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Finite quark mass effects in the improved ladder Bethe-Salpeter amplitudes
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We study the finite quark mass effects of the low-energy QCD using the improved ladder Schwinger-Dyson
and Bethe-Salpeter equations which are derived in the manner consistent with the vector and axial-vector
Ward-Takahashi identities. The nonperturbative mass-independent renormalization allows us to calculate the
quark condensate for a nonzero quark mass. We explicitly show that the partial conservation of axial-vector
current relation holds. The key ingredients are the Cornwall-Jackiw-Tomboulis effective action, the general-
ized Noether current, and the introduction of the regularization function to the Lagrangian. Reasonable values
of the pion mass, the pion decay constant, and the quark condensate are obtained with a rathgefargée
pion mass square and the pion decay constant are almost proportional to the current quark mass up to the
strange quark mass region. It suggests that the chiral perturbation is applicable up to the strange quark mass
region. We study the validity of the approximation often used in solving the Bethe-Salpeter equations too.
[S0556-28189)03703-9

PACS numbgs): 11.10.St, 12.38-t, 14.65.Bt

I. INTRODUCTION asymptotic behavior of the solution is consistent with the
A program to derive the observed properties of hadrongeading order renormalization group analysis while the infra-
nonperturbatively in QCD has been pursued with great intenred gluon exchange breaks chiral symmetry dynamically.
sity but not accomplished yet. The concept of chiral symmeqyi et al. solved the BS equation for tEC=0""qq state
try and its spontaneous breakdown are among the most iny,q confirmed the existence of the Nambu-Goldstone pion in
portant  aspects of low-energy hadron physics. - Th&yq o006 royimationi4]. The numerical predictions of the pion

spontaneous breakdown of chiral symmetry is believed to be —
responsible for a large part of the low-lying hadron masses adécay constant, and the quark condensatg) are rather

well as for the emergence of octet pseudoscalar mesons sugRod- It was also shown that the BS amplitude shows the
as Goldstone bosons. In order to explain the observed hadrgi@rrect asymptotic behavior as predicted by the operator
spectrum, one also needs small, explicitly chiral-symmetryProduct expansiofOPE in QCD[5]. The masses and decay
breaking terms, namely, flavor-dependent current quark mag#®nstants for the lowest-lying scalar, vector, and axial-vector
terms. mesons have been evaluated by calculating the two-point
The Conwall-Jackiw-TombouliCJT) effective action correlation functions for the composite operatgtd . The

approach1] for composite operators is widely used to study obtained values are in good agreement with the observed
the dynamical symmetry-breaking phenomena in the quarngneg|s].

tum field theories. The extremum condition for the effective So far, the current quark mass term has not been intro-
action with respect to the quark propagator leads to th@yuced in the studies of the BS amplitudes in the ILA. The
Schwinger-Dysor{SD) equation for the quark propagator on pyrpose of the present paper is to investigate the effects of
the nonperturbative vacuum and the second variational d&he finite current quark masses on the BS amplitudes for the
rivative of the effective action with respect to Fhe quark jPC_ -+ states. As shown ifi2], the asymptotic behavior
propagator leads to the Bethe-SalpetBS) equation de-  of the solution of the SD equation for the quark propagator
scribing the bound states. The advantage of the present agjith the finite current quark mass is rather different from that
proach is that the derived SD and BS equations are consigy the chiral limit. Therefore, it is important to study the
tent with the symmetry of the effective action evaluated in agffects of the finite current quark masses not only on the SD

certain approximation scheme. equations but also on the BS amplitudes.
The QCD SD equation for the quark propagator has been There have been many studies of the pion BS amplitude
studied in the improved ladder approximatihA) by Hi-  ysing the effective models of QCD and/or the approximation

gashijima[2] and Miransky[3]. They took the ladder dia- gchemes of the QC[Y,8]. The advantages of the ILA model
grams of one-gluon exchange betwepandqg and assumed are as follows(i) The model is given in the Lagrangian form
that the coupling constant is modified according to standargo that one is able to apply the CJT effective action formu-
perturbative corrections. It has been shown that thdation and study symmetry properties of the systéim.The
asymptotic behavior of the solutions of the SD and BS equa-
tions is consistent with the renormalization group analysis of
*Electronic address: kenichi@th.phys.titech.ac.jp QCD. (iii) It has been shown that the ILA model corresponds
"Electronic address: takizawa@ac.shoyaku.ac.jp to the local potential approximation with the ladder part in
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the nonperturbative renormalization group approg@h(iv) lated by the regularization. The functid i) should satisfy
The angular integration in the SD equation can be performed({=0)=1 and f({)—= for {>A2,. In this paper, we
analytically. On the other hand, the disadvantages of the ILAemploy the sharp cutoff function

model are as follows(i) The axial-vector Ward-Takahashi

identity is violated[10]. (ii) The quark may not be confined f(H)=1+M 9(4"—/\6\/), M— o0, (©)]
in the color singlet state.

In the finite quark mass case, it has been known that ther$/e introduce the bare mass of quarksg,, which is evalu-
is a difficulty in defining the quark condensate in the studiesated atA yy [4,12]. In generaim, is a diagonal flavor matrix,
of the QCD SD equation. The extraction of the perturbative-€., Mp=diag(m,,mq,ms) for N¢=3. In this paper we deal
quark mass contribution in the UV region is not sufficient toonly with a flavor-independent mass and therefore the case
remove the UV divergence in the SD equation since the Svith SU(3)s symmetry.
equation includes the nonperturbative contribution even in The interaction term is given by
the UV region. Inspired by the idea of Kusakaal. of the 1
nonperturbative renormalization of the fermion mass term in . () e mm',nn’ reey !
the mass-independent renormalization schéhig, we pro- L 9o1(x):= ZJ ' q/lC (P.pia.0°)
pose a novel way to renormalize the SD equation and define — —
the quark condensate with the finite quark mass. X hm(P) ¢me (P") ¥n(Q) ¢ (")

