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Variational Tamm-Dancoff treatment of quantum chromodynamics. Il. A semianalytic treatment
of the hadrons in the valence quark approximation
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Approximate two-fermion interactions and Bethe-Salpeter equations for hadron spectra are obtained by
making a Fock space expansion of the quantum chromodynd@{B) mass eigenstate. Following a partial
wave decomposition, we perform an average over quartic gluon vertices and a root mear{reggiarecrage
over cubic vertices. The expansions in terms of quark and gluon configurations are truncated. Equations for the
gluon eigenvalues and eigenvectors are derived and approximate solutions are obtained analytically. Using
values for the QCD coupling constant and the quark rest masses obtained from a relativistic two- and three-
constituent quark model as starting values, the resulting algebraic eigenvalue equations for the mesons and the
light baryons are then solved using a multiscale expansion in harmonic oscillator eigenfunctions. Through an
approximate but analytic treatment we demonstrate that, at large distances our formalism gives rise to an
effective two fermion potential exhibiting linear confinement. That is, we do not introduce any phenomeno-
logical confinement interaction. With minor adjustments of the quark rest masses, our results compare favor-
ably with the results of the phenomenological two- and three-constituent quark models and with experiment.
[S0556-28189)00703-1

PACS numbds): 12.39.Ki, 12.38.Lg

I. INTRODUCTION ing a variational ansatz for the gluon amplitudes casts the
problem of finding the mass eigenstates into the form of a
There is considerable interest in obtaining an accurate denulticonfigurational Hartree-Fockl0,11] problem. The re-
scription of the mass spectra and amplitudes of elementargulting coupled algebraic equations are then solved in a
particles derived from QCD. In a previous work we adoptedBorn-Oppenheimer approximation scheme.
an approach to the heavy mesons which begins with a The distinctions between the present work and FRRéF.
Tamm-Dancoff treatmenitl] of the quantized gluonic de- are very significant at the level of implementation of our

grees of freedom, evaluates an effective potential for théPProach. Here, in order to make our implementation more
quarks moving in the gluon fields, and solves for the quargacne and easier to understand, we have developed and used

more extensive set of analytical and semianalytical tools
A variational treatment has been invoked to derive the
ean-field equations, which we then solve via a Born-

motion via relativistic wave equations. In the present work 2
we treat both the mesons and the light baryons within a

considerably simpler method which nevertheless retains thgppenheimer type of approximation method. We use the

dynamical features (.)f our previous work. . constituent quark masses and phenomenological coupling
We extend previously developed methods of solution

. X constant to set the scale for the nonlinear gluon equation
[2—4] of the Bethe-Salpet¢b,6] integral equation to encom- g q

which we then solve to obtain the effective interaction of the

pass the approximate treatment of quantum field theories by,arks. This effective interaction exhibits a confining behav-

the Tamm-Dancoff approadti]. We adopt an approximate ior \we analyze the gluon equation to exhibit how the non-
QCD Hamiltonian [7], introduce a variational Tamm- |inear character arising from the non-Abelian nature of the
Dancoff treatment, and obtain results with quark masses a”&oblem provides this confining behavior.
strong-coupling constant input from a constituent quark Discussions of our methods separate naturally into two
model. We then adjust the constituent quark masses in a fit tearts. First, we introduce an approximate decomposition of
selected experimental data. our treatment of QCD into two- and three-particle wave
It is especially significant that we do not add a phenom-equations. This step includes such topics as renormalization
enological confinement interaction to the QCD Hamiltonian.and management of divergences on a computer. Second, we
Our primary results are simply that the resulting hadron massolve these relativistic few-body wave equati¢@s-4,9,1Q
eigenvalues closely resemble the experimental hadron speuasing established methods in a sequence of coordinate and
trum and that the derived interaction of the quarks exhibitanomentum space calculations.
confinement behavior. Our approximations, methods of solu- We organize our presentation along the following lines. In
tion and results for mass eigenstates of the mesons and ligBec. || we present our ansatz for the truncated Tamm-
baryons form the focus of the present effort. The heavy barybancoff spaces. Then in Sec. Ill we introduce and discuss
ons, those containing one or more quarks other thand  our multistep variational approach. Section IV includes de-
quarks, will be treated in a later work. tails on approximations we introduce to achieve a calculable
Our general procedure involves making a Fock space exXramework along with our gauge treatment and the succes-
pansion of the QCD mass eigenstate followed by partiabive steps to obtain solutions to the resulting equations.
wave decompositions of the Fock space components. Mak- In Sec. V we derive an approximate analytic solution of
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the cubic gluon wave equation and exhibit how confinemenallowed to increase and hence, to treat the gluon sector, we
arises in a natural way. We then show in Sec. VI how wenow solve for the average energy per constitliédt (count-
obtain an effective quark-quark interaction. Section VII pre-ing the quark ket as one constitugntVe then search for the
sents the methods we use to solve the resulting quark wawsationary points of ®;m|Hqcp|®;m) subject to the con-
equations which follow the methods of Ref8,9]. Finally,  straint
in Sec. VIII, we present our results and conclusions.

