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Three-body Faddeev calculation for11Li with separable potentials
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The halo nucleus11Li is treated as a three-body system consisting of an inert core of9Li plus two valence
neutrons. The Faddeev equations are solved using separable potentials to describe the two-body interactions,
corresponding in then-9Li subsystem to ap1/2 resonance plus a virtuals-wave state. The experimental11Li
energy is taken as input and the9Li transverse momentum distribution in11Li is studied.
@S0556-2813~99!01703-3#

PACS number~s!: 21.45.1v, 21.60.2n, 11.80.Jy, 27.20.1n
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Recent experiments with radioactive beams have per
ted the study of properties of nuclei close to the neutron d
line, that is, close to the stability line for decay through ne
tron emission. These nuclei have been shown to possess
tron halos characterized by exceptionally large radii and n
row momentum distributions of the decay fragments
break-up experiments@1–2#. Among these nuclei special a
tention has been paid to11Li, a nucleus with a radius o
about 3 fm, and a two-neutron separation energy of only
MeV. In the case of11Li two lines of theoretical calculations
have been followed; in one, the conventional shell mode
Hartree-Fock approach is used@3#, in the other a cluster
model assuming a core of9Li plus two neutrons is taken
@4–8#. Because of the halo, shell model calculations requir
very large single particle basis for the diagonalization of
Hamiltonian. The cluster model seems particularly suited
the case of11Li, considering the small 2n separation energy
the fact that9Li is a normal nucleus with a neutron separ
tion energy of 4 MeV and that11Li is a Borromean nucleus
that is, no two-body subsystem of the three-body sys
does form a bound state. In the three-body model for11Li,
calculations are hampered by a lack of information with
gard to then-9Li interaction. Several calculations@4–7,24#
were performed using local potentials for this interaction a
there is also one calculation using separable potentials@8#.
The parameters of the potentials were adjusted to produ
n-9Li resonance, which has most frequently been assume
the p1/2 channel, although the experimental data are not c
clusive. According to Wilcoxet al. @9# a resonance occurs a
0.8060.25 MeV. Following more recent work@10# there is a
21 resonance situated at 0.42 MeV and a 11 state at 0.80
MeV. In addition one now has strong evidence for an e
hancement of the production of10Li near threshold in reac
tions involving 11Be, 11Li, and 11B @11,12#. This is inter-
preted as due to an intruder virtuals-wave state of then-9Li
system near zero energy corresponding to a scattering le
of 220 fm or less@12#. A three-body study@13# indicated
that this barely unbound state in10Li is able to explain the
extra narrowness of the momentum distribution of9Li in the
fragmentation of11Li. With a s-wave scattering length o
244 fm and ap1/2 resonance energy of 0.35 MeV, the 2n
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separation energy in11Li and the momentum distribution o
the 9Li fragment are fitted in Ref.@13# assuming the sudde
approximation@14# and neglecting the final state interactio
in the break-up reaction. It is our purpose here, to mak
similar fit applying the three-body model with separable p
tentials developed earlier@15# and which proved to be effec
tive in the description of the structure of18O and18F as well
as 16O(d,p) stripping.

We consider the halo nucleus11Li as a three-body system
consisting of a9Li core ~particle 3!, which stays inert, plus
two valence neutrons~particles 1 and 2!. The valence neu-
trons couple with the orbital angular momentum of the co
to total angular momentum and parityJp501, the spin and
parity of 11Li being then due to the value 3/22 of the 9Li
core. The neutron-9Li system is assumed to have ap1/2 reso-
nance of widthG50.1560.07 MeV at an energyEr50.42
60.05 MeV @10# and also as1/2 virtual state close to zero
energy @12,16#. We must also take into account the Pa
principle which does not allow a valence neutron to occu
the 1s1/2 and the 1p3/2 single particle states which are a
ready filled in the core. To fix the energiese1s1/2

ande1p3/2
of

these states, we proceed as follows. First by doing an in
polation between the experimental value24.053 MeV of
e1p3/2

for A59 @17# and the values in Figs. 2–30 of Boh

Mottelson’s book@18# we obtain e1p3/2
.27 MeV for the

A510 system. To obtaine1s1/2
we suppose that the separ

tion between the 1s1/2 level and the centroid of the level
1p3/2 and 1p1/2 is \v and use the prescription\v
545A21/3225A22/3MeV, which is appropriate for light nu-
clei @19#. For A510, one has\v515.501 MeV ande1s1/2

results equal to220.028 MeV. To account for the Pau
blocking of the states 1s1/2 and 1p3/2, we use the projection
method of Kukulin@20#. From now on, we consider\51.

To describe the neutron-9Li interaction we use a separab
potential which acts on thes1/2, p3/2, andp1/2 waves:

^Pi uVi uPi8&5(
l j a

2
L l j

~a!