The paper is organized as follows. In Sec. Il we explain
the ILA model Lagrangian we have used in the present
study. In Sec. lll the SD equation is derived from the CJT o\ 2 2
action and the renormalization of the SD equation is dis- cmm ' (p g q/)zgz((pE_QE> (QE—DE> )
cussed in Sec. IV. In Sec. V our method of solving the BS o 2 2
equation for the pseudoscalar meson is presented. In Sec. VI , ,
the formulation for the meson decay constant is given and XiDW(_erp _a*q
the low-energy theorem is discussed. Secction VIl is devoted 2 2
to the numerical results. Finally, summary and concluding
remarks are given in Sec. VIII.

x e (PP’ +a+alx %)

X(y, TH™ (5, TH, (5

where [, denotesfd*p/(27)* andpg represents the Euclid-
ean momentum. The Fourier transformations of the fields are

II. IMPROVED LADDER MODEL OF QCD defined byJ(p)zfd“xeipXE(x) and 1/f(p)=fd4xeipxl/f(x).

We work with the following Lagrangian density of the The indicesm,n, ... are combined indices:=(a,i,f),
improved ladder approximation model of QCD proposed byn:=(b,j,q), ... with Dirac indicesa,b, ..., color indices
Aoki et al.[4,6]: i,j, ..., andflavor indicesf,g, . ...T? denotes the genera-

tor of the color SUN(). According to Higashijimd2] and
Miransky[3], we choose a particular set of the momenta that
determines the running coupling constant, i.e.,

LLp )= Laed ¥, 01+ Lin ,90], (1)

Loed 0, 90]:= (%) (16— mg) . (2) 92(p2,q2)=6(p2—q2)g?(p2)+ 6(aZ—p2)g?(g?).

6

Here the functionf({) of {=4? is introduced to provide a ©
cutoff regularization of the ultraviolet divergences of the This way of introducing the running coupling constant is
quark loops. The reason we introduce the cutoff function avery natural from the nonperturbative renormalization group
the Lagrangian level is to preserve the consistency betweespproach with a local potential approximati®i. It is often
the SD and BS equations. If one uses the regularization thaglled the Higashijima-Miransky approximation. The infra-
is inconsistent between the SD and BS equations, the lowed cutofft - is introduced in the running coupling constant
energy relation based on the chiral symmetry should be vioas

(1 1
- = for te<t,
Bo 1+t
2( 12 t 1 —3t to+2 ()" =tt
9%(pg) = 2Bo (1+t,0)2 IFto te—to 0=, (7)
1 3t—ty+2
_— ~F 0 % for t<tg,
kzﬂo (1+t||:)2
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p2 Throughout this paper, we employ the lowest-orfewest-
t:=In 2E -1, (8) loop) expansion of thd",,J S| as
QCD
1 .
1  1INc—2Ng [iood Sel=— —J dAx/C™M2:MN2(j g, |idy Jidy ,idy.)
Bo= : ) 2 S
(4m)? 3

X [Sem,m,(X2:X1) Sen,n, (Y2,Y1)
Above t g, gz(pé) develops according to the one-loop re-
sult of the QCD renormalization group equation and, below — Semyn, (X2,Y1) Senm, (Y2, X0) 1l (15
to, g2(p§) is kept constant. These two regions are con- . .
nected by the quadratic polynomial so th&pZ) becomes a Where the asterisk means taking x,,ys,y,—x after all the
smooth function. Her®¢ is the number of colors aniy; is derivatives are operqted. Thls leads to the ILA model, where
the number of active flavors. We usk.=N;=3 in our nu-  the SD equation is given in momentum space by
merical studies. The gluon propagator is given in the Landau

gatige iSFI(q>—iSo1(q)+CFfp§2(qé,pé)
i k#k”| -1 ]
iD#"(k)=| g""— 2 e (10 XiD#"(p~a)v,Se(p)y,=0, (16)
with
lll. SD EQUATION c t[T2T2] N2—1 a7
In order to derive the Schwinger-Dyson equation, we use i Nc 2Nc -
the formalism of the Cornwall-Jackiw-Tomboulis effective ) )
action[1] which is given by Now we introduce the regularized propagator as
T[Se]:=iTrLn[Se]—i TSy 'Se]+ Tiood Sel- - (1) Sg(q)::f(_qz)so(q):ﬂ 'm , (19)
— o

The last term of Eq(11) is the residual term. Multiplying by " 5

a factori, iT'jpod Se] is given by the sum of all Feynman Se(a) =f(—9%)Se(q). (19
amplitudes of two-loop or higher-loop two-particle irreduc-

ible vacuum diagrams in which every bare quark propagatof hen the SD equatiofl.6) becomes

. C 1 —
iy L i iSE2(q) SR L(q)+ —— 9%(a2,pd)
so<x,y)—qu e e em W " ° f(—qz)fp f(—py)° "
XiD*"(p—q)¥,SR(p)y,=0, (20

is replaced by a full one
in which one finds that the integral is cut off p§= —p?
_ _ A2 : A2 P—
Se(x,y) = (0| Te(x) ¥(y)|0). 13) for/:nu\éfdtt;]ztgéh;eoﬁzggtr:orf( p<). Substituting the general

The SD equation is the stability condition of the CJT action i

SKa) = ———-, (21)
- A A d-B(@
AL I »
8Semn(X,y) we obtain a set of integral equations
iCe [ 9%(qZ.p?) 3(p?+9?)(pa)—4(pg)?—2p2g? A(p?)

A(q?) =1+ , (22

TR ) t—p?) (a—p)* p?A%(p?)— B2(p?)