S{®;m|N,|P;m)=0 (4)

Il. THE MODEL SPACE ANSATZ

with N, =N+ 1, andN denoting the gluon number operator.
When implementing this constraint, we hold fixed the state
vector of the quark sector from the first variation. We define
N the square root o, to be given by

|<I>:m>~g0 Zn |95 m), [ W, sm), 1)

We select the center of momentuW@M) frame and intro-
duce our ansatz for the basis states in the form

(g";mINL¥3gmy=5, , o+ 1 ®
where the ket§¥,);m) correspond to either normalized and we define

gq or normalizedqqq states depending on the system under
investigation. The ketdg(”;m) are normalizedv gluon
states. The labah represents a complete set of commuting
observables for the eigenstate. The upper Ii$ the maxi- _
mum number of gluons included in any Fock space term and Ny YHoepN:  Y?=Hocp. (7
thez,, ,’s are complex expansion coefficients.

Note that although we are including states with zero glu-The new variational condition becomes

ons all of our states contain either a physigglpair orqqq L o

triplet. Our point of view is that, with the exception of glue- &®;m[Hgcp|®P;my=0. (8)
balls, the presence of one or more such states is a defining

feature of a physical hadron. When invoking the mean-fieldyith the condition

approximation, we assume the quark motion is governed by

a potential generated by the gluons and vice versa. In addi- 5<<I_>'m|<I_>' m)=0. 9)
tion, all states in Eq(1) are taken to be at rest in the same ' '

fr:]a:)rggh -g;atthlj’ 'Tjgrukr gg:t‘:[ rz ;\;erggsgorteﬂg\%f% t:;]i rﬁ:‘dt'r\(lf’cIearly, this is equivalent to the variational ldt,cp, divided
center of massq rby the expectation value dfi, . For simplicity of _n_otation_
In the spirit 'of the mean-field aporoximation we further V€ shall now suppress the bar on all the quantities defined
P PP above. Further, for these calculations, the number of quarks

restrict consideration to the case in which only one quarkplus antiquarks will be held fixed at 2 or 3 depending on the

state(eitherqq or qqq) is present and assume that the ketsgystem. Only the number of gluons is allowed to vary in the
|\Ifq(y) ;m) for fixed m, may be taken to be the same for all gocK space states.

gluon » kets|gt”);m) with this general quark ket to be de- e make a further simplifying approximati¢] consist-
noted |W,;m). These approximations C(_)nstitute what We jng of assuming that eadig”);m) is composed of identi-

shall term the “valence quark approximation.” The assumedcy| single gluon states, and these single gluon states are the
form of the hadron mass eigenstate may now be writtezame for all gluon kets. Note that time dependence is re-

|®;my=N, Y d;m), (6)

|G;m)[Wq;m) where tained.
N
1G;m)= > Zpn,|g™;m). 2 IV. THE MEAN-FIELD EQUATIONS
v=0 '
First variation: expansion coefficients
Ill. THE VARIATIONAL METHODS The expansion coefficientg*,, , are varied while the

zm,,'S and both quark and gluon bras and kets are treated as
fixed. This yields the equation

Hoco=To+Hg+Hints 3 N

= - (m)- (v). .

where T, denotes the kinetic energy for the quarkkg is EmZm.p Z’o (Wa;mi(g"miHqcol g™ m)¥qim)Zm,,
the Hamiltonian for the gluons, arldyt is for the interac- (10
tion of quarks with gluons. Using the assumed decomposi-
tion of |®;m) into the products of an expansion coefficient, This is a straightforward Ritz variational calculation,
a quark ket and a gluon ket, we now cast the problem asreating the expansion coefficients as parameters while keep-
three coupled variational calculations in order to compute théng other quantities fixed, and yields the usual finite matrix
approximate eigenvalues and eigenvectorsiggp. diagonalization problem. Upon convergence, one obtains the

In Ref. [4] we found that the total energy of the gluons expansion coefficients of the total state vector as governed
becomes very large and negative as the number of gluons By the coupled mean fields of both the quarks and gluons.

In general terms, the QCD Hamiltonian may be written
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Second variation: quarks At this stage of the development, we consider the case

Next, we continue using the Ritz variational principle and =2 With @ goal of developing a gluon state which typifies
obtain two coupled equations which are to describe, in thdhe state involved in an interaction between a pair of fermi-
center of momentun{CM) frame, the quark state vector ONS- Ultimately we will insert this typical gluon state into a
|¥,;m) and, gluon state vectdg”;m), interacting by the ladder series to develop the full dynamics of gluon-mediated

q ) ) ) 1

termH,\ 7. In other words, to determine the quark kets ang/nteraction.

their mean-field energies we invoke the variational conditionriv(lejmpp'ng labels where they are no longer needed, we ar-

at

5(¥q;m[Hocol ¥q:m) =0, @D gimy=Tel i)+ (g m| (W g s Hir ¥ )

W q;m|¥,;m)=0, (12 +Hegslg?;m) (17)

where I:|QCD signifies an expectation value with respect towhere, in keeping with our notation
fixed gluon components and fixed expansion coefficients. In
the later stages of the calculations, the total state vectors |p;m)=(g";m[g?;m). (18

|@;m) are orthonormalized. At the present stage we obtain . o ) )
an equation of the form Finally, with our approximations, we also now identify

|p;m)=|g™®;m). (19

Thus, we have arrived at a nonlinear gluon wave equation

+HG4+H|NT|9(V);m>|‘I’q§m>, (13) whose solution we see_k in order to p_rovide an effective
gluon exchange interaction. Note that this equation could be

which symbolizes the quarks moving in the mean-field of theobtained from the equations in Ré4] by omitting the quar-

gluons with a mean-field energ§,,, interaction Hamil- tcC Interaction term.

tonian HINT! g|u0n free partic|e energvel and quark free We are Seeking the soft gluon, Iong-range limit where we

particle energyl . In addition,Hg3z andHg, represent con-  May put

tributions arising from the three and four gluon vertices.

