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Relativistic quantum transport theory of hadronic matter: The coupled nucleon, A,
and pion system
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We derive the relativistic quantum transport equation for the pion distribution function based on an effective
Lagrangian of the QHD-II model. The closed-time-path Green’s function technique and the semiclassical,
guasiparticle, and Born approximations are employed in the derivation. Both the mean field and collision term
are derived from the same Lagrangian and presented analytically. The dynamical equation for the pions is
consistent with that for the nucleons aids which we developed before. Thus, we obtain a relativistic
transport model which describes the hadronic matter WitiA, and = degrees of freedom simultaneously.
Within this approach, we investigate the medium effects on the pion dispersion relation as well as the pion
absorption and pion production channels in cold nuclear matter. In contrast to the results of the nonrelativistic
model, the pion dispersion relation becomes harder at low momenta and softer at high momenta as compared
to the free one, which is mainly caused by the relativistic kinetics. The theoretically predictedNreeA
cross section is in agreement with the experimental data. Medium effects arlNtheA cross section and
momentum-dependert-decay width are shown to be substantj&0556-28189)00203-4

PACS numbsgps): 24.10.Jv, 13.75.Cs, 21.66f, 25.75—q

I. INTRODUCTION an enhanceg-meson productiorfvia 7+ -7~ annihilation
and a dropping mass in the mediurh33,34. Indeed, the

Pion physics is an important topic in nuclear physics. Repoperties of thep meson as well as thA resonance are
cently, it received renewed interest in relativistic heaVy'ionstroneg influenced by the change of pion property in the
collisions because pions are the most abundantly producefdedium due to the largp— "7~ and A—Nm decay
particles at relativistic _ener_gies. Studies of pionic ma”y'bOd}(/vidths. A detailed knowledge of pion dynamics in heavy-ion
degrees of freedom in high-energy nucleus-nucleus collizgjisions is a prerequisite for a quantitative description of
sions were initiated by Gyulassy and Greirjd] and by dilepton production at SIS and SPS energies.
Migdal [2]. Since then, con;iderable efforts from both ex- |1 was recently proposed that the difference between
perimental[3—9] and theoretical 102§ groups were made anq -+ spectra can be attributed to the influence of isospin
to study various aspects of the in-medium pion dispersion,nq coulomb fieldE35]. This should allow one to extract the
relation and pion dynamics, such as the pion spectrum anggective Coulomb field at the instant of the average pion
pion and antipion flow in hot and dense nuclear matter. Begmission. Comparison of spectra of positively and negatively
cause of the high interaction cross section of the pion Withyparged pions can also be used to learn about the freeze-out
the quclear environment, they are contlnuously apsorbgd DYt the pions during the expansion phd86,37. It then pro-
forming A resonances which then decay again into pionsyiges a method to determine the size of fireball during the
Therefore, pions have a chance to be emitted during thgyclear expansion process.
whole course of the reaction. While the high-energy tail of  since the importance of pions in heavy-ion collisions has
the pion spectrum provides information about compresse@een recognized for more than two decades, one may believe
and excited nuclear matter in the early reaction stage, thghat elementary pion properties in the hot and dense nuclear
low-energy part of the pion spectrum and pion flow containmatter are already well understood. Unfortunately, the situa-
information of the in-medium pion potential and nucleartion is quite different from this expectation: understanding
equation of statdEOS [24,26. The low- and high-energy the pion dynamics in high-energy nucleus-nucleus collisions
pions originate from different stages of the collision. A de-is still a major challenge to modern nuclear physics. This
tailed study of the pion dynamics allows to extract the timeparadoxical circumstance seems to be mainly due to theoret-
evolution of heavy-ion collisions. ical rather than experimental inadequacies. Experiments have

On the other hand, dileptons produced frerii-=~ an-  been able to record the pion spectr{68,38 and pion flow
nihilation [17,27-3Q provide information on the high- and antiflow[9,39] with rather high accuracy. A reasonably
density phase at time scales of 1 &m/Since dileptons can strict treatment of pions in the transport theories is, however,
leave the reaction volume essentially undistorted by finalstill not available. Most theoretical approaches included the
state interactions, as was first pointed out by Gale and Kainteraction of the pions with the surrounding nuclear medium
pusta[27], they are expected to be a good tool for an inves-only by collision processes. A free-particle assumption was
tigation of the violent phases of high-energy heavy-ionusually assigned to pions, while it is well known that the
collisions. Recent data by the CERES CollaboratjGd] pion dispersion relation will be changed substantially in the
show a substantial modification of the dileptons yield whichmedium due to the strong-wave interaction. Some authors
might be explained either by many-body effef82] or by  [21,22,26 implemented the real part of the pion optical po-
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tential from the nonrelativistid-hole model[40] to study t, c -
the pion spectrum. In Ref26] a phenomenological param-

etrization suggested by Gale and KapU&@ was also tried. )
However, different model treatments gave rather different t

