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Variational Tamm-Dancoff treatment of quantum chromodynamics. II. A semianalytic treatment
of the hadrons in the valence quark approximation

J. R. Spence and J. P. Vary
Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011

~Received 6 October 1998!

Approximate two-fermion interactions and Bethe-Salpeter equations for hadron spectra are obtained by
making a Fock space expansion of the quantum chromodynamics~QCD! mass eigenstate. Following a partial
wave decomposition, we perform an average over quartic gluon vertices and a root mean square~rms! average
over cubic vertices. The expansions in terms of quark and gluon configurations are truncated. Equations for the
gluon eigenvalues and eigenvectors are derived and approximate solutions are obtained analytically. Using
values for the QCD coupling constant and the quark rest masses obtained from a relativistic two- and three-
constituent quark model as starting values, the resulting algebraic eigenvalue equations for the mesons and the
light baryons are then solved using a multiscale expansion in harmonic oscillator eigenfunctions. Through an
approximate but analytic treatment we demonstrate that, at large distances our formalism gives rise to an
effective two fermion potential exhibiting linear confinement. That is, we do not introduce any phenomeno-
logical confinement interaction. With minor adjustments of the quark rest masses, our results compare favor-
ably with the results of the phenomenological two- and three-constituent quark models and with experiment.
@S0556-2813~99!00703-7#

PACS number~s!: 12.39.Ki, 12.38.Lg
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I. INTRODUCTION

There is considerable interest in obtaining an accurate
scription of the mass spectra and amplitudes of elemen
particles derived from QCD. In a previous work we adopt
an approach to the heavy mesons which begins wit
Tamm-Dancoff treatment@1# of the quantized gluonic de
grees of freedom, evaluates an effective potential for
quarks moving in the gluon fields, and solves for the qu
motion via relativistic wave equations. In the present wo
we treat both the mesons and the light baryons within
considerably simpler method which nevertheless retains
dynamical features of our previous work.

We extend previously developed methods of solut
@2–4# of the Bethe-Salpeter@5,6# integral equation to encom
pass the approximate treatment of quantum field theorie
the Tamm-Dancoff approach@1#. We adopt an approximat
QCD Hamiltonian @7#, introduce a variational Tamm
Dancoff treatment, and obtain results with quark masses
strong-coupling constant input from a constituent qu
model. We then adjust the constituent quark masses in a
selected experimental data.

It is especially significant that we do not add a pheno
enological confinement interaction to the QCD Hamiltonia
Our primary results are simply that the resulting hadron m
eigenvalues closely resemble the experimental hadron s
trum and that the derived interaction of the quarks exhib
confinement behavior. Our approximations, methods of s
tion and results for mass eigenstates of the mesons and
baryons form the focus of the present effort. The heavy ba
ons, those containing one or more quarks other thanu or d
quarks, will be treated in a later work.

Our general procedure involves making a Fock space
pansion of the QCD mass eigenstate followed by par
wave decompositions of the Fock space components. M
PRC 590556-2813/99/59~3!/1762~10!/$15.00
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ing a variational ansatz for the gluon amplitudes casts
problem of finding the mass eigenstates into the form o
multiconfigurational Hartree-Fock@10,11# problem. The re-
sulting coupled algebraic equations are then solved i
Born-Oppenheimer approximation scheme.

The distinctions between the present work and Ref.@4#
are very significant at the level of implementation of o
approach. Here, in order to make our implementation m
facile and easier to understand, we have developed and
a more extensive set of analytical and semianalytical too

A variational treatment has been invoked to derive
mean-field equations, which we then solve via a Bo
Oppenheimer type of approximation method. We use
constituent quark masses and phenomenological coup
constant to set the scale for the nonlinear gluon equa
which we then solve to obtain the effective interaction of t
quarks. This effective interaction exhibits a confining beha
ior. We analyze the gluon equation to exhibit how the no
linear character arising from the non-Abelian nature of
problem provides this confining behavior.

Discussions of our methods separate naturally into t
parts. First, we introduce an approximate decomposition
our treatment of QCD into two- and three-particle wa
equations. This step includes such topics as renormaliza
and management of divergences on a computer. Second
solve these relativistic few-body wave equations@2–4,9,10#
using established methods in a sequence of coordinate
momentum space calculations.

We organize our presentation along the following lines.
Sec. II we present our ansatz for the truncated Tam
Dancoff spaces. Then in Sec. III we introduce and disc
our multistep variational approach. Section IV includes d
tails on approximations we introduce to achieve a calcula
framework along with our gauge treatment and the succ
sive steps to obtain solutions to the resulting equations.

In Sec. V we derive an approximate analytic solution
1762 ©1999 The American Physical Society
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PRC 59 1763VARIATIONAL TAMM-DANCOF F . . . II. . . .
the cubic gluon wave equation and exhibit how confinem
arises in a natural way. We then show in Sec. VI how
obtain an effective quark-quark interaction. Section VII p
sents the methods we use to solve the resulting quark w
equations which follow the methods of Refs.@8,9#. Finally,
in Sec. VIII, we present our results and conclusions.

