
PHYSICAL REVIEW C MARCH 1999VOLUME 59, NUMBER 3
Finite quark mass effects in the improved ladder Bethe-Salpeter amplitudes
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We study the finite quark mass effects of the low-energy QCD using the improved ladder Schwinger-Dyson
and Bethe-Salpeter equations which are derived in the manner consistent with the vector and axial-vector
Ward-Takahashi identities. The nonperturbative mass-independent renormalization allows us to calculate the
quark condensate for a nonzero quark mass. We explicitly show that the partial conservation of axial-vector
current relation holds. The key ingredients are the Cornwall-Jackiw-Tomboulis effective action, the general-
ized Noether current, and the introduction of the regularization function to the Lagrangian. Reasonable values
of the pion mass, the pion decay constant, and the quark condensate are obtained with a rather largeLQCD. The
pion mass square and the pion decay constant are almost proportional to the current quark mass up to the
strange quark mass region. It suggests that the chiral perturbation is applicable up to the strange quark mass
region. We study the validity of the approximation often used in solving the Bethe-Salpeter equations too.
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I. INTRODUCTION
A program to derive the observed properties of hadr

nonperturbatively in QCD has been pursued with great int
sity but not accomplished yet. The concept of chiral symm
try and its spontaneous breakdown are among the most
portant aspects of low-energy hadron physics. T
spontaneous breakdown of chiral symmetry is believed to
responsible for a large part of the low-lying hadron masse
well as for the emergence of octet pseudoscalar mesons
as Goldstone bosons. In order to explain the observed ha
spectrum, one also needs small, explicitly chiral-symme
breaking terms, namely, flavor-dependent current quark m
terms.

The Conwall-Jackiw-Tomboulis~CJT! effective action
approach@1# for composite operators is widely used to stu
the dynamical symmetry-breaking phenomena in the qu
tum field theories. The extremum condition for the effecti
action with respect to the quark propagator leads to
Schwinger-Dyson~SD! equation for the quark propagator o
the nonperturbative vacuum and the second variational
rivative of the effective action with respect to the qua
propagator leads to the Bethe-Salpeter~BS! equation de-
scribing the bound states. The advantage of the presen
proach is that the derived SD and BS equations are con
tent with the symmetry of the effective action evaluated in
certain approximation scheme.

The QCD SD equation for the quark propagator has b
studied in the improved ladder approximation~ILA ! by Hi-
gashijima@2# and Miransky@3#. They took the ladder dia
grams of one-gluon exchange betweenq andq̄ and assumed
that the coupling constant is modified according to stand
perturbative corrections. It has been shown that
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asymptotic behavior of the solution is consistent with t
leading order renormalization group analysis while the inf
red gluon exchange breaks chiral symmetry dynamica

Aoki et al.solved the BS equation for theJPC5021qq̄ state
and confirmed the existence of the Nambu-Goldstone pio
this approximation@4#. The numerical predictions of the pio

decay constantf p and the quark condensate^c̄c& are rather
good. It was also shown that the BS amplitude shows
correct asymptotic behavior as predicted by the opera
product expansion~OPE! in QCD @5#. The masses and deca
constants for the lowest-lying scalar, vector, and axial-vec
mesons have been evaluated by calculating the two-p

correlation functions for the composite operatorsc̄Mc. The
obtained values are in good agreement with the obser
ones@6#.

So far, the current quark mass term has not been in
duced in the studies of the BS amplitudes in the ILA. T
purpose of the present paper is to investigate the effect
the finite current quark masses on the BS amplitudes for
JPC5021 states. As shown in@2#, the asymptotic behavio
of the solution of the SD equation for the quark propaga
with the finite current quark mass is rather different from th
in the chiral limit. Therefore, it is important to study th
effects of the finite current quark masses not only on the
equations but also on the BS amplitudes.

There have been many studies of the pion BS amplit
using the effective models of QCD and/or the approximat
schemes of the QCD@7,8#. The advantages of the ILA mode
are as follows.~i! The model is given in the Lagrangian form
so that one is able to apply the CJT effective action form
lation and study symmetry properties of the system.~ii ! The
asymptotic behavior of the solutions of the SD and BS eq
tions is consistent with the renormalization group analysis
QCD. ~iii ! It has been shown that the ILA model correspon
to the local potential approximation with the ladder part
1722 ©1999 The American Physical Society
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PRC 59 1723FINITE QUARK MASS EFFECTS IN THE IMPROVED . . .
the nonperturbative renormalization group approach@9#. ~iv!
The angular integration in the SD equation can be perform
analytically. On the other hand, the disadvantages of the
model are as follows.~i! The axial-vector Ward-Takahash
identity is violated@10#. ~ii ! The quark may not be confine
in the color singlet state.

In the finite quark mass case, it has been known that th
is a difficulty in defining the quark condensate in the stud
of the QCD SD equation. The extraction of the perturbat
quark mass contribution in the UV region is not sufficient
remove the UV divergence in the SD equation since the
equation includes the nonperturbative contribution even
the UV region. Inspired by the idea of Kusakaet al. of the
nonperturbative renormalization of the fermion mass term
the mass-independent renormalization scheme@11#, we pro-
pose a novel way to renormalize the SD equation and de
the quark condensate with the finite quark mass.

The paper is organized as follows. In Sec. II we expl
the ILA model Lagrangian we have used in the pres
study. In Sec. III the SD equation is derived from the C
action and the renormalization of the SD equation is d
cussed in Sec. IV. In Sec. V our method of solving the
equation for the pseudoscalar meson is presented. In Se
the formulation for the meson decay constant is given
the low-energy theorem is discussed. Secction VII is devo
to the numerical results. Finally, summary and conclud
remarks are given in Sec. VIII.

II. IMPROVED LADDER MODEL OF QCD

We work with the following Lagrangian density of th
improved ladder approximation model of QCD proposed
Aoki et al. @4,6#:

L@c,c̄#ªLfree@c,c̄#1Lint@c,c̄#, ~1!

Lfree@c,c̄#ªc̄ f ~]2!~ i ]”2m0!c. ~2!

