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Momentum-space analysis of relativistic two-body equations with confining interactions:
Stability considerations
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Quark-antiquark bound states are considered using a relativistic equalEmequation for two spin-1/2
particles that includes negative-energy components of wave functions. In the limit where either particle’s mass
tends to infinity, the ET equation reduces to the one-body Dirac equation. The use of a scalar confining
interaction in the ET equation is found to produce imaginary eigenvalues for the bound-state energy, similar to
the findings based on the Salpeter equation. Retardation effects predict a modified static interaction in which
couplings to doubly negative components of the wave function vanish. This modified static interaction elimi-
nates the imaginary eigenvalues. However, the modified analysis can produce abnormal solutions with a large
relative momentum between the quark and antiquark when used with a scalar confining interaction. Anomalous
negative-energy components of wave functions result when a timelike vector confining interaction is used for
equal-mass quarks. In the one-body limit, the Klein instability occurs with timelike vector confinement. For
stability without regard to the type of confinement, the negative-energy components of wave functions should
be omitted [S0556-28189)06003-3

PACS numbsgfs): 12.39.Ki, 12.39.Pn, 03.65.Pm, 24.8%

I. INTRODUCTION confining potential is used in the Salpeter equafish un-
physical solutions have been found for negative valueg2of
The mass spectrum of mesons includes bound states if6—9]. Reference[10] reported that no physical solutions
volving two heavy quarks, such asb, and bound states could be found unless the admixture of scalar and timelike
involving one heavy and one light quark, such@s In vector confining interactions was weighted more heavily in

order to analyze these states within a unified formalism, it id2ver of the 2t|mel|ke vector form. A number of analyses did
desirable to have a two-fermion equation that tends to th&0t rePOrtE“<0 solutions, possibly for technical reasons.
Dirac equation with a static interaction for the light quark 70" €xample, if wave functions are expanded in a finite sum
when the other particle’s mass tends to infinity. This is calle®’ Gaussian functions, the ability to represent high-
the one-body limit and it is known to be the correct limit in MoMentum states can be lost depending on the truncation of
a quantum field theory based upon the sum of generalizet!® basis, and the instability shows up for high-momentum
ladder graph$1]. states. In some cases, unstable solutions were reported but
A suitable two-body equation that incorporates the onelhese were rejected on grounds that the normalization condi-
body limit for either particle has been developed by Man-tion for real eigenvalues was not satisfiéd,12,9. In other
delzweig and Wallac§2,3], starting with an analysis based analyses, the reduced Salpeter equation was used in which
on the Coulomb gauge in QED. Recently, a systematic rethe #** component was kept and the ~ component was
duction from the four-dimensional Bethe-Salpeter formalismdropped[13,14]. This avoids the instabilities because they
to a similar three-dimensional formalism has been developedccur only when they~ ~ component is included.
in which the one-body limit is incorporatéd]. This is called This E?<0 instability was analyzed by Parramore and
the equal-timgET) formalism. It involves integrating out the Pickarewicz[8,15] based on the fact that there is a direct
time components of relative momenta. The ET propagator ignalogy between the Salpeter equation and the coupled equa-
essentially the same one derived by Mandelzweig and Wakjons of the random-phase approximatitRPA) [13,6]. In
lace for instant interactions and it takes a simple form inthe RPA equations, particle and hole states are coupled and
momentum space. In this paper, we apply it to relativistice2< o solutions arise if a state with an admixture of particles
bound states involving two quarkkb, cc, bu, or uu. and holes has a lower energy than the starting ground state.
When it comes to modeling the interactions and dynamic§he E2<0 solutions for the Salpeter equation also imply that
of confined quark systems by use of the Salpeter equatioone has started from the incorrect ground state. For each
with instantaneous interactions, instabilities have been disE?<0 eigenvalue, there is a pair of solutions with conjugate
covered, generally when quark masses are light. If a scaldmaginary values oE, one of which corresponds in the time
domain to an exponential growth of the amplitude. Such so-
lutions are unphysical. Thouless’s criterion for stability of
*Electronic address: ortalano@quark.umd.edu the RPA equationgl6,17 was applied to the Salpeter equa-
"Electronic address: wallace@quark.umd.edu. tion by Parramore and Pickarewi¢8]. They showed that
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negative eigenvalues @2 could occur for scalar confine- tions could not be obtained for the Salpeter equation with
ment, but not for time-like vector confinement. Calculationsscalar confinement, and for the ET and other equations of
demonstrated the instability for quark masses of up to 90@Refs.[21,22 for timelike vector confinement.

MeV. The analysis of Ref9] also reported imaginary eigen- All of the instabilities discussed above are obtained for

values, but did not reproduce the results of R&f.in detail, ~ instant interactions. In order to go beyond the instant ap-
apparently because different basis functions were used to eproximation, a systematic ET framework was developed in
pand the wave functions. Ref. [4]. This provides a consistent reduction from four-

The fact that the solutions with imaginary eigenvalues dadimensional(4D) dynamics to 3D dynamics such that the
not satisfy the normalization condition for positive-energy propagator is reasonably simple and the interactions incorpo-
eigenvalues has been used as an argument for ignoring thefite the complications arising from retardations. The lowest-
[11,12,9. This argument could be applied to RPA theory, order interaction is obtained by evaluating the expression
but there we know that the imaginary eigenvalues are symp-
toms of a much deeper problem. In this work, we regard the Ver=(Go) HGoVGo}{Gp) 1, 1.1
appearance of imaginary eigenvalues in the spectra of rela-
tivistic equations when confining interactions are used to bevhereG, is the free propagator for a quark and antiquafk,

a sign that the equations are not formulated correctly for as the lowest-order 4D interaction, and brackets indicate in-
confining situation. Some of the reasons why the derivationgegration over relative momenta. Equatidnl) was derived

of relativistic equations may fail include the fact that theyby Levy [23] and Klein [23] with G, being the Bethe-
generally assume free propagators, when in fact quark propaalpeter propagator. In that case, one has a formalism for
gators should not have poles corresponding to freely propancorporation of retardation effects into the Salpeter interac-
gating asymptotic states. Moreover, the QCD vacuum hagion, but the one-body limits are not obtained when the
condensates that must be taken into account in order to d@ethe-Salpeter kernel is truncated at finite order. In order to
scribe the excitation of a quark-antiquark pair from theincorporate the one-body limit, a form f@, was used in
vacuum. Ref. [4] that leads to the three-dimensional propagator of