II. THE MODEL SPACE ANSATZ

We select the center of momentum~CM! frame and intro-
duce our ansatz for the basis states in the form

uF;m&' (
n50

N

zm,nug~n!;m&,uCq~n! ;m&, ~1!

where the ketsuCq(n) ;m& correspond to either normalize
qq̄ or normalizedqqq states depending on the system und
investigation. The ketsug(n);m& are normalizedn gluon
states. The labelm represents a complete set of commuti
observables for the eigenstate. The upper limitN is the maxi-
mum number of gluons included in any Fock space term
the zm,n’s are complex expansion coefficients.

Note that although we are including states with zero g
ons all of our states contain either a physicalqq̄ pair orqqq
triplet. Our point of view is that, with the exception of glue
balls, the presence of one or more such states is a defi
feature of a physical hadron. When invoking the mean-fi
approximation, we assume the quark motion is governed
a potential generated by the gluons and vice versa. In a
tion, all states in Eq.~1! are taken to be at rest in the sam
frame. That is, in our ansatz we do not allow for the relat
motion of the quark center of mass relative to the had
center of mass.

In the spirit of the mean-field approximation we furth
restrict consideration to the case in which only one qu
state~eitherqq̄ or qqq) is present and assume that the k
uCq(n) ;m& for fixed m, may be taken to be the same for a
gluon n kets ug(n);m& with this general quark ket to be de
noted uCq ;m&. These approximations constitute what w
shall term the ‘‘valence quark approximation.’’ The assum
form of the hadron mass eigenstate may now be writ
uG;m&uCq ;m& where

uG;m&5 (
n50

N

zm,nug~n!;m&. ~2!

III. THE VARIATIONAL METHODS

In general terms, the QCD Hamiltonian may be written

HQCD5TQ1HG1H INT , ~3!

whereTQ denotes the kinetic energy for the quarks,HG is
the Hamiltonian for the gluons, andH INT is for the interac-
tion of quarks with gluons. Using the assumed decomp
tion of uF;m& into the products of an expansion coefficien
a quark ket and a gluon ket, we now cast the problem
three coupled variational calculations in order to compute
approximate eigenvalues and eigenvectors ofHQCD.

In Ref. @4# we found that the total energy of the gluon
becomes very large and negative as the number of gluon
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allowed to increase and hence, to treat the gluon sector
now solve for the average energy per constituent@11# ~count-
ing the quark ket as one constituent!. We then search for the
stationary points of̂ F;muHQCDuF;m& subject to the con-
straint

d^F;muN1uF;m&50 ~4!

with N15N11, andN denoting the gluon number operato
When implementing this constraint, we hold fixed the st
vector of the quark sector from the first variation. We defi
the square root ofN1 to be given by

^g~n8!;muN1
1/2ug~n!;m&5dn,n8An11 ~5!

and we define

uF̄;m&5N1
1/2uF;m&, ~6!

N1
21/2HQCDN1

21/25H̄QCD. ~7!

The new variational condition becomes

d^F̄;muH̄QCDuF̄;m&50. ~8!

with the condition

d^F̄;muF̄;m&50. ~9!

Clearly, this is equivalent to the variational ofHQCD divided
by the expectation value ofN1 . For simplicity of notation
we shall now suppress the bar on all the quantities defi
above. Further, for these calculations, the number of qua
plus antiquarks will be held fixed at 2 or 3 depending on
system. Only the number of gluons is allowed to vary in t
Fock space states.

We make a further simplifying approximation@4# consist-
ing of assuming that eachug(n);m& is composed ofn identi-
cal single gluon states, and these single gluon states are
same for all gluon kets. Note that them dependence is re
tained.

IV. THE MEAN-FIELD EQUATIONS

First variation: expansion coefficients

The expansion coefficientsz* m,n are varied while the
zm,n’s and both quark and gluon bras and kets are treate
fixed. This yields the equation

Emzm,m5 (
n50

N

^Cq ;mu^g~m!;muHQCDug~n!;m&uCq ;m&zm,n .

~10!

This is a straightforward Ritz variational calculatio
treating the expansion coefficients as parameters while k
ing other quantities fixed, and yields the usual finite mat
diagonalization problem. Upon convergence, one obtains
expansion coefficients of the total state vector as gover
by the coupled mean fields of both the quarks and gluon
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Second variation: quarks

Next, we continue using the Ritz variational principle a
obtain two coupled equations which are to describe, in
center of momentum~CM! frame, the quark state vecto
uCq ;m& and, gluon state vectorug(n);m&, interacting by the
term H INT . In other words, to determine the quark kets a
their mean-field energies we invoke the variational condit

d^Cq ;muĤQCDuCq ;m&50, ~11!

d^Cq ;muCq ;m&50, ~12!

where ĤQCD signifies an expectation value with respect
fixed gluon components and fixed expansion coefficients
the later stages of the calculations, the total state vec
uF;m& are orthonormalized. At the present stage we obt
an equation of the form

EmuCq ;m&5TQuCq ;m&1(
m,n

zm,mz* m,n^g
~m!;muTG1HG3

1HG41H INTug~n!;m&uCq ;m&, ~13!

which symbolizes the quarks moving in the mean-field of
gluons with a mean-field energyEm , interaction Hamil-
tonianH INT , gluon free particle energyTG , and quark free
particle energyTQ . In addition,HG3 andHG4 represent con-
tributions arising from the three and four gluon vertices.