Here the functionf (z) of z5]2 is introduced to provide a
cutoff regularization of the ultraviolet divergences of t
quark loops. The reason we introduce the cutoff function
the Lagrangian level is to preserve the consistency betw
the SD and BS equations. If one uses the regularization
is inconsistent between the SD and BS equations, the l
energy relation based on the chiral symmetry should be
d
A

re
s
e

D
in

n

e

t

-

VI
d
d

g

y

t
en
at
-
-

lated by the regularization. The functionf (z) should satisfy
f (z50)51 and f (z)→` for z@LUV

2 . In this paper, we
employ the sharp cutoff function

f ~z!511Mu~z2LUV
2 !, M→`. ~3!

We introduce the bare mass of quarks,m0 , which is evalu-
ated atLUV @4,12#. In generalm0 is a diagonal flavor matrix,
i.e., m05diag(mu ,md ,ms) for Nf53. In this paper we dea
only with a flavor-independent mass and therefore the c
with SU(3)F symmetry.

The interaction term is given by

Lint@c,c̄#~x!ª2
1

2Epp8qq8
Kmm8,nn8~p,p8;q,q8!

3c̄m~p!cm8~p8!c̄n~q!cn8~q8!

3e2 i ~p1p81q1q8!x, ~4!

Kmm8,nn8~p,p8;q,q8!5ḡ2XS pE2qE8

2 D 2

,S qE2pE8

2 D 2C
3 iD mnS p1p8

2
2

q1q8

2 D
3~gmTa!mm8~gnTa!nn8, ~5!

where*p denotes*d4p/(2p)4 andpE represents the Euclid
ean momentum. The Fourier transformations of the fields
defined byc̄(p)5*d4xeipxc̄(x) andc(p)5*d4xeipxc(x).
The indicesm,n, . . . are combined indicesmª(a,i , f ),
nª(b, j ,g), . . . with Dirac indicesa,b, . . . , color indices
i , j , . . . , andflavor indicesf ,g, . . . .Ta denotes the genera
tor of the color SU(NC). According to Higashijima@2# and
Miransky @3#, we choose a particular set of the momenta t
determines the running coupling constant, i.e.,

ḡ2~pE
2 ,qE

2 !5u~pE
22qE

2 !g2~pE
2 !1u~qE

22pE
2 !g2~qE

2 !.
~6!

This way of introducing the running coupling constant
very natural from the nonperturbative renormalization gro
approach with a local potential approximation@9#. It is often
called the Higashijima-Miransky approximation. The infr
red cutoff t IF is introduced in the running coupling consta
as
g2~pE
2 !ª5

1

b0

1

11t
for t IF<t,

1

2b0

1

~11t IF!2F3t IF2t0122
~ t2t0!2

t IF2t0
G for t0<t<t IF

1

2b0

3t IF2t012

~11t IF!2
for t<t0 ,

, ~7!
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tª ln
pE

2

LQCD
2

21, ~8!

b0ª
1

~4p!2

11NC22Nf

3
. ~9!

Above t IF , g2(pE
2) develops according to the one-loop r

sult of the QCD renormalization group equation and, bel
t0 , g2(pE

2) is kept constant. These two regions are co
nected by the quadratic polynomial so thatg2(pE

2) becomes a
smooth function. HereNC is the number of colors andNf is
the number of active flavors. We useNC5Nf53 in our nu-
merical studies. The gluon propagator is given in the Lan
gauge

iD mn~k!5S gmn2
kmkn

k2 D 21

k2
. ~10!

III. SD EQUATION

In order to derive the Schwinger-Dyson equation, we u
the formalism of the Cornwall-Jackiw-Tomboulis effectiv
action @1# which is given by

G@SF#ª iTrLn@SF#2 iTr@S0
21SF#1G loop@SF#. ~11!

The last term of Eq.~11! is the residual term. Multiplying by
a factor i, iG loop@SF# is given by the sum of all Feynma
amplitudes of two-loop or higher-loop two-particle irredu
ible vacuum diagrams in which every bare quark propaga

S0~x,y!5E
q
e2 iq~x2y!

1

f ~2q2!

i

q”2m0

~12!

is replaced by a full one

SF~x,y!5^0uTc~x!c̄~y!u0&. ~13!

The SD equation is the stability condition of the CJT acti

dG@SF#

dSFmn~x,y!
50. ~14!
-

u

e

r

Throughout this paper, we employ the lowest-order~lowest-
loop! expansion of theG loop@SF# as

G loop@SF#52
1

2E d4xKm1m2 ,n1n2~ i ]x1
,i ]x2

; i ]y1
,i ]y2

!

3@SFm2m1
~x2 ,x1!SFn2n1

~y2 ,y1!

2SFm2n1
~x2 ,y1!SFn2m1

~y2 ,x1!#u* , ~15!

where the asterisk means takingx1 ,x2 ,y1 ,y2→x after all the
derivatives are operated. This leads to the ILA model, wh
the SD equation is given in momentum space by

iSF
21~q!2 iS0

21~q!1CFE
p
ḡ2~qE

2 ,pE
2 !

3 iD mn~p2q!gmSF~p!gn50, ~16!

with

CF5
tr@TaTa#

NC
5

NC
2 21

2NC
. ~17!

Now we introduce the regularized propagator as

S0
R~q!ª f ~2q2!S0~q!5

i

q”2m0

, ~18!

SF
R~q!ª f ~2q2!SF~q!. ~19!

Then the SD equation~16! becomes

iSF
R21~q!2 iS0

R21~q!1
CF

f ~2q2!
E

p

1

f ~2p2!
ḡ2~qE

2 ,pE
2 !

3 iD mn~p2q!gmSF
R~p!gn50, ~20!

in which one finds that the integral is cut off atpE
252p2

5LUV
2 due to the functionf (2p2). Substituting the genera

form of the SD solution

SF
R~q!5

i

A~q2!q”2B~q2!
, ~21!

we obtain a set of integral equations
A~q2!511
iCF

q2f ~2q2!
E

p

ḡ2~qE
2 ,pE

2 !

f ~2p2!

3~p21q2!~pq!24~pq!222p2q2

~q2p!4

A~p2!

p2A2~p2!2B2~p2!
, ~22!

B~q2!5m01
iCF

f ~2q2!
E

p

ḡ2~qE
2 ,pE

2 !

f ~2p2!