It was suggested by Parramoe¢al. [8,15] that scalar Mandelzweig and Wallace. For either case, when an instant
confinement should be ruled out because of the instability ofnteraction Vi, is used on the right side of Ed1.1),
the Salpeter equation and the fact that it can be avoided byhere Vs, does not depend on the time component of
use of a timelike vector form of confinement. However, thismomentum transfeq®, thenVer= Vi sane. IN the more gen-
prescription can lead to another instability when the one okral case, the right side of E€l.1) involves aV that depends
the quarks is ||ght and the other heavy. Timelike vector Cconpn qo' and then one obtains a three-dimensional retarded
finement, in the one-body limit, yields the Dirac equationjnteraction.
with a vector confining interaction and this has an instability  |n this paper, we consider the static limit of the ET inter-
associated with the Klein paradox. Thus, scalar confinemeniction of Eq.(1.1) after the inclusion of retardation effects.
causes an instability in the Salpeter equation for equally mas=or exchange of a boson, this is a modified instant interac-
sive, light quarks, and timelike vector confinement has anjon, which we denote as ET-S in order to indicate that it is
instability in the one-body limit, i.e., in the Dirac equation. the static limit of the ET interaction. It differs from the usual
__ Tiemeijer and Tjor{18,19 considered the bound states of instant interaction because all interactions coupling to doubly
gg systems using the ET equation and instantaneous interanegative-energy sectors tend to zero a4 -1/0, and thus the
tions. Calculations were performed in coordinate space by,™ ~ components of wave functions become decoupled.
integrating outward front=0. This analysis did not report Similarly for the Salpeter case, one obtains a modified in-
imaginary eigenvalues. Some spurious continuum solutionstant interaction when the static limit is takafter including
were noted at real and positive energies and these were restardations, the modification being that couplings to doubly
jected as being incompatible with bound states. negative sector vanish.

We have performed an analysis in momentum space using For a one-gluon-exchange interaction, the ET framework
the ET equation. Our analysis determines a finite set of enef Eq. (1.1) is directly applicable. The result is that the ET-S
ergy eigenvalues from a matrix equation that is developed binteraction (or the Salpeter interactipnshould omit cou-
expanding solutions in a finite set of spline functions. Aplings to — — states in the static limit. Although confining
similar momentum-space analysis was performed by Spendateractions are far less well understood, we consider the
and Vary for the Salpeter equation and this found imaginanhypothesis that couplings te — states also should be omit-
eigenvalues[7]. We have reproduced selected results ofted for confining interactions.

Refs.[7,18,19. We confirm the previous findings of imagi- This paper considers meson spectra for systems of two
nary eigenvalues for the Salpeter equation. We also finduarks based on several forms of relativistic dynamics and
imaginary eigenvalues for the ET equation in addition to reakonsidering scalar and timelike vector forms of confinement.
and positive eigenvalues. Fd&>>0 solutions, we obtain Calculations are performed for the relativistic Salinger
close agreement with the results of Tiemeijer and Tjon wherequation(also called the reduced Salpeter equatidor the

the same interactions are used. In both ET and Salpeter equdalpeter equation, and for the ET equation using the usual
tions, the instability shows up in a similar fashion: predomi-instant form of interaction and the modified instant form,
nanty** and¢~ ~ components. denoted by ET-S, which omits couplings to the doubly nega-

A recent analysi§20] has considered the ET equation tive states. We show that a static scalar interaction modified
along with two similar equationf21,22 that also incorpo- in momentum space so as to omit couplings—te- states
rate the one-body limit. The results indicate that stable soludoes not have thE2<0 type of instability. This is obvious
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for the Salpeter equation because omission of-the states The time components of the particle momenta are then ex-
produces the relativistic Schtimger equation, which corre- pressed as
sponds to a positive-definite Hamiltonian. For the ET equa-
tion, we also find that all solutions ob&?>0 in the modi- 0 1 0. o
fied static limit, P1=E;=5 P+« (2.4
For light quark masses, we find abnormal solutions that
are plane-wave-like with high momentum and low energy 1
when the ET-S interaction is used. This is traced to the pI=E,==P%—«°. (2.5
VF= =" and V- """ couplings in the ET-S interaction, 2

which can produce an effective interaction that is not confin- . o .
P Considering the equation in the c.m. frame, another choice of

ing. The paper is organized as follows. In Sec. II, we stateh lati d by Wall d Mandel )
the ET equation in momentum space and develop a partiaE— e relative energy was used by Wallace and Mandelzwelg

wave analysis in the c.m. frame. By omitting couplings to 3] and by Tiemeijer and Tjof19], namely,
some of the components, we can obtain the Salpeter or rela-

tivistic Schralinger equations from the ET equation. A o_mi—m% 26
simple interaction including a scalar or timelike vector con- o= 2P2 "’ (2.6
fining interaction and a vector gluon-exchange interaction is

considered as described in Sec. Ill. Because the confiningor equal-mass particles, the two forms agree in the c.m.

interaction is quite singular in momentum space, speciajyame, both giving<®=0.
methods are developed in which the singularities are treated |, the ¢.m. frame of the system, a somewhat simpler form
correctly. Our numerical methods for singular interactionsys pe equation is obtained, after multiplication 1379/78 as

are described in Sec. IV. Results for the mass spectra aggows:
presented in Sec. V. Finally, we offer some concluding re-
marks in Sec. VI. 1 h(—
{ —E+Ko—h1(p)} AP
2 €y

II. RELATIVISTIC TWO-BODY EQUATION

The relativistic bound state of two fermions is analyzed hy(p)

1 0 0.0\
EE_K —hy(—p) =717,V V=0, 2.7

using the following two-body equation, originally derived by €1
Mandelzweig and WallacéMW) [2,3] for instant interac-
tions: where h;(p)=«;-p+ Bim; is a Dirac Hamiltonian for par-
ticlei ande = \/mzi +p?. The total energy in the c.m. frame
{(Pr— M)A+ (Po— M)\ — V¥ =0, (2.1) is E and the relative energy ig°.

Spin and momentum dependences for two Dirac particles
where p; and p, are four-momenta for the two fermions, are expected to be described in a reasonable way by use of
pbi= ;- p; for i=1,2 with y/* being the Dirac matrices for the the equation. The equation is symmetric in its treatment of
two particles, and/ denoting the interaction. This equation the two particles and has a covariant form. Moreover, it is
is denoted interchangably as the MW equation or the ETcharge-conjugation symmetric when the interactignis
equation. It also incorporates the Salpeter equation and theharge-conjugation symmetric, and then for each state with
relativistic Schrdinger equation when suitable truncations eigenvalueE there is a corresponding state with eigenvalue

of the interactions are made. Operatatsare defined by —E. If the h;/¢; operators are replaced by unity, E8.7) is
transformed to the Breit equation, which lacks charge-

_mi- pis 2.2 conjugation symmetry. In the limit in which mass, or m,
! € ' is infinite, the equation reduces to the Dirac equation for the

o A lighter particle. Finally, there is a well-defined angular mo-
where p;, =p;—(p;- P)P. Here P=P/\/P? is a unit four- mentum operator in the c.m. frame and thus a partial-wave
vector formed from the total momentum=p,+p,, of the  analysis is straightforward.