Third variation: gluons

We take as our ansatz for the gluon kets the color sin
forms @12–14#

ug~n!;m&5N~m,n!Tr~ ĥ†
~m,n!!

nuB&. ~14!

The gluon creation operators,ĥ†
(m,n) are regarded as thre

by three matrices in the color indices and the traces of
products are taken to construct color singlet states@9,10#.

Here N(m,n) is a normalization factor,uB& is the gluon
vacuum, and eachh† denotes a gluon creation operator giv
in terms of the gluon field creation operatorâ(a,b)qW ,l

† by

ĥ~m,n!
† 5 (

l561
(

a,b51

3 E d3q

A2q
f~qW !~a,b!m,n,lâ

~a,b!qW ,l
† .

~15!

In solving the variational equations by iteration, we deve
a generalized polynomial series forf(qW ). The color indices
are specified bya andb.

In the usual mean-field approximation, we retain on
those terms in the summation overn where a single gluon
emerges.

In the usual mean-field approximation, we assume that
single-gluon state vector is the same for alln-gluon configu-
rations. The resulting equation is

vm,nuf~n!;m&5TGuf~n!;m&

1^g~n21!;mu^Cq ;muH INTuCq ;m&

1HG3ug~n!;m&. ~16!
e

n

In
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in

e
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e

p

e

At this stage of the development, we consider the casn
52 with a goal of developing a gluon state which typifi
the state involved in an interaction between a pair of ferm
ons. Ultimately we will insert this typical gluon state into
ladder series to develop the full dynamics of gluon-media
interaction.

Dropping labels where they are no longer needed, we
rive at

vmuf;m&5TGuf;m&1^g~1!;mu^Cq ;muH INTuCq ;m&

1HG3ug~2!;m& ~17!

where, in keeping with our notation

uf;m&5^g~1!;mug~2!;m&. ~18!

Finally, with our approximations, we also now identify

uf;m&5ug~1!;m&. ~19!

Thus, we have arrived at a nonlinear gluon wave equa
whose solution we seek in order to provide an effect
gluon exchange interaction. Note that this equation could
obtained from the equations in Ref.@4# by omitting the quar-
tic interaction term.

We are seeking the soft gluon, long-range limit where
may put

v̄m'e05^Cq ;muTQuCq ;m&'^Cq ;mug0mi uCq ;m&.
~20!

It should be noted that this is our critical scale-setting s
within our approach. Our quark mass is a phenomenolog
parameter expected to be in the range of the usual constit
quark mass values.

The pair of coupled mean-field equations for quarks a
gluons has been derived here by minimizing the expecta
value of the total QCD Hamiltonian subject to certain no
malization conditions. The pair also has a form reminisc
of a pair of equations obtained through a reduction of
Bethe-Salpeter equation, known as Salpeter’s equat
which ladders the kernelsHG31HG4 and H INT in terms of
the quark and gluon momenta

TQ5(
i 51

n

~mi
21pi

2!1/2, ~21!

TG5(
i 51

n

qi . ~22!

V. APPROXIMATE ANALYTIC SOLUTION
OF THE GLUON WAVE EQUATION

Our procedure for computing the gluon wave function a
fermion-fermion potential is based upon employing a ser
to sum ladders or portions of ladders with one gluon e
change~OGE! rungs and a sequence to sum ladders or s
ments thereof having cubic rungs. Note that the treatmen
the OGE ladders by themselves is a largely solved ma
@12–14#, and our evaluation of their contributions used sta
dard approximation methods of atomic physics@15–18#,
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evaluating expansions of the OGE interactions in the coo
nate representation. We also included the effects of the
ning of the coupling constant at lowest order using a lead
log approximation.

The nonlinearities due to the cubic vertexHG3 , dominate
in the confinement region. We approximately solve the cu
gluon wave equation in its nonlinear regime and then use
resulting solutions as our ansatz for iterating Eq.~17! until
convergence is obtained.

The cubic gluon wave equation: first iteration

Previously, in Ref.@4#, we argued that confinement cou
be understood by considering an aspect of the non-Abe
character involving the cubic gluon self-couplings. In t
present work we establish an improved and more deta
picture of how these processes lead to a confining poten
We begin by assuming a static and classical gluon field
each of the three gluons at the vertex. Then, we consider
gluon wave equation for this process in the mean-field tre
ment, writing the total gluon wave function as the product
the three individual gluon wave functions, and including t
H INT term. Next we use conservation of three momentum
write the third gluon field as a convolution of the first an
second gluon field accompanied by factors associated
the Feynman diagram for a cubic vertex.

