bEK/Z(x) the corresponding
probabilities, withZ(x)5(Ke2bEK the PF. The ensemble
considered is assumed to be aclosedrepresentation of the
operatorsQn . If H0 and Qn are one-body operators of th
form ~10!,~11!, and the eigenstates in the ensemble cons
ered are independent particle statesuK&5)kak

†u0& the sum in
Eq. ~A1! becomes

(
kÞk8

Q̃kk8
n Q̃k8k

n8

«k2«k81v
(
K

PK^Kunk~12nk8!2nk8~12nk!uK&,

wherenk[ak
†ak , which leads then to Eq.~12! with

pk[(
K

PK^KunkuK&,

the probabilities~13!. In a canonical ensemble with a fixe
number of proton and neutrons, these expressions are
valid for operatorsH0 ,Qn which conserve both the proto
and neutron particle numbers.

We also obtain the general expressions

2
vn

b

] ln Z~x!

]xn
5xn2vn^Qn&x ,

2
vn

b

]2 ln Z~x!

]xn]xn8

5dnn81vnRnn8
0

~x!, ~A2!

where^Qn&x5(KPK^KuQnuK& and

Rnn8
0

~x!5 (
KÞK8

^KuQnuK8&^K8uQn8uK&
PK2PK8

EK2EK8

2bS (
K

PK^KuQnuK&^KuQn8uK&2^Qn&^Qn8& D .

~A3!

In the case of one-body operators and independent par
statesuK&, Eq. ~A3! leads to Eq.~29!.

APPENDIX B

In order to derive Eq.~30!, we consider in general

^ak
†akak8

† ak8&[Z21Tr@Pe2bhak
†akak8

† ak8#, ~B1!
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where h5(k«kak
†ak , Z5Tr Pe2bh, with Tr the GC trace

andP a projector onto a restricted ensemble. As

e2bhak
†akak8

† ak85e2bhak
†ak1ak

†ak8e
2b~«k2«k81h!akak8

† ,

we obtain,provided@P,ak
†ak8#50,
.

ys
.

ett

s

ia,
^ak
†akak8

† ak8&5pk1e2b~«k2«k8!@^ak
†akak8

† ak8&2pk8#,

wherepk5^ak
†ak&. If P is the projector onto fixed proton an

neutron particle number, this holds fork andk8 of the same
isospin. We obtain then Eq.~30! when«kÞ«k8 .
nd,
,
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