system, and ¢= \/miz— pi. In the c.m. frame, P In this paper, we consider an instant interactibtthat is
=(1,0), pi,=(0,p;) has only space components, aagd charge-conjugation symmetric and an instant interaction that
= /m?+p? is the usual relativistic energy. The operatafs ~ Omits couplings to- — states, and thus is not charge conju-
in Eq. (2.1) reflect the fact that negative-energy states of thedation symmetric.
fermions propagate backward in time. A form of the eikonal The square oh;/€; equals 1. Thus, these operators have
approximation is used in the derivation to include portions oféigenvaluegp;=+1 or — 1. It is convenient to use the cor-
crossed graphs, as is required so that the one-body limits afésponding eigenfunctions for expansion of the wave func-
incorporated. This leads to freedom in the choice of the relation. They are defined by
tive energy in the 3D reduction. Here we use the constraint
on relative energy as given by Phillips and Wallgeg, hi(p)u’i(pip) = pi €U’ (pip), 2.9
namely,

and they have a Hermitian orthonormality property

1
K°=§(61—52)- 2.3 [u” (p'P)1 P (pp)=36, - (2.9
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It also is convenient to regard the 16-component wave
function @ a 4 by 4matrix, with its left index referring to XTr X2 (p)1T Va(pp')
particle 1 and its right index referring to particle 2. In this "
convention, particle-2 Dirac matrices are transposed and o
placed to the right off so that the equation takes the matrix XY X, taram(POT YT (2.19
form

Although kinetic terms in the equation take a rather simple
¥(p) form, the interaction terms are rather involved. They depend
on the masses of the quarks because of the Dirac spinors in
¥ [Ey—hy(—p)]" the basis functions. S .
27 N2(=P The interaction terms may be simplified by using a second
d%p’ set of basis functions whose matrix structure is simpler,
Sl

(27

ho(—p)

€2

h.(p)

€1

T
+

[El_hl(p)]q’(p)[

3Vn(p,p')70fn‘1’(P')FI7’°T, (2.10 . o
XLsamM(P) =8V s{p), (2.17

where each ternmsia 4 by 4matrix. The interaction has been where the fourt’ matrices are
expanded as follows:

g 1 (0 1) P 1 ( 0 1)
Up.p) =3 T LTH2V(pp), (21D 2\1 oot t o 2l-1 o)
. . . : . . 1(1 O 1/1 O
where the Dirac matrices associated with the interaction B=— . E=— ) (2.18
terms are denoted by, . J210 -1 y2\0 1

Suitable basis functions for expansion of the wave func- _
tions are products of plane-wave spinors and standard eigefhese are 4 by 4 matrices composed of 2 by 2 blocks nor-
functions of total angular momentum as follows: malized in accordance with the orthogonality condition

Xflspazm(p):upl(Plp)y'I:ASJ(p)[upz(_PZp)]T- (2.12 Trf de[XiLSJM(p)]TXers'JM(P)= 0ijOLL Osg -

. . . . 2.1
These basis functions also are 4 by 4 matrices, owing to the 219

outer product of Dirac spinors involved. Orthonormality of the new basis functions are related to the previous ones by a
the basis functions is expressed as linear transformation

XLsam 4 LSL’S
(2.13 L

and the transformation coefficients are smooth functions of
p=|p|. Elements of the transformation matrix are developed
in the Appendix. Thus we arrive at

Tr f QXS P X S 3 (P) = 05y 189,000 10515, AP= 2 ML (D)X gou(P), (220
jL's’

where the trace is over the 4 by 4 matrix.
For a state with definite total angular momentdnand
with eigenvaluel,= M, the wave function is expanded as

p1P2 V91P2¢,71:Tz p)= Mplpz,] ij ,(p.p’
v S G"Y (p)x‘[gpr(p)- o1g VIS (P.p") |s,|%;k 2l (p)Vis) e (P.P)
L.Sip1.p2 P o105,k
XM e (P, (2.20)
A straightforward projection yields coupled equations for the
allowedL, S, and rho-spin components as follows: with simpler interaction terms defined by
L 0 p1P2 vik " — pp’ d0 do
EE(P1+P2)—K (p1—p2) —p1p2(€1t €2) |G 5 %(P) isirs'(PP7)= (2m)° p p’
_ 1\ JP1P20 10 ’ 010 ’ . ,
= ZL, y dp'Viste 2(P.p)G (P, (219 XTr{[XfSJM(p)]T; Va(P.P) YT Xl e o
gq,0,L°,
with the interaction terms being defined by x(p’)FIyOT}. (2.22
VPP2T192( nt) = PP do f do ., The M matrices absorb all the dependence on quark masses
LSL'S (2m)3 P P from the Dirac spinors.
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TABLE |. Coefficients used in Eq.2.23). IIl. QUARK-ANTIQUARK INTERACTION
i j j The best understood part of the quark-antiquark interac-

j a bg c o . .
tion is due to gluon exchange at a short distance. In this

1 -1 4-2s(s+1) +1 paper, the confining interaction is modeled by a simple phe-

2 -1 —2+2s(s+1) +1 nomenological potential.

3 +1 —2+2s(s+1) +1 At a short distance, the dominant part of thg interac-

4 +1 4-2s(s+1) +1 tion is associated with gluon exchange, which is Lorentz
vector and has the form

In this work, the interaction is based on a confinement e Amagr(g?)

term that may be scalar or timelike vector and vector gluon- V()= ———, (3.1)

exchange terms. For the case of scalar confinement, the in- q

teraction is as follows: whereg? is the square of the three-momentum transfer. Run-

ning of the coupling is described bfqg?). In this paper, we
V(p,p' )=V (p—p' )+ v vV (p—p’). (2.23 show the equations with an arbitrary form fcg?) but our
calculations are based upofg?)=1, i.e., no running.
The partial-wave projection of the potential involves the

This yields integral

a1~ bR MO,y g1 7007
(224} 2T (pfpr)z q2 2ppr
(3.2

where the partial-wave projection of each potential is defined ) _ o )

similarly to Assumingr(0)=1, the partial-wave projection may be split
into a Coulombic part arising from#a,/q? and a part as-
sociated with running of the coupling that has no singularity

! 1 o .
V|Ve°(p,p')=%f lde|(x)vVEC(p_p/), (2.25 atq-=0, as follows:
2]

"2 2y _
Vi%ip,p')= im u(2)+ 22 [P gqr) N 1]
with x being the cosine of the angle betwegrandp’ and T u—0 mJ(p=p") q
Pi(x) being the Legendre polynomial of orderThe coeffi- 5 o o
cientsa’ andb!S are simple and they are given in Table I. The X P, p™tp —q_) ) (3.3
subscript orb! indicates that it depends on the spin quantum 2pp’
numbers.

For timelike vector confinement, the first term of Eq. Partial-wave projection involves Legendre functions of the

(2.23 becomesy?y3vei(p—p’), and Eq.(2.24 is altered ~ Se€cond kindQ,(Z), with argument
by replacement of the coefficientg by coefficientsc;, as 22 2
given in Table I. An admixture of scalar and timelike vector D i
confinement may be obtained by using a linear combination 2pp’ '
of the coefficientsa; andc; .