With the understanding~justified below! of what results
from averaging over Lorentz indicies in the mean-field tre
ment, we take these gluon fields to be single-component
jects rather than four vectors. Next we place the gluons
shell and impose conservation of three momentum and
ergy on the gluon momenta yielding the equationspW 15pW 2

1pW 3 and p15p21p3 which imply p2p35pW 2•pW 3 and hence
that the momentum of the incoming~outgoing! particlep1 is
collinear with the momenta of the remaining particlespW 2 and
pW 3 . This reduces the integral to one dimension and leave
with the following form of the colored wave equation:

eAA~p!5pAA~p!1
4pG

~2p!3E
0

`

dqq2AB~p2q!

3AC~q!UABC~p,q,r !

1
4p

~2p!3E
0

`

dqq2^CqmuH INTuCq ;m&AA~q!

~23!

with

UABC~p,q,r !52 ig f ABC@~r 2q!mdnr1~q2p!rdmn

1~p2r !ndrm#; p1q1r 50, ~24!

where A,B,C represent color indices~1-8!, r,m,n are the
Lorentz indices andf ABC represents the structure constan
of SU(3)C .

Next we absorb a factor ofe into eachA, perform a color
average and replacef ABCAB(p2q)AC(q) by

1/8@ f ABCf ABCA~p2q!A~q!#51/8@24A~p2q!A~q!#.
~25!
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We drop the color indicesA, B, andC, and for the zeroeth
order drop both the free particle energy termpAA(p) and the
quark-gluon interaction term

^Cq ;muH INTuCq ;m&AC~q!. ~26!

Finally we replace the terms in the factorU by their rms
average over the quantities (p-q),(q-r ), and (r -p), using

@~p2q!21~q2r !21~r 2p!2#1/25~p21q21r 2!1/2/2
~27!

'~q23/2!1/25qA3/2. ~28!

This replaces the four vectors by three vectors as in mak
an instantaneous approximation

~3q2/2!1/25A3/2uqu. ~29!

When we employ the pole dominance argument below
invoke the symmetry of the boson wave functions we fi
that, in the center of momentum, the averaged value oU
becomes

bq53A3/2q. ~30!

This results in a first-order rms averaged mean-field sin
gluon wave equation

A~p!5
12pb

e2~2p!3E
0

`

dqq3A~p2q!A~q!. ~31!

We now note that by performing a similar rms color avera
over each color factorf ABC and then by averaging over spi
and Lorentz indicies on the quartic vertex

ig2@ f NACf NBD~gabggd2gadggb!

1 f NADf NBC~gabggd2gaggbd!1 f NABf NCD

3~gaggbd2gadgbg!#

→ ig2f NACf NBDf NACf NBD@~gabggd2gadggb!

1~gabggd2gaggbd!1~gaggbd2gadgbg!#.

Then, by averaging overa,b,g, andd

→
1

256 (
a,b,g,d

ig2f NACf NBDf NACf NBD~gabggd2gadggb!50.

With this understanding we discard the quartic gluon ter
in the gluon mean-field wave equation.

We take as an ansatz for the gluon fieldsA(p)5Cpa,
with C anda constants, and we substitute this form into t
above equation. With the simplifications from above t
mean-field equation becomes

A~p!5
12pGb

e2~2p!3E
0

`

dqq3A~p2q!A~q!, ~32!

and with our ansatz

pa'12pC̄/~2p!3e2E
0

`

dqq3~p2q!aqa, ~33!
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whereC̄5G3b3C.
Our purpose is to solve this approximate mean-field eq

tion for a asp→0. The solution can be deduced by dime
sional analysis where, in powers of momentumk, we observe

ka'k2a14 ~34!

leading toa524. However, further attention to the approx
mate evaluation of the integral is desirable to obtain inf
mation aboutC̄. A more rigorous treatment is given in Ref
@2# and@3#. Continuing to concentrate on the limitp→0 for
the first iteration, we will assume for simplicity, the integr
is dominated by the pole atp5q, so that

pa5
212pC̄~p20!a11pa13

~2p!3e2~a11!
. ~35!

This yields the result asp→0

pa5
212pC̄

~2p!3~a11!e2 p2a14. ~36!

Thus, we have seen through a simplified analysis that e
gluon in the process follows a dependence on its momen
to the a524 power as its momentum goes to zero. T
constant of proportionality being

C̄52
~a11!e2~2p!3

12p
. ~37!

The cubic gluon wave equation: second iteration

Having solved the rms averaged gluon wave equation
first approximation and obtained asymptotic larger solutions
of the formA(1)(p)5C̄/p4 we now iterate with the rms av
eraged gluon equation

eA~p!5pA~p!1
12pb

e~2p!3E
0

`

dqq3A~p2q!A~q!. ~38!

Because we are interested in those soft, low-energy
ons withe1e0'0 the gluon wave equation may be appro
mated

2e0A~p!5pA~p!1
212pb

e0~2p!3E
0

`

dqq3A~p2q!A~q!.

~39!

Making the pole dominance approximation as before a
using the expression for the first iteration gluon wave fu
tion we find for the second iteration single gluon wave fun
tion

A~2!~p!5
C̄

~11p/e0!p4 . ~40!

The normalization ensures that the expectation value of
total A(p) is ~trivially !

^F;muA~p!uF;m&

^F;muF;m&
5A~p! ~41!
a-
-

-

ch
m

in
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-
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because thisA(p) is the same for each Fock space comp
nent.