results. None of the currently available models are able to
reproduce the experimental spectrum over the entire range of
energy. The source of the problem seems to be that the ob- <
served quantities are sensitive to several of the unknown =
pion properties in the hot and dense matter. The most impor- tn a +
tant ones are the in-medium pion dispersion relaftbe real

part of the pion self-energyand the in-medium pion cross
sections(the imaginary part of the pion self-enejgy self-

consistent treatment of both the real part and imaginary part L .
b ginary p also for all relevant mesons. This will cause significant nu-

of the pion self-energy is necessary to obtain useful informa=">" e ; 2
tion fr(F))m experimergl]t);\l observablg. However, in transporlmerlcal difficulties and might be beyond the ability of mod-

theories one usually uses the experimentally determined freg | computers. As a first practical step, let us here treat the

cross sections and incorporates a dispersion relation from tHEONS explicitly. The pion is Fhe most frequently o.bserved
nonrelativistic A-hole model or simply employs the free- MESON: The other mesons still remain treated as virtual me-

particle assumption. A self-consistent description of pions i ons: This is the main strategy of our present work. Here we
hould note that the transport equationsdoandw mesons

transport models has not even been reached in the nonreld . .
tivistic case. In the present work, we still do not have a fuIIyWere discussed in Refl5,59 based on the Walecka model

self-consistent treatment. But we go a step further than thESG]' In Ref. [55] the mesons tum out to be treated as free

present available relativistic transport theories; i.e., we deriv@art'des due to the a_pprOX|mat|ons u_sgd in that work. Also,
the in-medium pion dispersion relation and the in-medium @ concrete expressions for the collision term were given

pion cross sections from the same Lagrangian and treat themere' We will come back to this point In Sec. lll.
in a relativistic description. Starting from an effective Lagrangian of the QHD-II

Another daunting obstacle to a quantitative description o]model [56] we here derive a RVUU equation for the pion

pions in heavy-ion collisions is the width and shape ofahe dlsﬁi”?ur??nrr;un?'%n rlir\1/ V(\j/h'icmh ?tol[: the lmer?g f'flcrj anddthtne
As has been pointed out before, when a pion in the hot an ollision term are derived Simuftaneously and expressed ana-

dense matter collides with a nucleon, it will be absorbed t%ﬁé@:ﬁ ;T}g%;?l:nrﬁvé?frekcé gjrléyirr]‘z:3223“%3;?;”52:6'5\,\/9
create aA. Then theA decays again into a pion-nucleon ' ’

“pair.” Thus the amplitude for creating and absorbing pionstreatN, A, andsr in an unified framework based on the same

will be sensitive to the in-mediund-decay width, which effective Lagrangian and finally obtain a set of coupled equa-

e tions for hadronic matter. The paper is organized as follows:
must be modified by the presence of matter due to the P9 sec. 1l we briefly review the closed-time-path Green’s

tential energies oN, A, and . However, in the presently . . . ' .
) . : function technique which plays a central role in our deriva-
available transport models, the fréedecay width is com- . . !
tion. An effective Lagrangian for th&l, A, and 7 system

monly employed. From the theoretical point of view, realis-. . . ;
. . : . ; interacting through the exchange of virtual mesons is also
tic models for describing pions in dynamical processes

should in principle at least also treat deltas and nucleongresented .there. In Sec_. i we Qer|ye the R\(UU-type trar_ls—
simultaneously in an unified framework. port equation for the pion distribution function. The main

1 s the purpose o s paer o devlop he relanistio 911 11 ehencr e e et meen 1 o
transport theory for pions within the framework of the rela- '

tivistic Vlasov-Uehling-UhlenbeckRVUU) and relativistic Lagrang|ar|1 alndspres\?lnted analytlca;]lly In Se<_:s.| v ar|1d fV'
Boltzmann-Uchling-Uhlenbeck (RBUU) equation. The rﬁspgctlve y. In Sec. Vi We pr_esentlt € numen;:a results for
RVUU model has been applied successfully in studying 01‘I € m-medmm pion dispersion relation arf+ ormatlpn :
high-energy heavy-ion collisiorfd5,41—45, In Ref.[15] we cross section. Finally, a summary and outlook are given in
briefly discussed a possible extension to include the pior?ec' VI

degree of freedom. By means of the density matrix method

Wanget al. [46] developed a transport theory for thg A, [l. PRELIMINARIES

and 7 system. In their work pions are treated as a free par-
ticle; detailed expressions of the collision term are not giverbr
explicitly. On the other hand, in Ref#7-53 we developed
a set of self-consistent equations fdr A, and N* (1440)
distribution functions in which both mean field and collision

term are derived _from the same effective Lagrangian an Uinction G1(1,2) of fermions and\g(1,2) of bosons can be
expressed "’.‘”a'y“ca”Y- However, mgson@,cé,q-r) WEre  {efined on the time contour depicted in Fig. 1 as
treated as virtual particles. In a physically reasonable sce-

nario, the creation and destruction of real as well as virtual ] —

mesons ought to be described simultaneously and on the IGE(1,2=(T[VYn(1)¥x(2)]), 1
same self-consistent footind4]. Hence, one is forced to

solve coupled Boltzmann equations not only for baryons but  iAg(1,2=(T[®Px(1)DP1(2)])—(DPx(D)}{Py(2)), (2)

tmaz

FIG. 1. Contour along the axis for an evaluation of the operator
expectation value. In practicl, is shifted to—o andt,,, to +©.