When parity is conserved by the interactions, half of the We assume a phenomenological, scalar confining interac-
16 partial-wave components vanish in any given state. Théion of the following form in coordinate space:
parity of the basis functions js;p,(—1)-, wherep,; andp, cont.
factors account for the intrinsic parity of Dirac spinors. For a VEH(r)=C+«r, 3.9
fermion-antifermion pair, we choose to treat the antifermion
as a positive-energy antiparticle rather than as a negaﬂvé"-’ A linear potential in coordinate space tranforms to a sin-

energy state propagating backward in time. This convention o
N propagating ular potential in momentum space. In order to handle the

assigns positive energies and an extra intrinsic parity factoy. : - ; :
singularity, we use a limiting procedure with nonsingular

of Pgg=—1to eachqa state; i.e., the total parity ip;p» potentials as follows:
(—1)Lqu. With this convention, thejq states of parity
(—1)Jqu involve nonzero values of eight components

p1pP2 _ ++ ++ +- + - -+ -+
GL,S - GJ,O ’ GJ,l ’ GJ+1,1’ GJ—l,l’ GJ+1,1' GJ—l,l'
G,o , andG;; . States of parity ¢ 1)’**P;involve non-
zero values of the remaining eight componer@§£?  which corresponds in momentum space to

(3.9

hereC is a constant term and is the string tension.

e M

, (3.6)

2
Vveori(r)y=C+ « lim i
(9,u2

10 r

:GJ+++1,1, .;r:rl,lv Io’, If7 Gig’ Gif, Gjy11, and P 1
G,-1,1- An exception isJ=0 states which have only four  \confq)=c(27)353)(q)+ 47k lim (_—

1 A . 2. Jul (2 2y "
nonvanishing components that are obtained by omitting the u—0\ M (g°+ u)

L=J-1 andL=J, S=1 components. (3.7
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Partial-wave projection yields \/PLP2:7102
LS m;L’S",n
Ve, p’)=Ca(p—p')+ —lim —2-‘92 Qi(2). (3.8 P in [ Pugp P1p2.0102, '
PP PP g 2] =) = = |, @), AP B(PIVSEI G (PP )BA(P). (46

Logarithmic factors inQ;(Z) of the form If(p—p’)?+u?]  Forl,,andK:? the integration ranggp, ,p,] is the over-
become singular whep=p’ and u=0. The resulting sin- lap region where the product of the participating splines is
gularity of 9°Q,/du? is 1U(p—p')>. nonzero. The resultant matrices are banded matrices with
In summary, the potential used in this work contains aregard tom andn because only splines which are near neigh-
short-distance gluon-exchange interaction that is vector andlgors overlap. For the potential terms, the integration ranges
long-range potential with linear and constant terms that mayover the range where both spline functions are nonzero.
be scalar or timelike vector. Singularities @=0 arise in  Given the smooth properties of the splines, the potential sin-
both the linear and 1/interactions. In the next section, the gularities atp=p’ may be handled, as will be discussed
numerical methods used in our momentum-space analysis ghortly. The resulting matrix equatio@.2) is solved using

these singular interactions are described. standard methods for the generalized eigenvalue problem to
obtain the rest energi, which is the mass of the bound
IV. NUMERICAL METHODS system.

The potential is transformed from the plane-wave basis

¥sing the transformation matrikl ’L’l,‘;z,'iLS(p) of Eq. (2.20.
We combine the spline functions and transformation coeffi-

cients as follows:
2 (P =Bn(PMLE](P). 7

whereB(p) are cubicB-splines with continuous second de- Inserting the specific forms for the confining and vector
rivatives andC{Y’2 are the unknown spline coefficients that terms as in Eq(2.24), the potential takes the form

must be determined for each solution. Each spline function oy "

vanishes outside of a finite range of the argumpnthat is P1P2:9102 :f udp’ P12 ] jseonf '
controlled by selecting a sequer?ce of knot Sointsp. The choiceVLS'm;L'S"n P d o/ d ; fisism(PA2VITH(PPY)

of knot points and spline functions used in this work follows . P

closely that used by Spence and V4&R} in a momentum- +b'sVYe"(p,p’)}flst?g',;n(p’)- (4.9
space analysis of the Salpeter equation. Neighboring splines o ] )

overlap such that the superposition can describe a smoothky/hen timelike vector confinement is used, the only change
varying wave function of the type expected for bound states'S t0 replace the coefficients by c;.

Each wave function component is expanded in terms of
finite number of spline functiong24] as follows:

N
GlY?(p)= 2 ClY7Ba(P), 4.0

Substituting Eq.(4.1) into Eq. (2.15, multiplying by At this point, the labels folp spins, spins, and angular
B.(p), and integrating ovep yields a matrix equation for Mmomenta are omitted for clarity by abbreviating the
the spline coefficients, as follows: Vg2 asVm,. Then it follows that the potential matrix

required may be expressed as

1 1
> {§E<p1+p2>lmn—§<p1—p2><K%nn—K?nn>]Cfgfﬁ o
" Vinn= 2, [V blvyed, 4.9
Is,)
— 1 2 pPp2
A P1P2(Kmnt Kinn)Cig where the confining and vector terms are each defined by
Pu !
P1P2.0102 0102 VX Ef d p“d i Vip,p ) f(p'). (4.1
o3 VLS,m;L/S/,nCL/S/n} 4.2 = |, 8P | R T (PIVIRo(p). (410

The various contributions to these potentials correspond to

where those of Eqs(3.8) and(3.3). The confining and vector terms
by are written as follows:
o= [ " dDB()BL(), 4.3 )
P Vesn'=CViant —Viny 4.11
Pu
Knn= f . dPBu(P)By(P)es(p), 4.4  and
|
ag
pu VVGC= _[Vllr +Vrun]. (412
K= Jp dpBn(p)Bn(p)exp), (4.9 g omnmn
|

The simplest matrix occurs for the constant interaction,
and ie.,



1714 ORTALANO, BELL, WALLACE, AND THAYYULLATHIL PRC 59

c Py Eq. (4.16. Two powers ofp—p’ arising from the differ-
Vin= f dpfn(pP)fa(p). (4.13  ences of spline functions are sufficient to regulate the singu-
P larity in the first integral. For the interactions of interest, the

The part of the gluon-exchange interaction that involves runSingular integral involving/dp’A(p,p’) may be done ana-

ning of the coupling constant also may be calculated withoutytic@lly as a principle value. _ _
difficulty. It takes the form There are two singular potentials which need to be

considered, namely, the and 1f potentials. First con-

un Pu oL, sider the linear potential for which A(p,p’)
Vinn= Efpl dp y dp’fm(p) =1lim,,_o(#*/9u*)Qi(2). The singular parts are isolated by
! use of the identity
ep? LT@)-1] [ pP+pEa?| QI(2)=P((Z)Qu(2)~Wi-1(2), (4.18
X ) 28— [Pi| T (P,
(=P d whereQg(Z) has the logarithmic singularity,
(4.19
- , : . . 1 [(p+p')+p?
with the integral overg being nonsingular. It is performed Qo(2)= 5In| —————1, (4.19
numerically for cases involving(g?)# 1 (not considered in 2 [(p—p)P+p

this papey. . )
The remaining term&/",, and V2" can involve singular P'(Zl) is the Legendre polynomlal, andW|_1(Z)

integrands which must be treated with care. The simplest >m=1(1/M)Pn-1(Z)Pi-n(Z) is also a polynomial. It fol-

case is when the participating splines do not overlap, angP"s that

thus the singularity ap=p’ is not encountered because it

2 2
lies outside the integration range. Then the integrations are ;. ‘9_Q (2)= lim ‘9_Q (2)+P/(1) lim Qo(2)
similar to the ones just discussed and are performed numeri- o 92 ! p0 Ou? 0 ! w0 PP’
cally.
When the singularity ap=p’ lies within the integration R(p,p’)
range, the general form to be considered is + T (4.20

