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Momentum-space analysis of relativistic two-body equations with confining interactions:
Stability considerations
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Quark-antiquark bound states are considered using a relativistic equal-time~ET! equation for two spin-1/2
particles that includes negative-energy components of wave functions. In the limit where either particle’s mass
tends to infinity, the ET equation reduces to the one-body Dirac equation. The use of a scalar confining
interaction in the ET equation is found to produce imaginary eigenvalues for the bound-state energy, similar to
the findings based on the Salpeter equation. Retardation effects predict a modified static interaction in which
couplings to doubly negative components of the wave function vanish. This modified static interaction elimi-
nates the imaginary eigenvalues. However, the modified analysis can produce abnormal solutions with a large
relative momentum between the quark and antiquark when used with a scalar confining interaction. Anomalous
negative-energy components of wave functions result when a timelike vector confining interaction is used for
equal-mass quarks. In the one-body limit, the Klein instability occurs with timelike vector confinement. For
stability without regard to the type of confinement, the negative-energy components of wave functions should
be omitted.@S0556-2813~99!06003-3#

PACS number~s!: 12.39.Ki, 12.39.Pn, 03.65.Pm, 24.85.1p
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I. INTRODUCTION

The mass spectrum of mesons includes bound state

volving two heavy quarks, such asb̄b, and bound states

involving one heavy and one light quark, such asb̄u. In
order to analyze these states within a unified formalism,
desirable to have a two-fermion equation that tends to
Dirac equation with a static interaction for the light qua
when the other particle’s mass tends to infinity. This is cal
the one-body limit and it is known to be the correct limit
a quantum field theory based upon the sum of general
ladder graphs@1#.

A suitable two-body equation that incorporates the o
body limit for either particle has been developed by Ma
delzweig and Wallace@2,3#, starting with an analysis base
on the Coulomb gauge in QED. Recently, a systematic
duction from the four-dimensional Bethe-Salpeter formali
to a similar three-dimensional formalism has been develo
in which the one-body limit is incorporated@4#. This is called
the equal-time~ET! formalism. It involves integrating out the
time components of relative momenta. The ET propagato
essentially the same one derived by Mandelzweig and W
lace for instant interactions and it takes a simple form
momentum space. In this paper, we apply it to relativis
bound states involving two quarks:b̄b, c̄c, b̄u, or ūu.

When it comes to modeling the interactions and dynam
of confined quark systems by use of the Salpeter equa
with instantaneous interactions, instabilities have been
covered, generally when quark masses are light. If a sc
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confining potential is used in the Salpeter equation@5#, un-
physical solutions have been found for negative values ofE2

@6–9#. Reference@10# reported that no physical solution
could be found unless the admixture of scalar and time
vector confining interactions was weighted more heavily
favor of the timelike vector form. A number of analyses d
not reportE2,0 solutions, possibly for technical reason
For example, if wave functions are expanded in a finite s
of Gaussian functions, the ability to represent hig
momentum states can be lost depending on the truncatio
the basis, and the instability shows up for high-moment
states. In some cases, unstable solutions were reported
these were rejected on grounds that the normalization co
tion for real eigenvalues was not satisfied@11,12,9#. In other
analyses, the reduced Salpeter equation was used in w
the c11 component was kept and thec22 component was
dropped@13,14#. This avoids the instabilities because th
occur only when thec22 component is included.

This E2,0 instability was analyzed by Parramore a
Pickarewicz@8,15# based on the fact that there is a dire
analogy between the Salpeter equation and the coupled e
tions of the random-phase approximation~RPA! @13,6#. In
the RPA equations, particle and hole states are coupled
E2,0 solutions arise if a state with an admixture of partic
and holes has a lower energy than the starting ground s
TheE2,0 solutions for the Salpeter equation also imply th
one has started from the incorrect ground state. For e
E2,0 eigenvalue, there is a pair of solutions with conjuga
imaginary values ofE, one of which corresponds in the tim
domain to an exponential growth of the amplitude. Such
lutions are unphysical. Thouless’s criterion for stability
the RPA equations@16,17# was applied to the Salpeter equ
tion by Parramore and Pickarewicz@8#. They showed that
1708 ©1999 The American Physical Society
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PRC 59 1709MOMENTUM-SPACE ANALYSIS OF RELATIVISTIC . . .
negative eigenvalues ofE2 could occur for scalar confine
ment, but not for time-like vector confinement. Calculatio
demonstrated the instability for quark masses of up to
MeV. The analysis of Ref.@9# also reported imaginary eigen
values, but did not reproduce the results of Ref.@8# in detail,
apparently because different basis functions were used to
pand the wave functions.

The fact that the solutions with imaginary eigenvalues
not satisfy the normalization condition for positive-ener
eigenvalues has been used as an argument for ignoring
@11,12,9#. This argument could be applied to RPA theo
but there we know that the imaginary eigenvalues are sy
toms of a much deeper problem. In this work, we regard
appearance of imaginary eigenvalues in the spectra of r
tivistic equations when confining interactions are used to
a sign that the equations are not formulated correctly fo
confining situation. Some of the reasons why the derivati
of relativistic equations may fail include the fact that th
generally assume free propagators, when in fact quark pr
gators should not have poles corresponding to freely pro
gating asymptotic states. Moreover, the QCD vacuum
condensates that must be taken into account in order to
scribe the excitation of a quark-antiquark pair from t
vacuum.

It was suggested by Parramoreet al. @8,15# that scalar
confinement should be ruled out because of the instability
the Salpeter equation and the fact that it can be avoided
use of a timelike vector form of confinement. However, th
prescription can lead to another instability when the one
the quarks is light and the other heavy. Timelike vector c
finement, in the one-body limit, yields the Dirac equati
with a vector confining interaction and this has an instabi
associated with the Klein paradox. Thus, scalar confinem
causes an instability in the Salpeter equation for equally m
sive, light quarks, and timelike vector confinement has
instability in the one-body limit, i.e., in the Dirac equation

Tiemeijer and Tjon@18,19# considered the bound states
q̄q systems using the ET equation and instantaneous inte
tions. Calculations were performed in coordinate space
integrating outward fromr 50. This analysis did not repor
imaginary eigenvalues. Some spurious continuum soluti
were noted at real and positive energies and these wer
jected as being incompatible with bound states.

We have performed an analysis in momentum space u
the ET equation. Our analysis determines a finite set of
ergy eigenvalues from a matrix equation that is developed
expanding solutions in a finite set of spline functions.
similar momentum-space analysis was performed by Spe
and Vary for the Salpeter equation and this found imagin
eigenvalues@7#. We have reproduced selected results
Refs.@7,18,19#. We confirm the previous findings of imag
nary eigenvalues for the Salpeter equation. We also
imaginary eigenvalues for the ET equation in addition to r
and positive eigenvalues. ForE2.0 solutions, we obtain
close agreement with the results of Tiemeijer and Tjon wh
the same interactions are used. In both ET and Salpeter e
tions, the instability shows up in a similar fashion: predom
nantc11 andc22 components.

A recent analysis@20# has considered the ET equatio
along with two similar equations@21,22# that also incorpo-
rate the one-body limit. The results indicate that stable so
0
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tions could not be obtained for the Salpeter equation w
scalar confinement, and for the ET and other equations
Refs.@21,22# for timelike vector confinement.

