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Canonical treatment of fluctuations and random phase approximation correlations
at finite temperature
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The static path plus random phase approximaf®PA+RPA) to the partition function is formulated exactly
in a canonical ensemble, for the case of a density decomposition of an arbitrary two-body Hamiltonian. The
canonical mean field plus RPA approach is also discussed. Numerical results are shown for a quadrupole
interaction, where excellent agreement with the exact canonical results for a light nucleus is obtained. An
effective canonical mean field plus RPA approach is in this case also developed, which avoids the sharp phase
transition of the ordinary mean field and provides a reliable estimate of full +SFRA results.
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[. INTRODUCTION the PF well away from transitional regions with minimum
numerical effort and deserves consideration. We should
The path integral representation of the partition functionmention that both exact and approximate canonical SPA
(PP obtained with the Hubbard Stratonovich transformationtreatmentsi.e., without the effects of quantum fluctuations
[1] constitutes a powerful tool for describing strongly corre-Were previously considered in Ref8,18].
lated finite Fermi systems at finite temperature. In particular, N Sec. lll the present methods are applied to a
the static path approximaticiSPA) [2—6], obtained by con- quadrupole-quadrupole .interaction, where comparison with
sidering just time-independent fields in the path integral, pro€Xact canonical results is made for a light deformed nucleus

vided for the first time a fully microscopic treatment of large Within the s-d shell. We also derive in this case affective
amplitude statistical shape and pairing fluctuations in hot nuMean field- RPA approach, which includes the RPA corre-

clei [4], which had been previously introduced in a qualita-lationS in the treatment of Ref20] and extends it to a ca-

tive way by means of semimacroscopic Landau-type prepomcal gnsemble.. .Th's approach av<_3|ds the shar.p deformed
- . . to spherical transition of the conventional mean field and is
scriptions [7-9]. These fluctuations are essential for

. X L | repr full PA results for m rvabl
describing the strong attenuation, due to finite size effects, ble to reproduce full CS esults for most observables

the sharp phase transitions exhibited by the thermal me ith good accuracy. Conclusions are finally drawn in Sec.
field approximations. The SPARPA approachj10-15, to
be denoted for brevity as correlat¢@) SPA, includes in
addition small amplitude quantumlike fluctuations and is
able to yield a very accurate evaluation of the PF for a wide A. Canonical CSPA
range of temperatures, improving the SPA at low tempera- \ye consider a Hamiltonian of the form
tures and providing in principle an alternative to Monte
Carlo-type evaluations of the full path integfdl6,17, at L )
least for effective interactions with a few separable terms. H=Ho—2 ~ v, Q5 @
The CSPA was recently extended to the evaluation of
strength function§13,19 and adapted to deal with repulsive whereH, andQ, are standard one-body operators
forces[14].

The SPA and CSPA were originally derived in the grand I
canonical(GC) ensembld10—13, which involves statistical Q.= 2 Qyr CkCxr - @
fluctuations in the particle number. These become non- ok
negllglble in small SyStemS such as finite nUCIei, where %quation(l) Corresponds then to a particu|ar density decom-
canonical ensemble with fixed proton and neutron particle position of an arbitrary two-body interactid6]. We start
number is in principle required for a correct description offrom the auxiliary field path integral representation of the PF

thermodynamic averagdd8]. In this work we rigorously  gptained with the Hubbard-Stratonovich transformafish
formulate, in Sec. Il, the full CSPA in a canonical ensemble,

Il. FORMALISM

for a densitylike decomposition of an arbitrary two-body in- . B

teraction. In addition, we derive the mean field plus RPA Z:f D[X]TTTGXD{ —f dTH[X(T)]}, ()
treatment[19] in a canonical ensemble, obtained as the 0

saddle point approximation to the CSPA. This approach, o2

though_unable to avqld .the shar_p phase_ transition of the H(x)=Ho+2 ’ —x,Q,, (4)
mean field, may in principle provide a reliable estimate of v 2v,
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where T denotes the time ordering operat@t=T !, and