Py ' . :
Amn:f dp p,“dp’fm(p)A(p,p’)fn(p’), (4.15  whereR/(p,p’) is the nonsingular part,
P

P

whereA(p,p’) is symmetric with respect to interchangepof Ri(p.p") =L Pi(Z0) = 11Qo(Z0) +(P1(Z0) = Pi (1)]Qol Z0)
andp’, and has a singularity gi=p’ no more divergent -W/_4(Zyp), (4.2)
than 1/p—p’)% The limits of integration are the range

[p,,p.] where spline functiori,,(p) is nonzero andlp| ,p,,] and primes denote derivatives with respecitlereZ, is Z

wheref,(p’) is nonzero. evaluated ap=0. This leads to
As a result of the symmetry, the integral may be rewritten ; a , b c
as Vin=Vart Pl (L)Vint Vi, (4.22
1> b where the singular terms involvingfQ,/du? are evaluated
Amn=5fadpfadp’[fm(p)A(p,p’)fn(p’) as in Eq.(4.17),
+ (P )A(p,p)f 4.1 L ("
m(P AP, P)fa(P)]. (4.19 V%n:_ELdpJ’adp'[fm(p)_fm(pf)]

The new limits of integrationa=min(p,,p/) and b

=max(p,,p,) define a somewhat larger region with both 1 _ 1 ¢ —t(p'
spline factor vanishing on the boundary and outside the re- +p')2 —n')2 [fn(P) = fa(p")]
) ; : : (p+p")* (p—p")
gion of integration. At the boundaries whepe=a or p=b,
both spline functions vanish at least as fast ps- )2 or b 2p 2p
(p—b)3. The integral is now rewritten as + J;l dpfu(p)fa(p) o - m , (4.23
1(b (b . . o o
Amn=— EJ dpf dp'[fm(p)—fm(P)IA(P.P") the singular term involving jusDo(Z)/(pp’) yields
a a
’ 1\2
X[fa(p) = fa(p")] Vo —— P40 [Cqpr| P Tm(PDIL | (PHPT)
mn p p ’ n "2
2Ja "a P P’ 12" L(p—p")

b b
+ | dptuta(e) | dp A, @7

| fa®) fn<p'>1

’
Because of the symmetry, the second integral cancels two P P
terms from the first. The remaining terms are the same as in (4.249

b fu(p)fn(p)
+f deF(p,a,b),

a
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where

F(p,a,b)=(p+b)In(p+b)—(p+a)ln(p+a)

—(b—p)In(|b—p|)+(a—p)in(la—p|),
(4.29 B e

and the nonsingular terms yield —40F . . T e T
0" 0 0 0 0" o000
P (o] Ri(p.p’) :
u P 1P,
V: =f d ‘dp’f ——fa(p"). (4.2 —
me )y P n P"Tm(P) pp’ n(P). (428 FIG. 1. uu bound-state spectra for0and 0" states based on a
scalar confining interaction are shown for the M\dashed lines

Explicit results for thef5dp’A(p,p’) contributions have ET-S (solid lines, Salpeter(dash-dotted lings and ++ (dotted
been inserted for the singular terms based upon evaluatintyes analyses. Parameters used for the quark mass and the poten-
them with finitex, and then taking the limit aa—0. These  tial are given in Table II.

integrals produce finite results. Owing to the vanishing of the ]
spline functions at the limits of integration, the various inte-function also have been reproduced. Moreover, selected re-

grals overp which remain are nonsingular. sults of Tiemeijer and Tjon's coordinate-space analysis

The Coulomb interaction f/arises in Eq(4.12. In mo- [18,19 have been reproduced.
mentum space, it involves(p,p’)=lim,_,Q,(Z), which
has a logarithmic singularity gg¢=p’. Using the same iden- V. RESULTS
tity for Q, as above, we find that therlpotential yields a
matrix

Calculations were performed using scalar or timelike vec-
tor confinement in four types of analysis, each of which is
VU —yd e (4.27) realized by solving Eq(2.15 [in the finite-matrix form of
mnoomne mn Eq. (4.2] with different interactions. For example, the MW
whereVd andVe, are defined as follows: analysis uses an interaction that is obtained by neglecting the

q° dependence of the four-dimensional interactit(g?) via
(p+ p’)zl the substitution V(g2 —V(—q?). All components of

(p—p')? UP1r2:0102 gre nonvanishing. The ET-S analysis uses an in-
. teraction of the type that is obtained by evaluating the static
_ / limit of Eq. (1.1). The MW and ET-S interactions differ only
XU a(P)=Ta(P?)]+ Ldpfm(p)fn(p)F(p,a,b) by the fact that the latter has zero interaction components
coupling to G~ 7, i.e., VPr22" "=V~ P1P2=0 for all
(4.28 p1.p2- The Salpeter analysis is obtained when all interaction
and components that couple to — or — + states are set to zero,
thus leaving only those interactions
Py o’ vrREt oyttt T T vT Tt and VT T that couple to
V?nnEJ dpj Sdp’ f(PH{[P1(Zo) — 1]Q0(Zo) ++4 or — — states. For the relativistic Schfimger analysis,
P i all interaction components excegt **** are zero.
—W,_1(Zo)}n(p). (4.29 The coupled equations of the full MW analysis can be
reduced to the same form as the coupled equations of the
The expressions discussed above show how the matric&alpeter analysis. This is done by solving the equations for
needed in Eq(4.9) are calculated. To determine the confin-the G*~ and G~ " components and substituting the results
ing interaction, one combines Eq#&t.11), (4.13, (4.22, into the equations foG** and G~ ~ components. It pro-
(4.23, (4.24), and(4.26). To determine the gluon-exchange duces a somewhat complicated effective interaction in the
interaction, one combines Eq&.12, (4.27), (4.29, and  resulting equations fo6 ™" andG~~ components, and we
(4.29. The key point is that the use of spline functions thatdo not show the details. The point is that for equal-mass
vanish outside a finite range pfallows the singularities to quarks, the energy parameter of the MW analysis shows up
be handled exactly, leaving only finite integrands for the nu-only in the equations for th&** and G~ ~ components,
merical integrations. Gaussian integration is used to evaluatend the form of these equations is the same as for the Sal-
the integrals. Our methods for handling the singularities havpeter analysis. Therefore, the MW and Salpeter analyses both
been tested for the linear potential in the Sclinger equa- are equivalent to the RPA equations, but with different inter-
tion, for which analytical solutions are available. The actions, and both can be analyzed for stability using the
momentum-space analysis reproduces the analytical eigefhouless method. In principle, it is possible for both the ET
values and wave functions provided a sufficient number ofind Salpeter analyses to yield imaginary eigenvalues.
spline terms is used. Typically, our calculations use 60 spline For a static, linear, Lorentz-scalar confining interaction,
terms for each component of the wave function. The resulteur calculations yield imaginary values of the bound state
ing matrices have dimensions 480 by 480 for a wave funcenergy for both the MW and Salpeter analyses when the
tion with eight partial-wave components. Results of Spenceuark masses are less than about 500 MeV. Representative
and Vary[7] for the positive-energy components of the wavespectra ofE? are shown for these cases in Fig. 1. We also