- 2(42 A2 _ 2

B(q2)=m0+ iCg g9°(de.pPg) 1 3B(p9) 29

f(—g?) /e f(—p?) (p—q)? p?A%(p?)—B(p?)’
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After a Wick rotation, we obtain be explicitly shown later in this section. By substituting
5 by Eg. (30), the SD equatiori25) becomes
A(-gp)=1 (24)
—g2y=7"1 2
from Eq.(22). This is another advantage of the Higashijima- B(~0g)=Zm Mg(1%)
Miransky approximation, where the running coupling con-

2
stant is defined so as to make the wave function renormal- + fAﬁVd péK(qé,pé)B(—pE), (31
izationZ, unity [4,10]. Then we find an integral equation for 0 pE+B2(—pg)
B(—dp) as
with
3C 2 —
B(—g2)=mo+ —— f " pZg?(gZ,p2) 2
16m°Jo 2 2 3C':_z 2 .2 Pe
K(dg.,Pe)==——=9(de.Pe) ——> - (32
2 _ 2 167 max{dg , P}
PE B(—pg) 25
maxq¢ .pg} Pe+B*(—PpE) By differentiating this equation with respect tog(x?) and
taking mg(u?) =0, one obtains
IV. RENORMALIZATION OF THE QUARK MASS
In this section we discuss the renormalization of the quark JB(—qg)
mass. The operator product expansion analysis shows that in IMg(u?) )
the asymptotic region the QCD quark mass function mR(n®)=0
B(—qg) for three quark flavors behaves as follojs]: A2
e ~z,+ [ dpgkat o
B q2)=me(u?)| S0
R R pE-Bj(—p}) B(-pd)|
gz(qé) gz(qé) —4/9 [pé+ B(Z)(_ p%)]z (9mR(lL2) ‘ mR(;LZ):O
— )| 5| . (20
30e [97°(m9) (33
wheremR(,uZ)i_s the current quark mass renormalizeqt  The renormalization conditiof29) leads to
andég(u?) ==(yh)g is the quark condensate renormalized at
2. The improved ladder model of QCD is the model which A2
is constructed so as to reproduce the QCD asymptotic behav-  Z,,*=1— J’ WdpZK (u?,p2)
ior. Therefore we introduce the renormalization condition of 0
the quark mass so that the solution of the SD equation can be 2_B2(—p2) oB(—pd)
interpreted as the QCD quark mass function in the Pe™ Bol ~PE Pe (34)
asymptotic region. [p2+B3(—p2)]? dmg(u?)

2)—
The quark mass function calculated in the effective model M50
of QCD can be expressed in a similar fashion as 26): . ] o
Here Bo(—qg) is the solution of the SD equation in the

B(—0g)=mg(*)F(qz, 1% — ér(1?) G(aE , u?). chiral limit, namely,
(27)
Then we introduce the renormalization condition Bo(—qé)= &fASVd pé@z(qé pé)
1672Jo '
F(u?u?=1, (28) , ,
Bo(—PE)
which is equivalent to p,; T ° > Pe > (35
max qg,Pg} Pg+Bo(—PE)
IB(— u?)
— =1 (29 Now the combination of Eq¢33) and(34) yields an integral

2
IMRA) | =0 equation for 9B(—q)/Img(1?)|m (2=~ Equation (34)

I:saxplicitly shows that the mass renormalization consgpt
does not depend on the quark mass.
In order to obtain the quark mass function with the renor-

malized current quark mass, one first calculdg— qé) by

Ma(A2 ) =7~ Lmo( w?). 30 solving the SD equation in the chiral limit, E(R5). NextZ,

o Abw) =Zm MA(4") 30 and &B(—qﬁ)/ﬁmR(,uszR(Mz):O are obtained by solving

It should be noted here that the renormalization constant i&gs. (33) and Eq.(34). Finally Eq. (31) is solved to find
independent of mass in this renormalization scheme. It wilB(—qZ).

This mass-independent renormalization condition for the S
equation was first proposed by Kusadaal. [11]. The mass
renormalization constamm=zm(A6V ,m?) is introduced by
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Let us now propose the following definition of the quark _ ) y+X
condensate: Xnm(Y,X;Pg)=¢"'"8 fe_'q(y_x)xnm(CI:PB), X=——.
q
Er(1?) =2 Eo(Ay), (36) (45)
N 4 We introduce the regularized BS amplitude by
Ay)=— f ——tr[S§
SalAiv) ( 2m R Nl @GP =F (- xan( @GP (—02), (4
Ay d%q then Eq.(43) is rewritten as
- f Wtr[Sﬁ(q),Jera), (37
m SFHa)x (@ Pe)SEHa)
i 1
SE(a) =——-, (39) —_ic f _r
7 4-B(g) I F (I (—K)
ISF(q) X g2(q2 k)iD*"(4—K) v, x"(K;Pg) v, .
SE (@ pert=——5- me(u?). (39 : an
amR(M ) mR(M2)=O
We see again that the integral equation is regularized cor-

In order to avoid the divergence originated by the perturba—reCtI
tive quark mass contribution to the quark condensate in the Tgé BS amplitude for the d | b

UV region, the perturbative quark mass contribution should . . pitu pseudoscalar meson can be
be subtracted. The key point of our definition of the quarkertten In terms of four scalar amplitudes,
condensate is Eq39); namely, the perturbative quark mass (A g
contribution is defined using the fully calculated quark massxﬁm(k; P)=4; TQ

function B(g?). The subtraction of the perturbative quark

(¢s(k; P)+ ¢p(k;P)k+ ¢o(k;P)P

mass contribution obtained by the operator product expan- 1
sion approach in the UV region is not sufficient. Our defini- + §¢T(k;P)(Pk—kP)) vs| (48
tion of the quark condensate has the desirable property: ba

mo(/\av)%(/\ﬁv) =mg(u?) Er(p?). (40) where\ “ denotes the flavor matrix. Substituting this into Eq.

(47), we obtain coupled integral equations for four scalar
amplitudes. The explicit form is rather complicated and

V- BS EQUATION FOR PSEUDOSCALAR MESONS given in the Appendix. The integral equations can be written

The homogeneous BS equation is given by down formally as
8T
5] Xnm (Y X' ;Pg)=0. (41) ¢A(q;PB):koAB(q-k;PB)¢B(k;PB)v (49
5San(XrY)5SFn’m’(y,uXI)
Here the BS amplitude is defined by where A, B denotesS,P,Q,T. Among the four dimensional
integrationsd?k, two of the integrations can be performed
Xam(Y:X; Pg) :=(0| Tthn(Y) thm(X)| Pg) (42)  analytically after the Wick rotation and we set the total mo-

o mentumPge=(Mg,0,0,0). Then we obtain
for a g-q state |Pg). The normalization condition is
(Pg|Pg) = (2m)°2Pg0d°(Pg—Pg) and Pg:=(yMg+ Pg,P) ¢A(qR=QG;ME):f dkrdkyM 4g(0r;dg;Kr,Kg;ME)
is the on-shell momentum. Equatiéfil) is expressed in mo- (kr kg el
mentum space as