All of the instabilities discussed above are obtained
instant interactions. In order to go beyond the instant
proximation, a systematic ET framework was developed
Ref. @4#. This provides a consistent reduction from fou
dimensional~4D! dynamics to 3D dynamics such that th
propagator is reasonably simple and the interactions inco
rate the complications arising from retardations. The lowe
order interaction is obtained by evaluating the expression

VET5^G0&
21^G0VG0&^G0&

21, ~1.1!

whereG0 is the free propagator for a quark and antiquarkV
is the lowest-order 4D interaction, and brackets indicate
tegration over relative momenta. Equation~1.1! was derived
by Levy @23# and Klein @23# with G0 being the Bethe-
Salpeter propagator. In that case, one has a formalism
incorporation of retardation effects into the Salpeter inter
tion, but the one-body limits are not obtained when t
Bethe-Salpeter kernel is truncated at finite order. In orde
incorporate the one-body limit, a form forG0 was used in
Ref. @4# that leads to the three-dimensional propagator
Mandelzweig and Wallace. For either case, when an ins
interaction Vinstant is used on the right side of Eq.~1.1!,
where Vinstant does not depend on the time component
momentum transfer,q0, thenVET5Vinstant. In the more gen-
eral case, the right side of Eq.~1.1! involves aV that depends
on q0, and then one obtains a three-dimensional retar
interaction.

In this paper, we consider the static limit of the ET inte
action of Eq.~1.1! after the inclusion of retardation effects
For exchange of a boson, this is a modified instant inter
tion, which we denote as ET-S in order to indicate that it
the static limit of the ET interaction. It differs from the usu
instant interaction because all interactions coupling to dou
negative-energy sectors tend to zero as 1/M→0, and thus the
c22 components of wave functions become decoupl
Similarly for the Salpeter case, one obtains a modified
stant interaction when the static limit is takenafter including
retardations, the modification being that couplings to dou
negative sector vanish.

For a one-gluon-exchange interaction, the ET framew
of Eq. ~1.1! is directly applicable. The result is that the ET-
interaction ~or the Salpeter interaction! should omit cou-
plings to 22 states in the static limit. Although confinin
interactions are far less well understood, we consider
hypothesis that couplings to22 states also should be omi
ted for confining interactions.

This paper considers meson spectra for systems of
quarks based on several forms of relativistic dynamics
considering scalar and timelike vector forms of confineme
Calculations are performed for the relativistic Schro¨dinger
equation~also called the reduced Salpeter equation!, for the
Salpeter equation, and for the ET equation using the us
instant form of interaction and the modified instant form
denoted by ET-S, which omits couplings to the doubly ne
tive states. We show that a static scalar interaction modi
in momentum space so as to omit couplings to22 states
does not have theE2,0 type of instability. This is obvious
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1710 PRC 59ORTALANO, BELL, WALLACE, AND THAYYULLATHIL
for the Salpeter equation because omission of the22 states
produces the relativistic Schro¨dinger equation, which corre
sponds to a positive-definite Hamiltonian. For the ET eq
tion, we also find that all solutions obeyE2.0 in the modi-
fied static limit.

For light quark masses, we find abnormal solutions t
are plane-wave-like with high momentum and low ener
when the ET-S interaction is used. This is traced to
V12,21 and V21,12 couplings in the ET-S interaction
which can produce an effective interaction that is not con
ing. The paper is organized as follows. In Sec. II, we st
the ET equation in momentum space and develop a par
wave analysis in the c.m. frame. By omitting couplings
some of the components, we can obtain the Salpeter or
tivistic Schrödinger equations from the ET equation.
simple interaction including a scalar or timelike vector co
fining interaction and a vector gluon-exchange interaction
considered as described in Sec. III. Because the confi
interaction is quite singular in momentum space, spe
methods are developed in which the singularities are tre
correctly. Our numerical methods for singular interactio
are described in Sec. IV. Results for the mass spectra
presented in Sec. V. Finally, we offer some concluding
marks in Sec. VI.

II. RELATIVISTIC TWO-BODY EQUATION

The relativistic bound state of two fermions is analyz
using the following two-body equation, originally derived b
Mandelzweig and Wallace~MW! @2,3# for instant interac-
tions:

$~p” 12m1!l21~p” 22m2!l12V̂%C50, ~2.1!

where p1 and p2 are four-momenta for the two fermions
p” i5g i•pi for i 51,2 withg i

m being the Dirac matrices for th

two particles, andV̂ denoting the interaction. This equatio
is denoted interchangably as the MW equation or the
equation. It also incorporates the Salpeter equation and
relativistic Schro¨dinger equation when suitable truncatio
of the interactions are made. Operatorsl i are defined by

l i5
mi2p” i'

e i
, ~2.2!

where pi'5pi2(pi• P̂) P̂. Here P̂[P/AP2 is a unit four-
vector formed from the total momentum,P5p11p2 , of the
system, and e i5Ami

22pi'
2 . In the c.m. frame, P̂

5(1,0), pi'5(0,pi) has only space components, ande1

5Ami
21pi

2 is the usual relativistic energy. The operatorsl i

in Eq. ~2.1! reflect the fact that negative-energy states of
fermions propagate backward in time. A form of the eikon
approximation is used in the derivation to include portions
crossed graphs, as is required so that the one-body limits
incorporated. This leads to freedom in the choice of the re
tive energy in the 3D reduction. Here we use the constr
on relative energy as given by Phillips and Wallace@4#,
namely,

k05
1

2
~e12e2!. ~2.3!
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The time components of the particle momenta are then
pressed as

p1
0[E15

1

2
P01k0, ~2.4!

p2
0[E25

1

2
P02k0. ~2.5!

Considering the equation in the c.m. frame, another choic
the relative energy was used by Wallace and Mandelzw
@3# and by Tiemeijer and Tjon@19#, namely,

k05
m1

22m2
2

2AP2
. ~2.6!

For equal-mass particles, the two forms agree in the c
frame, both givingk050.

In the c.m. frame of the system, a somewhat simpler fo
of the equation is obtained, after multiplication byg1

0g2
0 , as

follows:

H F1

2
E1k02h1~p!Gh2~2p!

e2

1F1

2
E2k02h2~2p!Gh1~p!

e1
2g1

0g2
0V̂J C50, ~2.7!

where hi(p)5a i•p1b imi is a Dirac Hamiltonian for par-
ticle i ande i5Ami

21p2. The total energy in the c.m. fram
is E and the relative energy isk0.

Spin and momentum dependences for two Dirac partic
are expected to be described in a reasonable way by us
the equation. The equation is symmetric in its treatment
the two particles and has a covariant form. Moreover, it
charge-conjugation symmetric when the interactionV̂ is
charge-conjugation symmetric, and then for each state w
eigenvalueE there is a corresponding state with eigenva
2E. If the hi /e i operators are replaced by unity, Eq.~2.7! is
transformed to the Breit equation, which lacks charg
conjugation symmetry. In the limit in which massm1 or m2
is infinite, the equation reduces to the Dirac equation for
lighter particle. Finally, there is a well-defined angular m
mentum operator in the c.m. frame and thus a partial-w
analysis is straightforward.

In this paper, we consider an instant interactionV̂ that is
charge-conjugation symmetric and an instant interaction
omits couplings to22 states, and thus is not charge conj
gation symmetric.