2m
v l j

~a!~Pi !v l j
~a!~Pi8!

3(
m

^P̂i uyl j m&^yl j muP̂i8& ~ i 51,2!, ~1!
1806 ©1999 The American Physical Society



ro

r

is

r

n
t

g

.
-
to

f
n

ef
ua

th
ir

to

al

uce

ts
ng
, the

case

he

res

ns,
ring
0
ngle

r

cts
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where l j 50(1/2), 1(3/2), and 1(1/2),m is the reduced
mass of then-9Li system (m59/10M , M being the nucleon
mass!, andPi is the momentum of neutroni with respect to
9Li. The s1/2 potential is a three-term (a51,2,3) potential,
with the form factors chosen as

v0~1/2!
~1! ~q!5~q21a0~1/2!

2 !exp~2b0
2q2/2!, ~2!

v0~1/2!
~2! ~q!5S 3

2
2b0

2q2Dexp~2b0
2q2/2!, ~3!

v0~1/2!
~3! ~q!5exp~2b0

2q2/2!. ~4!

The first term is chosen in such a way that, alone, it rep
duces the 1s1/2 state. Taking fora0(1/2) andL0(1/2)

(1) the spe-
cial values

a0~1/2!5A2mue1s1/2
u ~5!

and

L0~1/2!
~1! 5F E

0

`

dqq2
@v0~1/2!

~1! ~q!#2

q222me1s1/2
G21

, ~6!

we get a bound state of energye1s1/2
and wave function

F0~1/2!m~q!5N0~1/2! exp~2b0
2q2/2!y0~1/2!m~ q̂!, ~7!

which is precisely the 1s1/2 oscillator function in momentum
space if we setb051/Amv. From the values chosen fo
e1s1/2

and v, we obtain a0(1/2)50.932 fm21, L0(1/2)
(1)

58.417 fm5 andb051.724 fm.
The addition of the second term to thes1/2 potential does

not affect the bound state generated by the first term. Th
a consequence of the orthogonality relation

E
0

`

dqq2@exp~2b0
2q2/2!#F S 3

2
2b0

2q2Dexp~2b0
2q2/2!G50.

~8!

However, the scattering states are affected and the two te
together can give rise to a virtuals1/2 state. ForL0(1/2)

(2)

52.696 fm, we obtain a virtual state placed at an energyev
5240 keV on the second Riemann sheet. The correspo
ing scattering length isas1/2

5220 fm. We remark here tha

the virtual state has a 2s1/2 character, since by increasin
slightly the strength of the second term (a52) in the s1/2
wave potential, it becomes a bound state with two nodes

The third term of thes1/2 potential is the projection op
erator for the forbidden 1s1/2 state, constructed according
the prescription of Kukulin@20#. The corresponding form
factor @Eq. ~4!#, being proportional to the wave function o
the bound state produced by the first two terms, is orthogo
to the scattering states generated by these terms. Ther
the third term does not affect the scattering and the virt
state remains unchanged. It is not so for the 1s1/2 bound
state. Although the wave function given by expression~7!
remains an eigenfunction for the three-term potential,
corresponding energy is affected. By considering the th
term repulsive (L0(1/2)

(3) ,0), we remove the bound state
-
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the continuum part of the spectrum~therefore, it becomes a
continuum bound state! and, by makingL0(1/2)

(3) →2`, the
forbidden 1s1/2 state is projected out.

For the p3/2 potential, we consider a two-term potenti
with form factors

v1~3/2!
~1! ~q!5q~q21a1~3/2!

2 !exp~2b1
2q2/2!, ~9!

v1~3/2!
~2! ~q!5q exp~2b1

2q2/2!. ~10!

The first term of the potential is chosen so as to reprod
the 1p3/2 bound state. With the choicea1(3/2)5A2mue1p3/2

u
and

L1~3/2!
~1! 5F E

0

`

dqq2
@v1~3/2!

~1! ~q!#2

q222me1p3/2
G21

, ~11!

the potential produces a bound state of energye1p3/2
and

wave function identical to the 1p3/2 harmonic oscillator wave
function

F1~3/2!m~q!5N1~3/2!q exp~2b1
2q2/2!y1~3/2!m~ q̂!. ~12!

For the choiceb15b051.724 fm ande1p3/2
527 MeV, we

obtaina1(3/2)50.551 fm21 andL1(3/2)
(1) 520.018 fm7.

The second term in thep3/2 potential, with L1(3/2)
(2)

→2`, is nothing but the projection operator which projec
out the forbidden 1p3/2 state, the scattering states remaini
the same as those produced by the first term alone. Thus
p3/2 phase shift is dominated by the occupied 1p3/2 bound
state, there being no resonances as it might occur in the
of a local potential.