d 1(® b ’ ’ 1
V=5 dp | A Tta(p) fu(p) 510
a a




1716 ORTALANO, BELL, WALLACE, AND THAYYULLATHIL PRC 59
0 e TABLE Il. Parameters used in this work.

~ _1ob i m, 0.250

E Me 1.590

<23

2 oot E my 4.945

a k (GeV?) 0.2
—-30F E g —0.3398
—40 C (Gev) -0.529

0" 00 0 0" 0" 00"
P

tic Schralinger analysis but the wave functions for abnormal

FIG. 2. uu bound-state spectra for0and 0" states based on a States have no resemblance to those of bound states. Rather,

timelike vector confining interaction are shown for the M#ashed
lines), ET-S (solid lineg, Salpeter(dash-dotted lines and + +

(dotted lines analyses. Parameters used for the quark mass and tHe@lculations.
potential are given in Table II.

they have the characteristics of plane wave or unconfined
solutions. This new type of solution is absent for the MW

The source of the abnormal solutions has been traced to

the doublep-spin-flip interactions/* -~ andv~ """, In

show the spectra for the ET-S analysis in Fig. 1 and one se
that theE?<0 solutions do not appear in this case. For the
relativistic Schidinger analysis, the energy is real aBd
>0, as expected. Spectra for the case of timelike vector co
finement are shown in Fig. 2. In this case, no imaginar)/'i
eigenvalues are present in any of the analyses for equal-m
guarks, but timelike vector confinement produces an instabil
ity in the one-body limit(Klein paradox. Our calculations
illustrate several points. The MW and Salpeter analyses a
mit E2<0 solutions for scalar confinement, and we find that
this result is unaffected by changes of spline parameters A
the number of splines used. Neither the ET-S nor the
analysis yields the imaginary eigenvalues. Consistent wit
the analysis of Parramore and Pickarewicz, Bie<0 insta-
bility of the Salpeter equation is removed when the-
states decouple. The corresponding instability of the MWt
analysis is similar to that of the Salpeter analysis; namely,
features predominant + and — — components with negli-
gible + — and— + components, thus approximating the Sal-
peter form. However, th&€2<0 states in the MW analysis
are sparser and they occur only Bf<—20 (GeVY.
Although the ET-S analysis eliminates ti#<0 solu-
tions, we find that there ae>0 solutions that are not nor-
mal bound states when quark masses are equal and less thi
500 MeV. For such light quarks, the static limit interaction is
guestionable. However, if it is used, abnormal solutions are
encountered for scalar confinement. The resulting energy caic

0.15

<
" . Q
be lower than the lowest bound-state energy of the relativis-= ©.05¢ %
5 5
S T
.0 -i- = g 0.00 s 2
[ - — -I: = =
150 - o
— N -0.05 1
=4 [— —_
Q -
© 1.0 --- 1
~ Lo -0.10 ! ‘
- o5k - ] 0 1000 2000 3000
! — e Momentum p (MeV)
0.00__ =r= ‘ . .
o- o ot o
JP

shows a deconfined solution that results whei '~

005

0.04¢

0.05¢

0.02¢}

0.01

0.00

égder to show the effect of these douhlespin-flip interac-
tions, we have performed calculations for light quarks in
which they are omitted. Figure 3 shows the spectra for the
rET'S analysis with and without the doulpespin-flip inter-
ctions for 250 MeV quarks and scalar confinement. Other
rameters used in the potential can be found in Table II.
The effect of the double-spin-flip interactions is quite dra-
matic. It causes the spectrum to become denser at low energy
d/yith the lowest states very close to zero total energy. The
++ component of the wave functions is dominant for the
pwest states shown in Fig. 3. In Fig. 4 we show the
momentum-space wave functio@" *(p) for the two low-
fest 0 states of Fig. 3, with and without including™ "
andV~"* 7. The left panel of Fig. 4 is obtained by includ-
ing these doublg-spin-flip interactions and the wave func-
ion does not resemble a bound-state wave function for the
i{owest state of a spectrum. Rather it looks like a superposi-
tion of high-momentum plane-wave solutions, as represented
on a spline basis. The right panel of Fig. 4 shows the wave
function that results from omitting™ =" andvV~"* "~ in
the ET-S analysis. It has the appearance of a typical bound-
state wave function and, as seen in Fig. 3, this state has a

—

0

1000 2000 3000
Momentum p (MeV)

FIG. 4. A comparison of the ET-S wave functi@" *(p) for
the lowest O states of Fig. Iscalar confinemept The left panel

* and

FIG. 3. A comparison of the ET-S bound state spectra for 250V~ ***~ components of the interaction are included. The right

MeV quarks and scalar confinement including” >~ * and

VvV~ "~ components of the interactigashed linegsand omitting

these componenisolid lines. for the spline functions.

panel shows the wave function that is obtained by omitting these
components of the interaction. Triangles show the knot points used
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2.0 p— '
- . Vv ff:V++,++_l_(v++,+—+V++,—+)£(V+—,++
e *
15F - . ] D
% e iV—+,++) (5.2
S 1.0} L 1
= — and
0.5¢ ] F—t— —t —t =\,
D=(4e-V" " TFVT T TTVTTTTI VT T,
0.0 ‘ . ‘ . (5.3
0 0 0" 0" S I, -
P For a scalar confining interactior\/ is confining,

V+—,+—:V—+,—+:_V++,++ and V+_'_+:V_+’+_.
FIG. 5. A comparison of the ET-S bound state spectra for 250Equation(5.3) therefore becomes