The square ofhi /e i equals 1. Thus, these operators ha
eigenvaluesr i511 or 21. It is convenient to use the cor
responding eigenfunctions for expansion of the wave fu
tion. They are defined by

hi~p!ur i~r ip!5r ie iu
r i~r ip!, ~2.8!

and they have a Hermitian orthonormality property

@ur8~r8p!#†ur~rp!5dr8,r . ~2.9!
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PRC 59 1711MOMENTUM-SPACE ANALYSIS OF RELATIVISTIC . . .
It also is convenient to regard the 16-component wa
function as a 4 by 4matrix, with its left index referring to
particle 1 and its right index referring to particle 2. In th
convention, particle-2 Dirac matrices are transposed
placed to the right ofC so that the equation takes the matr
form

@E12h1~p!#C~p!Fh2~2p!

e2
GT

1Fh1~p!

e1
GC~p!

3@E22h2~2p!#T

5(
n
E d3p8

~2p!3
Vn~p,p8!g0GnC~p8!Gn

Tg0T, ~2.10!

where each term is a 4 by 4matrix. The interaction has bee
expanded as follows:

V̂~p,p8!5(
n

Gn~1!Gn~2!Vn~p,p8!, ~2.11!

where the Dirac matrices associated with the interac
terms are denoted byGn .

Suitable basis functions for expansion of the wave fu
tions are products of plane-wave spinors and standard ei
functions of total angular momentum as follows:

xLSJM
r1r2 ~p!5ur1~r1p!Y LSJ

M ~p!@ur2~2r2p!#T. ~2.12!

These basis functions also are 4 by 4 matrices, owing to
outer product of Dirac spinors involved. Orthonormality
the basis functions is expressed as

TrE dVp@xLSJM
r1r2 ~p!#†x

L8S8JM

s1s2 ~p!5dr1 ,s1
dr2 ,s2

dL8,LdS8,S ,

~2.13!

where the trace is over the 4 by 4 matrix.
For a state with definite total angular momentumJ and

with eigenvalueJz5M , the wave function is expanded as

CJM~p!5 (
L,S,r1 ,r2

GLS
r1r2~p!

p
xLSJM

r1r2 ~p!. ~2.14!

A straightforward projection yields coupled equations for t
allowedL, S, and rho-spin components as follows:

S 1

2
E~r11r2!2k0~r12r2!2r1r2~e11e2! DGLS

r1r2~p!

5 (
s1 ,s2 ,L8,S8

E dp8V
LS,L8S8

r1r2s1s2~p,p8!G
L8S8

s1s2~p8!, ~2.15!

with the interaction terms being defined by

V
LS,L8S8

r1r2s1s2~p,p8!5
pp8

~2p!3E dVpE dVp8
e

d

n

-
n-

e

3TrH @xLSJM
r1r2 ~p!#†(

n
Vn~p,p8!

3g0Gnx
L8S8JM

s1s2 ~p8!Gn
Tg0TJ . ~2.16!

Although kinetic terms in the equation take a rather sim
form, the interaction terms are rather involved. They depe
on the masses of the quarks because of the Dirac spino
the basis functions.

The interaction terms may be simplified by using a seco
set of basis functions whose matrix structure is simpler,

xLSJM
j ~p!5j jY LSJ

M ~p!, ~2.17!

where the fourj j matrices are

j15
1

A2
S 0 1

1 0D , j25
1

A2
S 0 1

21 0D ,

j35
1

A2
S 1 0

0 21D , j45
1

A2
S 1 0

0 1D . ~2.18!

These are 4 by 4 matrices composed of 2 by 2 blocks n
malized in accordance with the orthogonality condition

TrE dVp@xLSJM
i ~p!#†xL8S8JM

j
~p!5d i j dLL8dSS8 .

~2.19!

The new basis functions are related to the previous ones
linear transformation

xLSJM
r1r2 ~p!5 (

jL 8S8
M

LS,L8S8

r1r2 , j
~p!xL8S8JM

j
~p!, ~2.20!

and the transformation coefficients are smooth functions
p5upu. Elements of the transformation matrix are develop
in the Appendix. Thus we arrive at

V
LS,L8S8

r1r2s1s2~p,p8!5 (
ls,l 8s8 jk

MLS,ls
r1r2 , j

~p!Vls,l 8s8
jk

~p,p8!

3M
L8S8,l 8s8

s1s2 ,k
~p8!, ~2.21!

with simpler interaction terms defined by

Vls,l 8s8
jk

~p,p8!5
pp8

~2p!3E dVpE dVp8

3TrH @x lsJM
j ~p!#†(

n
Vn~p,p8!g0Gnx l 8s8JM

k

3~p8!Gn
Tg0TJ . ~2.22!

The M matrices absorb all the dependence on quark ma
from the Dirac spinors.
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In this work, the interaction is based on a confinem
term that may be scalar or timelike vector and vector glu
exchange terms. For the case of scalar confinement, th
teraction is as follows:

V̂~p,p8!5Vconf~p2p8!1g1•g2Vvec~p2p8!. ~2.23!

This yields

Vls,l 8s8
jk

~p,p8!5d jkd l l 8dss8$a
jVl

conf~p,p8!1bs
j Vl

vec~p,p8!%,
~2.24!

where the partial-wave projection of each potential is defin
similarly to

Vl
vec~p,p8!5

pp8

4p2E21

1

dxPl~x!Vvec~p2p8!, ~2.25!

with x being the cosine of the angle betweenp and p8 and
Pl(x) being the Legendre polynomial of orderl. The coeffi-
cientsaj andbs

j are simple and they are given in Table I. Th
subscript onbs

j indicates that it depends on the spin quant
numbers.

For timelike vector confinement, the first term of E
~2.23! becomesg1

0g2
0Vconf(p2p8), and Eq.~2.24! is altered

by replacement of the coefficientsaj by coefficientscj , as
given in Table I. An admixture of scalar and timelike vect
confinement may be obtained by using a linear combina
of the coefficientsaj andcj .

When parity is conserved by the interactions, half of t
16 partial-wave components vanish in any given state.
parity of the basis functions isr1r2(21)L, wherer1 andr2
factors account for the intrinsic parity of Dirac spinors. Fo
fermion-antifermion pair, we choose to treat the antiferm
as a positive-energy antiparticle rather than as a nega
energy state propagating backward in time. This conven
assigns positive energies and an extra intrinsic parity fa
of Pqq̄521 to eachqq̄ state; i.e., the total parity isr1r2

(21)LPqq̄ . With this convention, theq̄q states of parity
(21)JPqq̄ involve nonzero values of eight componen
GL,S

r1r2 5 GJ,0
11 , GJ,1

11 , GJ11,1
12 , GJ21,1

12 , GJ11,1
21 , GJ21,1

21 ,
GJ,0

22 , andGJ,1
22 . States of parity (21)J11Pqq̄ involve non-

zero values of the remaining eight componentsGL,S
r1r2

5GJ11,1
11 , GJ21,1

11 , GJ,0
12 , GJ,1

12 , GJ,0
21 , GJ,1

21 , GJ11,1
22 , and

GJ21,1
22 . An exception isJ50 states which have only fou

nonvanishing components that are obtained by omitting
L5J21 andL5J, S51 components.