Emlq,q;m>:TQ|‘I’q ;m>+2 Zm,p.Z* m,v<g(m;m|TG+ HGS
o, v

om~ €o= (W ;M To| W4 my=(W o ;m| yomy| W 4 ;m).

Third variation: gluons (20)

We take as our ansatz for the gluon kets the color singlet It should be noted that this is our critical scale-setting step

forms[12-14 within our approach. Our quark mass is a phenomenological
R parameter expected to be in the range of the usual constituent
197mM) =N TH 7 (1m0 1) (14 quark mass values.

. The pair of coupled mean-field equations for quarks and
The gluon creation operatorsz,*(m,y) are regarded as three gluons has been derived here by minimizing the expectation
by three matrices in the color indices and the traces of the@alue of the total QCD Hamiltonian subject to certain nor-
products are taken to construct color singlet stf®e$0]. malization conditions. The pair also has a form reminiscent
Here N(m ,) is a normalization factor|) is the gluon of a pair of equations obtained through a reduction of the
vacuum, and each' denotes a gluon creation operator given Bethe-Salpeter equation, known as Salpeter's equation,
in terms of the gluon field creation operaﬁ)} which ladders the kerneldg3+Hgs andH yr in terms of

- by
a.bja.x the quark and gluon momenta
3

. d®q . -
T _ T
ﬁ(m,y)_AZZtI Mzzl j Fq(b(m(a,b)m,y,)\a(a’b)a’)\.
(15

n

TQ:_Zl (mZ+p?)Y2, (21)

In solving the variational equations by iteration, we develop ”
a generalized polynomial series fgi(q). The color indices TG_ZI Qi - (22)
are specified by andb.

In the usual mean-field approximation, we retain only
those terms in the summation overwhere a single gluon
emerges.

In the usual mean-field approximation, we assume that the oy procedure for computing the gluon wave function and
single-gluon state vector is the same for=adjluon configu-  fermion-fermion potential is based upon employing a series

V. APPROXIMATE ANALYTIC SOLUTION
OF THE GLUON WAVE EQUATION

rations. The resulting equation is to sum ladders or portions of ladders with one gluon ex-
(M) ). change(OGE) rungs and a sequence to sum ladders or seg-

wm| ¢ M) =Tg| 4! ;m) ments thereof having cubic rungs. Note that the treatment of
+<g<V71>;m|<q,q;m|HINT|q,q;m> the OGE ladders by themselves is a largely solved matter

[12—14, and our evaluation of their contributions used stan-
+Hgslg™;m). (16)  dard approximation methods of atomic physidb—18,



PRC 59 VARIATIONAL TAMM-DANCOF F ... Il. ... 1765

evaluating expansions of the OGE interactions in the coordiwWe drop the color indice#, B, andC, and for the zeroeth
nate representation. We also included the effects of the rurerder drop both the free particle energy tepiy,(p) and the
ning of the coupling constant at lowest order using a leadingjuark-gluon interaction term
log approximation.

The nonlinearities due to the cubic vertey;, dominate (Vg im[Hinr ¥ o smAc(a). (26)
in the confinement region. We approximately solve the cubic_. . .
gluon wave equation in its nonlinear regime and then use th%lnally we replace the .tgrms in the factor by thewl rms
resulting solutions as our ansatz for iterating Et) until ~ 3VETage over the quantitiep-),(q-r), and ¢-p), using

convergence is obtained. [(p—q)2+(q—r)2+(r —p)?]¥2= (p2+q2+r2) Y32

(27)

~(023/9) 12—

Previously, in Ref[4], we argued that confinement could ~(9%3/2) —q\/3_/2. (28)
be understood by considering an aspect of the non-Abeliatthjs replaces the four vectors by three vectors as in making
character involving the _cublc gluon self-couplings. In thean instantaneous approximation
present work we establish an improved and more detailed
picture of how these processes lead to a confining potential. (39%/2)12=\/3/2|q|. (29)
We begin by assuming a static and classical gluon field for
each of the three gluons at the vertex. Then, we consider oiWwhen we employ the pole dominance argument below and
gluon wave equation for this process in the mean-field treatiivoke the symmetry of the boson wave functions we find
ment, writing the total gluon wave function as the product ofthat, in the center of momentum, the averaged valud of
the three individual gluon wave functions, and including thebecomes
Hn7 term. Next we use conservation of three momentum to
write the third gluon field as a convolution of the first and Bq=3\/§2q. (30)
second gluon field accompanied by factors associated with
the Feynman diagram for a cubic vertex.