1

~p2q!2

23B~p2!

p2A2~p2!2B2~p2!
. ~23!
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After a Wick rotation, we obtain

A~2qE
2 ![1 ~24!

from Eq.~22!. This is another advantage of the Higashijim
Miransky approximation, where the running coupling co
stant is defined so as to make the wave function renorm
izationZ2 unity @4,10#. Then we find an integral equation fo
B(2qE

2) as

B~2qE
2 !5m01

3CF

16p2E0

LUV
2

dpE
2 ḡ2~qE

2 ,pE
2 !

3
pE

2

max$qE
2 ,pE

2%

B~2pE
2 !

pE
21B2~2pE

2 !
. ~25!

IV. RENORMALIZATION OF THE QUARK MASS

In this section we discuss the renormalization of the qu
mass. The operator product expansion analysis shows th
the asymptotic region the QCD quark mass funct
B(2qE) for three quark flavors behaves as follows@13#:

B~2qE
2 !5mR~m2!F g2~qE

2 !

g2~m2!
G 4/9

2jR~m2!
g2~qE

2 !

3qE
2 F g2~qE

2 !

g2~m2!
G24/9

, ~26!

wheremR(m2) is the current quark mass renormalized atm2

andjR(m2)ª^c̄c&R is the quark condensate renormalized
m2. The improved ladder model of QCD is the model whi
is constructed so as to reproduce the QCD asymptotic be
ior. Therefore we introduce the renormalization condition
the quark mass so that the solution of the SD equation ca
interpreted as the QCD quark mass function in
asymptotic region.

The quark mass function calculated in the effective mo
of QCD can be expressed in a similar fashion as Eq.~26!:

B~2qE
2 !5mR~m2!F~qE

2 ,m2!2jR~m2!G~qE
2 ,m2!.

~27!

Then we introduce the renormalization condition

F~m2,m2!51, ~28!

which is equivalent to

]B~2m2!

]mR~m2!
U

mR~m2!50

51. ~29!

This mass-independent renormalization condition for the
equation was first proposed by Kusakaet al. @11#. The mass
renormalization constantZm5Zm(LUV

2 ,m2) is introduced by

m0~LUV
2 !5Zm

21mR~m2!. ~30!

It should be noted here that the renormalization constan
independent of mass in this renormalization scheme. It
-
-
l-

k
t in

t

v-
f
be
e

l

D

is
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be explicitly shown later in this section. By substitutingm0
by Eq. ~30!, the SD equation~25! becomes

B~2qE
2 !5Zm

21mR~m2!

1E
0

LUV
2

dpE
2K~qE

2 ,pE
2 !

B~2pE
2 !

pE
21B2~2pE

2 !
, ~31!

with

K~qE
2 ,pE

2 !ª
3CF

16p2
ḡ2~qE

2 ,pE
2 !

pE
2

max$qE
2 ,pE

2%
. ~32!

By differentiating this equation with respect tomR(m2) and
taking mR(m2)50, one obtains

]B~2qE
2 !

]mR~m2!
U

mR~m2!50

5Zm
211E

0

LUV
2

dpE
2K~qE

2 ,pE
2 !

3
pE

22B0
2~2pE

2 !

@pE
21B0

2~2pE
2 !#2

]B~2pE
2 !

]mR~m2!
U

mR~m2!50

.

~33!

The renormalization condition~29! leads to

Zm
21512E

0

LUV
2

dpE
2K~m2,pE

2 !

3
pE

22B0
2~2pE

2 !

@pE
21B0

2~2pE
2 !#2

]B~2pE
2 !

]mR~m2!
U

mR~m2!50

. ~34!

Here B0(2qE
2) is the solution of the SD equation in th

chiral limit, namely,

B0~2qE
2 !5

3CF

16p2E0

LUV
2

dpE
2 ḡ2~qE

2 ,pE
2 !

3
pE

2

max$qE
2 ,pE

2%

B0~2pE
2 !

pE
21B0

2~2pE
2 !

. ~35!

Now the combination of Eqs.~33! and~34! yields an integral
equation for ]B(2qE

2)/]mR(m2)umR(m2)50 . Equation ~34!

explicitly shows that the mass renormalization constantZm
does not depend on the quark mass.

In order to obtain the quark mass function with the ren
malized current quark mass, one first calculatesB0(2qE

2) by
solving the SD equation in the chiral limit, Eq.~35!. NextZm

and ]B(2qE
2)/]mR(m2)umR(m2)50 are obtained by solving

Eqs. ~33! and Eq.~34!. Finally Eq. ~31! is solved to find
B(2qE

2).
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Let us now propose the following definition of the qua
condensate:

jR~m2!ªZm
21j0~LUV

2 !, ~36!

j0~LUV
2 !ª2S ELUV d4q

~2p!4
tr@SF

R~q!#

2ELUV d4q

~2p!4
tr@SF

R~q!pert# D , ~37!

SF
R~q!ª

i

q”2B~q2!
, ~38!

SF
R~q!pertª

]SF
R~q!

]mR~m2!
U

mR~m2!50

mR~m2!. ~39!

In order to avoid the divergence originated by the pertur
tive quark mass contribution to the quark condensate in
UV region, the perturbative quark mass contribution sho
be subtracted. The key point of our definition of the qua
condensate is Eq.~39!; namely, the perturbative quark ma
contribution is defined using the fully calculated quark ma
function B(q2). The subtraction of the perturbative qua
mass contribution obtained by the operator product exp
sion approach in the UV region is not sufficient. Our defi
tion of the quark condensate has the desirable property:

m0~LUV
2 !j0~LUV

2 !5mR~m2!jR~m2!. ~40!

V. BS EQUATION FOR PSEUDOSCALAR MESONS

The homogeneous BS equation is given by

d2G@SF#

dSFmn~x,y!dSFn8m8~y8,x8!
xn8m8~y8,x8;PB!50. ~41!

Here the BS amplitude is defined by

xnm~y,x;PB!ª^0uTcn~y!c̄m~x!uPB& ~42!

for a q-q̄ state uPB&. The normalization condition is
^PBuPB8 &5(2p)32PB0d3(PB2PB8 ) and PBª(AMB

21PB
2,PB)

is the on-shell momentum. Equation~41! is expressed in mo
mentum space as

SF
21~q1!x~q;PB!SF

21~q2!