-1 -1 X¢B(kR!k€;ME)1 (50)
S (d)x(a;Peg)S:7(0-)
where
= —iC¢ | g%(a2 k3)ID*"(a—K) ¥, x(k;Pg)7,,
(43 and the integral region is given by
with 5
2 : Mg 2
PB PB I:: (kR,ko) kRikRMESInk0+T$AUV . (52)
Q+ZQ+7, a-=a- 5 (44)

This integral region is determined uniquely by the cutoff
where the Fourier transformation of the BS amplitude is defunction in Eq.(47) and is consistent with the SD equation
fined by (25).
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There is no solution of Eq50) for a realMg becauséM  Since this extrapolation is the most ambiguous procedure in
is a Euclidean meson mass whose square is negMize our calculation, we will later consider another function
=— Mé Since the SD equation can be solved only for thewhich is similarly extrapolated to the on-shell value and
spacelike regiom2=0, the regionM2<0 is not accessible. Compare the predicted valud4 obtained in the two inde-
Instead of solving Eq(50), we convert it into an eigenvalue Pendent extrapolations.
equation for a fixedv éao, given by

VI. DECAY CONSTANT AND LOW-ENERGY RELATION

)\¢A(QR,%:ME)=J dkrdkyM 48(0dr,dg;Kr Kg;ME) To obtain the decay constant, we need the normalization
of the BS amplitude. The normalization condition of the BS
X ¢p(Kr,Kg;ME), (53  amplitude is derived from the inhomogeneous BS equation

where\ is an eigenvalue that is equal to unity for solutions 1 ST[S:]
of Eqg. (50). We solve Eq.(53) numerically using the itera- - c?, (Y X XY™
tion procedure. When we iterate E&3), the eigenfunction | 8Semn(%,Y) 8Senim (y/,x/)  cmmmn
associated with the maximum absolute eigenvalue domi- , ,
nates. Then we obtain the maximum eigenvalue and its = SrmOnm (X" = Xx) 8(y —y"), (54)
eigenfunction.
In the numerical calculations, we use the discretization ofVhere
the continuous variablegg,q,) and come across a problem

that the kernel K 4,5 diverges at the point qg,q,) G(Cz;)nmm,(yX;X’y’)
=(kg,ky). This divergence, which originates from the gluon — —
propagator, does not cause a real divergence. We may re- =(0|Tehn(Y) Ym(X) Y (X") s (y')|0)
move this divergence by carefully choosing the discretization — .,
points in the iteration procedure. = (O[Tn(Y) hm(X)[0)O[ Tty (X) g (y")[ 0).
Once we obtair(the largest absoluten as a function of (55)
M2=0, then we extrapolatQ(Mé) to the timelike region
M§<O and look for the on-shell point whe?e(—Mé)=1. In momentum space, E¢54) gives
|
o A PO (G P TSE A (0 Sl (0]
qf(_Qi)f(_q%) nym\ M B/ Amony i Bo'?PM Fnong WM+ 9Fmym, -~

+if —(a:) ' (—a5)F(—a%)—(q-) . f (—g®)f(—a?)
q f2(—a5)f2%(—g%)

X Xh.m, (0 P8) SR, (4 ) Xhon, (0 Pe) S h (A1) =—2P,,,  P—Pg. (56)

In the case of the sharp cutoff functid®), the second term case the renormalization fact@x, of the quark wave func-
on the left-hand sidéLHS) of Eq. (56) does not contribute tion deviates from unity in the Landau gauge. In order to
anq the integral region in the first term is determinedavoid such problems, the authors[df] have introduced a
uniquely. nonlocal gauge so that the gauge parameter in the gluon
Let us now turn to a discussion of the axial-vector Ward'propagator becomes a momentum-dependent function. On
Takahashi(WT) identity. It has been found that the axial- the other hand, we have proposed another way to recover the
vector WT identity is violated in the Higashijima-Miransky ayjal-vector WT identity[15]. In this approach the axial-
(HM) approximatior{14]. Of course the Goldstone theorem \ecior current is modified so as to become the correct Noet-

hlolgslinhf[hils case becaurfe tE_e 'I_”VI a%proxim_ati?]n Irejgecﬁer current of the effective model of QCD. The advantage of
global ¢ '”ti. syrr]nm%try. T ecf Ilrla \:VE' e]rjlﬁt)ltylet € ladder g approach is that it is applicable to all the effective mod-
approximation has been carefully studied 10]. The reason els of QCD which respect global chiral symmetry. According

for the V|0I§1t|on_ of the amal-vectorl WT identity is that the to [15], the meson decay constant can be expressed as
HM approximation breaks local chiral symmetry. As ShownfO”OWS'l

in [10], the improved ladder approximation of the SD and BS

equations preserves the WT identity for the axial-vector ver-

tex if and only if one uses the gluon momentum square as the

argument of the running coupling constant. However, in this f__ in this paper corresponds g, in [15].
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ol [ ] N f(=d?)+f(—a?)
+[f(—g%)—f(—g*)]q +E“<q;P)H, (57)

En (q'P)::J enmmnt | q—E'—q—E k+P
mn\ ™ K ! 2’ 2’

_Kn’n,mm’ _kq_E-_q+E k
L 27 21
. A"
X|1ys—Sp(k)
2 m’'n’
+innmm| 4 p q—E'—q—E k
1 21 21

_Icn’n,mm’ —k q-+ E-_q_E k
L 27 21

X (59

AT
SF(k)|757 .
m’n’

The on-shell valudz(M2=—M3) is obtained again by ex-
trapolation from the spacelike regi(ME>0 to the on-shell
pointMZ=—M3. For the neutral piong=7°), a=3 and
so on in Eq.(57).

As shown in Ref[15], the WT identity for the axial-
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—MZfg(M2)

R(M2):=
(Mg) —2mgé&g

(63

The relationR(— M§)= 1 must be satisfied due to EGR9).
We use this condition to make the extrapolation more reli-
able.