With the understandingdjustified below of what results
from averaging over Lorentz indicies in the mean-field treat- 1278 (=
ment, we take these gluon fields to be single-component ob- A(p)=—2—gf daq®A(p—q)A(Q). (31
: e(2m)°)o
jects rather than four vectors. Next we place the gluons on

shell and impose conservation of three momentum %nd €R{{e now note that by performing a similar rms color average

ergy on the gluon momenta yielding the eguatiqfq? P2 over each color factof*BC and then by averaging over spin
+p3 andp,=p,+ p3 which imply p,p;=p,-p; and hence and Lorentz indicies on the quartic vertex
that the momentum of the incomirigutgoing particlep; is

collinear with the momenta of the remaining particfgsand

ps. This reduces the integral to one dimension and leaves us -+ fNAPFNBC(gaBgrd_ garghd) 4 fNABENCD
with the following form of the colored wave equation: s s
X(g*7gP°—g*’gF")]

47G (> :
€AA(P)=pA(P) + (ZWT)SL dq?Ag(p—q) —ig2fNACFNBDENACENBD (qaByyd_ gadyyh)
+(g*Pg7°—g*7gP%) +(g*"gP°— g*°gk")].

Then, by averaging ovet,B,y, and§

The cubic gluon wave equation: first iteration

This results in a first-order rms averaged mean-field single
gluon wave equation

igZ[fNACfNBD(gaBgyé‘_ gaé‘gyﬂ)

X Ac(q)UAB(p,q,r)

4o (=
+—3J do (W qm[H | W g myA(q) 1
(2m)°Jo _)EBQBE ) ig2fNACFNBDENACENBD qaByd_ qadyvB) =,
(23 Y

With this understanding we discard the quartic gluon terms
in the gluon mean-field wave equation.
ABC . ¢AB _ _ We take as an ansatz for the gluon fieldgp)=Cp*,
URB(p,a,r) = —igt**q(r D O0p(A=P) with C and a constants, and we substitute this form into the
+(p—1),8,,1; p+a+r=0, (24)  above equation. With the simplifications from above the
mean-field equation becomes

with

where A,B,C represent color indiceél-8), p,u,v are the

Lorentz indices and”BC represents the structure constants _127Gg (=

of SU(3). (P)= 23], JATA(P-DA®@), (32
Next we absorb a factor af into eachA, perform a color )

average and repladé'®Ag(p—q)Ac(q) by and with our ansatz

1/8[fABCfABCA(IO—Q)A(Q)]=1/8[24A(P—Q)A(Q)]-(25) pawlzwa(zﬂ)%wadq(f(p—q)wqa, (33)
0
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whereC=GX 8xC. because thi#\(p) is the same for each Fock space compo-

Our purpose is to solve this approximate mean-field equadent.
tion for « asp—0. The solution can be deduced by dimen-
sional analysis where, in powers of momentkinwve observe The cubic gluon wave equation: third iteration

Ko~ K224 (34) We have subtracted off the perturbative OGE contribution
to the gluon wave function as our first approximation and
leading toar= — 4. However, further attention to the approxi- obtained first and second iterates of the nonperturbative

mate evaluation of the integral is desirable to obtain infor-9/uon Wave(fquations.(z';'hat is, we have solved approxi-
mation aboutC. A more rigorous treatment is given in Refs. mately forA™(p) and A*(p), from

[2] and[3]. Continuing to concentrate on the linpt—0 for 127GB (=
the first iteration, we will assume for simplicity, the integral A(l)(p)=m dagPAY(p—q)AY(q) (42
is dominated by the pole gt=q, so that 0

o _ 12W6(p_0)a+lpa+3 a5 and

 (2m)B(atl) (35) " 2 127
_EOA (p):pA (p)_6(27T)3
This yields the result ap—0 0
~127C ><f dg*AY(p—q)A(q). (43
pa: p2a+4. (36) 0
(277)3(a+ l)e2

o ] We initiated our iterative sequence of approximations for the
Thus, we have seen through a simplified analysis that eachonperturbative portion of the gluon wave function with an
gluon in the process follows a dependence on its momentugnsaiz A()(p), which satisfies the gluon wave equation in
to the @=—4 power as its momentum goes to zero. Thethe strong-couplingnonlineay domain. With such a starting

constant of proportionality being point we may expect that a standard iteration scheme as
—  (a+1)é¥(2m)® 1278
C=--—""" (37) e ALy = A1) —
127 €A (p)=pA™(p) w2
The cubic gluon wave equation: second iteration % fmdqqg’A(”)(p—q)A(”)(q) (443
0

Having solved the rms averaged gluon wave equation in
first approximation and obtained asymptotic largmlutions

of the formA)(p) =C/p* we now iterate with the rms av-

eraged gluon equation 12

(p+ e AV (p)= Eo(ggsf:dqﬂ(m(p— aAM(q);

A(p)=pA(p) + 2 f “dgPA(p—qA(Q). (38)
€ = — - .
PI=PARI T am3 ), A4TAPTAIAL n=234... (44b)

Because we are interested in those soft, low-energy glugill e at worst semiconvergent.
ons withe+ €9~0 the gluon wave equation may be approxi-  computation of approximations to the third iterate,
mated A®)(p), indicates, for the first time, logarithmic divergences
and the consequent need for renormalization. We write the
ntegral appearing on the right-hand side of Edgla,(44b)