52 iCFE
k
ḡ2~qE

2 ,kE
2 !iD mn~q2k!gmx~k;PB!gn ,

~43!

with

q15q1
PB

2
, q25q2

PB

2
, ~44!

where the Fourier transformation of the BS amplitude is
fined by
-
e

d
k

s

n-
-

-

xnm~y,x;PB!5e2 iPBXE
q
e2 iq~y2x!xnm~q;PB!, X5

y1x

2
.

~45!

We introduce the regularized BS amplitude by

xnm
R ~q;P!ª f ~2q1

2 !xnm~q;P! f ~2q2
2 !, ~46!

then Eq.~43! is rewritten as

SF
R21~q1!xR~q;PB!SF

R21~q2!

52 iCFE
k

1

f ~2k1
2 ! f ~2k2

2 !

3ḡ2~qE
2 ,kE

2 !iD mn~q2k!gmxR~k;PB!gn .

~47!

We see again that the integral equation is regularized
rectly.

The BS amplitude for the pseudoscalar meson can
written in terms of four scalar amplitudes,

xnm
R ~k;P!5d j i

~la!g f

2 F S fS~k;P!1fP~k;P!k”1fQ~k;P!P”

1
1

2
fT~k;P!~P” k”2k”P” ! Dg5G

ba

, ~48!

wherela denotes the flavor matrix. Substituting this into E
~47!, we obtain coupled integral equations for four sca
amplitudes. The explicit form is rather complicated a
given in the Appendix. The integral equations can be writ
down formally as

fA~q;PB!5E
k
MAB~q,k;PB!fB~k;PB!, ~49!

whereA,B denotesS,P,Q,T. Among the four dimensiona
integrationsd4k, two of the integrations can be performe
analytically after the Wick rotation and we set the total m
mentumPBE5(ME,0,0,0). Then we obtain

fA~qR,qu ;ME!5E
~kR ,ku!PI

dkRdkuMAB~qR,qu ;kR,ku ;ME!

3fB~kR,ku ;ME!, ~50!

where

kE
25kR

2 , kEPE5kRMEsinku , ~51!

and the integral region is given by

IªH ~kR ,ku!UkR
26kRMEsinku1

ME
2

4
<LUV

2 J . ~52!

This integral region is determined uniquely by the cuto
function in Eq.~47! and is consistent with the SD equatio
~25!.



h
.
e

ns
-

m
i

o
m

n

io

e in
n

nd

tion
S

on

PRC 59 1727FINITE QUARK MASS EFFECTS IN THE IMPROVED . . .
There is no solution of Eq.~50! for a realME becauseME

is a Euclidean meson mass whose square is negativeME
2

52MB
2 . Since the SD equation can be solved only for t

spacelike regionqE
2>0, the regionME

2,0 is not accessible
Instead of solving Eq.~50!, we convert it into an eigenvalu
equation for a fixedME

2>0, given by

lfA~qR ,qu ;ME!5E dkRdkuMAB~qR ,qu ;kR ,ku ;ME!

3fB~kR ,ku ;ME!, ~53!

wherel is an eigenvalue that is equal to unity for solutio
of Eq. ~50!. We solve Eq.~53! numerically using the itera
tion procedure. When we iterate Eq.~53!, the eigenfunction
associated with the maximum absolute eigenvalue do
nates. Then we obtain the maximum eigenvalue and
eigenfunction.

In the numerical calculations, we use the discretization
the continuous variable (qR ,qu) and come across a proble
that the kernel KAB diverges at the point (qR ,qu)
5(kR ,ku). This divergence, which originates from the gluo
propagator, does not cause a real divergence. We may
move this divergence by carefully choosing the discretizat
points in the iteration procedure.

Once we obtain~the largest absolute! l as a function of
ME

2>0, then we extrapolatel(ME
2) to the timelike region

ME
2,0 and look for the on-shell point wherel(2MB

2)51.
ed

rd
l-
y
m
ec
er

e
n
S

e
th

hi
e
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ts

f

re-
n

Since this extrapolation is the most ambiguous procedur
our calculation, we will later consider another functio
which is similarly extrapolated to the on-shell value a
compare the predicted valuesMB

2 obtained in the two inde-
pendent extrapolations.

VI. DECAY CONSTANT AND LOW-ENERGY RELATION

To obtain the decay constant, we need the normaliza
of the BS amplitude. The normalization condition of the B
amplitude is derived from the inhomogeneous BS equati

1

i

d2G@SF#

dSFmn~x,y!dSFn8m8~y8,x8!
GC;n8m8m9n9

~2!
~y8x8;x9y9!

5dm9mdnn9d~x92x!d~y2y9!, ~54!

where

GC;nmm8n8
~2!

~yx;x8y8!

ª^0uTcn~y!c̄m~x!cm8~x8!c̄n8~y8!u0&

2^0uTcn~y!c̄m~x!u0&^0uTcm8~x8!c̄n8~y8!u0&.

~55!

In momentum space, Eq.~54! gives
i E
q

1

f ~2q1
2 ! f ~2q2

2 !
xn1m1

R ~q;PB!x̄m2n2

R ~q;PB!
]

]Pm
@SFn2n1

R21 ~q1!SFm1m2

R21 ~q2!#

1 i E
q

2~q1!m f 8~2q1
2 ! f ~2q2

2 !2~q2!m f 8~2q2
2 ! f ~2q1

2 !

f 2~2q1
2 ! f 2~2q2

2 !

3xn1m1

R ~q;PB!SFm1m2

R21 ~q2!x̄m2n2

R ~q;PB!SFn2n1

R21 ~q1!522Pm , P→PB . ~56!
to

luon
On

r the
-
oet-

of
d-

ng
as
In the case of the sharp cutoff function~3!, the second term
on the left-hand side~LHS! of Eq. ~56! does not contribute
and the integral region in the first term is determin
uniquely.