VII. NUMERICAL RESULTS

A. Parameters of the model

The parameters of the improved ladder model of QCD are
the current quark masmg for up and down quarksthe
isospin symmetry is assumed throughout this paptre
scale parameter of QCD\qcp; the infrared cutoffte for
the running coupling constant; the smoothness pararhgter
and the ultraviolet cutoff\ ;,, . We taket,= —3 throughout
this paper, which is the same value used in R&f. In Ref.

[4] they have shown that the numerical results are quite in-
sensitive to the choice of smoothness parameter in their stud-
ies of the BS amplitudes in the chiral limit. As for the ultra-
violet cutoff Ay,, we shall show that the physical
observables depend on it rather weakly after our renormal-
ization procedure described in Sec. 1V, if we use reasonably
large values ofA . Of course, as we are treating not the
full QCD but its approximation, we expect that weak depen-
dences remain in our numerical studies. Thus we only have
three physically relevant parameters, namely, the current
quark massA ocp, and the infrared cutoff.

We chooseA ocp at about 0.6(GeV). It is rather large
compared with the value obtained from analyses in deep in-

vector vertex leads to the following relation in the improvedelastic scattering. In the framework of this model, however,

ladder approximation model of QCD:

M3fg=—2mg(u?)Es(1?), (59)
with
f(—g2)+f(—q3)
g 2 ::Z_l 2\
() =2, (n )IJq 5
xtrl XR(0:Pg) 55 |. (60)

This relation is satisfied for a finite quark mass. In the case of

the chiral limit, we obtain

fela(n?)=ér(u?) where &r=(gi)r.  (61)
One can treat Eq61) as an approximated relation of the
leading term of the expansion of; for a finite quark mass.
Substituting Eq.(61) into Eg. (59), one obtains the Gell-

Mann—Oakes—RennéGMOR) mass formula

M3 fE= — 2mg( Y4l chirat imit- (62
For finite mg>0, Eq.(59) is an exact relation, while the
violation of the GMOR formula is incurred by the violation
of Eq. (61).
We defineR by

one must employ a large value dfgcp in order to obtain
sufficiently strong dynamical chiral symmetry breaking. It
may be an indication of the limitation of the improved ladder
approach. Other nonperturbative interactions between quarks
may solve this discrepancy. One candidate for such nonper-
turbative interactions is the instanton-induced interaction
proposed by 't Hooff16]. There have been many studies of
the roles of the instanton in low-energy QCD such as the
instanton liquid mode[17], the generalized Nambu—Jona-
Lasinio (NJL) model [18] with 't Hooft instanton-induced

140
)
120 _“\ \ === Aggp=05GeV
N\ —— Agep=0.6GeV
1001 A\'| — — Agep=07GeV
NE 8ol
"o 60}
40}
20
0 1 ! 1
0.0 0.5 1.0 15 2.0
2 2
Pe [GeV]
FIG. 1. gZ dependence ofy*(qg) for various Agcp With

t":: - 05
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350 TABLE I. t dependence of quark condensate in the chiral
- limit. Other model parameters are\y,=100 GeV, Agcp
300 |- =m-- fe=-07 =0.6 GeV, andu?=4 Ge\2.
N — te=-05
250 | \‘ — — t=-03 te -05 00 05 1.0 15 20
\ — - - te=-01 —
“‘E 200 —(yp)P[Mev] 259 240 187 116 43 2
o 150
B(—q2)=0, if mg=0. The existence of the nontrivial solu-
100 tion indicates that chiral symmetry is broken dynamically.
| B(—qé) decreases quickly to zero fazz=1 GeV. The
50 asymptotic behavior is consistent with the OPE result as
0 I shown in Ref[2]. The range of nonzero values B(—qé)
0.0 0.5 1.0 15 20 is determined by thgZ dependence of the coupling constant,

pi [GeV2] g(g2) defined in Eq(7). The results shown in Fig. 3 corre-
spond to the choiceAqcp=0.6 GeV. WhenAqcp de-
FIG. 2. g2 dependence 0§2(q2) for varioust,z with Agco  creases, the range cB(—qé) decreases accordingly and
=0.6 GeV. therefore the chiral symmetry breaking is weakened. But the
Aqcp determines the scale of the system. The order param-

interaction[19], and the effects of the instanton in baryon eter{ ) is almost proportional to thA%CD and chiral sym-
sector[20]. Recent studies of thg-meson properties in the metry breaking always occurs for smallepcp. The param-
generalized NJL model with the 't Hooft instanton-inducedeter t,- determines the strength of the coupling constant.
interaction have showfi21] that the contribution from the Table | shows the,- dependence of the condensate in the
't Hooft instanton-induced interaction to the dynamical masschiral limit. As can be seen from Table I, chiral symmetry
of the up and down quark mass is 44% of that from the usuabreaking does not occur for largge. The asymptotic be-
UL(3)X Ug(3) invariant four-quark interaction. The intro- havior of B(—q2) with finite current quark mass is rather
duction of the 't Hooft instanton-induced interaction to the different from that in the chiral limit. It can be seen clearly
ILA model seems to be interesting and such an attempt i§om the log-log plot of the quark mass functi(B-(_qé)
now in progres$22]. given in Fig. 4.

We employt e at about— 0.5 due to Ref{4]. The running We next discuss the quark condensate. The quark conden-
coupling constant for variou ocp andt e is shown in Figs. sates— <Zw>%{3 calculated for the various quark masses are
1 and 2. shown in Fig. 5. Since in our definition of the quark conden-

sate given in Eqgs(36)—(39) the perturbative quark mass

contribution is subtracted; (4y)Y° decreases amy in-

We disczuss solutions of the SD equation in this subsecereases. Similar behavior is observed in the QCD sum rule
tion. B(—qg) as soI.utlons of Eq(25_) for_ various values of approach<%ﬂ>R for mg=120 MeV is about 78% O¢E¢>R
mg are shown in Fig. 3. In the chiral limit, i.eng=0, we  for mz=5 MeV. This is in reasonable agreement with the

find a nontrivial solutiorB(—qé) which is nonzero forgg QCD sum rule resulf23]: (Es)/(?u>=0.8+ 0.1.
<1 GeV. Note that Eq(25 has also a trivial solution ' B

B. SD equation

10'
1.2 0
N 10
1 0 _—— mR=4O [MeV] 1 o'1 N
----- mg= 5 [MeV] .