The cubic gluon wave equation: third iteration

We have subtracted off the perturbative OGE contribut
to the gluon wave function as our first approximation a
obtained first and second iterates of the nonperturba
gluon wave equations. That is, we have solved appro
mately forA(1)(p) andA(2)(p), from

A~1!~p!5
12pGb

e2~2p!3E
0

`

dqq3A~1!~p2q!A~1!~q! ~42!

and

2e0A~2!~p!5pA~2!~p!2
12pb

e0~2p!3

3E
0

`

dqq3A~1!~p2q!A~1!~q!. ~43!

We initiated our iterative sequence of approximations for
nonperturbative portion of the gluon wave function with
ansatz,A(1)(p), which satisfies the gluon wave equation
the strong-coupling~nonlinear! domain. With such a starting
point we may expect that a standard iteration scheme as

2e0A~n11!~p!5pA~n!~p!2
12pb

e0~2p!3

3E
0

`

dqq3A~n!~p2q!A~n!~q! ~44a!

or

~p1e0!A~n11!~p!5
12pb

e0~2p!3E
0

`

dqq3A~n!~p2q!A~n!~q!;

n52,3,4, . . . ~44b!

will be at worst semiconvergent.
Computation of approximations to the third iterat

A(3)(p), indicates, for the first time, logarithmic divergenc
and the consequent need for renormalization. We write
integral appearing on the right-hand side of Eqs.~44a!,~44b!
as

I ~3!5
12pb

e0~2p!3E
0

`

dqq3A~2!~p2q!A~2!~q!

5
12pb

e0~2p!3

C̄2

e0
4 E

0

`

dqq3

3
1

~11~p2q!/e0!~p2q!4~11q/e0!q4

5
3C̄

e0
3 @ I 1

~3!1I 2
~3!1I 3

~3!#. ~45!

We now invoke pole dominance.
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~1! For the pole atp5q:

I 1
~3!'E

0

`

dq
1

~p2q!4~11p/e0!p
. ~46a!

~2! For the pole atq50:

I 2
~3!'E

0

`

dq
1

~11p/e0!p4~11q/e0!q
. ~46b!

~3! For the remaining poles atq5e01p andq52e0 :

I 3
~3!'E

0

`dq
1

~11~p2q!/e0!e0
4~11q/e0!~e01p!

.

~46c!

Treating the integralI 1
(3) as if it were a nonsingular inte

gral as with the first iteration calculation again gives

I 1
~3!5

1

3~11p/e0!p4 ~47!

so that 3C̄/e0 times this term is equal toA(2)(p). Term I 2
(3)

is a logarithmically divergent constant timesI 1
(3) and will be

shown to be the second term in a subseries obtained by
ating a portion of the recursion relation for theA(n). This
subseries of divergent terms will then be seen to sum to z

Writing

I ~3!526I 1
~1!19I 1

~1!13I 1
~2!13I 3

~3! ,

I ~3!526I 1
~1!13I 1

~1!@11 ln~0!#13I 3
~3! ,

we recognize

3I 1
~1!@11 ln~0!#13I 3

~3!

as the first iterate of an equation which will occur in t
continued iteration of our gluon wave equation

I 53I 11 ln~0!I

which sums to

I 5
3I 1

~1!

12 ln~0!
.

Having thus eliminated the log divergence 3I 1
(1)@11 ln(0)#

we obtainI (3)526I 1
(1)13I 3

(3) .
We can further simplify by using Eq.~43b! and making

the approximatione05p in order to obtain

A~3!~p!5
6pb

e0
2~2p!3E

0

`

dqq3A~2!~p2q!A~2!~q!

5A~2!~p!1
3C̄

e0
2 I 3

~3! .

Using partial fractions and treating the integrals as n
singular castsI 3

(3) into the convergent form
r-

o.

-

I 3
~3!'E

0

`

dqF 1

~11~p2q!/e0!

1
1

11~q/e0!

1

e0
4~e01p!~2e01p!

G
5 ln~11p/e0!

1

e0
2~e01p!~2e01p!

.

Linearization of the gluon wave equation

So far we have considered only a spherically symmet
and colorless solution of the cubic gluon equation. We n
indicate a construction for a basis set of approximate eig
states of the linearized cubic gluon wave equation. This b
contains a version of the confinement state discussed ea
but the remaining states in this basis areL2 normalizable.
The ability of nonlinear wave equations to support more
lutions than corresponding linear equations is well kno
from mean-field calculations in atomic and nuclear physi

We replaceA(p) by A(p)n,l ,m1A(p) in the second-order
gluon wave equation. We take A(p)n,l ,m
5R(p)n,lYl ,m(u,f) to be an ordinary momentum spac
wave function with variables separated in spherical coo
nates. TreatingAn,l ,m as small we expand aboutA(p) and
linearize obtaining

eAn,l ,m~p!5pAn,l ,m~p!1
24pb

e~2p!3

3E
0

`

dqq3A~p2q!An,l ,m~q!. ~48!