Thep1/2 potential is taken as a one term potential with t
form factor given by

v1~1/2!
~1! ~q!5q~q21a1~1/2!

2 !exp~2b1
2q2/2!. ~13!

Thus,v1(1/2)
(1) is of the same form asv1(3/2)

(1) . For simplicity we
have also assumed the same parameterb1 in the exponential
part of thep1/2 andp3/2 form factors. We initially make the
choicea1(1/2)5a1(3/2) , thus gettinga1(1/2)50.551 fm21. Us-
ing this value and the condition that thep1/2 resonance oc-
curs at 0.42 MeV, we obtainL1(1/2)

(1) 513.535 fm7. The width
of the resonance turns out to be 0.12 MeV and compa
with the experimental value mentioned before.

Regarding the interaction between the valence neutro
we assume a free nucleon-nucleon interaction conside
the low nucleon density in the region of the halo. For the1

state which we are considering, if one assumes pure si
particle harmonic oscillator states, the (p1/2)

2 configuration
is a superposition of both the1S0 and 3P1 states~33 and
67%, respectively! of the n-n subsystem, while only1S0
appears in the (s1/2)

2 configuration. Calculations by othe
authors~for instance, Ref.@13#! have shown that the3P1
potential, which is repulsive, changes the 2n separation en-
ergy by at least 50%. We therefore use a potential which a
in both 1S0 and 3P1 channels, and take it separable,
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^puV12up8&5(
lSI

2
LlSI

M
vlSI~p!vlSI~p8!

3(
MI

^p̂uylS
IM I&^ylS

IM Iup̂8&, ~14!

wherep is the relative momentum between the two neutro
(lSI)5(000) and ~111! and the form factors are o
Yamaguchi type:

v000~p!5@p21a000
2 #21, ~15!

v111~p!5p@p21a111
2 #22. ~16!

Using the valuesa1S0
5217 fm and r 1S0

52.84 fm for the

neutron-neutron scattering length and effective range in
1S0 channel@21# anda3P1

52.2 fm3 andr 3P1
528.0 fm21 for

the 3P1 channel@22#, we fix the parameters of theV12 po-
tential as L00051.662 fm23, a00051.130 fm21, L111
520.078 fm25, anda11150.693 fm21. The negative value
of L111 means that the3P1 term is repulsive.

The proposed interactions are used as input in the ho
geneous Faddeev equations

FIG. 1. Transverse momentum distribution of9Li in the 11Li.
The squares and circles are experimental data@26# corresponding to
P',0 and P'.0, respectively. Curve I corresponds tob05b1

51.724 fm and scattering lengthas1/2
5220 fm, II to b051.5 fm,

b151.724 fm, as1/2
5220 fm, III to b051.4 fm, b151.724 fm,

as1/2
5220 fm, and IV to b051.5 fm, b151.724 fm, as1/2

5240 fm.
,

e

o-

C~1!5G0T1~C~2!1C~3!!,

C~2!5G0T2~C~3!1C~1!!,

C~3!5G0T12~C~1!1C~2!!, ~17!

whereC (1), C (2), andC (3) are the Faddeev components
the total wave function

C5C~1!1C~2!1C~3!, ~18!

G05(E2H0)21 is the Green’s function, andT1 , T2 , and
T12 are theT matrices corresponding to the potentialsV1 ,
V2 , andV12, respectively. After performing the angular mo
mentum decomposition, we end up with a homogeneous
tem of coupled integral equations in one variable. The eq
tions are then transformed into a set of homogene
algebraic equations using the Gauss quadrature metho
approximate each integral by a finite sum. The zero of
determinant of this system of equations gives the separa
energy S2n of the two valence neutrons. From the corr
sponding three-body wave function, we calculate the m
mentum distributions. We restrict ourselves to the calcu
tion of the transverse momentum distribution of the9Li core
in 11Li. We should mention that, in our model, the transver
and the parallel momentum distributions turn out to be id
tical. An approximate equality has indeed been verified
perimentally for the9Li fragment in the break-up of11Li
@23#. Corrections due to final state interactions in the case
the momentum distribution of the core fragment should
small according to Ref.@24#.

For the chosen values of the parameters, we obtain
value S2n50.293 MeV which agrees with the~average! ex-
perimental value 0.29460.030 MeV, reported in Ref.@25#.
However, the width of the transverse momentum distribut
of 9Li turns out to be too large, as shown in the figure~dotted
line!. The experimental data are from Kobayashiet al. @26#
~actually, the experimental points shown in the figure a
taken from Fig. 2 of Ref.@6#!. We mention here that, if the
3P1 component of then-n interaction is suppressed th
value ofS2n duplicates, becoming equal to 0.597 MeV.