— 1278 (= _
—eoA(p)=pA(p)+%(2—:)€fo dgaPA(p—a)A(Q). ;S

(39
. . . . (3)_ 127 [ (2) (2)
Making the pole dominance approximation as before and = 2m) dqotA® (p—q)A®(q)
using the expression for the first iteration gluon wave func- €olem)Jo
'::82 we find for the second iteration single gluon wave func- 1278 Ezfmd ;
N Te2m e )o 1
(2) e

X
o _ (1+(p—a)/ o) (p—a)*(1+al&o)q*
The normalization ensures that the expectation value of the

total A(p) is (trivially) :3_(;“(13)“(23)“(33)]. 45)

(©;m[A(p)|D;m)

We now invoke pole dominance.
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(1) For the pole ap=q: o

o [od ot

|<3>wad 1 s o | (I1+(p—a)/eo)

27 o M=o 1+ plegp’ 1 1

+ 4

(2) For the pole atj=0: 1+(al€0) €§(eo+p)(2€0+p)
|<3>~de . (46b) = In(1+p/ep) :
2 o “N T+ plegp’(1+dle)q (1+p eo’eg(eo+ p)(2€9+p)

(3) For the remaining poles @=ey+p andq=—¢p:
Linearization of the gluon wave equation
f “dq 41 _ So far we have considered only a spherically symmetric,
o (I+(p—a)eg)€g(1+al€)(€otp) and colorless solution of the cubic gluon equation. We now
(460 indicate a construction for a basis set of approximate eigen-
states of the linearized cubic gluon wave equation. This basis
Treating the integral{¥) as if it were a nonsingular inte- contains a version of the confinement state discussed earlier

13)~
3

gral as with the first iteration calculation again gives but the remaining states in this basis arg normalizable.
The ability of nonlinear wave equations to support more so-
(3)_ 1 lutions than corresponding linear equations is well known

Y= (47 , . : ! .
3(1+pley)p from mean-field calculations in atomic and nuclear physics.

We replaceA(p) by A(pP)n1.m*A(p) in the second-order
so that /e, times this term is equal t&()(p). Term1$  gluon  wave  equation. We  take A(P)nm
is a logarithmically divergent constant timed’ and willbe ~ =R(P)n,Y1,m(6,¢) to be an ordinary momentum space
shown to be the second term in a subseries obtained by itef/ave function with variables separated in spherical coordi-
ating a portion of the recursion relation for tAé". This  nates. Treating\,,  as small we expand abo(p) and
subseries of divergent terms will then be seen to sum to zerdinearize obtaining

Writing 3 247
19=—61{"+911"+3112+ 3157, ot P =Pt ol P Ty
13 = _6|(ll)+3|(ll)[1+ In(O)]+3I§3), X fo dqq3A(|0—O|)An,|,m(Q)- (48)

we recognize ) ) ] ) ) )
We will now linearize this equation and convert to a coordi-

31971+ In(0)]+315) nate representation through the adoption of an approximate
form for A(r) provided below. This results in our linearized
as the first iterate of an equation which will occur in the equation
continued iteration of our gluon wave equation
(e— GO)A(r)n,I,m: eA(r)n,I,m: - VZA(r)n,l,m

=31+ In(0)I
kr? -
which sums to +2[1+A0m1m2r2]1/2A(r)n,l,m-
31y (49
=10y

The quantitiesn; refer to the constituent quark masses.

. . . ( The crucial points to be noted here are that the quantities
Having thus eliminated the log d|vergencd3113[1+ n(0)] k andA, will be determinedab initio and that for smalt the

inl®=—g| (3) ) . ; N . .
we obtainl 6|1, +3,|3 : ) ) linearized cubic gluon wave equation is a harmonic oscilla-
We can further simplify by using Eq430) and making ¢, Hence, we note that approximate solutions for the

the approximatiorey=p in order to obtain K(F)ny,ym’s might be obtained by the methods employed
with the quark wave equations below.

6 ®
A<3><p>=62(zf E f dag®A®(p—q)A®(q)
0 0 VI. THE EFFECTIVE QUARK-QUARK INTERACTION

=A@ (p)+ $|(33>. T(_) ma_lke effectiye use _of an existing technology for ap-

€ proximating analytic solutions of the quark wave equation
while retaining the essential physics, we seek to cast the

Using partial fractions and treating the integrals as nonsecond iteration single gluon wave function of E40) into
singular casts$>) into the convergent form the form
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kr? Inspired by the approach of Mittal and Mitf&], we can
2[ 1+ Agmym,r2] ™2 (50 reduce the two-fermion problem as a state dependent, but
o2 conveniently soluble Bethe-Salpeter equation in an instanta-

with k being a spring constank, and A, to be determined. Ne€ous approximation. We magp(r) to a state-dependent
The key physics is retained singe * goes intor/87 when harmonic-oscillator potentia¥/yo. The rules for the map-
transformed to coordinate space, and® into r%/24(4s).  Ping will be given below. _ _ _
This means that correspondence at both small and large r of Now, for the actual computation of quark eigenenergies
the second iteration gluon wave function and its approximat&nd eigenfunctions we adopt a particular form of the instan-