We will now linearize this equation and convert to a coor
nate representation through the adoption of an approxim
form for Ã(r ) provided below. This results in our linearize
equation

~e2e0!Ã~rW !n,l ,m5 ẽÃ~rW !n,l ,m52¹2Ã~rW !n,l ,m

1
kr2

2@11A0m1m2r 2#1/2Ã~rW !n,l ,m .

~49!

The quantitiesmi refer to the constituent quark masses.
The crucial points to be noted here are that the quanti

k andA0 will be determinedab initio and that for smallr the
linearized cubic gluon wave equation is a harmonic osci
tor. Hence, we note that approximate solutions for
Ã(rW)n,l ,m8s might be obtained by the methods employ
with the quark wave equations below.

VI. THE EFFECTIVE QUARK-QUARK INTERACTION

To make effective use of an existing technology for a
proximating analytic solutions of the quark wave equati
while retaining the essential physics, we seek to cast
second iteration single gluon wave function of Eq.~40! into
the form
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Ã~r !5
kr2

2@11A0m1m2r 2#1/2 ~50!

with k being a spring constant,k and A0 to be determined.
The key physics is retained sincep24 goes intor /8p when
transformed to coordinate space, andp25 into r 2/24(4p).
This means that correspondence at both small and large
the second iteration gluon wave function and its approxim
ing coordinating function can be insured by choosing

k5m12vq
25ṽqq̄

2
5

m12C̄

24~4p!~2p!3 ; A051/62 ~51!

with m125m11m2 .
We obtain an expression for theqq̄ potential by inserting

a factor ofgs for each vertex as in@3# yielding the nonper-
turbative potential

VNP~r !5~4p!2as
2

vqq̄
2

r 2

2@11A0m1m2r 2#1/2. ~52!

We define a ‘‘cubic ladders approximation’’ consisting
ignoring all additional diagrams~other than OGE ladders!.
The potential for such cubic ladders is in the standard m
nerVNP(r ). With such a definition the problem of computin
the Fock space expansion coefficients for the gluon w
functions is now circumvented. We note also that ther used
here denotes the distance from the cubic gluon vertex to
of the fermion-gluon vertices. Ifr is to denote the fermion
fermion distancer must be replaced byr /2 on the right-hand
side of Eq.~52!.

A small point remains in theqqq case in that two of the
quarks are interacting while the third remains a specta
However, this spectator plays a dynamical role in that
color must be different than either of the active participan
Following the standard rule of averaging over initial sta
and summing over final,VNP(r ) must be reduced by a facto
of 1/3 for theqqq case.

VII. THE QUARK WAVE EQUATIONS

At this stage we can sumarize our fermion-fermion int
action kernel as

V~r !5VOGE~r !1VNP~r !, ~53!

where VNP(r ) is given by our variational treatment of th
gluon dynamics~triple gluon coupling! in Eq. ~52!, and
VOGE(r ) represents a semirelativistic~Foldy-Wouthysen!
treatment of the one gluon exchange. Now, for the ac
computation of quark eigenenergies and eigenfunctions
adopt a particular~Foldy-Wouthysen! treatment of the one
gluon exchange. In particular ourVOGE(r ) is the same as the
one-photon exchange from the literature@15–18# with the
appropriate color weighting factors@7# and the strong-
coupling constantas .

We choose a simple and convenient form of the sc
dependence of the strong couplingas(Q

2) from previous
investigations@8#. In particular,

Q25~m11m2!2.
of
t-

n-

e

ne

r.
s
.

s

-

al
e

le

Inspired by the approach of Mittal and Mitra@8#, we can
reduce the two-fermion problem as a state dependent,
conveniently soluble Bethe-Salpeter equation in an insta
neous approximation. We mapVNP(r ) to a state-dependen
harmonic-oscillator potentialVHO. The rules for the map-
ping will be given below.

Now, for the actual computation of quark eigenenerg
and eigenfunctions we adopt a particular form of the inst
taneous approximation to the Bethe-Salpeter equation:

1/2M ~4mq
22M224¹2

r !c̃5VOGEc̃1VHOc̃. ~54!

Note there are no additional phenomenological terms
that the interactions are both governed by the stro
coupling constantas(Q

2). In the momentum representatio
the harmonic-oscillator portion of the equation~i.e., leaving
out VOGE), may be written in the reduced form:

q2gM
2 f2

1

2
Mvqq̄

2
¹q

2f21/4FHO~M !VMf50. ~55!

Defining

FHO~M !5~M224mq
2!VM

2121/4VMM 22gM
22

3~2J•S232QN!, ~56!

VM54~2M !1/2vqq̄gM ; gM
2 5118M 21mq

22vqq̄
2 ,

~57!

8bM
2 gM

2 [VM ; vqq̄
2

5m12ṽ
2.

For equal massmq quarks, under harmonic confineme
alone, the meson mass eigenvalues are determined by
algebraic equation

FHO5N1
3

2
; N52n1 l ; l 50,1,2. . . ;

n50,1,2, . . . . ~58!

Here N is the principal quantum number,l is the orbital
angular momentum quantum number, andn is the radial
quantum number.