TABLE I. Coefficients used in Eq.~2.23!.

j a j bs
j cj

1 21 422s(s11) 11
2 21 2212s(s11) 11
3 11 2212s(s11) 11
4 11 422s(s11) 11
t
-
in-

d

n

e
e

n
e-
n

or

e

III. QUARK-ANTIQUARK INTERACTION

The best understood part of the quark-antiquark inter
tion is due to gluon exchange at a short distance. In
paper, the confining interaction is modeled by a simple p
nomenological potential.

At a short distance, the dominant part of theqq̄ interac-
tion is associated with gluon exchange, which is Lore
vector and has the form

V̂vec~q!5
4pa0r ~q2!

q2
, ~3.1!

whereq2 is the square of the three-momentum transfer. R
ning of the coupling is described byr (q2). In this paper, we
show the equations with an arbitrary form forr (q2) but our
calculations are based uponr (q2)51, i.e., no running.

The partial-wave projection of the potential involves t
integral

Vl
vec~p,p8!5

a0

2pE~p2p8!2

~p1p8!2

dq2
r ~q2!

q2
PlS p21p822q2

2pp8
D .

~3.2!

Assumingr (0)51, the partial-wave projection may be sp
into a Coulombic part arising from 4pa0 /q2 and a part as-
sociated with running of the coupling that has no singular
at q250, as follows:

Vl
vec~p,p8!5

a0

p
lim
m→0

Ql~Z!1
a0

2pE~p2p8!2

~p1p8!2

dq2F r ~q2!21

q2 G
3PlS p21p822q2

2pp8
D . ~3.3!

Partial-wave projection involves Legendre functions of t
second kind,Ql(Z), with argument

Z5
p821p21m2

2pp8
. ~3.4!

We assume a phenomenological, scalar confining inte
tion of the following form in coordinate space:

Vconf~r !5C1kr , ~3.5!

whereC is a constant term andk is the string tension.
A linear potential in coordinate space tranforms to a s

gular potential in momentum space. In order to handle
singularity, we use a limiting procedure with nonsingul
potentials as follows:

Vconf~r !5C1k lim
m→0

S ]2

]m2De2mr

r
, ~3.6!

which corresponds in momentum space to

Vconf~q!5C~2p!3d~3!~q!14pk lim
m→0

S ]2

]m2

1

~q21m2!
D .

~3.7!
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Partial-wave projection yields

Vl
conf~p,p8!5Cd~p2p8!1

k

p
lim
m→0

S ]2

]m2DQl~Z!. ~3.8!

Logarithmic factors inQl(Z) of the form ln@(p2p8)21m2#
become singular whenp5p8 and m50. The resulting sin-
gularity of ]2Ql /]m2 is 1/(p2p8)2.

In summary, the potential used in this work contains
short-distance gluon-exchange interaction that is vector a
long-range potential with linear and constant terms that m
be scalar or timelike vector. Singularities atq250 arise in
both the linear and 1/r interactions. In the next section, th
numerical methods used in our momentum-space analys
these singular interactions are described.

IV. NUMERICAL METHODS

Each wave function component is expanded in terms o
finite number of spline functions@24# as follows:

GLS
r1r2~p!5 (

n51

N

CLS,n
r1r2Bn~p!, ~4.1!

whereBn(p) are cubicB-splines with continuous second d
rivatives andCLS,n

r1r2 are the unknown spline coefficients th
must be determined for each solution. Each spline func
vanishes outside of a finite range of the argument,p, that is
controlled by selecting a sequence of knot points. The cho
of knot points and spline functions used in this work follow
closely that used by Spence and Vary@7# in a momentum-
space analysis of the Salpeter equation. Neighboring spl
overlap such that the superposition can describe a smoo
varying wave function of the type expected for bound sta

Substituting Eq.~4.1! into Eq. ~2.15!, multiplying by
Bm(p), and integrating overp yields a matrix equation for
the spline coefficients, as follows:

(
n

H 1

2
E~r11r2!I mn2

1

2
~r12r2!~Kmn

1 2Kmn
2 !J CLS,n

r1r2

5(
n Fr1r2~Kmn

1 1Kmn
2 !CLS,n

rr2

1 (
s1s2 ,L8S8

V
LS,m;L8S8,n

r1r2 ,s1s2 C
L8S8n

s1s2 G , ~4.2!

where

I mn[E
pl

pu
dpBm~p!Bn~p!, ~4.3!

Kmn
1 [E

pl

pu
dpBm~p!Bn~p!e1~p!, ~4.4!

Kmn
2 [E

pl

pu
dpBm~p!Bn~p!e2~p!, ~4.5!

and
a
a
y

of

a

n

e

es
ly

s.

V
LS,m;L8S8,n

r1r2 ,s1s2

5E
pl

pu
dpE

pl8

pu8dp8Bm~p!V
LS,L8S8

r1r2 ,s1s2~p,p8!Bn~p8!. ~4.6!

For I mn andKmn
1,2 , the integration range@pl ,pu# is the over-

lap region where the product of the participating splines
nonzero. The resultant matrices are banded matrices
regard tom andn because only splines which are near neig
bors overlap. For the potential terms, the integration ran
cover the range where both spline functions are nonz
Given the smooth properties of the splines, the potential
gularities atp5p8 may be handled, as will be discusse
shortly. The resulting matrix equation~4.2! is solved using
standard methods for the generalized eigenvalue problem
obtain the rest energyE, which is the mass of the boun
system.

The potential is transformed from the plane-wave ba
using the transformation matrixM

L8S8,LS

r1r2 ,i
(p) of Eq. ~2.20!.

We combine the spline functions and transformation coe
cients as follows:

f LS,ls;m
r1r2 , j

~p!5Bm~p!MLS,ls;m
r1r2 , j

~p!. ~4.7!

Inserting the specific forms for the confining and vec
terms as in Eq.~2.24!, the potential takes the form

V
LS,m;L8S8,n

r1r2 ,s1s2 5E
pl

pu
dpE

pl8

pu8dp8(
ls, j

f LS,ls;m
r1r2 , j

~p!$ajVl
conf~p,p8!

1bs
j Vl

vec~p,p8!% f
ls,L8S8;n

s1s2 , j
~p8!. ~4.8!

When timelike vector confinement is used, the only chan
is to replace the coefficientsaj by cj .

At this point, the labels forr spins, spins, and angula
momenta are omitted for clarity by abbreviating th
V

LS,m;L8S8,n

r1r2 ,s1s2 asVmn . Then it follows that the potential matrix
required may be expressed as

Vmn5(
ls, j

@ajVmn
conf1bs

j Vmn
vec#, ~4.9!

where the confining and vector terms are each defined b

Vmn
x [E

pl

pu
dpE

pl8

pu8dp8 f m~p!Vl
x~p,p8! f n~p8!. ~4.10!

The various contributions to these potentials correspond
those of Eqs.~3.8! and~3.3!. The confining and vector term
are written as follows:

Vmn
conf5CVmn

C 1
k

p
Vmn

r ~4.11!

and

Vmn
vec5

a0

p
@Vmn

1/r 1Vmn
run#. ~4.12!

The simplest matrix occurs for the constant interactio
i.e.,
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Vmn
C 5E

pl

pu
dp fm~p! f n~p!. ~4.13!