_ Ak AV
H(x) is a linearizedone-bodyHamiltonian. Employing a Aaa’(x)_8a5aa’+pa; v,Qq Q- (14)
Fourier expansion of(7) in the interval[0,8]
which can be determined as the roots of
— ValonT —
X(7) =X, 20 X, oy =2mnl B, © Del 8,, +v,R,p (X,0,)]=0 (15)

Eq. (3) can be expressed as an integral over the coefficientor the nontrivial cases ,# ¢, .
X,,Xn. Herex,=x§ denotes thestatic coefficients, which Equation (6) can in principle be applied ifCgrpa(X)
represent the time average xf(7) in [0,8]. In the CSPA, >0Vx. This determines a breakdown temperature, normally
one retains the exact integration ower, in order to take into ~ very low, below which it is no longer applicable due to the
account large amplitude static fluctuations, while the remainappearance of imaginary RPA energies withw ,(x)|>27
ing coefficients are integrated out in the saddle point apat unstable values of where the small amplitude approxi-
proximation for each value ok,. The last step includes mation for the quantum fluctuations no longer holds. The
small amplitude quantumlike fluctuations which account forSPA is obtained if the facta€rpa(X) is neglected. Within a
the RPA correlations. The final result can be cast adinite configuration space, the SPA coincides with the CSPA
[10,13,14 at high temperatures, wher@ gpa(X)—1—(8%/24)S ,0?
—si, with p, (and hencev,—¢,) of orderg.

All previous expressions are general and can be applied in
ZCSPA_J d0O)Z() CreaX), © both tﬁe grand cznonical and ganonical ensembmptﬂe
expression(12) for the response matrix is valid in both cases
whered(x)=1I1 (2mv,/B8) *xdx, and if [Q,,N]=0, [Hy,N]=0 (see Appendix A Only Z(x)
andp, will be different. In the GC case, we should obviously
Z(x)=Tr exd —BH(X)], (7)  add a term— uN to H(x) and Eq.(13) becomes the usual

Fermi probability.
In the canonicalcase, we may evaluate the PF féipar-

[

CRPA(X)=nl;[l Defs,, +v,R,, (X,iw,)]* ficles as
8
® 1 Z(X,2)
©, SIH Be /2] " ZN)=5 s P Az (16

T a0 &4 SINM B 2]
where the integration path encloses the origin and

HereR,,/(X,w) is a thermal response matrix, which, in the

irléznnmg single particldSP basis whereH(x) is diagonal, Z(x,2)=Tr zNex;{—ﬂH(x)]=E NZ\(%)
.e., N
H)=e0t > si@far,  at=> Wiich, (10 =e Pl [1+2ze7 7, (17)
k K’
s _ is the GC PF, withz=e#*. The canonical probability13)
Q= Q@@ Q;k,=[WTQVW]kk,, becomes
kK
11
(0 § o202 "
with £9=3,x%2v,, can be expressed as P2z (X) PARETE
— Py pu(2)=[1+z ‘el 7, (19

R, (X,0)= 2 Qkk’Qk'k—+
kK’ Fk T @ wherep,(z) is the Fermi probability. Equatiofil6) can be

P, explicitly evaluated as
—E Q. m (12 -
Zny(X) = —f 2,e'%) "NZ(x,z0e'Y) da (20)
where « denotes all pairk#k’, with e, =ey—ey, Po N 2m —77( 0 (X2
=Pk— Pk’ and
1 L2 . .
k= (aax=— B~ 1IN Z(x)/ ey, (13 =T+1 J_:ZL/Z (20€'*1) "NZ(x,20€'"),

the SP occupation probabilities. In E(), w,(x) are the )
finite temperature RPA energiasoundH (x), defined as the _2m]