The result may be improved by taking forb0 a value
smaller than the one given by the prescriptionb051/Amv
51.724 fm. We made a new calculation in which thes1/2
and p1/2 potentials are modified as follows. Assumin
b051.5 fm and maintaining the previous valuese1s1/2

5220.028 MeV and a0(1/2)50.932 fm21, we determine
ed
TABLE I. Parameters of the two-bodys1/2 andp1/2 potential corresponding to the curves I–IV present
in Fig. 1. These parameters correspond toe1s1/2

5220.028 MeV andEr50.42 MeV. For thep3/2 potential we

useb151.742 fm,L1(3/2)
(1) 520.018 fm21, a1(3/2)50.551 fm21, corresponding toe1p3/2

527 MeV. The width
G of the p1/2 resonance and the scattering lengthas1/2

are also given.

b0

~fm!
a0(1/2)

~fm21!

L0(1/2)
(1)

~fm5!
L0(1/2)

(2)

~fm!
b1

~fm!
a1(1/2)

~fm21!

L1(1/2)
(1)

~fm7!
G

~MeV!

as1/2

~fm!

I 1.724 0.932 8.417 2.696 1.724 0.551 13.535 0.12 220
II 1.5 0.932 4.959 2.219 1.724 0.656 10.628 0.16 220
III 1.4 0.932 3.788 2.008 1.724 0.746 8.502 0.20 220
IV 1.5 0.932 4.959 2.304 1.724 0.709 9.328 0.18 240
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L0(1/2)
(1) to be 4.959 fm5. By settingL0(1/2)

(2) 52.219 fm the vir-
tual state is positioned atev5240 keV, the corresponding
scattering length beingas1/2

5220 fm. To determine thep1/2

potential, we keepb1 unchanged and adjustL1(1/2)
(1) and

a1(1/2) with the condition that the calculatedp1/2 resonance
energy occurs at 0.42 MeV, the resonance widthG remains
inside the range 0.1560.07 MeV and, in addition, that the
calculated 2n separation energy agrees with the experimen
value 0.294 MeV. The parameters of thep3/2 interaction are
the same as in the previous calculation. The correspon
transverse momentum distribution is given by the das
line of the figure. The half width at half maximum~HWHM!
is 40 MeV/c and the three-body state is a superposit
mainly of 1S0 ~47%! and 3P1 ~48%! configurations of the
n-n subsystem.

TABLE II. Three-body results corresponding to the paramet
listed in Table I.S2n is the 2n separation energy from11Li and g is
the HWHM of the calculated momentum distribution of the9Li core
in 11Li. The last four columns give the fractional admixture ofn-n
states in the11Li wave function.

S2n

~MeV!
g

~MeV/c! 1S0
3P1

1D2
3F3

I 0.293 82 0.38 0.59 0.01 0.02
II 0.294 40 0.47 0.48 0.02 0.02
III 0.294 35 0.54 0.41 0.03 0.02
IV 0.294 35 0.55 0.40 0.04 0.02
g
. B

.

tt.

.

.

l-
l

ng
d

n

Repeating the previous calculation, with a still smal
value, b051.4 fm, we get 35 MeV/c for the HWHM. The
agreement with experiment is very good~solid line of Fig.
1!. A similar result for the transverse momentum distributi
is also obtained takingb051.5 fm, and changing the scatte
ing length toas1/2

5240 fm ~dot-dashed line!. In Table I we

summarize the parameters of the two-bodys1/2 andp1/2 po-
tentials used in curves I–IV and in Table II the correspon
ing three-body results. The increase of then-n 1S0 contri-
bution in cases II–IV, points to an increase of th
contribution of the (s1/2)

2 configuration to the three-bod
wave function.

Our calculation shows that relevant11Li data may be fit-
ted by a three-body model using simple separable poten
with parameters adjusted to two body data. The fact that
needs for the parameterb0 a value not in accordance wit
the prescriptionb051/Amv indicates that the effective
neutron-9Li potential may differ appreciably from the usua
single-particle potential. The use of a local neutron-9Li po-
tential should corroborate this conclusion. In fact, one c
verify, by using for instance a simple square-well potent
that in order to obtain an intruder 2s1/2 state near zero energ
a much deeper potential than usually is needed. Such
potentials may indicate that a more detailed descripti
which does not consider the core as a structureless obje
required.

The numerical calculations were performed at LCC
USP.

s

.

v.

ns,

hi-
@1# I. Tanihata, Nucl. Phys.A522, 275c ~1991!; I. Tanihata, T.
Kobayashi, O. Yamakawa, S. Shimoura, K. Ekuni, K. Su
imoto, N. Takahashi, T. Shimoda, and H. Sato, Phys. Lett
206, 592 ~1988!.

@2# T. Kobayashi, Nucl. Phys.A538, 343c~1992!; J. M. Wouters,
R. H. Kraus, Jr., D. J. Vieira, G. W. Butler, and K. E. G
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