The part of the gluon-exchange interaction that involves r
ning of the coupling constant also may be calculated with
difficulty. It takes the form

Vmn
run[

1

2Epl

pu
dpE

pl8

pu8dp8 f m~p!

3E
~p2p8!2

~p1p8!2

dq2F r ~q2!21

q2 GPlS p21p822q2

2pp8
D f n~p8!,

~4.14!

with the integral overq being nonsingular. It is performe
numerically for cases involvingr (q2)Þ1 ~not considered in
this paper!.

The remaining termsVmn
r and Vmn

1/r can involve singular
integrands which must be treated with care. The simp
case is when the participating splines do not overlap,
thus the singularity atp5p8 is not encountered because
lies outside the integration range. Then the integrations
similar to the ones just discussed and are performed num
cally.

When the singularity atp5p8 lies within the integration
range, the general form to be considered is

Amn5E
pl

pu
dpE

pl8

pu8dp8 f m~p!A~p,p8! f n~p8!, ~4.15!

whereA(p,p8) is symmetric with respect to interchange ofp
and p8, and has a singularity atp5p8 no more divergent
than 1/(p2p8)2. The limits of integration are the rang
@pl ,pu# where spline functionf m(p) is nonzero and@pl8 ,pu8#
where f n(p8) is nonzero.

As a result of the symmetry, the integral may be rewritt
as

Amn5
1

2Ea

b

dpE
a

b

dp8@ f m~p!A~p,p8! f n~p8!

1 f m~p8!A~p,p8! f n~p!#. ~4.16!

The new limits of integration a5min(pl ,pl8) and b
5max(pu ,pu8) define a somewhat larger region with bo
spline factor vanishing on the boundary and outside the
gion of integration. At the boundaries wherep5a or p5b,
both spline functions vanish at least as fast as (p2a)3 or
(p2b)3. The integral is now rewritten as

Amn52
1

2Ea

b

dpE
a

b

dp8@ f m~p!2 f m~p8!#A~p,p8!

3@ f n~p!2 f n~p8!#

1E
a

b

dp fm~p! f n~p!E
a

b

dp8A~p,p8!. ~4.17!

Because of the symmetry, the second integral cancels
terms from the first. The remaining terms are the same a
-
t

st
d

re
ri-

n

e-

o
in

Eq. ~4.16!. Two powers ofp2p8 arising from the differ-
ences of spline functions are sufficient to regulate the sin
larity in the first integral. For the interactions of interest, t
singular integral involving*dp8A(p,p8) may be done ana
lytically as a principle value.

There are two singular potentials which need to
considered, namely, ther and 1/r potentials. First con-
sider the linear potential for which A(p,p8)
5 limm→0(]2/]m2)Ql(Z). The singular parts are isolated b
use of the identity

Ql~Z!5Pl~Z!Q0~Z!2Wl 21~Z!, ~4.18!

whereQ0(Z) has the logarithmic singularity,

Q0~Z!5
1

2
lnF ~p1p8!21m2

~p2p8!21m2G , ~4.19!

Pl(Z) is the Legendre polynomial, andWl 21(Z)
5(m51

l (1/m)Pm21(Z)Pl 2m(Z) is also a polynomial. It fol-
lows that

lim
m→0

]2

]m2
Ql~Z!5 lim

m→0

]2

]m2
Q0~Z!1Pl8~1! lim

m→0

Q0~Z!

pp8

1
Rl~p,p8!

pp8
, ~4.20!

whereRl(p,p8) is the nonsingular part,

Rl~p,p8!5@Pl~Z0!21#Q08~Z0!1@Pl8~Z0!2Pl8~1!#Q0~Z0!

2Wl 218 ~Z0!, ~4.21!

and primes denote derivatives with respect toZ. HereZ0 is Z
evaluated atm50. This leads to

Vmn
r 5Vmn

a 1Pl8~1!Vmn
b 1Vmn

c , ~4.22!

where the singular terms involving]2Q0 /]m2 are evaluated
as in Eq.~4.17!,

Vmn
a 52

1

2Ea

b

dpE
a

b

dp8@ f m~p!2 f m~p8!#

3S 1

~p1p8!2
2

1

~p2p8!2D @ f n~p!2 f n~p8!#

1E
a

b

dp fm~p! f n~p!S 2p

p22a2
2

2p

p22b2D , ~4.23!

the singular term involving justQ0(Z)/(pp8) yields

Vmn
b 52

1

2Ea

b

dpE
a

b

dp8F f m~p!

p
2

f m~p8!

p8
G1

2
lnF ~p1p8!2

~p2p8!2G
3F f n~p!

p
2

f n~p8!

p8
G1E

a

b

dp
f m~p! f n~p!

p2
F~p,a,b!,

~4.24!
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where

F~p,a,b!5~p1b!ln~p1b!2~p1a!ln~p1a!

2~b2p!ln~ ub2pu!1~a2p!ln~ ua2pu!,

~4.25!

and the nonsingular terms yield

Vmn
c 5E

pl

pu
dpE

pl8

pu8dp8 f m~p!
Rl~p,p8!

pp8
f n~p8!. ~4.26!

Explicit results for the*a
bdp8A(p,p8) contributions have

been inserted for the singular terms based upon evalua
them with finitem, and then taking the limit asm→0. These
integrals produce finite results. Owing to the vanishing of
spline functions at the limits of integration, the various in
grals overp which remain are nonsingular.

The Coulomb interaction 1/r arises in Eq.~4.12!. In mo-
mentum space, it involvesA(p,p8)5 limm→0Ql(Z), which
has a logarithmic singularity atp5p8. Using the same iden
tity for Ql as above, we find that the 1/r potential yields a
matrix

Vmn
1/r 5Vmn

d 1Vmn
e , ~4.27!

whereVmn
d andVmn

e are defined as follows:

Vmn
d 52

1

2Ea

b

dpE
a

b

dp8@ f m~p!2 f m~p8!#
1

2
lnF ~p1p8!2

~p2p8!2G
3@ f n~p!2 f n~p8!#1E

a

b

dp fm~p! f n~p!F~p,a,b!

~4.28!

and

Vmn
e [E

pl

pu
dpE

pl8

pu8dp8 f m~p!$@Pl~Z0!21#Q0~Z0!

2Wl 21~Z0!% f n~p8!. ~4.29!

The expressions discussed above show how the mat
needed in Eq.~4.9! are calculated. To determine the confi
ing interaction, one combines Eqs.~4.11!, ~4.13!, ~4.22!,
~4.23!, ~4.24!, and~4.26!. To determine the gluon-exchang
interaction, one combines Eqs.~4.12!, ~4.27!, ~4.28!, and
~4.29!. The key point is that the use of spline functions th
vanish outside a finite range ofp allows the singularities to
be handled exactly, leaving only finite integrands for the n
merical integrations. Gaussian integration is used to eval
the integrals. Our methods for handling the singularities h
been tested for the linear potential in the Schro¨dinger equa-
tion, for which analytical solutions are available. Th
momentum-space analysis reproduces the analytical ei
values and wave functions provided a sufficient number
spline terms is used. Typically, our calculations use 60 sp
terms for each component of the wave function. The res
ing matrices have dimensions 480 by 480 for a wave fu
tion with eight partial-wave components. Results of Spe
and Vary@7# for the positive-energy components of the wa
ng
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es

t
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te
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-
e

function also have been reproduced. Moreover, selected
sults of Tiemeijer and Tjon’s coordinate-space analy
@18,19# have been reproduced.