MeV quarks and timelike vector confinement including —~*

andV~ "~ components of the interactiqdashed linesand omit-

ting these componentsolid lines. Decaa=4e+2V ot fzovi— =+, (5.9

bound-state energy that is reasonable. The abnormal solu-
tions are present only when both quarks have mags Without the doublep-spin-flip term,V* ™~ ", D is positive
<500 MeV. When present, they are rather robust toand the effective potential is always confining. However, in-
changes; increasing the number of splines, changing thelusion of theV™ ™'~ " term inD can lead to the second term
spline spacing, setting all the pieces other than linear conn Ver becoming large and negative and it can dominate the
finement equal to zero in the potential, etc., have no effectfirst term inV4 for light quark masses and large momenta.
For timelike vector confinement, the spectrum is moreThis leads to & that is no longer confining at large mo-
normal but the negative-energy components of wave funcmentum values and wave functions such as are shown in Fig.
tions are not normal. Figure 5 shows the spectra with and. We have calculated the eigenvaluesDnf,, using the
without including thev* =% andV~"'*~ interactions in matrices that are obtained with the spline basis. There are
the ET-S analysis, for 250 MeV quark masses and timelikenegative eigenvalues for light quark masses when the
vector confinement. Figure 6 shows the wave function foV" "~ interaction is included, but none when it is omitted.
the lowest-energy 0 state with thevt—~* andv~ "+~ For timelike vector confinement, the interactions obey
interactions included. Oscillations in t@*~ components V'™ " =V "7 =4V T and VI TT =V
(in this caseG*~ =G~ ") indicate that these solutions are In this case the denominator of interest is
abnormal.
In order to provide some insight to the abnormal solutions
for scalar confinement and light quarks in the ET-S analysis, Dyector=4€—2V*H T 32vi— =T, (5.9
consider Eq(2.15) in the case thaB* =+ G~ " (appropri-
ate for equal-mass quarks in even-odd charge-conjugation

state$. A single equation folG** can be derived that has A\d@in one can have negative eigenvaluesbioke, whether
the symbolic form or not one omits th&* ~'~* term because thé* " * term

is anticonfining. This produces anomalous results for the

(E—26)G T =V4GTT, (5.2 G*~ components of wave functions in the ET-S analysis.
The fact that 4—2V* " ** can have negative eigenvalues
with for timelike vector confinement is related to the Klein para-
dox that is familiar in the Dirac equation. We have consid-
0.000 0.06 ered a combination of scalar and timelike vector confining
0.04 terms. There are negative eigenvalue®gf.,, with as little
—0.010 ' as a 25% admixture of timelike vector included.
c c 002 In order to check that incorporating theé" — = interac-
% -0.020 % tion is appropriate in the ET-S analysis, we have examined
E S5 0.0 all time-ordered perturbation theory graphs that contribute to
¥ —0.030 : the quark-antiquark matrix up to third order in th&, i.e.,
= 2 —0.02
++,++ ++,++ ++,p 0 0y, 4+ +
—0.040 oo T , =V ’ +V P1P2(GP1P2\/P1P2
++ T ph PPN Pt
—0.050 N -0.08 ‘ ‘ + VT 1P1P2GP1P2\/P1P2:P1PGPIP2\P1P2 T H L L
C 1000 2000 3000 0 1000 2000 3000 (5.6)
Momentum p (MeV) Momentum p (MeV)

FIG. 6. A comparison of the ET-S wave functions for the IowestWhere repeatef:i ,superscrlpts are. summed ov.er. I.n the inter-
0~ state of Fig. 4(timelike vector confinement The left panel ~MediateV#1P2:P172 term of the thrid-order contribution, one
shows a solution fo* " (p) and the right panel shows ™~ (p) may isolate the the contributions ¥6" '~ *. By evaluating

for the same state. Calculations are for 250 MeV quarks omittinghe static limit of thet matrix for a boson-exchange interac-
V*=~* andV~"*~ components of the interaction. tion, we find that the/* ~*~* interaction so determined with
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5.0 — - - 7.0 — I I
a5f T o — 0 T - — I
- e 650 T I —
Te0r — — T R — I -
_______ . > [ — .. 1
N2 g ] 6.0F — 1
b 35 L. - @0/ I . ]
A — - b [4a)] r -T- — . 1
3.0 550 ]
2.5 s . . . b — I
0~ 0~ o* o* 5.0 .
I oo o o o
P
FIG. 7. A comparison of the spectra of the ETilid lineg I
and ++ (dashed lingsanalyses for &c system. Values from ex- FIG. 8. A comparison of the spectra from the ETs8lid lineg

periment are shown by dotted lines to the left of the ET-S results.and ++ (dashed |inebana|yses for a heavy-“ghb_o) System for

J=0.
all boson-exchange graphs included should be reduced to 3/4
of the ET-S result. This occurs because some higher-orddiility for timelike vector confinement, because of the
graphs are included in Ed5.6), but are omitted from the Z-graph contribution to the effective potential and the fact
lowest-order ET-S interaction of Edq1.1). However, the thatV* "~ >0. This is the instability associated with the
analysis confirms that "~ =" #0 and we have verified that Klein paradox and it is related to the instability mentioned
the abnormal solutions for scalar confinement are presergbove for equal mass quarks because of the anticonfining
whether the calculations are based on the original ET-S interm in Dg¢ior-

teraction or a modified one in whici* —~* is reduced to In Fig. 8, we present our results for the spectrum bia
3/4 of its original value. _ _ system for scalar confinement using the ET-S and equa-

As the mass of both of the quarks increases, the negativgpns for J=0. Figure 9 contains the corresponding results
energy components become less important. Instabilities amg, j=1. Neither spectrum contains any imaginary eigenval-
not realized and the results for all cases approach the relatiyres, Wwhile the results are similar, there is a larger difference
istic Schralinger results based on only the ™™ piece of  petween the bound state energies for ET-S anel analyses

the potential. Figure 7 shows the diﬁerence between th(?or the bu system than for thec system. Typical mass dif-
ET-S and ++ analyses for acc system (Mg  ferences are 15-50 MeV for the lowest states and 25-86
=1590 MeV). This difference is relatively small especially pev for the second excited states when the Dirac one-body
for the lowest-lying states. Again no imaginary eigenvalue§mit is incorporated, as in the ET-S analysis.

are found for either the ET-S or thé + analyses. These

results have also been verified for lab system (n, VI. CONCLUSION

=4945 MeV).

Since the++ equation does not tend to the Dirac equa-  one motivation for including the negative-energy compo-
tion when one of the particles becomes infinitely massive, ityents is to incorporate the usual one-body limit, i.e., the
is interesting to compare the spectra of the ET-S antl  pjrac equation, for a quark interacting with an infinitely
analyses in a heavy-light system. Fof—<, the equation massive antiquark. The ET equation was derived specifically
for G™* corresponding to E5.1) is to incorporate the one-body lim[2,3]. When an instant,

scalar confining interaction is used in this equation, we find

iy 4 solutions with imaginary values of the energy, similar to
(E-m—€)G " =VerG" ™, (5.7 those that have been known for some time to exist in the
Salpeter equation with scalar confinement. Couplings to the