Let us now turn to a discussion of the axial-vector Wa
Takahashi~WT! identity. It has been found that the axia
vector WT identity is violated in the Higashijima-Miransk
~HM! approximation@14#. Of course the Goldstone theore
holds in this case because the HM approximation resp
global chiral symmetry. The chiral WT identity in the ladd
approximation has been carefully studied in@10#. The reason
for the violation of the axial-vector WT identity is that th
HM approximation breaks local chiral symmetry. As show
in @10#, the improved ladder approximation of the SD and B
equations preserves the WT identity for the axial-vector v
tex if and only if one uses the gluon momentum square as
argument of the running coupling constant. However, in t
-

ts

r-
e

s

case the renormalization factorZ2 of the quark wave func-
tion deviates from unity in the Landau gauge. In order
avoid such problems, the authors of@10# have introduced a
nonlocal gauge so that the gauge parameter in the g
propagator becomes a momentum-dependent function.
the other hand, we have proposed another way to recove
axial-vector WT identity@15#. In this approach the axial
vector current is modified so as to become the correct N
her current of the effective model of QCD. The advantage
this approach is that it is applicable to all the effective mo
els of QCD which respect global chiral symmetry. Accordi
to @15#, the meson decay constant can be expressed
follows:1

1f p in this paper corresponds tof̃ p in @15#.
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f B5 lim
P→PB

1

P2Eq
trF x̄R~q;PB!H ig5

la

2 S f ~2q2
2 !1 f ~2q1

2 !

2
P”

1@ f ~2q1
2 !2 f ~2q2

2 !#q” D 1Ea~q;P!J G , ~57!

Emn
a ~q;P!ªE

k
F HK n8n,mm8S 2k,q2

P

2
;2q2

P

2
,k1PD

2K n8n,mm8S 2k,q2
P

2
;2q1

P

2
,kD J

3S ig5

la

2
SF~k! D

m8n8

1HK n8n,mm8S 2k1P,q2
P

2
;2q2

P

2
,kD

2K n8n,mm8S 2k,q1
P

2
;2q2

P

2
,kD J

3S SF~k!ig5

la

2 D
m8n8

G . ~58!

The on-shell valuef B(ME
252MB

2) is obtained again by ex
trapolation from the spacelike regionME

2.0 to the on-shell
point ME

252MB
2 . For the neutral pion (B5p0), a53 and

so on in Eq.~57!.
As shown in Ref.@15#, the WT identity for the axial-

vector vertex leads to the following relation in the improv
ladder approximation model of QCD:

MB
2 f B522mR~m2!EB~m2!, ~59!

with

EB~m2!ªZm
21~m2!i E

q

f ~2q2
2 !1 f ~2q1

2 !

2

3trF x̄R~q;PB!g5

la

2 G . ~60!

This relation is satisfied for a finite quark mass. In the cas
the chiral limit, we obtain

f BEB~m2!5jR~m2! where jRª^c̄c&R . ~61!

One can treat Eq.~61! as an approximated relation of th
leading term of the expansion ofmR for a finite quark mass
Substituting Eq.~61! into Eq. ~59!, one obtains the Gell-
Mann–Oakes–Renner~GMOR! mass formula

MB
2 f B

2.22mR^c̄c&Ruchiral limit . ~62!

For finite mR.0, Eq. ~59! is an exact relation, while the
violation of the GMOR formula is incurred by the violatio
of Eq. ~61!.

We defineR by
of

R~ME
2 !ª

2ME
2 f B~ME

2 !

22mREB
. ~63!

The relationR(2MB
2)51 must be satisfied due to Eq.~59!.

We use this condition to make the extrapolation more r
able.

VII. NUMERICAL RESULTS

A. Parameters of the model

The parameters of the improved ladder model of QCD
the current quark massmR for up and down quarks~the
isospin symmetry is assumed throughout this paper!; the
scale parameter of QCD,LQCD; the infrared cutofft IF for
the running coupling constant; the smoothness parametet0 ;
and the ultraviolet cutoffLUV . We taket0523 throughout
this paper, which is the same value used in Ref.@4#. In Ref.
@4# they have shown that the numerical results are quite
sensitive to the choice of smoothness parameter in their s
ies of the BS amplitudes in the chiral limit. As for the ultra
violet cutoff LUV , we shall show that the physica
observables depend on it rather weakly after our renorm
ization procedure described in Sec. IV, if we use reasona
large values ofLUV . Of course, as we are treating not th
full QCD but its approximation, we expect that weak depe
dences remain in our numerical studies. Thus we only h
three physically relevant parameters, namely, the cur
quark mass,LQCD, and the infrared cutoff.

We chooseLQCD at about 0.6~GeV!. It is rather large
compared with the value obtained from analyses in deep
elastic scattering. In the framework of this model, howev
one must employ a large value ofLQCD in order to obtain
sufficiently strong dynamical chiral symmetry breaking.
may be an indication of the limitation of the improved ladd
approach. Other nonperturbative interactions between qu
may solve this discrepancy. One candidate for such non
turbative interactions is the instanton-induced interact
proposed by ’t Hooft@16#. There have been many studies
the roles of the instanton in low-energy QCD such as
instanton liquid model@17#, the generalized Nambu–Jona
Lasinio ~NJL! model @18# with ’t Hooft instanton-induced

FIG. 1. qE
2 dependence ofg2(qE

2) for various LQCD with
t IF520.5.
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interaction@19#, and the effects of the instanton in baryo
sector@20#. Recent studies of theh-meson properties in the
generalized NJL model with the ’t Hooft instanton-induc
interaction have shown@21# that the contribution from the
’t Hooft instanton-induced interaction to the dynamical ma
of the up and down quark mass is 44% of that from the us
UL(3)3UR(3) invariant four-quark interaction. The intro
duction of the ’t Hooft instanton-induced interaction to t
ILA model seems to be interesting and such an attemp
now in progress@22#.

We employt IF at about20.5 due to Ref.@4#. The running
coupling constant for variousLQCD andt IF is shown in Figs.
1 and 2.