In the case of unequal quark masses the follow
changes are made:

t̄5t/A22t, t54m1m2 /~m11m2!2,

vqq̄
2

5m12t̄ṽ2,

VM54~Mt!1/2vqq̄gM ,

gM
2 5118ṽ2M 21m12

22t̄.

The mass eigenvalues for a baryon composed of th
equal mass quarks again under harmonic confinement al
satisfy a similar set of algebraic relations.
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FHO~M !5~M22m0
2!VB

2121/4VBM 22gB
22

3S 2

3
J•S2

3

2
2Q̄N2QN8 D , ~59!

VB59~2M !1/2vqqgB ; gB
2511

81

8
M 21m0

22vqq
2 ,

~60!

m053mq ; vqq
2 5

1

3
vq

2 ; FHO~M !5N13. ~61!

HereQN ,Q̄N ,QN8 are given by

4QN52/3~N213N23!2~N13!2; 6Q̄N58QN ,
~62!

6QN8 '24/3~11m1m2 /M2!@7/QN29/2~N13/2!219/2#,
~63!

27bB
2gB

2[VB .

The case of three unequal mass particles is nontrivial

Solution of the qq̄ equations

In order to obtain accurate analytic approximate solutio
to the quark wave equations with our approximate poten
the following scheme is employed@8#:

~1! The quantity

vq
2r 2/~11m1m2A0r 2!1/2 ~64!

was replaced by

r 2vq
2^@1/~11m1m2A0r 2!1/2#&, ~65!

which was further approximated by

TABLE I. Light andss̄quarkonium masses in MeV with kerne
as given in the text. The quark masses used are as explained
text.

Meson NJLS Mexpt M calc M calc

2Mexpt

p 0000 140 140* 10
r 0101 770 546 2224
b1 1110 1232 1182 250
a2 1211 1320 1283 237
p8 2000 1300 1366 166
r8 2101 1450 1535 185
p2 2220 1670 1780 1110
r3 2321 1690 1802 1112
f 4 3431 2030 2009 221

f 0101 1020 1021 11
f 1 1111 1420 1380 240
f 28 1211 1525 1572 147
f 2101 1680 1772 192
s
l

r 2vq
2@1/~11m1m2A0^r

2!&1/2#. ~66!

~2! Using the properties of the relativistic harmonic osc
lator defined above, obtained the following coupled equat
which were solved iteratively:

~11A0m1m2r 2!1/2→@11A0m1m2~N13/2!/bN
2 #1/25sn ,

~67!

gbN
2 ~2sn!1/25v0~2mMas

2!1/2, ~68!

FHO14mv0
2as

2QN8 52bN
2 g2~N13/2!. ~69!

This defined a running spring constant, differing for t
different eigenstates, and computed self-consistently so
~to within the obvious approximations!, the expectation
value of the potential in an approximate eigenstate is
same as in the corresponding exact state. The Coulomb
tion of the remaining OGE potentials was treated by dir
diagonalization in a ten-dimensional subspace of the res
ing basis. Following the diagonalization the remaining p
tions of the OGE potential were incorporated by first-ord
perturbation theory.

Solution of the qqq equations

Our procedure for the three-quark system is similar to
procedure for theqq̄ system. We divide the effective two
body potential which we have obtained by our analytic p
cedures into a one gluon exchange component and the

the

TABLE II. Heavy quarkonium masses in MeV with kernel a
given in the text. The quark masses used were fitted to the s
indicated by an asterisk.

Meson NJLS Mexpt M calc M calc

2Mexpt

hc 0000 2980 3048 168
J/c 0101 3097* 3096 21
x0 1011 3415 3461 146
x1 1111 3511 3556 145
x2 1211 3526 3700 1174

hc 2000 3590 3542 252
c 2101 3686 3569 2117
c 2121 3770 3779 179
c 4101 4040 4022 218
c 4121 4159 4174 115
c 6101 4415 4445 130

Y 0101 9460* 9460 10
3P 1011 9860 9719 2141
3P 1111 9892 9744 2148
3P 1211 9913 9781 2132
Y 2101 10023 9951 272
2 3P 3011 10232 9960 2272
2 3P 3111 10255 10046 2209
2 3P 3211 10268 10072 2196
Y 4101 10355 10268 287
Y 6101 10573 10598 125
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lytic confining component. We then take this confinin
component and map it onto a state-dependent but equiva
oscillator potential. We do this mapping by computing t
expectation value of the confining two-body potential in
given state of two-body motion and then compute the sa
expectation value of the oscillator in that oscillator sta
This provides us with a more convenient form of our confi
ing potential for further calculations of the three-quark sp
troscopy with the more complete Hamiltonian.

We make one further approximation for the solution
the three-quark system in Jacobi coordinates. In order to s
plify further for these initial applications, we angle avera
the confining part of the interaction over the angle betwe
the two Jacobi coordinates.