< O8r Me= 0 [MeV] = 102k ~-
3 S .
S 06fF - 103}k — — mg=40 [MeV]
m 7 e mg=5 [MeV]

041+ 10 B —_— mR=0 [MeV]

0.2f 10°F

0.0 10°® I I 1 1 I I

0.0 0.5 1.0 15 2.0 10* 10® 10% 10" 10° 10" 10°
g [GeV] qe [GeV]

FIG. 3. Quark mass functioB(—qé) as function ofgg . Model FIG. 4. Log-log plot of quark mass functidB(—qé). Model

parameters are Ay,=100 GeV, Aqcp=0.6 GeV, tg=—0.5, parameters are Ay,=100 GeV, Aqcp=0.6 GeV, tg=—0.5,
andu’=4 Ge\’. andu’=4 Gel\?.
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270 2 i
260 & oy S N
"~ 2501 HL -~
>
= N -
v 240} o
. 4k .
230+ i — — mg=20MeV
B | = mp=10MeV
220 1 1 ] 1 ] | ! mg=5MeV
|
0 20 40 60 80 100 120 ol | I I I
mg  [MeV] -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
— 2 2,
FIG. 5. mg dependence of(y)~°. Model parameters are Me [GeV]
Ayy=100 GeV, Agcp=0.6 GeV, tg=—0.5, and u?

FIG. 7. The valueR(Mé). Model parameters are\y

=4 GeV: =100 GeV, Aqcp=0.6 GeV, tz=—0.5, andu®=4 Ge\.

C. BS equation . . . o
obtained by the conditioh=1 as a function ofg in Fig. 8.

Let us now turn to the discussion of the solutions of theTe M2 seems to be almost a linear function rof, up to
BS equation. The eigenvalua$M2) of the BS equation are mg~40 MeV. This is suggested by the GMOR formula
shown in Fig. 6. One sees that the massless solm((mé

=0)=1 appears in the chiral limit. This is a result of the ) —2(Z¢>R
Nambu-GoldstonéNG) theorem. For a nonzero quark mass, M7= Y mg. (64)
we need to extrapolate(MZ) to the timelikeMZ<0. We m chiral limit

have fitted\ (M2) by a quadratic function using the method o ] )
of least squares and extrapolategM?) to the timelike re- 1€ deviation from linear dependencera=120 MeV is

. . . . . . about 9%.
gion to find the point at Whlch(Mé) becomes unity. Figure . . . .
6 implies that the extrapolation length is longer for a larger We next discuss the pion decay constant. As mentioned in

2 : H 2
quark mass. In order to reduce the ambiguity in the extrapo>cC: VI, We can calculaté,(Mg) only for the timelikeMg

lation procedure, we also evaluate the raiaefined by Eq.  2"d tzhereforze the on-shell value of the decay constant
(63) as a function oMZ2 . Because of the exact relati¢s9), fﬂ(MEZZ —M?7) can be obtained again by the extrapolation.
R must hit R(— Mi): 1 at the on mass shell of the pion. The_M_E dep(_andences of the pion decay constant_s in the chi-
The valueR is shown in Fig. 7. We fit the graph with the fallimitand in the case OfnRa:5 MeV are shown in Fig. 9.
linear function using the methods of least squares. We show 1© estlma’\'ge the effect &&“(q;P) in Eq.(57), we plot the

our calculated results of the pion mads, determined by the naive valuefz which is defined by neglecting®(q; P) term
above-mentioned two conditions, i.e=1 andR=1, for  ffom Eq. (57). It seems to be a good approximation that
various values of the quark mass in Table II. The ambi- f-(M) is a linear function ofMZ. Therefore we fit the
guity by the extrapolation procedure is reasonably small ugurve by the linear function using the method of least
to the strange quark mass region. We plot our resultsipf ~ Squares and make an extrapolation to the timeNkg for
finite m.2 On the other hand, we ﬁﬂ)‘r by the quadratic func-
tion using the least-squares method to extrapolate to the on-

| .
1.00 N shell pointMZ=—M?2 . Our results fomg=5 MeV aref ,
0.95 TABLE Il. Pion masses determined by the two conditions
1 =1 andR=1 for various values ofmg. All the entries are in units
< ! of MeV. Model parameters areAy,=100 GeV, Agcp
0.90 : =0.6 GeV, tg=-0.5 andu’=4 Ge\’.
! ~e
1 Mp=0 MeV 0 5 10 20 40 80 120
0.85 | mm-- =5 MeV MR
: — — mg=10MeV M, (A=1) 0.0 159.1 222.0 3129 4444 639.8 800.9
0.80 - T T meeAoMeY M, (R=1) 00 1545 2185 309.0 4369 616.1 749.7
1 . 1 . 1 : I
-0.10 0.00 0.10 0.20
M2 [GeV’]

2t should be noted that the decay constant at sipaisitive) M2
FIG. 6. Eigenvalues of the BS equatiatMZ). Model param-  suffers from numerical uncertainty and thus it deviates from the
eters areAy,=100 GeV, Agcp=0.6 GeV, tg=—0.5, and u? straight line. We do not use these points in our extrapolation pro-
=4 Gel\’. cedure.
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0.7 140

0.6F ' 130
— 0.5F % 120
3 04 = 110
o, .

03l 100
NEK

0.2f %0

80 1 | 1 1 1
01 0 20 40 60 80 100 120
0.0 . . L L L me  [MeV]
0 20 40 60 80 100 120
m.  [MeV] FIG. 10. mg dependence of .. Model parameters ard

=100 GeV, Agcp=0.6 GeV, tg=—0.5, andu’=4 Ge\’.