. a=—-, (21
eigenvalues of I L+1
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where Eq.(21) holds in a finite SP configuration space of HQ,)
dimensionL for 0<N=<L, andz,, in principle an arbitrary RSV,(X)E— vx
constant, is to be close for numerical feasibility to the value 2
determined by the constraint D= D
~y ~V’ k_ Kk’ ~V~V’
=2 Qkk’Qk’k:_ﬁE QukQy ki Crk
k#k’ k— €k’ k,k’
> Pdz0)=N, (22
K (29)

which fixesz in the GC ensemble and determines the maxi-With Ci« the correlation
mum of z~NZ(x,z). In this way, the integrand in Eq20)

i i - 1 dp
acquires an approximate Gaussian shape araung, and ==k _ataal au).— ,
cancellations are avoided. In fact, for not too low tempera- Kk B dgy (@@ B ) PP
tures(i.e., larger than half the average SP level spacis.
(20), (21) can be accurately evaluated in the stationary phase pkePok—py ePfeK
approximation 18], =08; 0| Ok Pt (1— 5kk/)w — PP |-
Zn(X)~25 NZ(x,20)/ (270 %) 2, (23 (30)

Equation (30) is valid for ¢ # ¢, (see Appendix B and
holds in both the canonical and GC ensembles, but in the
2_ _ L]
UN_EK PK(Zo)[1 = Pi(Z0)], @4 |atter reduces taCy = Sk P(1—py), Whereas in the ca-
nonical case off diagonal terms do not vanish. Note that

where o%, is the GC number fluctuation arzj the value (Pr— P (ex— 1) — Bl Crw — P(1— P ]

determined by Eq(22). We should mention that the canoni-
cal PF may also be evaluated by means of recursive methodis Eq. (29) for e,— ¢y, as seen from Eq30). Equation
[21]. (29) differs from the limit of the response matrid2) for

If the decomposition (1) is such that [Q,,N,] w—0 due to the last sum in Eq29), which contains the
=0, [Hq,N,.]=0, whereN,,7=p,n, denote the proton and diagonal terms stemming from the variations of the prob-
neutron number_ operators, the \_Nho_le formalism can pe aPsbilities p, . In a basis Wherég;,’(; 5ker|'<’|; if £ =g, we
plied in a canonical ensemble with fixé4, andN,, . In this can rewrite Eq(29) as
caseH(x)=Hy(x)+Hu(x) and

IPy

Z(X) = Zn, () Zy,(X). (25 Ry (0 =R (x,0)= 2~ (3D

14

where the canonical PEy (x) for proton or neutron can be  Equation(27) is strictly applicable only around a stable
obtained with the previous methods. nondegenerate mean field. If the mean field solution breaks a
continuous symmetry offl, it will exhibit a continuous de-
generacy and the determinant in E@8) will vanish. In
these cases the static variabkesnaturally include the reori-

Let us consider now the full saddle point approximationentation of the mean field and the Gaussian approximation
to Eq. (3), where all variables, including the static coeffi- should be applied just to the “intrinsic” variabldsee next
cients, are integrated in the Gaussian approximation aroundsgction. The factorCq(x) will in any case diverge at the
(statig stationary point of the integrand. These are determean field phase transitions, so that the Gaussian approxima-

B. Canonical mean field+tRPA

mined by the self-consistent equations tion (27) will be reliable only well away from critical re-
gions. It may nevertheless be employed to obtain exact
X,=v,(Q.), (Q, :2 OlPx (26) asymptotic expressions for hlg'ﬁ_(see next sep'uc)n '
(Quixr (Quix R KKK On the other hand, static variables associated with repul-

sive termq v, <0 in Eq. (1) with Q, Hermitian, equivalent
which represent the finite temperature Hartree equations to v,>0 andQ, anti-Hermitia can be treated within the
both the GC or canonical ensemhbldse type of statistics is CSPA in the present saddle point approximatisee Ref.
determined byp, . At a solution of Eq.(26), Z(x) becomes [14]), which for these variables is always reliable except for
the Hartree PF. The full saddle point approximation around/ery low temperature$where in any case the CSPA is no
this point leads to the mean fieldRPA (CMFA) PF, longer applicable