B. SD equation

We discuss solutions of the SD equation in this subs
tion. B(2qE

2) as solutions of Eq.~25! for various values of
mR are shown in Fig. 3. In the chiral limit, i.e.mR50, we
find a nontrivial solutionB(2qE

2) which is nonzero forqE

<1 GeV. Note that Eq.~25! has also a trivial solution

FIG. 2. qE
2 dependence ofg2(qE

2) for various t IF with LQCD

50.6 GeV.

FIG. 3. Quark mass functionB(2qE
2) as function ofqE . Model

parameters areLUV5100 GeV, LQCD50.6 GeV, t IF520.5,
andm254 GeV2.
s
al

is

c-

B(2qE
2)50, if mR50. The existence of the nontrivial solu

tion indicates that chiral symmetry is broken dynamical
B(2qE

2) decreases quickly to zero forqE>1 GeV. The
asymptotic behavior is consistent with the OPE result
shown in Ref.@2#. The range of nonzero values ofB(2qE

2)
is determined by theqE

2 dependence of the coupling constan
g(qE

2) defined in Eq.~7!. The results shown in Fig. 3 corre
spond to the choiceLQCD50.6 GeV. WhenLQCD de-
creases, the range ofB(2qE

2) decreases accordingly an
therefore the chiral symmetry breaking is weakened. But
LQCD determines the scale of the system. The order par
eter^c̄c& is almost proportional to theLQCD

3 and chiral sym-
metry breaking always occurs for smallerLQCD. The param-
eter t IF determines the strength of the coupling consta
Table I shows thet IF dependence of the condensate in t
chiral limit. As can be seen from Table I, chiral symmet
breaking does not occur for largert IF . The asymptotic be-
havior of B(2qE

2) with finite current quark mass is rathe
different from that in the chiral limit. It can be seen clear
from the log-log plot of the quark mass functionB(2qE

2)
given in Fig. 4.

We next discuss the quark condensate. The quark con
sates2^c̄c&R

1/3 calculated for the various quark masses a
shown in Fig. 5. Since in our definition of the quark conde
sate given in Eqs.~36!–~39! the perturbative quark mas
contribution is subtracted,2^c̄c&R

1/3 decreases asmR in-
creases. Similar behavior is observed in the QCD sum
approach.̂ c̄c&R for mR5120 MeV is about 78% of̂c̄c&R
for mR55 MeV. This is in reasonable agreement with t
QCD sum rule result@23#: ^s̄s&/^ūu&50.860.1.

TABLE I. t IF dependence of quark condensate in the ch
limit. Other model parameters areLUV5100 GeV, LQCD

50.6 GeV, andm254 GeV2.

t IF 20.5 0.0 0.5 1.0 1.5 2.0

2^c̄c&R
1/3 @MeV# 259 240 187 116 43 2

FIG. 4. Log-log plot of quark mass functionB(2qE
2). Model

parameters areLUV5100 GeV, LQCD50.6 GeV, t IF520.5,
andm254 GeV2.
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C. BS equation

Let us now turn to the discussion of the solutions of t
BS equation. The eigenvaluesl(ME

2) of the BS equation are
shown in Fig. 6. One sees that the massless solutionl(ME

2

50)51 appears in the chiral limit. This is a result of th
Nambu-Goldstone~NG! theorem. For a nonzero quark mas
we need to extrapolatel(ME

2) to the timelikeME
2,0. We

have fittedl(ME
2) by a quadratic function using the metho

of least squares and extrapolatedl(ME
2) to the timelike re-

gion to find the point at whichl(ME
2) becomes unity. Figure

6 implies that the extrapolation length is longer for a larg
quark mass. In order to reduce the ambiguity in the extra
lation procedure, we also evaluate the ratioR defined by Eq.
~63! as a function ofME

2 . Because of the exact relation~59!,
R must hitR(2Mp

2 )51 at the on mass shell of the pion
The valueR is shown in Fig. 7. We fit the graph with th
linear function using the methods of least squares. We s
our calculated results of the pion massMp determined by the
above-mentioned two conditions, i.e.,l51 andR51, for
various values of the quark massmR in Table II. The ambi-
guity by the extrapolation procedure is reasonably small
to the strange quark mass region. We plot our results ofMp

2

FIG. 5. mR dependence of2^c̄c&R
1/3. Model parameters are

LUV5100 GeV, LQCD50.6 GeV, t IF520.5, and m2

54 GeV2.

FIG. 6. Eigenvalues of the BS equationl(ME
2). Model param-

eters areLUV5100 GeV, LQCD50.6 GeV, t IF520.5, andm2

54 GeV2.
,

r
o-

w

p

obtained by the conditionl51 as a function ofmR in Fig. 8.
The Mp

2 seems to be almost a linear function ofmR up to
mR;40 MeV. This is suggested by the GMOR formula

Mp
2 .S 22^c̄c&R

f p
2 D

chiral limit

mR . ~64!

The deviation from linear dependence atmR5120 MeV is
about 9%.

We next discuss the pion decay constant. As mentione
Sec. VI, we can calculatef p(ME

2) only for the timelikeME
2

and therefore the on-shell value of the decay cons
f p(ME

252Mp
2 ) can be obtained again by the extrapolatio

The ME
2 dependences of the pion decay constants in the

ral limit and in the case ofmR55 MeV are shown in Fig. 9.
To estimate the effect ofEa(q;P) in Eq. ~57!, we plot the

naive valuef p
N which is defined by neglectingEa(q;P) term

from Eq. ~57!. It seems to be a good approximation th
f p(ME

2) is a linear function ofME
2 . Therefore we fit the

curve by the linear function using the method of lea
squares and make an extrapolation to the timelikeME

2 for
finite m.2 On the other hand, we fitf p

N by the quadratic func-
tion using the least-squares method to extrapolate to the
shell pointME

252Mp
2 . Our results formR55 MeV aref p

TABLE II. Pion masses determined by the two conditionsl
51 andR51 for various values ofmR . All the entries are in units
of MeV. Model parameters are LUV5100 GeV, LQCD

50.6 GeV, t IF520.5, andm254 GeV2.

mR 0 5 10 20 40 80 120

Mp (l51) 0.0 159.1 222.0 312.9 444.4 639.8 800
Mp (R51) 0.0 154.5 218.5 309.0 436.9 616.1 749

2It should be noted that the decay constant at small~positive! ME
2

suffers from numerical uncertainty and thus it deviates from
straight line. We do not use these points in our extrapolation p
cedure.