A(r)=

ing coordinating function can be insured by choosing taneous approximation to the Bethe-Salpeter equation:
= o_=2 ML 1/ 12M(4mg—M*=4V%)h=Voceh+ Vuoth.  (54)
k mlzwq wqq 24(471_)(277_)3 ’ AO 1/6 (51)

Note there are no additional phenomenological terms and
with mp=my+m,. that the interactions are both governed by the strong-
We obtain an expression for tig potential by inserting  coUpling constantr(Q?). In the momentum representation

a factor ofg, for each vertex as if3] yielding the nonper- the harmonic-oscillator portion of the equatitre., leaving

turbative potential out Vogp), may be written in the reduced form:
g’ 2,2 & L Mo V2h—1/4F 1o(M)Qyd=0. (55
= 2,2 99 Q"YmP— Mo Vq@— HO me=Uu.
VNp(r) (4’7T) C!s 2[1+Aomlm2r2]1/2. (52) 2 qq

We define a “cubic ladders approximation” consisting of ~ Defining
ignoring all additional diagramgother than OGE ladders
The potential for such cubic ladders is in the standard man- Fro(M)=(M2—4m)Qy*—1/40yM 2y,
nerVyp(r). With such a definition the problem of computing Cn
the Fock space expansion coefficients for the gluon wave X(2J:5=3=Qn), (56)
functions is now circumvented. We note also that ithesed , ) 52
here denotes the distance from the cubic gluon vertex to one  2m=4(2M)*wqgyy;  yu=1+8M"'mg w o,
of the fermion-gluon vertices. If is to denote the fermion- (57)
fermion distance must be replaced by/2 on the right-hand
side of Eq.(52). o . 882 v4=0y wfﬁ: M2,

A small point remains in thgqq case in that two of the

quarks are interacting while the third remains a spectator. gq, equal massn, quarks, under harmonic confinement
q )

However, this spectator plays a dynamical role in that itSyjgne  the meson mass eigenvalues are determined by the
color must be different than either of the active part'c'pantsalgebraic equation

Following the standard rule of averaging over initial states
and summing over final/\g(r) must be reduced by a factor

of 1/3 for theqqq case. Fruo=N+ g; N=2n+I; 1=0,1,2...;
VIl. THE QUARK WAVE EQUATIONS
n=012.... (58
At this stage we can sumarize our fermion-fermion inter-
action kernel as Here N is the principal qguantum numbdr,s the orbital
angular momentum quantum number, amds the radial

V(r)=Vogeer) +Vye(r), (53 guantum number.
In the case of unequal quark masses the following

where Vyp(r) is given by our variational treatment of the changes are made:

gluon dynamics(triple gluon coupling in Eq. (52), and
Voee(r) represents a semirelativistiFoldy-Wouthyseh —
treatment of the one gluon exchange. Now, for the actual T=1N2- T,
computation of quark eigenenergies and eigenfunctions we

r=4mm,/(m;+m,)?,

adopt a particulatFoldy-Wouthyseh treatment of the one- wé;z m127z)2,
gluon exchange. In particular oMiygg(r) is the same as the
one-photon exchange from the literatytes—18 with the QM=4(MT)1/2quYM7

appropriate color weighting factorf7] and the strong-
coupling constanty,.

We choose a simple and convenient form of the scale yu=1+8w’M 'm; /7.
dependence of the strong coupling(Q?) from previous
investigationg 8]. In particular, The mass eigenvalues for a baryon composed of three

equal mass quarks again under harmonic confinement alone,
Q?%=(m;+m,)2. satisfy a similar set of algebraic relations.
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TABLE . Light andss quarkonium masses in MeV with kemnel ~ TABLE Il. Heavy quarkonium masses in MeV with kernel as
as given in the text. The quark masses used are as explained in tB&/en in the text. The quark masses used were fitted to the state
text. indicated by an asterisk.

Meson NJLS M expt M caic M caic Meson NJLS M expt M calc M caic
-M expt -M expt
T 0000 140 140* +0 e 0000 2980 3048 +68
p 0101 770 546 —224 Jly 0101 3097* 3096 -1
b, 1110 1232 1182 —50 Xo 1011 3415 3461 +46
a, 1211 1320 1283 -37 X1 1111 3511 3556 +45
ar’ 2000 1300 1366 +66 X2 1211 3526 3700 +174
p' 2101 1450 1535 +85
Ty 2220 1670 1780 +110 ¢ 2000 3590 3542 —52
P3 2321 1690 1802 +112 ¥ 2101 3686 3569 -117
fa 3431 2030 2009 —-21 o 2121 3770 3779 +79
W 4101 4040 4022 —-18
¢ 0101 1020 1021 +1 U 4121 4159 4174 +15
fi 1111 1420 1380 —40 ¥ 6101 4415 4445 +30
f; 1211 1525 1572 +47
¢ 2101 1680 1772 +92 Y 0101 9460* 9460 +0
3p 1011 9860 9719 —141
3p 1111 9892 9744 —148
Fro(M)=(M2—m3)Qg~1— 1/405M ~2y52 3p 1211 9913 9781 ~132
5 3 Y 2101 10023 9951 -72
= 2°%p 3011 10232 9960 -272
X|5J-S—=—Qn—0Qfl, 59
3 2 Qn=Qn 9 23p 3111 10255 10046 —209
23p 3211 10268 10072 —196
81 Y 4101 10355 10268 —87
— 12 . 2 _ oMl 2, 2
Qp=9(2M)Fwqqys;  ¥e=1+ g M Mg “wy,, Y 6101 10573 10598 +25
(60)
2 2 2\\ 1/
r2wZ[ 1(1+mmoAg(r?))¥2]. (66)
Mo=3mg;  wi=z i Fro(M)=N+3. (6]) “ 1MeAolr))
(2) Using the properties of the relativistic harmonic oscil-
— . lator defined above, obtained the following coupled equation
! ’
HereQy,Qu,Qy are given by which were solved iteratively:
4Qn=2/3(N*+3N-3)—(N+3)% 6Qy=8Qy, (14 Agmymyr2) Y21+ Agmymy(N+3/2)/ B2 1Y?= oy,
(62 (67)
6Q~—4/3(1+mm,/M?)[7/IQy— 9/2(N+3/2)%+9/2], YBE(204) Y%= wo(2mMa?)*?, (68)
(63)
Fruot4mw3a?Ql =283 v*(N+3/2). (69)