ZCMFA: Z(X)Co(X)CRpA(X), (27) lll. APPLICATION
We consider a quadrupole interaction
where[see Eqs(A2),(A3)] a P

Co(x)=De{ 3, +v,R?,,(x)] "2 28) H=Ho~3xQ'Q=Ho~2x2 Q). (32
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(36)

where in Eq(36) we integrated out the orientation variables,
with x,,=0 for u==*1,—2 and

(%) = oK) (37)
(YT 20 TR

the ensuing “intrinsic” measure fulfilling

<V> (MeV)

<V> (MeV)

1 1(= o (= . - ~2 ~2
- = —(xgtx5)2xT —
ZxT GJ' deJ_wdxzm(x)e 0" X2 1. (38

— o

Setting &o,X») =% wB(cosy,siny), we recover the ordinary
quadrupole deformation parametgtsy, with

2

03¢ ] H(;()ZHO+%—ﬁwﬂ(COS)/QB-i-SinerZ), (39
C ] X
‘éo.z - MFA(C) --reer i
i N[FA(SC) ] 1 1
- CSPA ——- ] Nl dx. — 4 gj
0.1 [ - =——=Mm(X)dXgdX,=—=—=—==8"|Sin 3y|dBdYy,
- SPA - 27 xT (X)dxodXx; 27T(X'T)5B| 7| Bdy
r EMFA —— ]
PR TN RS T S AT ST SO T NN S N (40)
1 2 3
T (MeV) wherex’ = x/(fw)?. In the absence of rotational frequency

FIG. 1. The average quadrupole enery)=1x(Q'-Q) vs the integral (36) can be reduced to the sector<@

. . - 2 . - ~ ~ - . . .
temperature fofNe, according to canonical CSPA and SRép), <ml3, >0, l.e., 0§X2$~\/§_’;(0’ Xo>0, with a mL_JItlp“CIty
and standardCMFA, Eq. (42)] and effectivel CEMFA, Eq. (49)] factor 6. The factolCrpa(X) is to be evaluated with the full
canonical mean field plus RPAcente}. The exact canonical re- response matri29) constructed with all five operatofg), .
sults, as well as canonicéC) and grand canonic&GC) mean field  In what follows 8 will denote the deformation parameter.
results(MFA) for the deformedd) and sphericals) solutions are
also depicted. Bottom: Quadrupole deformation parameter in the
canonical and grand canonical mean field approximations, and av- . . )
erage potential deformation in the canonical CSPA and SPA. The Equation(35) takes into account both shape and orienta-
deformation obtained from the effective mean field EHg8) is also ~ tion fluctuations around the mean field, determined by the
depicted(EMFA). equations

B. Conventional mean field-RPA

X, = X{Quu)x (41)

which imply the identity of potential and density deforma-
tions. Thesphericalnondegenerate solutiax, =0V u will

be the unique solution at sufficiently high(T>T_.). The
ensuing CMFA PH27) is obtained in this case integrating
Eq. (35 in the Gaussian approximation around the origin,

Q.*Q]
Qo=Qo, Q;f(b%, n=12, (33

whereH, is a spherical SP HamiltoniaQ,, quadrupole SP
operators, an@L the Hermitian partners.