FIG. 7. The valueR(ME
2). Model parameters areLUV

5100 GeV, LQCD50.6 GeV, t IF520.5, andm254 GeV2.
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588 MeV and f p
N5155 MeV; so the contribution of the

Ea(q;P) term is remarkable. A similar result has been fou
in the ILA model which respects the axial-vector WT ide
tity by using the gluon momentum square as the argumen
the running coupling constant and the nonlocal gauge@10#.
The conditionR(2Mp

2 )51 is the direct consequence of th
axial-vector WT identity and therefore it has been prov
numerically that our definition of the decay constant is co
sistent with the axial-vector WT identity from the fact th
the pion mass determined by the conditionl51 is almost
the same as that determined by the conditionR51.

We plot the quark mass dependence of the decay con
in Fig. 10. f p almost linearly depends onmR in our case.f p

at mR540 MeV is about 15% bigger thanf p at mR
55 MeV andf p at mR580 MeV is about 32% bigger tha
f p at mR55 MeV. Since the observedf K / f p51.23, themR
dependence of the decay constant seems to be reaso
though we have not solved the kaon BS equation. ThismR
dependence off p is similar to that obtained in chiral pertur
bation theory~ChPT! @24# though the chiral logarithmic term
has not been seen in our numerical result. It is understa

FIG. 8. Mp
2 as a function ofmR . The dots represent our calcu

lated results and the line represents a linear fit of the first f
points. Model parameters are LUV5100 GeV, LQCD

50.6 GeV, t IF520.5, andm254 GeV2.

FIG. 9. ME
2 dependence off p and f p

N . The vertical dashed line
represents the pointME

252Mp
2 for mR55 MeV. Model param-

eters areLUV5100 GeV, LQCD50.6 GeV, t IF520.5, andm2

54 GeV2.
of

d
-

nt

ble

d-

able because the Goldstone boson loop contribution is
taken into account explicitly in our approach. On the oth
hand, the quark-antiquark structure is included explicitly a
finite quark mass effects are fully taken into account witho
performing the perturbative expansion with respect to
quark mass.

Let us now discuss theLQCD and thet IF dependences
Table III shows theLQCD dependences of the pion mass, t
pion decay constant, and the quark condensate. As show
Table III, all quantities with mass dimension 1 are rough
proportional toLQCD. It is understandable since the on
scale of the theory isLQCD if one can neglect the curren
quark mass. Table IV shows thet IF dependence. Fort IF be-
low 20.7 the coupling constant becomes very steep and
numerical procedure is not sufficiently accurate. Althou
we have not performed a fine-tuning of the model para
eters, it is clear from Tables I, III, and IV that one can fit th
model parameters so as to reproduce the observed valu
Mp and f p and the empirically determined value of th
quark condensate.

We study theLUV dependence by changing the value
LUV from 10 GeV to 1000 GeV. It causes less than 1
changes of theMp , f p , and^c̄c&R . This stability indicates
that our nonperturbative renormalization procedure wo
well.

D. Approximation

Finally we discuss the approximation often used in so
ing the BS equation. The approximation in which one n
glects thefP ,fQ ,fT terms on the RHS in the BS equatio
~49! is often used in the literature@25#. The resulting eigen-
values are shown in Fig. 11. While this approximation giv
the massless NG boson in the chiral limit, it underestima
the pion mass for finite quark mass. The decay consta

r

FIG. 10. mR dependence off p . Model parameters areLUV

5100 GeV, LQCD50.6 GeV, t IF520.5, andm254 GeV2.

TABLE III. LQCD dependences ofMp , f p , and 2^c̄c&R
1/3.

Other model parameters areLUV5100 GeV, t IF520.5, m2

54 GeV2, andmR55 MeV.

LQCD @GeV# Mp @MeV# f p @MeV# 2^c̄c&R
1/3 @MeV#

0.5 152 74 223
0.6 159 88 259
0.7 166 102 293
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obtained from the approximated BS amplitude are shown
Table V. The approximation overestimates the pion de
constant by about 30% while the axial-vector WT ident
(Mp

approx)2f p
approx522mRE p

approx is preserved. It is seen tha
the effect ofEa(q;P) is very small in this case, andf p

approx

. f p
Napprox. Therefore, violation of the axial-vector WT iden

tity or that of the exact relation for the partial conservation
axiala-vector current~PCAC! incurred by neglecting the
Ea(q;P) effect is very small.

The abovef p
approx is calculated in a similar way as in th

approximation discussed in Refs.@15,16#. The following is
shown in theorem 2 of@26#. If the interaction is locally chiral
invariant, the approximation of taking the wave functio
renormalization of the quark propagator to be 1 and at
same time neglecting thefP , fQ , and fT terms on the
RHS of the BS equation preserves the low-energy relatio
Theorem 2 cannot be applied to the present case since
interaction term of the ILA model breaks the local chir
symmetry. However, one can prove that the low-energy
lation holds if one neglects thefP andfQ terms inEa(q;P)
as well as thefP , fQ , andfT terms on the RHS of the BS
equation by following the same argument of the proof
theorem 2 in@26#.

VIII. CONCLUSION

We have solved the Schwinger-Dyson equation for
quark propagator and the Bethe-Salpeter equation for
pion in the improved ladder approximation of QCD. W
have carefully treated the consistency of the equations
order to preserve the low-energy relations associated
chiral symmetry by using the Cornwall-Jackiw-Tombou

TABLE IV. t IF dependences ofMp , f p , and2^c̄c&R
1/3. Other

model parameters areLUV5100 GeV, LQCD50.6 GeV, m2

54 GeV2, andmR55 MeV.

t IF Mp @MeV# f p @MeV# 2^c̄c&R
1/3 @MeV#

20.3 149 91 256
20.5 159 88 259
20.7 ~181! ~74! ~253!

FIG. 11. Eigenvalues of the BS equations with and without
approximation described in the text. Model parameters areLUV

5100 GeV, LQCD50.6 GeV, t IF520.5, andm254 GeV2.
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effective action approach. We have introduced the fin
quark mass term in order to study effects of explicit chi
symmetry breaking on the low-energy relations. Because
the difference in the asymptotic behavior of the quark m
function for a finite quark mass, the nonperturbative ma
independent renormalization has been introduced and
quark condensate for finite quark mass is calculated. In s
ing the SD and BS equations, we have not taken any fur
approximation such as an expansion of BS amplitudes in
Gegenbauer polynomials.