FIG. 8. M2 as a function ofmg. The dots represent our calcu-
lated results and the line represents a linear fit of the first fou@ble because the Goldstone boson loop contribution is not
points.  Model parameters are A, =100 GeV, Aocp  taken into account explicitly in our approach. On the other
=0.6 GeV, t=—0.5 andu’=4 Ge\~. hand, the quark-antiquark structure is included explicitly and
finite quark mass effects are fully taken into account without

—88 MeV andf§= 155 MeV: so the contribution of the performing the perturbative expansion with respect to the

E“(q;P) term is remarkable. A similar result has been foundquark mass.

in the ILA model which respects the axial-vector WT iden- Let us now discuss théocp and thety: dependences.

tity by using the gluon momentum square as the argument O'F_able Il shows theA ocp dependences of the pion mass, the

the running coupling constant and the nonlocal gaidg#. pion decay constant, and' the quark 'conde.nsate. As shown in
The conditionR(—M2)=1 is the direct consequence of the Table Ill, all quantities with mass dimension 1 are roughly

axial-vector WT identity and therefore it has been provedzgg?:rgf ?r?el: ttz/e\ngDi. g\lt s #ngfésézzdﬁglﬁeiitngﬁetzﬁrroe?:%/
numerically that our definition of the decay constant is con- Y 18tocp 9

sistent with the axial-vector WT identity from the fact that quark mass. Table'IV shows thg dependence. Fd: be-
the pion mass determined by the conditior 1 is almost low —0.7 the coupling constant becomes very steep and our

the same as that determined by the condition 1 numerical procedure is not sufficiently accurate. Although

e have not performed a fine-tuning of the model param-
We plot the quark mass dependence of the decay constal) e .
in Fig. 10.f.. almost linearly depends ang in our casef . e%ers, it is clear from Tables |, Ill, and IV that one can fit the

at mg=40 MeV is about 15% bigger thad. at mp model parameters so as to reproduce the observed values of

—5 MeV andf. atmg=80 MeV is about 32% bigger than M, and f_ and the empirically determined value of the
fr atmg=5 MeV. Since the observei /f,=1.23, themg qu?/\r/kecs(iﬂger'lﬁgzt\e. dependence by changing the value of
dependence of the decay constant seems to be reasonaRIe y uv GeP y ging 0
though we have not solved the kaon BS equation. Tiis uv from 10 GeV to 1000 GeV. It causes less than 1%
dependence of . is similar to that obtained in chiral pertur- changes of théd ., f., and(y)r. This stability indicates

bation theory(ChPT) [24] though the chiral logarithmic term that our nonperturbative renormalization procedure works

has not been seen in our numerical result. It is understand’ye”-

160 C st = = D. Approximation
: — o~ (=5 MeV) Finally we discuss the approximation often used in solv-
S 140k ! L f’L (M=0 MeV) ing the BS equation. The approximation in which one ne-
2 : = VR glects thegp , g, ¢r terms on the RHS in the BS equation
- I (49 is often used in the literatuf@5]. The resulting eigen-
Z;f 120} : values are shown in Fig. 11. While this approximation gives
= . the massless NG boson in the chiral limit, it underestimates
. : the pion mass for finite quark mass. The decay constants
i0F o+ |  ==--- f, (Mg=5 MeV)
! — f (Mr=0MeV) TABLE Ill. Agcp dependences ol ., f.., and —(yy)R°.
imrTr——t------ - .. - Other model parameters aré =100 GeV, ty=—0.5, u?
80 L ' ' ' =4 Ge\?, andmg=5 MeV.
-0.05 0.00 0.05 0.10 0.15 0.20
M2 [GeV]] Ageo[GeV] M, [MeV]  f.[MeV]  —(yy)¥3[MeV]
FIG. 9. M2 dependence of, andfY. The vertical dashed line 0.5 152 74 223
represents the poin12=—M?2 for mg=5 MeV. Model param- 0.6 159 88 259
eters areA, =100 GeV, Agcp=0.6 GeV, tz=—0.5, andu? 0.7 166 102 293

=4 Ge\’.
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TABLE IV. t dependences ofl ., f._, and—(%p),}f. Other TABLE V. Result with and without the approximation. All en-
model parameters areA uv=100 GeV, AQCD: 0.6 GeV, qu tries are in units of MeV. Model parameters ardy
=4 Ge\?, andmg=5 MeV. =100 GeV, Aqcp=0.6 GeV, tg=—0.5, andu®=4 Ge\.

te M, [MeV] f [MeV] _ <E¢>é’3 [MeV] mg M., M ipprox f‘rr f?TPprox fﬁ fﬁapprox

-03 149 91 256 0 0 0 86 115 154 116

—05 159 88 259 5 159 119 88 117 156 117

-07 (181) (74) (253 10 222 166 90 118 158 119

obtained from the approximated BS amplitude are shown ireffective action approach. We have introduced the finite

Table V. The approximation overestimates the pion decayyark mass term in order to study effects of explicit chiral

constant by about 30% while the axial-vector WT identity symmetry breaking on the low-energy relations. Because of
(MEPPIOY2£3PPIOS — 2me£3PP%js preserved. It is seen that the difference in the asymptotic behavior of the quark mass
the effect ofE“(q;P) is very small in this case, anif’™*  function for a finite quark mass, the nonperturbative mass-
=fNaPProX Therefore, violation of the axial-vector WT iden- independent renormalization has been introduced and the
tity or that of the exact relation for the partial conservation ofquark condensate for finite quark mass is calculated. In solv-
axiala-vector currenPCAC) incurred by neglecting the ing the SD and BS equations, we have not taken any further

E“(q;P) effect is very small. approximation such as an expansion of BS amplitudes in the
The abovef2""*is calculated in a similar way as in the Gegenbauer polynomials.
approximation discussed in Refd5,16. The following is We have obtained reasonable valueshof, f_, and

shown in theorem 2 df26]. If the interaction is locally chiral () with a rather large value of ocp. It may indicate the
invariant, the approximation of taking the wave function limitation of the improved ladder approach. The pion mass
renormalization of the quark propagator to be 1 and at they _ grows as the quark masss increases. Up to the strange
same time neglecting theép, ¢q, and ¢y terms on the quark mass regioM?2 seems to be proportional to quark