A. CSPA Z cmea=Z(0)Co(0)Crpa(0), T>T¢, (42)

Equation(6) will lead in this case to a five-dimensional

. : S ) where all quantities are evaluated td{x) =H,, with
integral over variablex={x,}, which includes all possible a () =Ho

orientations of the deformed linearized SP Hamiltonian Co(0)=Def 5M,+XR2M,(O)]71/2, (43)
2
H(X)=Hy— >, X_ﬂ_x Q. (34  andu,u’ running over all five indexes. Equatida2) will
L 2x rTH not be reliable fofl nearT, but provides nevertheless exact
asymptotic expressions for high In this limit we may ne-
The CSPA PF can then be written as glectCrpa(0) in Eq.(42), i.e.,
1 Zcowra~Z(0)Co(0), T>T, (44)
Y4 =—j d°XZ(X) Crpa(X (35
CSPAT (2 xT)52 (X)Crea(X) ) which is just the Gaussian approximation to the SPA.
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On the other hand, the deformed solutions-Q) of Eq.

[20]. The solution of Eq(48) represents approximately the

(41) are continuously degenerate, representing reorientationg,erage SPA intrinsipotentialdeformations&ﬂ) [20], and

of the solutions of the intrinsic equations
X, =x(Q\)%, wm=0.2. (45)

This entails the vanishing of the determinant in E}8)

approaches the ordinary mean field for—0. The full
Gaussian approximation around this solution yields

Z cemra=Z(X)M(X)C' (X) Crpa(X), (49)

when taken with respect to all five variables, as well as of the

lowest RPA energies determined by Ed5) (Goldstone

modes[22]). One could attempt a naive saddle point ap-

proximation in theintrinsic variables of Eq.(36), which
would lead to

Z cwra=Z(X)M(X)Co(X)CrpaX),  T<Tc,  (46)
Ch(X)=Def 8, +xR> (0] ¥  uu'=0.2, “

wherex is a deformed solution of Eq45), but unfortu-

nately, Eq.(46) is feasible only for a triaxial solution, as
m(x) vanishes for the normal case of axially symmetric so
lutions (prolate or oblate An alternative effective mean

field+RPA which takes into account the important effects of

the measure in Eq36) is discussed below.

C. Effective mean field +RPA

The maximum ofZ(x)m(x) is determined by the equa-
tion

alnm(x)

X, = x(Q\)x+ xT pn=02 (48

i

whose solution is nonsphericaior axia) at any temperature

#Inmx)|

Xy

(x) = Der{ Byt +XRS () = XT

with u,u’=0,2. Equation(49) remains normally stable for

all temperatures WitrC"O(})>OVT. Accurate estimates of
the PF and its first derivatives can be obtained just from Eq.
(49) as will be seen below. Moreover, EG9) can be ex-
tended to temperatures lower than in the CSPA, as configu-
rations well away from the mean field are avoided at lbw
Nonetheless, there may still exist a breakdown temperature if
the lower RPA energy is complex at the effective mean field.

D. Results

Numerical results fo”°Ne in thes-d shell are shown in
Figs. 1-5, where thexactcanonical PF has been calculated
by a full diagonalization of the Hamiltonia(82). We em-
ployed the SP energiegall quantities in MeV gq,=
_4212, €30~ 0, Egp=— _5083, with X:7O/Al4 and fiw
=41.2AY3. The RPA correction factor in the CSPA has
been evaluated exactly in terms of the RPA energies using
Eqg. (9).

We first consider the average quadrupole energy
1x(Q"-Q), where

as m(x) vanishes in these cases. The sharp deformed to (QT-Q)=Z"Trexp —H/T)Q"-Q]=2Td In Z/dy,

spherical transition of the ordinary mean field is thus avoided

(50
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FIG. 3. The normalized distri-
butions (57) for =0 (a) and o
=1 (b) at the indicated tempera-
tures.