VIII. RESULTS AND CONCLUSIONS

We present in Table I the experimental and theoret
meson masses for the light mesons and thes2 s̄ mesons
along with their quantum numbers. We have adjusted
light quark mass and the strange quark mass to fit the m
of the p and thef, respectively. The resulting values a
mu5md50.330 GeV andms50.516 GeV, respectively. Fo
the strong-coupling constant we have taken the conventi
leading log form:

as~Q2!5
12p

~3322Nf !ln~Q2/l2!
, ~70!

whereNf equals the number of flavors up to and includi
the mass of the highest quark mass involved in that state,
l50.25 GeV. We have taken the samel used in Ref.@8#
and we have fixedQ2 to the constituent quark masses v
Q25(m11m2)2.

As may be expected, we obtain ap-r splitting which is
too small compared to experiment, a general characterist
constituent quark models. On the other hand, the remain

TABLE III. Light baryons in the nucleon channel: masses
MeV with kernel as given in the text. Quark mass used was fitte
the state indicated by an asterisk.

Baryon T(JP) Mexpt M calc M calc

2Mext

P11 1/2~1/21! 938* 943 15
P11 1/2~1/21! 1440 1390 250
D13 1/2(3/22) 1520 1535 115
S11 1/2(1/22) 1535 1532 23
S11 1/2(1/22) 1650 1777 2127
D15 1/2(5/22) 1675 1653 222
F15 1/2~5/21! 1680 1679 21
D13 1/2(3/22) 1700 1790 290
P11 1/2~1/21! 1710 1674 236
P13 1/2~3/21! 1720 1675 245
G17 1/2(7/22) 2190 2201 111
H19 1/2~9/21! 2220 2107 2113
G19 1/2(9/22) 2250 2123 2127
I 1,11 1/2(11/22) 2600 2320 2280
nt
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masses are in reasonable accord with the data and the ov
description is competitive with results from more pheno
enological approaches.

Table II presents our results for the heavy quarkoni
states where the constituent quark masses have been ad
to theJ/c and theY mesons. The resulting quark masses
mc51.538 GeV andmb54.830 GeV.

Overall the agreement between theory and experimen
the heavy quarkonium states is good considering the o
adjustable parameters are the heavy quark masses. The
freedom attached to the coupling parameters is absent in
calculation as they have been fixed by the theory as
scribed above. Clearly, one can the improve the fit sign
cantly in Table II by a minimization of an overall chisqua
or rms deviation with respect to the constituent qua
masses. We have not attempted such fits at the present
but will present results of various fitting strategies along w
certain improvements to our approach in a future effort.

In Table III, we present the results for the light baryons

o
TABLE IV. Light baryons in the delta channel: masses in Me

with kernel as given in the text.

Baryon T(JP) Mexpt M calc M calc

2Mexpt

P33 3/2~3/21! 1232 1198 234
P33 3/2~3/21! 1600 1647 147
S31 3/2(1/22) 1620 1629 19
D33 3/2(3/22) 1700 1627 273
S31 3/2(1/22) 1900 1930 130
F35 3/2~5/21! 1905 1836 269
P31 3/2~1/21! 1910 1870 240
P33 3/2~3/21! 1920 1912 28
D35 3/2(5/22) 1930 1916 214
F37 3/2~7/21! 1950 1916 234
H3,11 3/2~11/21! 2420 2349 171

TABLE V. Flavored quarkonium masses in MeV with kernel
given in the text.

Meson NJLS Mexpt M calc M calc

2Mexpt

K(498) 0000 98 616 1118
K* (892) 0101 892 881 211
K1(1270) 1011 1270 1239 231
K1(1400) 1111 1400 1369 231
K* (1410) 1211 1410 1562 1152
K2(1770) 2220 1770 1986 1216
K3* (1780) 2321 1780 2006 1226
K4* (2045) 2431 2045 2432 1387

D(1869) 0000 1869 1717 2152
D* (2010) 0101 2010 1730 2280
F(1968) 0000 1968 1946 222
F* (2112) 0101 2112 1975 2137

B(5279) 0000 5279 5194 285
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the nucleon channel. Here, we have again adjusted the
quark mass to fit the mass of the lightest baryon—the pro
with the resultmu5md50.380 GeV. The typical deviation
between the theoretical and experimental masses is of
order of 50 MeV until the higher spin states are reach
above 2 GeV. We note that the theoretical masses tend t
systematically lower than the experimental values. This
plies that adjusting the quark mass to obtain a fit to the
spectrum will improve the overall results considerably.

Nevertheless, even at this stage, the overall results for
light baryons in the nucleon channel are very encourag
and are also competitive with results from more phenome
logical approaches.

In Table IV we present our results for the light baryons
the 3-3 resonance or delta channel. No additional param
adjustments have been made. The comparison betw
theory and experiment is very good, even better than
results for the nucleon channel~Table III!.

Finally, in Table V, we present results for the mixed fl
vor meson states. Again, there are no additional parame
y

ht
n

he
d
be
-
ll

he
g

o-

ter
en
e

rs

adjusted to produce the results of this table. Comparing
results of Table I and Table V for the meson states depe
ing on the strange quark mass, one estimates that lowe
the strange quark mass will provide an improved overall
scription of these meson states.

Overall, the results produced with our approach appea
give a good representation of the experimental data. Sev
improvements are envisioned and will be reported in a fut
work. Applications to additional experimental observab
are enabled and will be addressed as well.
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