275 v5={2s. o o L
This defined a running spring constant, differing for the
The case of three unequal mass particles is nontrivial. different eigenstates, and computed self-consistently so that
(to within the obvious approximationsthe expectation
value of the potential in an approximate eigenstate is the
same as in the corresponding exact state. The Coulomb por-
In order to obtain accurate analytic approximate solutiongion of the remaining OGE potentials was treated by direct
to the quark wave equations with our approximate potentiatiagonalization in a ten-dimensional subspace of the result-
the following scheme is employd®]: ing basis. Following the diagonalization the remaining por-
(1) The quantity tions of the OGE potential were incorporated by first-order
perturbation theory.

Solution of the q equations

ogr?(1+mmyAgr?) 12 (64)

Solution of the qqq equations
was replaced by o
Our procedure fgr the three-quark system is similar to our
r2w§<[1/(1+ mymyAor2)Y2)), (65  procedure for theyq system. We divide the effective two-
body potential which we have obtained by our analytic pro-
which was further approximated by cedures into a one gluon exchange component and the ana-
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TABLE llI. Light baryons in the nucleon channel: masses in  TABLE IV. Light baryons in the delta channel: masses in MeV
MeV with kernel as given in the text. Quark mass used was fitted tawith kernel as given in the text.
the state indicated by an asterisk.

Baryon T(J P) M expt M calc M calc

Baryon T(J P) M expt M calc M calc -M expt

Mea Pas 3/2(3/2+) 1232 1198 —34
P11 1/2(1/2+) 938* 943 +5 P33 3/2(3/2+) 1600 1647 +47
P 1/2(1/2+) 1440 1390 -50 Sy 3/2(1/2-) 1620 1629 +9
D3 1/2(3/2-) 1520 1535 +15 Das 3/2(3/2-) 1700 1627 -73
Si 1/2(1/2-) 1535 1532 -3 Sy 3/2(1/2-) 1900 1930 +30
S, 1/2(1/2-) 1650 1777 —127 Fas 3/2(5/2+) 1905 1836 -69
Dys 1/2(5/2-) 1675 1653 -22 Pay 3/2(1/2+) 1910 1870 —40
Fis 1/2(5/2+) 1680 1679 -1 P33 3/2(3/2+) 1920 1912 -8
Dys 1/2(3/2-) 1700 1790 -90 Das 3/2(5/2-) 1930 1916 ~14
Puy 1/2(1/2+) 1710 1674 -36 Far 312(7/2+) 1950 1916 ~34
P13 1/2(3/2+) 1720 1675 —-45 Hs11 3/2(11/2+) 2420 2349 +71
Gy 1/2(7/2-) 2190 2201 +11
Hio 1/2(9/2+) 2220 2107 —-113
Gio 1/2(9/2-) 2250 2123 —127 masses are in reasonable accord with the data and the overall
l111 1/2(11/2-) 2600 2320 —280 description is competitive with results from more phenom-

enological approaches.

Table Il presents our results for the heavy quarkonium
lytic confining component. We then take this confining states where the constituent quark masses have been adjusted
component and map it onto a state-dependent but equivaletd theJ/ ¢ and theY mesons. The resulting quark masses are
oscillator potential. We do this mapping by computing them.=1.538 GeV andn,=4.830 GeV.
expectation value of the confining two-body potential in a  Overall the agreement between theory and experiment for
given state of two-body motion and then compute the saméhe heavy quarkonium states is good considering the only
expectation value of the oscillator in that oscillator state.adjustable parameters are the heavy quark masses. The usual
This provides us with a more convenient form of our confin-freedom attached to the coupling parameters is absent in this
ing potential for further calculations of the three-quark spec<alculation as they have been fixed by the theory as de-
troscopy with the more complete Hamiltonian. scribed above. Clearly, one can the improve the fit signifi-

We make one further approximation for the solution of cantly in Table 1l by a minimization of an overall chisquare
the three-quark system in Jacobi coordinates. In order to simer rms deviation with respect to the constituent quark
plify further for these initial applications, we angle averagemasses. We have not attempted such fits at the present time
the confining part of the interaction over the angle betweerbut will present results of various fitting strategies along with
the two Jacobi coordinates. certain improvements to our approach in a future effort.