is the canonical average. The higtimit of this quantity can  except for a narrow region arouni,. Moreover, Eq.(49)

be obtained from Eqg43),(44), which lead to can be extended to lower temperatures, the breakdown oc-
curring at T=~0.15 MeV. Results from the conventional
f.OV~—T 1+ vRO) 1RO 51 spherical mean fiellRPA, Eq.(42), although providing the
(Q@-Q % L1+XRT Jan 6D correct highT limit, are not reliable even up t6=4 MeV

and diverge aff =T, being in fact almost coincident with
and hence to a non-negligible value of the differencethose from Eq.(44) as the RPA correction is small for
(Q'Q),—(Q'Q),—o even forT quite aboveT, which be-  T>T_. The poor accuracy of EG42) in this region reflects
haves ag ! for hlgh T. This is the fluctuation effect seen at the flatness of the spherical maxima Mx) (see belowy;
the SPA level. At the mean field level, such difference obvi-which makes a conventional Gaussian evaluation inadequate.

ously vanishes folf>T.. Note that in acanonicalmean In the bottom panel we plot the mean field deformations
field, Wick’s theorem no longer holds and we should evalutpgether with the CSPA and SPA avergmeentialdeforma-
ate Eq.(50) as tions. The latter remain roughly constdnbte that for high
_ T, (B%)Y2_ (5x'T)¥2in the SPA or CSPA, as seen from Eq.
t —7-1 _ t
(QT-Q\=Z""(x)Tr{exd —H(x)/T]Q"-Q} (35)], which gives rise to large differences with the
=(Q",-(Q) mean field predictions. The effective deformation
X X _ 2, =2 . H H
B= X5+ X5/hw obtained from the solution of Eq$48) is
+> {Qlk' Qi Pe(1—per) close to the average SPA potential deformation, being almost
K.k coincident for lowT.

t T In the top panel of Fig. 2 we depict the intrinsic free
+ Cur [ Qui: Qurk = Quier - Quril}s (52 energy potentials

where the last line vanishes in a GC ensemble. For

T>T,, x=0 and(Q),=0 but the sum in Eq(52) does not FspAX)=—TInZ(x), (53
vanish and approaches E&J1) for y=0 for T>T,.
As seen in Fig. 1, the CSPA results for the quadrupole FespaX)=—T IN[Z(X)C rpaX) ], (54)

energy, obtained using E¢0) with the CSPA PK36), are

practically coincident with the exact ones forabove the _

CSPA breakdown T~0.5 MeV). There is an appreciable WhereZ(x) is the canonical PF, foy=0 (oblate shapeg

attenuation of the deformed to spherical transition present i>0,y= /3 correspond of course <0,y=0). The mini-
the mean field approximations, as well as a non-negligibléenum of Eq.(53) determines the canonical mean field. At

difference with the spherical average even Tor3 MeV. =1 MeV, the SPA potential exhibits the expected double
The canonical SPA resulfsiere evaluated as the SPA aver- well shape with an absolute prolate minimum, whileTat
age of Eq(52) [6]] also provide the correct highbehavior, =1.8 MeV it becomes almost flat for 0.2<3<0.3, entail-

but the RPA correlations are important for an accurate agredng large shape fluctuations. The RPA correction decreases
ment at lowT. It is also seen that non-negligible differencesthe free energy g8 but its effect on the potential shape is
exist between canonical and GC mean field results. In theather small forT not too close to the breakdown. It slightly
canonical case the critical temperature is larger and the ddavors deformation, such that &t=1.8 the CSPA potential
formed to spherical transition is of first order tyf@ee be- aty=0 still exhibits a shallow prolate minimum. For higher
low). T the RPA effects are nevertheless negligible. Asin-

It is actually remarkable that results obtained with thecreases, the well at3>0 (<0) becomes shallower
effective mean field- RPA, Eq.(49), are almost of the same (deepe), approaching of course a symmetric potentialyat
accuracy as those of CSPA, as seen in the central panek =/6.
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FIG. 4. Square of the RPA energiés MeV?) as a function of A L
deformation fory=0, atT=1 MeV (top) andT=1.8 MeV (bot- 6 -
tom). Dashed ines depict the square of the pair energjeis Eq. - .
9. s ]

s [ ]
In the lower panel we compare the exact canonical value L 1
of Fgpa with the saddle point approximatig23) L i
- N ~ . 2 1 oL Ay
FspaX)~—TIn[T (z5) "Nz.(X,25)/(2mc? )2, 5 10
7 (55) E (MeV)