V. RESULTS

Calculations were performed using scalar or timelike v
tor confinement in four types of analysis, each of which
realized by solving Eq.~2.15! @in the finite-matrix form of
Eq. ~4.2!# with different interactions. For example, the MW
analysis uses an interaction that is obtained by neglecting
q0 dependence of the four-dimensional interactionV̂(q2) via
the substitution V̂(q2)→V̂(2q2). All components of

V̂r18r28 ,r1r2 are nonvanishing. The ET-S analysis uses an
teraction of the type that is obtained by evaluating the st
limit of Eq. ~1.1!. The MW and ET-S interactions differ only
by the fact that the latter has zero interaction compone
coupling to G22, i.e., Vr1r2 ,225V22,r1r250 for all
r1 ,r2 . The Salpeter analysis is obtained when all interact
components that couple to12 or 21 states are set to zero
thus leaving only those interaction
V11,11, V11,22, V22,11, and V22,22 that couple to
11 or 22 states. For the relativistic Schro¨dinger analysis,
all interaction components exceptV11,11 are zero.

The coupled equations of the full MW analysis can
reduced to the same form as the coupled equations of
Salpeter analysis. This is done by solving the equations
the G12 and G21 components and substituting the resu
into the equations forG11 and G22 components. It pro-
duces a somewhat complicated effective interaction in
resulting equations forG11 andG22 components, and we
do not show the details. The point is that for equal-ma
quarks, the energy parameter of the MW analysis shows
only in the equations for theG11 and G22 components,
and the form of these equations is the same as for the
peter analysis. Therefore, the MW and Salpeter analyses
are equivalent to the RPA equations, but with different int
actions, and both can be analyzed for stability using
Thouless method. In principle, it is possible for both the E
and Salpeter analyses to yield imaginary eigenvalues.

For a static, linear, Lorentz-scalar confining interactio
our calculations yield imaginary values of the bound st
energy for both the MW and Salpeter analyses when
quark masses are less than about 500 MeV. Represent
spectra ofE2 are shown for these cases in Fig. 1. We a

FIG. 1. ūu bound-state spectra for 02 and 01 states based on a
scalar confining interaction are shown for the MW~dashed lines!,
ET-S ~solid lines!, Salpeter~dash-dotted lines!, and 11 ~dotted
lines! analyses. Parameters used for the quark mass and the p
tial are given in Table II.
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show the spectra for the ET-S analysis in Fig. 1 and one s
that theE2,0 solutions do not appear in this case. For t
relativistic Schro¨dinger analysis, the energy is real andE2

.0, as expected. Spectra for the case of timelike vector c
finement are shown in Fig. 2. In this case, no imagin
eigenvalues are present in any of the analyses for equal-m
quarks, but timelike vector confinement produces an insta
ity in the one-body limit~Klein paradox!. Our calculations
illustrate several points. The MW and Salpeter analyses
mit E2,0 solutions for scalar confinement, and we find th
this result is unaffected by changes of spline parameter
the number of splines used. Neither the ET-S nor the11
analysis yields the imaginary eigenvalues. Consistent w
the analysis of Parramore and Pickarewicz, theE2,0 insta-
bility of the Salpeter equation is removed when the22
states decouple. The corresponding instability of the M
analysis is similar to that of the Salpeter analysis; namely
features predominant11 and22 components with negli-
gible 12 and21 components, thus approximating the S
peter form. However, theE2,0 states in the MW analysi
are sparser and they occur only forE2,220 (GeV)2.

Although the ET-S analysis eliminates theE2,0 solu-
tions, we find that there areE.0 solutions that are not nor
mal bound states when quark masses are equal and less
500 MeV. For such light quarks, the static limit interaction
questionable. However, if it is used, abnormal solutions
encountered for scalar confinement. The resulting energy
be lower than the lowest bound-state energy of the relati

FIG. 2. ūu bound-state spectra for 02 and 01 states based on
timelike vector confining interaction are shown for the MW~dashed
lines!, ET-S ~solid lines!, Salpeter~dash-dotted lines!, and 11
~dotted lines! analyses. Parameters used for the quark mass an
potential are given in Table II.

FIG. 3. A comparison of the ET-S bound state spectra for 2
MeV quarks and scalar confinement includingV12,21 and
V21,12 components of the interaction~dashed lines! and omitting
these components~solid lines!.
es
e
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tic Schrödinger analysis but the wave functions for abnorm
states have no resemblance to those of bound states. Ra
they have the characteristics of plane wave or unconfi
solutions. This new type of solution is absent for the M
calculations.

The source of the abnormal solutions has been trace
the double-r-spin-flip interactionsV12,21 andV21,12. In
order to show the effect of these double-r-spin-flip interac-
tions, we have performed calculations for light quarks
which they are omitted. Figure 3 shows the spectra for
ET-S analysis with and without the double-r-spin-flip inter-
actions for 250 MeV quarks and scalar confinement. Ot
parameters used in the potential can be found in Table
The effect of the double-r-spin-flip interactions is quite dra
matic. It causes the spectrum to become denser at low en
with the lowest states very close to zero total energy. T
11 component of the wave functions is dominant for t
lowest states shown in Fig. 3. In Fig. 4 we show t
momentum-space wave functionsG11(p) for the two low-
est 02 states of Fig. 3, with and without includingV12,21

andV21,12. The left panel of Fig. 4 is obtained by includ
ing these double-r-spin-flip interactions and the wave func
tion does not resemble a bound-state wave function for
lowest state of a spectrum. Rather it looks like a superp
tion of high-momentum plane-wave solutions, as represen
on a spline basis. The right panel of Fig. 4 shows the w
function that results from omittingV12,21 andV21,12 in
the ET-S analysis. It has the appearance of a typical bou
state wave function and, as seen in Fig. 3, this state h

he

0

FIG. 4. A comparison of the ET-S wave functionG11(p) for
the lowest 02 states of Fig. 3~scalar confinement!. The left panel
shows a deconfined solution that results whenV12,21 and
V21,12 components of the interaction are included. The rig
panel shows the wave function that is obtained by omitting th
components of the interaction. Triangles show the knot points u
for the spline functions.

TABLE II. Parameters used in this work.

mu 0.250
mc 1.590
mb 4.945
k (GeV2) 0.2
a0 20.3398
C (GeV) 20.529
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bound-state energy that is reasonable. The abnormal s
tions are present only when both quarks have massmq
,500 MeV. When present, they are rather robust
changes; increasing the number of splines, changing
spline spacing, setting all the pieces other than linear c
finement equal to zero in the potential, etc., have no effe

For timelike vector confinement, the spectrum is mo
normal but the negative-energy components of wave fu
tions are not normal. Figure 5 shows the spectra with
without including theV12,21 and V21,12 interactions in
the ET-S analysis, for 250 MeV quark masses and time
vector confinement. Figure 6 shows the wave function
the lowest-energy 02 state with theV12,21 and V21,12

interactions included. Oscillations in theG12 components
~in this caseG125G21) indicate that these solutions a
abnormal.