RHS of the BS equation preserves the low-energy relationsnassmg almost as predicted by the GMOR relation
Theorem 2 cannot be applied to the present case since the

interaction term of the ILA model breaks the local chiral

symmetry. However, one can prove that the low-energy re- Mi:
lation holds if one neglects thgp and ¢q terms inE“(q; P)

as well as thepp, ¢, ande terms on the RHS of the BS

equation by following the same argument of the proof ofyye have found that the, also grows asng increases almost
theorem 2 in(26]. linearly. Themg dependences df12 and f . are similar to

those obtained in chiral perturbation theory. It suggests that
ViIl. CONCLUSION chiral perturbation is applicable up to the strange quark mass

— (YR

2 mg. (65)

) chiral limit

We have solved the Schwinger-Dyson equation for theregion. . ) .
quark propagator and the Bethe-Salpeter equation for the We have studied the effect of tHE“(q,P)' term |n.t_he
pion in the improved ladder approximation of QCD. We true decay qonstgnt. We have found that it is significantly
have carefully treated the consistency of the equations i,lprglf f?rr\]/ arious mputl parameters. .'I'her_efoare,.m thT‘ frame-
order to preserve the low-energy relations associated witf/0'k Of the improved ladder approximatioB’(g; P) plays

chiral symmetry by using the Cornwall-Jackiw-Tomboulis 8" essential role to keep the chiral property. L
y yby g We have further shown the result of the approximation

1.00 neglectingép(q;P), ¢o(q;P), and ¢+(q;P) terms on the
o Mp=0 MeV RHS of the BS equations. This approximation is very useful
e \.\\ ----- mg=0 MeV Appro. . .
I e and makes the calculation easy greatly. But the result gives a
095 "~ - o smaller pion mass. This suggests that the simple picture of
Ny T - the ¢5(q; P) dominance in the BS equation is not so good, at
St T~ least in the present model.
< 0.90f NLoe ~ - . . —
~ T ~ So far, we have studied the symmetricq systems,
— — Me=10MeV ~L 0. uu, dd, etc. It is interesting to extend the present formula-
— - — mg=10 MeV Appro. ~ S~ . . . . .
0851 AR tion to asymmetric systems like the kaon. It is also interest-
TN T ing to introduce the Y1) breaking interaction to this frame-
=~ \‘ work and to study they-n’ systems. Such attempts are in
0.80 . ' L progress.
0.00 0.05 0.10 0.15 0.20
M2 [GeV’] ACKNOWLEDGMENTS
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(C)(2)08640356 of the Ministry of Education, Science, N g [ ~ .
Sports and Culture of Japan. Xnm(d; P) = &ji T[( #<(Q;P)+ dp(a;P)g
APPENDIX N 1.
+ ¢o(q;P)P+ §¢T(q;P)(Pﬁ_ﬂP))75}
Here we write down the BS equation explicitly. In this ba

section the total momentum is denoted Bynstead byPg (A2)
for simplicity. First we define the regularized amputated BS
amplitudex®(q; P) by The BS equatiorf49) reads

R _ P B P . ) )

PUPTIME PR L. 1(q—§), (A1) ba@P)= [ KolakPIosiP). (A9

which can be expressed in terms of The components of the kernel are given explicitly by

Ks4a,k;P)=iCrg*(q, k)( _k)z, (A4)
iCrg%(,k) [ P(qk)—(Pa)(PK)  2(qk—k})[P?q?—(Pg)*+(Pq)(PK) - Pz(qk)]}
K K P)= + (A5)
el P2q?—(Pg)?| (a—k)? (q—k)*
Koo P) = iCrg?(a.k) 2(Pq—PK)[P2q?—(Pq)?+(Pq)(Pk) — P2<qk>] 6
Pe P?q2— (Pq)? (a-k)*
iCrg%(a.k) [ (PK)G2=(Pa)(qk) 2<qk—k%((Pq)(qk)—(Pk)q%]
K K P)= + , (A7)
orld P2>—(Pg)?|  (q—k)? (q—k)*
Crg(a.k) [ P?q?—(Pg)? 2<Pq—Pk)[(Pq)(Pk)—(qk)qz]]
K k:P Cro + , (A8)
oK)= G 2| (k2 (@K
o (Ceg*@k) 1, oo
KTT(q,k,P>—P2q2_(Pq)2 (q—k)4{(k 9?)[(Pa)(Pk)—P2(qk)]
+2(Pg—PK)[(Pk)a?— (Pa)(qk)]—2(gk—k»)[P2q?~ (Pq)2]}, (A9)
and other components are zero. The relations betwegiy; P) and &SA(q;P) are given by
P2 2 2 2 Pq 2 2 g
#s(q;P)=—+11a ———B(q+)B(q )1 ds(A;P)+1 97B(a%)—B(q%)]— - [B(a%) +B(a}) ]| ¢#(q;P)
2 2 P 2 2 3 . 2~2 215 .
+ (Pq)[B(q+>—B(q_>]—7[8<q_>+8<q+>1]¢Q<q,P>+[P 9%~ (Pq) ]¢T(q,P)} (A10)
1 2 2 y 2 P2 2 2 y y
¢p(0;P)= 5| [B(a%)—B(a*)]$s(a:P) +{ a”+ -~ B(a%)B(42) [ ¢p(0:P) +2(Pq) o(dliP)
_ 2 2 P_2 2N _ 2 7 .
(PO[B(a2)+B(q?)]+ - [B(9%)~B(a%)]| dr(a:P) |, (A11)

p? .
q2+7+8<qi>8<q2)]¢q(q;m

[ 1 ) 5 Pq.
¢Q(q;P)=K —E[B(q+)+B(q7)]¢s(q;P)—7d>p(q;P)—

P -
+ qZ[B<q2>+B<qi>]+Tq[BmZ)—B(qi)]]¢T<q;P>}, (A12)
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1. 1 - N
¢1(q;P)= 5| ¢s(a:P)— 5[B(a2) —B(a%)]¢p(a: P) +[B(a%) + B(a2)] ¢o(a:P)
P2 .
+ —q2+7—8<q%>8(qi>]¢T(q;P>}, (A13)
where
A:=[q’ —BX(q?)][a2 ~B*(a2)]. (A14)
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