. ~ ) ~ . FIG. 5. Specific hea€,=dE/dT (top) and canonical entropy
with zj(x) determined for each x by the constraint s=inz+E/T (centey vs temperature according to exact, CSPA,
=wPk(z8) =N, [Eq. (22)]. Results are almost coincident ex- SPA, CEMFA, and canonical MFA results. Bottom: The logarithm
cept for the region of large8 (of small thermodynamic of the corresponding level densitiéa MeV 1) obtained from the
weight where the average SP level spacing is larger fhan saddle point approximatiofb8) as a function of excitation energy.
(as seen foif=1 MeV and3>0.5). There is, however, a The exact microcanonical result is also depicted.
non-negligible difference with the ordinary GC free energy
potential, obtained neglecting the fluctuation in Ezp), i.e.,

settingzj=ef#r, P(X)Z(x)m’(x), (57)

FepaX)~> —TINZ(X, )+, N, (56)  where the “intrinsic” distribution corresponds ta=0
T whereas the actual one to=1. At low T there are no sig-
nificant differences, but at=1.8 MeV, the first one be-

: : - : comes flat aroun@=0 while the second remains peaked at
with py the Fermi probability,(zo) ]. At fixed T, the number B+#0, exhibiting an approximate Gaussian shape forTall

fluctuationsoy_are larger for small deformatioridue to the which justifies the effective mean field approa@s).

smaller level spacingand increase the actual canonical free Figure 4 depicts the squared RPA energies at fikddr
energy for smallg, unfavoring the spherical shape and in- =0, The largest contribution to the RPA correction for
creasingT in the canonical case. Moreover, due to this ef-<-|-c is provided by the two lowest modésontinuation of
fect the canonical potential develops a very flat maximumne Goldstone modes for arbitrag;y), which for y=0 are
between the spherical and prolate minima Tojust below  degenerate and vanish at the self-consistent mean field, be-
T¢, which disappears together with the prolate minimum atcoming imaginary for smaller and oblate deformations. The
T=T,, making the final transition first order. These effectS|argest imaginary value is actua”y attained at a triaxial
can also be seen through the probabilifigs which in the  shape. FoiT=1.8 MeV the lowest mode is still imaginary
canonical case are smaligarge than in the GC case at the for oblate as well as nearby triaxial shapes, although for high
sameT for levels abOdeelOV\b the Fermi |eve|, Ieading toa T all modes become real. They are also real for |4@eat
retardation of thermal effects. B any T, except for strictly axial shape®f no weight in the
The important effects of the measurgx) in Eq.(36) are  CSPA integrgl. The canonical effects on the RPA energies
seen in Fig. 3, which depicts the normalized distributions are small and visible mainly in the two lowest modes, as they

whose minimum determines the GC mean fighfs. (45)
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vanish at self-consistent mean field of the ensemble consid- APPENDIX A
ered. The main consequence is a retardation of thermal ef- . L .
fects. The response matrix in E@8) is given in general by
Finally, we depict in Fig. 5 the specific hedt,

=dE/dT, the canonical entrop$=InZ+E/T and the level R, (X,®)=38,,+v, > (K|Q,|K)
density obtained in the saddle point approximation K£K'