In order to provide some insight to the abnormal solutio
for scalar confinement and light quarks in the ET-S analy
consider Eq.~2.15! in the case thatG1256G21 ~appropri-
ate for equal-mass quarks in even-odd charge-conjuga
states!. A single equation forG11 can be derived that ha
the symbolic form

~E22e!G115VeffG
11, ~5.1!

with

FIG. 5. A comparison of the ET-S bound state spectra for 2
MeV quarks and timelike vector confinement includingV12,21

andV21,12 components of the interaction~dashed lines! and omit-
ting these components~solid lines!.

FIG. 6. A comparison of the ET-S wave functions for the lowe
02 state of Fig. 4~timelike vector confinement!. The left panel
shows a solution forG11(p) and the right panel showsG12(p)
for the same state. Calculations are for 250 MeV quarks omit
V12,21 andV21,12 components of the interaction.
lu-

o
he
n-
t.
e
c-
d

e
r

s
s,

on

Veff5V11,111~V11,126V11,21!
1

D
~V12,11

6V21,11! ~5.2!

and

D5~4e2V12,127V12,212V21,217V21,12!.
~5.3!

For a scalar confining interaction,V11,11 is confining,
V12,125V21,2152V11,11, and V12,215V21,12.
Equation~5.3! therefore becomes

Dscalar54e12V11,1172V12,21. ~5.4!

Without the double-r-spin-flip term,V12,21, D is positive
and the effective potential is always confining. However,
clusion of theV12,21 term inD can lead to the second term
in Veff becoming large and negative and it can dominate
first term inVeff for light quark masses and large momen
This leads to aVeff that is no longer confining at large mo
mentum values and wave functions such as are shown in
4. We have calculated the eigenvalues ofDscalar using the
matrices that are obtained with the spline basis. There
negative eigenvalues for light quark masses when
V12,21 interaction is included, but none when it is omitte
For timelike vector confinement, the interactions ob
V12,125V21,2151V11,11, and V12,215V21,12.
In this case the denominator of interest is

Dvector54e22V11,1172V12,21. ~5.5!

Again one can have negative eigenvalues forDvector whether
or not one omits theV12,21 term because theV11,11 term
is anticonfining. This produces anomalous results for
G12 components of wave functions in the ET-S analys
The fact that 4e22V11,11 can have negative eigenvalue
for timelike vector confinement is related to the Klein par
dox that is familiar in the Dirac equation. We have cons
ered a combination of scalar and timelike vector confin
terms. There are negative eigenvalues ofDvector with as little
as a 25% admixture of timelike vector included.

In order to check that incorporating theV12,21 interac-
tion is appropriate in the ET-S analysis, we have examin
all time-ordered perturbation theory graphs that contribute
the quark-antiquarkT matrix up to third order in theV, i.e.,

T11,115V11,111V11,r1r2Gr1r2Vr1r2 ,11

1V11,r1r2Gr1r2Vr1r2 ,r18r28Gr18r28Vr18r28 ,111•••,

~5.6!

where repeated superscripts are summed over. In the in

mediateVr1r2 ,r18r28 term of the thrid-order contribution, on
may isolate the the contributions toV12,21. By evaluating
the static limit of thet matrix for a boson-exchange intera
tion, we find that theV12,21 interaction so determined with

0
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all boson-exchange graphs included should be reduced to
of the ET-S result. This occurs because some higher-o
graphs are included in Eq.~5.6!, but are omitted from the
lowest-order ET-S interaction of Eq.~1.1!. However, the
analysis confirms thatV12,21Þ0 and we have verified tha
the abnormal solutions for scalar confinement are pre
whether the calculations are based on the original ET-S
teraction or a modified one in whichV12,21 is reduced to
3/4 of its original value.

As the mass of both of the quarks increases, the nega
energy components become less important. Instabilities
not realized and the results for all cases approach the rel
istic Schrödinger results based on only theV11,11 piece of
the potential. Figure 7 shows the difference between
ET-S and 11 analyses for a c̄c system (mq
51590 MeV). This difference is relatively small especia
for the lowest-lying states. Again no imaginary eigenvalu
are found for either the ET-S or the11 analyses. These
results have also been verified for ab̄b system (mq
54945 MeV).

Since the11 equation does not tend to the Dirac equ
tion when one of the particles becomes infinitely massive
is interesting to compare the spectra of the ET-S and11
analyses in a heavy-light system. Form1→`, the equation
for G11 corresponding to Eq.~5.1! is

~E2m12e2!G115VeffG
11, ~5.7!

with

Veff5V11,111V11,12
1

2e22V12,12
V12,11,

~5.8!

where terms that vanish as 1/m1→0 have been dropped from
Veff . The V12,21 and V21,12 interactions vanish in the
one-body limit and Eqs.~5.7! and ~5.8! are essentially
equivalent to the Dirac equation for particle 2. For sca
confinement, the effective potential is always confining
all values of massm2 . Thus, for a heavy-light system, th
ET-S analysis does not have the abnormal solutions that
cur when both quarks are light. However, there is an ins

FIG. 7. A comparison of the spectra of the ET-S~solid lines!

and11 ~dashed lines! analyses for ac̄c system. Values from ex-
periment are shown by dotted lines to the left of the ET-S resu
/4
er

nt
-

e-
re
iv-

e

s

-
it

r
r

c-
-

bility for timelike vector confinement, because of th
Z-graph contribution to the effective potential and the fa
that V12,12.0. This is the instability associated with th
Klein paradox and it is related to the instability mention
above for equal mass quarks because of the anticonfi
term in Dvector.

In Fig. 8, we present our results for the spectrum of ab̄u
system for scalar confinement using the ET-S and11 equa-
tions for J50. Figure 9 contains the corresponding resu
for J51. Neither spectrum contains any imaginary eigenv
ues. While the results are similar, there is a larger differe
between the bound state energies for ET-S and11 analyses
for the b̄u system than for thec̄c system. Typical mass dif-
ferences are 15–50 MeV for the lowest states and 25
MeV for the second excited states when the Dirac one-b
limit is incorporated, as in the ET-S analysis.

VI. CONCLUSION

One motivation for including the negative-energy comp
nents is to incorporate the usual one-body limit, i.e.,
Dirac equation, for a quark interacting with an infinite
massive antiquark. The ET equation was derived specific
to incorporate the one-body limit@2,3#. When an instant,
scalar confining interaction is used in this equation, we fi
solutions with imaginary values of the energy, similar
those that have been known for some time to exist in
Salpeter equation with scalar confinement. Couplings to
c22 components of the relativistic wave function are r

.
FIG. 8. A comparison of the spectra from the ET-S~solid lines!

and11 ~dashed lines! analyses for a heavy-light (b̄u) system for
J50.

FIG. 9. A comparison of the spectra from the ET-S~solid lines!

and11 ~dashed lines! analyses for a heavy-light (b̄u) system for
J51.
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sponsible. The analysis of Refs.@18,19# did not report this
instability. Our momentum-space analysis reproduces the
sults of Refs.@18,19# for real and positive energies when th
same parameters are used, but we find, in addition, solut
with E2,0.

Instabilities arise in relativistic two-body equations wh
confining interactions are used in association with negat
energy components of the full relativistic wave functio
When imaginary eigenvalues are present, it means that t
are quark-antiquark solutions with energy lower than the
particle state. This suggests that the vacuum should be m
fied by the formation of a condensate of quarks and a
quarks, thus requiring a new form of two-body equation
be developed.