We have obtained reasonable values ofMp , f p , and

^c̄c&R with a rather large value ofLQCD. It may indicate the
limitation of the improved ladder approach. The pion ma
Mp grows as the quark massmR increases. Up to the strang
quark mass regionMp

2 seems to be proportional to quar
massmR almost as predicted by the GMOR relation

Mp
2 5S 22^c̄c&R

f p
2 D

chiral limit

mR . ~65!

We have found that thef p also grows asmR increases almos
linearly. ThemR dependences ofMp

2 and f p are similar to
those obtained in chiral perturbation theory. It suggests
chiral perturbation is applicable up to the strange quark m
region.

We have studied the effect of theEa(q;P) term in the
true decay constant. We have found that it is significan
large for various input parameters. Therefore, in the fram
work of the improved ladder approximation,Ea(q;P) plays
an essential role to keep the chiral property.

We have further shown the result of the approximati
neglectingfP(q;P), fQ(q;P), andfT(q;P) terms on the
RHS of the BS equations. This approximation is very use
and makes the calculation easy greatly. But the result giv
smaller pion mass. This suggests that the simple picture
thefS(q;P) dominance in the BS equation is not so good,
least in the present model.

So far, we have studied the symmetricq-q̄ systems,
uū, dd̄, etc. It is interesting to extend the present formu
tion to asymmetric systems like the kaon. It is also intere
ing to introduce the UA(1) breaking interaction to this frame
work and to study theh-h8 systems. Such attempts are
progress.
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TABLE V. Result with and without the approximation. All en
tries are in units of MeV. Model parameters areLUV

5100 GeV, LQCD50.6 GeV, t IF520.5, andm254 GeV2.

mR Mp Mp
approx f p f p

approx f p
N f p

Napprox

0 0 0 86 115 154 116
5 159 119 88 117 156 117
10 222 166 90 118 158 119

e



e,

is

BS

PRC 59 1733FINITE QUARK MASS EFFECTS IN THE IMPROVED . . .
~C!~2!08640356 of the Ministry of Education, Scienc
Sports and Culture of Japan.

APPENDIX

Here we write down the BS equation explicitly. In th
section the total momentum is denoted byP instead byPB
for simplicity. First we define the regularized amputated
amplitudex̂R(q;P) by

x̂R~q;P!ªSF
R21S q1

P

2 DxR~q;P!SF
R21S q2

P

2 D , ~A1!

which can be expressed in terms of
x̂nm
R ~q;P!5d j i

~la!g f

2 F S f̂S~q;P!1f̂P~q;P!q”

1f̂Q~q;P!P” 1
1

2
f̂T~q;P!~P” q”2q”P” ! Dg5G

ba

.

~A2!

The BS equation~49! reads

f̂A~q;P!5E
k
KAB~q,k;P!fB~k;P!. ~A3!

The components of the kernel are given explicitly by
KSS~q,k;P!5 iCFḡ2~q,k!
23

~q2k!2
, ~A4!

KPP~q,k;P!5
iCFḡ2~q,k!

P2q22~Pq!2H P2~qk!2~Pq!~Pk!

~q2k!2
1

2~qk2k2!@P2q22~Pq!21~Pq!~Pk!2P2~qk!#

~q2k!4 J , ~A5!

KPQ~q,k;P!5
iCFḡ2~q,k!

P2q22~Pq!2

2~Pq2Pk!@P2q22~Pq!21~Pq!~Pk!2P2~qk!#

~q2k!4
, ~A6!

KQP~q,k;P!5
iCFḡ2~q,k!

P2q22~Pq!2H ~Pk!q22~Pq!~qk!

~q2k!2
1

2~qk2k2!~~Pq!~qk!2~Pk!q2!

~q2k!4 J , ~A7!

KQQ~q,k;P!5
iCFḡ2~q,k!

P2q22~Pq!2H P2q22~Pq!2

~q2k!2
1

2~Pq2Pk!@~Pq!~Pk!2~qk!q2#

~q2k!4 J , ~A8!

KTT~q,k;P!5
iCFḡ2~q,k!

P2q22~Pq!2

1

~q2k!4
$~k22q2!@~Pq!~Pk!2P2~qk!#

12~Pq2Pk!@~Pk!q22~Pq!~qk!#22~qk2k2!@P2q22~Pq!2#%, ~A9!

and other components are zero. The relations betweenfA(q;P) and f̂A(q;P) are given by

fS~q;P!5
1

DF H q22
P2

4
2B~q1

2 !B~q2
2 !J f̂S~q;P!1H q2@B~q1

2 !2B~q2
2 !#2

Pq

2
@B~q2

2 !1B~q1
2 !#J f̂P~q;P!

1H ~Pq!@B~q1
2 !2B~q2

2 !#2
P2

2
@B~q2

2 !1B~q1
2 !#J f̂Q~q;P!1@P2q22~Pq!2#f̂T~q;P!G , ~A10!

fP~q;P!5
1

DF @B~q1
2 !2B~q2

2 !#f̂S~q;P!1H q21
P2

4
2B~q1

2 !B~q2
2 !J f̂P~q;P!12~Pq!f̂Q~q;P!

2H ~Pq!@B~q2
2 !1B~q1

2 !#1
P2

2
@B~q2

2 !2B~q1
2 !#J f̂T~q;P!G , ~A11!

fQ~q;P!5
1

DF2
1

2
@B~q1

2 !1B~q2
2 !#f̂S~q;P!2

Pq

2
f̂P~q;P!2H q21

P2

4
1B~q1

2 !B~q2
2 !J f̂Q~q;P!

1H q2@B~q2
2 !1B~q1

2 !#1
Pq

2
@B~q2

2 !2B~q1
2 !#J f̂T~q;P!G , ~A12!
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fT~q;P!5
1

DF f̂S~q;P!2
1

2
@B~q2

2 !2B~q1
2 !#f̂P~q;P!1@B~q1

2 !1B~q2
2 !#f̂Q~q;P!

1H 2q21
P2

4
2B~q2

2 !B~q1
2 !J f̂T~q;P!G , ~A13!

where

Dª@q1
2 2B2~q1

2 !#@q2
2 2B2~q2

2 !#. ~A14!
D

-

r.

rt

.

n

,

a,
s
3

d,
.

r,

ys.

.
,
.

.
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