E)=e%2#T2C,, 58) , Pk —Pk:

p(E) ” ( (K IQuIK— = (ay)

whereE= —¢d1InZ/dT ~*. CSPA results are almost exact for KT Ekr T @

all quantities above the breakdown temperature, while thos
from the effective mean field approximatié¢#9) provide an
accurate estimate of the entropy and level density. The SP
results are not accurate at Ioly although its prediction of
the level density is correct when plotted in terms of the cor
responding energy. Note, however, that none of the prese eratorsQ, . If Ho andQV are one—.body operators of the_
approximations is able to describe the Iwpeak in the orm (10)_,(11), and the elgenstates in theTensembIe cc_)nS|d—
exactC, at T~0.25 MeV (below the CSPA breakdown ered are independent particle stgt€s=11,a,|0) the sum in
which is due to the comparatively small energy differenceEd- (A1) becomes
between the ground and first excited statd§<0* and ,
2™). This effect could be described in principle by applying Que Qi
angular momentum projectiofsee Ref[6] for angular mo- Y ———— 2 Pi(KIn(1-ng) —n(1-ny[K),
mentum projected SPA k#k' k8w T K

For completeness, we have also plotted, in addition to the ; ) )
exact smoothed level density determined by Ef), the = Whereny=a,a,, which leads then to Eq12) with
exactmicrocanonicallevel density for an energy bin of 0.5
MeV, whose average agrees well with E§8) for excitation _
energies above 5 MeV. In this region all approximations, pk:; Pr(K[nK),
except for the mean field, yield an accurate prediction of the
average density.

?see Ref.[15]), where|K) are the many-body eigenstates
K (X)|K)=Ek|K) and Pc=e #Ek/Z(x) the corresponding
probabilities, withZ(x)==e P&« the PF. The ensemble
considered is assumed to beclasedrepresentation of the

the probabilities(13). In a canonical ensemble with a fixed
number of proton and neutrons, these expressions are then
IV. CONCLUSIONS valid for operatorsH,,Q, which conserve both the proton

We have formulated the CSPA and mean-fieRPA in a and neultron gamdi numbersl. .
general form which enables a direct implementation in a ca- V€ also obtain the general expressions
nonical ensemble for a standard density decomposition of a

two-body interaction. The canonical formalism does not im- v, dInZ(x) =%, ~0,(Q,)
ply a significant increase in numerical effort in comparison B X, vooTrA i
with the GC treatments. The excellent agreement with the
exact canonical results for a quadrupole interaction indicate 2
) . . v, 9°InZ(x) 0
that a high degree of accuracy can be achieved with the - ——"=5,,+v,R’ (X)), (A2)
vv

canonical CSPA. Moreover, we have also developed in this B 9x,0%,
case a simple effective saddle-point approximation to the

CSPA, which practically reproduces the CSPA results fowhere(Q,),==¢Px(K|Q,|K) and
level densities and first derivatives of the PF without any

integration, and which can be extended to lower tempera-

P - P ’
tures. The present technigues pave the way for an applicatiomgv,(x)z > <K|QV|K’)(K’|QV,|K)u

of the CSPA to more realistic forces, where use of the ap- K#K' k~ Ek/
proximation (27) for variables associated with repulsive or

weak attractive terms would help to reduce the final number -B 2 Pr(K|Q,|KMK|Q,/|K)—{(Q,){Q,/)|.
of integration variables. Finally, we remark that all present K

methods are easily applicable within large configuration (A3)

spaces, as the RPA correction can be evaluated with&Eq.

without explicitly determining the RPA energies. In the case of one-body operators and independent particle

stategK), Eq. (A3) leads to Eq(29).
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In order to derive Eq(30), we consider in general
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_ + _ —Bh i (e
where h—E_kskakak, Z=Tr Pe Ahwith Tr the GC trace <a1akal/ak,>:pk+e Blex gk')[<alakal/ak'>—pkf],
andP a projector onto a restricted ensemble. As
e’ﬁhalakai,ak, :e*ﬂhalakjL alak,e’ﬁ(‘fk’gk”rh)akal, , Wherepk=<alak>. If Pis the projector onto fixed proton and
neutron particle number, this holds ferandk’ of the same
we obtain,provided[P,alak,]=0, isospin. We obtain then E430) wheng, # ¢y .
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