Because a naive instant form of interaction is not con
tent with quantum field theory, we have explored the pos
bility that retardation effects would remove theE2,0 insta-
bility. Using a systematic reduction of the Bethe-Salpe
equation to three dimensions, one indeed finds that the in
action for any boson exchange is altered by retardation
fects. If one includes retardation effectsbeforeproceeding to
the static limit, a modified instant interaction results in whi
couplings toc22 components vanish. If this rule is carrie
over to the confining interaction, it removes the source of
E2,0 instability, consistent with the analysis of Parramo
et al. We call the modified interaction ET-S, to indicate th
ET interaction in the static limit.

The ET-S interaction does provide a formalism witho
the E2,0 solutions. However, for light quarks, abnorm
solutions withE.0 are found using the ET-S interaction an
scalar confinement. These are traced toV12,21 and
V12,21 couplings, which we have shown not to be su
pressed in the static limit. The effective interaction can fai
confine the quarks when theV12,21 andV12,21 couplings
are included and the quarks are light. This gives rise
plane-wave-like solutions that have low energy in the ET
analysis with scalar confinement. For timelike vector co
finement, an instability~Klein paradox! occurs in the one-
body limit and for equal-mass quarks there are anoma
negative-energy components of wave functions.

Our conclusion is that the ET equation is not suitable
use with confining interactions except in special cases.
stability without regard to quark masses or type of confi
ment, the relativistic Schro¨dinger analysis with a static inter
action must be preferred. It is an interesting question whe
the Dirac equation is the correct one-body limit for a confi
ing interaction. The usual proof of the one-body limit i
volves nonconfining interactions@1#.
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APPENDIX

The transformation matrix between the two bases used
expansion of the wave function satisfies the relation

xLSJM
r1r2 ~p!5 (

jL 8S8
M

LS,L8S8

r1r2 , j
~p!xL8S8JM

j
~p!. ~A1!
e-

ns

e-
.
re
-

di-
i-

-
i-

r
r-
f-

e

t

-

o

-

s

r
or
-

er
-

t
l-

or

Using the orthogonality properties of Eq.~2.19! leads to

M
LS,L8S8

r1r2 , j
~p!5TrE dVp@xL8S8JM

j
~p!#†xLSJM

r1r2 ~p!.

~A2!

Dirac plane-wave spinors that are used inxLSJM
r1r2 (p) can be

written as

ur i~r ip!5NiS 11r i

2
2

12r i

2

s i•p

e i1mi

11r i

2

s i•p

e i1mi
1

12r i

2

D ,

Ni5Ae i1mi

2e i
, i 51,2. ~A3!

The transformation matrix is developed using Eqs.~A2! and
~A3! and the following identities:

s•pY LSJ
M ~p!5p (

L8S8
LLL8

SS8Y L8S8J
M

~p!, ~A4!

Y LSJ
M ~p!sT

•p5p (
L8S8

RLL8
SS8Y L8S8J

M
~p!, ~A5!

s•pY LSJ
M ~p!sT

•p5p2 (
L8S8

TLL8
SS8Y L8S8J

M
~p!, ~A6!

where

LJ,J11
01 5LJ11,J

10 5LJ,J21
11 5LJ21,J

11 52A J11

2J11
, ~A7!

LJ,J21
01 5LJ21,J

10 52LJ,J11
11 52LJ11,J

11 5A J

2J11
,

~A8!

LLL8
SS85~21!S1S8RLL8

SS8 , ~A9!

TJ,J
00 52TJ,J

11 521, ~A10!

TJ21,J11
11 5TJ11,J21

11 5
2AJ~J11!

2J11
, ~A11!

TJ21,J21
11 52TJ11,J11

11 5
1

2J11
, ~A12!
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with all otherLLL8
SS8 , RLL8

SS8 , andTLL8
SS8 equal to zero.

Let

a5A J11

2J11
, b5A J

2J11
, c52

AJ~J11!

2J11
,

d5
1

2J11
~A13!
and

pi5
p

e i1mi
, p65p16p2 . ~A14!

For the P5(21)JPqq̄ case, we obtain for
M

LS,L S

r1r2 , j
(p)A2/(N1N2) the following matrix:
8 8
1
12p1p2 12p1p2 2ap1 ap1 0 0 bp1 2bp1

11p1p2 212p1p2 ap2 ap2 0 0 2bp2 2bp2

ap1 ap1 12dp1p2 211dp1p2 bp2 bp2 cp1p2 2cp1p2

2ap2 ap2 11dp1p2 11dp1p2 2bp1 bp1 2cp1p2 2cp1p2

0 0 2bp2 bp2 11p1p2 11p1p2 2ap2 ap2

0 0 bp1 bp1 12p1p2 211p1p2 ap1 ap1

2bp1 2bp1 cp1p2 2cp1p2 ap2 ap2 11dp1p2 212dp1p2

bp2 2bp2 2cp1p2 2cp1p2 2ap1 ap1 12dp1p2 12dp1p2

2 .

When this version of the matrix M
LS,L8S8

r1r2 , j
(p) multiplies the column vector with elementsxL8S8

j

5(xJ,0
1 ,xJ,0

2 ,xJ11,1
3 ,xJ11,1

4 ,xJ,1
1 ,xJ,1

2 ,xJ21,1
3 ,xJ21,1

4 ), one obtains the column vector with elementsxLS
r1r2

5(xJ,0
12 ,xJ,0

21 ,xJ11,1
11 ,xJ11,1

22 ,xJ,1
12 ,xJ,1

21 ,xJ21,1
11 ,xJ21,1

22 ).

For theP5(21)J11Pqq̄ case, the transformation matrixM
LS,L8S8

r1r2 , j
(p)A2/(N1N2) is as follows:

1
12dp1p2 12dp1p2 2ap1 ap1 cp1p2 cp1p2 2bp2 bp2

11dp1p2 212dp1p2 2ap2 2ap2 2cp1p2 cp1p2 bp1 bp1

ap1 ap1 12p1p2 211p1p2 2bp1 2bp1 0 0

2ap2 ap2 11p1p2 11p1p2 bp1 2bp1 0 0

cp1p2 cp1p2 bp1 2bp1 11dp1p2 11dp1p2 2ap2 ap2

2cp1p2 cp1p2 2bp2 2bp2 12dp1p2 211dp1p2 ap1 ap1

bp2 bp2 0 0 ap2 ap2 11p1p2 212p1p2

2bp1 bp1 0 0 2ap1 ap1 12p1p2 12p1p2

2 .

When this version of the matrix M
LS,L8S8

r1r2 , j
(p) multiplies the column vector with elementsxL8,S8

j

5(xJ11,1
1 ,xJ11,1

2 ,xJ,0
3 ,xJ,0

4 ,xJ21,1
1 ,xJ21,1

2 ,xJ,1
3 ,xJ,1

4 ), one obtains the column vector with elementsxLS
r1r2

5(xJ11,1
12 ,xJ11,1

21 ,xJ,0
11 ,xJ,0

22 ,xJ21,1
12 ,xJ21,1

21 ,xJ,1
11 ,xJ,1

22).
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