¢~ ~ components of the relativistic wave function are re-

with
rop =i o
Veﬁ:V++,+++V++,+— 1 V+—,++, 6-5; ; -o- = zzz ]
262—V+_’+_ ; [ — if_ = -z
(5.8 B 6.0 T = = ]
e e
. 55F — --- ]
where terms that vanish asii/—0 have been dropped from [ — - ]
Vei. The VT =" and V™"~ interactions vanish in the 500 . . . ‘
one-body limit and Eqgs.(5.7) and (5.8 are essentially 1- 1- E 1+
equivalent to the Dirac equation for particle 2. For scalar i3

confinement, the effective potential is always confining for

all values of massn,. Thus, for a heavy-light system, the  FIG. 9. A comparison of the spectra from the ETs8lid lineg
ET-S analysis does not have the abnormal solutions that oend ++ (dashed linesanalyses for a heavy-lighb(l) system for
cur when both quarks are light. However, there is an instad=1.
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sponsible. The analysis of Refdl8,19 did not report this Using the orthogonality properties of E@®.19 leads to
instability. Our momentum-space analysis reproduces the re-
sults of Refs[18,19 for real and positive energies when the

same parameters are used, but we find, in addition, solutions N -
with E2<0. MIEE s (P =Tr | dQulxUsm(P I X ER(P)-
Instabilities arise in relativistic two-body equations when (A2)

confining interactions are used in association with negative-

energy components of the full relativistic wave function. Dirac plane-wave spinors that are usedxﬁpr(p) can be
When imaginary eigenvalues are present, it means that thetgritten as

are quark-antiquark solutions with energy lower than the no-

particle state. This suggests that the vacuum should be modi-

fied by the formation of a condensate of quarks and anti- 1+p; 1-p; oip
quarks, thus requiring a new form of two-body equation to 2 9 6+ m;
be developed. ui(pip)=N,
Because a naive instant form of interaction is not consis- 1+pi oi'p  1-pi
tent with quantum field theory, we have explored the possi- 2 +tm, 2
bility that retardation effects would remove tB8<0 insta-
bility. Using a systematic reduction of the Bethe-Salpeter +m;
equation to three dimensions, one indeed finds that the inter- N;= 2e 0 T 1.2 (A3)

action for any boson exchange is altered by retardation ef-
fects. If one includes retardation effettsforeproceeding to
the static limit, a modified instant interaction results in whichThe transformation matrix is developed using E@s2) and
couplings togy™ ~ components vanish. If this rule is carried (A3) and the following identities:
over to the confining interaction, it removes the source of the
E2<0 instability, consistent with the analysis of Parramore
et al. We call the modified interaction ET-S, to indicate the " .
ET interaction in the static limit. o pYVsip)=p> Lo Va (), (A4)

The ET-S interaction does provide a formalism without L's’
the E2<0 solutions. However, for light quarks, abnormal
solutions withE>0 are found using the ET-S interaction and

. - -+

sc&laaconfmgment. These are traced Yo~ * and YWe(p)aT-p=p>, Rfﬁyﬁ”/su(p% (A5)
V*T7 77 couplings, which we have shown not to be sup- L's'
pressed in the static limit. The effective interaction can fail to
confine the quarks when the" -~ * andV* ~~* couplings
are included and the quarks are light. This gives rise to
plane-wave-like solutions that have low energy in the ET-S o pYlsfp)o’-p=p? Z/ Tff,yﬁ",su(p), (A6)
analysis with scalar confinement. For timelike vector con- LS
finement, an instabilityKlein paradox occurs in the one-
body limit and for equal-mass quarks there are anomalougnhere
negative-energy components of wave functions.

Our conclusion is that the ET equation is not suitable for

use with confining interactions except in special cases. For J+1
stability without regard to quark masses or type of confine- LSy =L =Lih =Lt ==/ 5371 (A7)
ment, the relativistic Schainger analysis with a static inter-
action must be preferred. It is an interesting question whether
the Dirac equation is the correct one-body limit for a confin-
ing interaction. The usual proof of the one-body limit in- [0l 0 _ o1 / J
volves nonconfining interactior4]. JJ=1m =1 .3+1 I+1d 2J+1
(A8)
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T9H=-Ti=—1, (A10)
APPENDIX
1 2yJ(J+1)

The transformation matrix between the two bases used for T =T, =
o 2J+1

) ) - ! 13417 (A11)
expansion of the wave function satisfies the relation

T}El,Jfl:_T%«l#l,J+1: (A12)

pP1P2 _ P1P2.] i
X2 (P)= 2 M2 (D)XLigau(P). (A1) -
LSJIM s LSL’'S L’S"IM 2J+1’
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with all otherL>S | R®S | andTSS, equal to zero. and
Let
a= , b=z c=2—/—1—7—, €+ M
2J+1 2J+1 2J+1
e 1 AL3 For the P=(— 1)Jqu case, we obtain for
T 2J+1 (A13) M’L)lspf;JS,(p) J2/(N;N,) the following matrix:
|
1=pip2  1=pip2 —ap+ ap+ 0 0 bp, —bp.
1+pip, —1-pip2  ap- ap- 0 0 —bp_ —bp-
ap. ap,  1-dpp, —1+dp;p,  bp- bp_ Cp1P2 ~Cp1p2
—ap- ap- 1+dpp, 1+dpp,  —bp. bp. —Cp1p2 —CPp1p2
0 0 —bp- bp_ 1+pip,  1+pp2 —ap- ap-
0 0 bp. bp. 1-pip> —1+pip>  aps ap,
—bp,  —bp, Cp1p2 —Cpip> ap- ap- 1+dpp; —1-dpsp;
bp- —bp_ —Cp1P2 —CP1P2 —ap+ ap; 1-dpip,  1-dpip2
When this version of the matrix M’lepi,'js,(p) multiplies the column vector with eIementszL,S,
=(XJ0: X530 X34 11X 3411 X3 X51X5-11.X5-10), oOne obtains the column vector with elementg/Y?
=(X3,0 X320 X3 1,0XT4 11 X31 X310 X311 X3 1,0 ,
For theP=(—1)""!P, case, the transformation matrlmflspf;Js,(p) J2/(N;N,) is as follows:
1-dpip  1-dpip  —aps ap. Cp1P2 CcpiP2 —bp- bp_
1+dpip, —1-dpip,  —ap- —ap- —CpP1P2 Cp1P2 bp. bp.
ap. ap; 1-pip2 —1+ppo —bp, —bp, 0 0
—ap- ap- 1+pip2  1+p1p2 bp. —bp, 0 0
Cp1P2 Cp1P2 bp, —bp.  1+dpp, 1+dpp, —ap- ap-
—Cp1p2 CP1P2 —bp- —bp- 1-dpp, —1+dp;p; aps ap,
bp- bp- 0 0 ap- ap- 1+pip; —1-p1p;
—bp, bp, 0 0 —aps ap. 1-pip2  1-p1p2
When this version of the rnmanigig(m multiplies the column vector with ebmemﬁiug
= (X3t 10 X5+ 10 X30 X3 0 X3-1.1:X5 11 X31.X31), one obtains the column vector with elementgy!Y?

ot —+ ++ = - —+ ++ —-
_(XJ+1,1'XJ+1,1!XJ,0 1X30 1X3-1,1:X3-1,1:XJ1 !XJ,l)-
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