In Table 111, we present the results for the light baryons in

VIIl. RESULTS AND CONCLUSIONS

We present in Table | the experimental and theoretical TABLE V. Flavored quarkonium masses in MeV with kernel as

) — given in the text.
meson masses for the light mesons and shes mesons
along with their quantum numbers. We have adjusted th§eson NJILS M expt M carc M carc
light quark mass and the strange quark mass to fit the mass

of the 7 and the¢, respectively. The resulting values are Mext
m,=my=0.330 GeV andn,=0.516 GeV, respectively. For K(498) 0000 98 616 +118
the strong-coupling constant we have taken the conventiondd* (892) 0101 892 881 -11
leading log form: K1(1270) 1011 1270 1239 -31
K,(1400) 1111 1400 1369 -31

, 127 K*(1410) 1211 1410 1562 +152

a = , 70 K,(1770) 2220 1770 1986 +216

{90~ a2y In( @) (70 K (1780) 2321 1780 2006  +226

K3 (2045) 2431 2045 2432 +387

whereN; equals the number of flavors up to and including
the mass of the highest quark mass involved in that state, arol(1869) 0000 1869 1717 —152
A=0.25 GeV. We have taken the sameused in Ref[8]  D*(2010) 0101 2010 1730 —280
and we have fixedQ? to the constituent quark masses via F(1968) 0000 1968 1946 -22
Q%=(my+my)2. F*(2112) 0101 2112 1975  —137
As may be expected, we obtainmap splitting which is

too small compared to experiment, a general characteristic gf(5279) 0000 5279 5194 -85

constituent quark models. On the other hand, the remaining
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the nucleon channel. Here, we have again adjusted the ligladjusted to produce the results of this table. Comparing the
quark mass to fit the mass of the lightest baryon—the protomesults of Table | and Table V for the meson states depend-
with the resultm,=my=0.380 GeV. The typical deviation ing on the strange quark mass, one estimates that lowering
between the theoretical and experimental masses is of thie strange quark mass will provide an improved overall de-
order of 50 MeV until the higher spin states are reachedscription of these meson states.
above 2 GeV. We note that the theoretical masses tend to be Overa”, the results produced with our approach appear to
systematically lower than the experimental values. This imyive a good representation of the experimental data. Several
plies that adjusting the quark mass to obtain a fit to the fulimprovements are envisioned and will be reported in a future
spectrum will improve the overall results considerably.  \ork. Applications to additional experimental observables
Nevertheless, even at this stage, the overall results for thgre enabled and will be addressed as well.
light baryons in the nucleon channel are very encouraging
and are also competitive with results from more phenomeno-
logical approaches.
In Table IV we present our results for the light baryons in ACKNOWLEDGMENTS
the 3-3 resonance or delta channel. No additional parameter This work was performed with partial support by the U.S.
adjustments have been made. The comparison betwedyepartment of Energy under Grant No. DE-FG02-87ER-
theory and experiment is very good, even better than thd0371, Division of High Energy and Nuclear Physics. Some
results for the nucleon chann@lable IlI). of the calculations were performed with a grant of supercom-
Finally, in Table V, we present results for the mixed fla- puter time at the National Energy Research Supercomputer
vor meson states. Again, there are no additional parametefSenter.

[1] I. Tamm, J. Phys(USSR 9, 449(1945; S. M. Dancoff, Phys. [10] D.R. Hartree, Proc. Cambridge Philos. S@4, 111 (1928.

Rev. 78, 382(1950. [11] A.L. Fetter and J.D Waleck&@uantum Theory of Many Par-
[2] J.R. Spence and J.P. Vary, Phys. Rev3%)2191(1987. ticle System$McGraw-Hill, New York, 197).
[3] J.R. Spence and J.P. Vary, Phys. Revd7-1282(1993. [12] Charles B. Thorn, Phys. Rev. B0, 1435(1979.
[4] J.R. Spence and J.P. Vary, Phys. Re\6Z-1668(1995. [13] Masa-aki Sato, Phys. Rev. 29, 2952(1984).
[5] H.A. Bethe and E.E. Salpeter, Phys. R82, 309 (195J); 84, [14] J. Finger, D. Horn, and J.E. Mandula, Phys. Rev2@ 3253
1232(195)). (1979.
[6] E.E. Salpeter, Phys. Re87, 328 (1952. [15] Joseph J. Kubis, Phys. Rev.® 547 (1972.
[7] T. D. Lee,Particle Physics and Introduction to Field Theory [16] K. Erkelenz, Phys. Rep., Phys. Let3C, 191 (1974.
(Harwood, Chur, Switzerland, 1981 [17] R. Machleidt, K. Holinde, and Ch. Elster, Phys. R4@9, 1
[8] Anuradha Mittal and A.N. Mitra, Phys. Rev. Lets7, 290 (1987.
(1986. [18] H.A. Bethe and E.E. SalpeteQuantum Mechanics of One-

[9] A.N. Mitra and I. Santhanam, Z. Phys. & 33 (1981). and Two-Electron Atom&Springer-Verlag, Berlin, 1957