In the present work we employ the closed-time-path
een’s function technique. For a detailed description of this
Green’s function technique for nonequilibrium system, we
refer to Refs[57,58. Here we give a brief review for the
reader’'s convenience. In the Heisenberg picture the Green’s



1676 GUANGJUN MAO, L. NEISE, H. ST@KER, AND W. GREINER PRC 59

where 1, 2 denota; ,X,; ¥ (1) andW¥,(2) represent the 1, tjislater ona contour than,
field operators of the nucleon and delta in the Heisenber O(ti—tp) = i i )

. p 9 0, tis earlier on a contour than.
picture and® (1) and®(2) are those of ther,w, 7, and
p. Here we have specified the initial state by assuming that
its density operator commutes with the particle-number opThe same relations hold for the boson Green’s functions in
erator[57]. Furthermore, we assume that the initial state ad£q. (6).
mits the Wick decompositiofis noncorrelated Thus, in Eq. In order to use the powerful perturbation expansion
(1) the expectation value of a single fermionic field vanishesmethod of field theory, we choose the interaction picture.
In the case of bosonic Green's functions, the contributiond'he time-ordered products in Eg&l) and (2) can then be
from classical expectation values have been subtracted irewritten as
order to concentrate on the field fluctuations around the clas-
sical values. On the other hand, the second term on the right-
hand si_de of Eq(2)_ explicitly indiggtes the_ presence of the (T[\I’H(l)\l_fH(Z)]>=<T exp{ —i,fdxH,(x)
mean field According to the position of field operators on
the time contour, we have four different Green’s functions

for fermions, X, (1)W,(2) > (10)
iGE (1,2 =(TW (1) ¥y(2)),
G (1,2)= (TAW ()W (2)), <T[<1>H(1)q>H(2)]):<T exp( —ifdle(x)
G (12 =(Vy(1)Wy(2)), XD, (1), (2) > (11)
iGr (1,2 = —(¥h(2)Wy(1)), (3)
and four for bosons, (CI>H(1)>=<T exr{ —ifdxH,(x))CD,(l)D. 12

A (L =(T@(1)P(2)) —(Pr(D)NPn(2)),

Here ,(1),4,(2) and®,(1),®,(2) represent the field op-
erators in the interaction picturédx= fdtdx, f stands for

C o an integral along the time axis given in Fig. 1. The definition
iAg (1,2 =(Pu(1)Py(2)) = (Pu(1)(Pu(2)), of Egs.(3) and(4) and the relations of Eq$7), (8) are still
. valid in the interaction picture for both the full Green'’s func-
1Ag (1,2 =(Pn(2)Py(1)) —(Pu(1){Pu(2)). (4) tions Gg(1,2),Ag(1,2) and zeroth-order Green’s functions
(i.e., noninteracting Green's function&2(1,2) A3(1,2).

HereT¢ is the chronological ordering operator and is the . ; )
antichronological ordering operator. The designatienand The detailed EXpressions of the zeroth-order 'Green s func-
tions as well a#, in Egs.(10)—(12) are determined by the

+ are attributed to the respective time path shown in Fig. 13 ecific effective Laaranaian used in the model. As a pre-
We further on express theg(1,2) andAg(1,2) in a com- P grang X P

act matrix form liminary step towards a complete description of hadronic
P matter, we first consider a system consisting of real nucleons,
iGE (1,2 iGEt(L 2)) A’s and pions interacting through the exchange of virtual

iAg T(L2=(T0y(1)Pp(2)) —(Pu(1) )} Pu(2)),

(5) o,0,m, andp mesons. In order to avoid extensive cancella-
tions of large terms to correctly describe the sn&Wave
7N scattering length, we choose the phenomenological

and pseudovector form for therNN and wAA coupling. With

AS(12) iA=*(1.2 this choice of coupling, the value of tt®wave =N scatter-

1Ag (1.2 1Ag7(1,2) ©6) ing length turns out to be-0.010[56] while the empirical

iAg (1,2 iAgT(1,2)° value is—0.015+0.015[59]. The inclusion of thep-meson
degree of freedom is important for ther scattering due to

It should be pointed out that the four Green’s functions invector meson dominand@&0]. We furthermore include two

Eq. (5 are not independent. They satisfy the following rela-nonlinear meson coupling termsm 7 and p77 which are

tions: applied only to thewr# scattering. The total effective La-

grangian can then be written as

iGF(l'Z):(iG;(l,z) iGI*(1,2

iAB(l,Z)z(

iIGE (1,2=0(t;—1,)iG¢ (1,2 + 6(t,—t,)iGg "(1,2),
(7

iIGET(1,2=0(t;—1,)iGr (1,2 + 6(t,— t,)iG¢ (1,2).
(8)

Here L¢ is the Lagrangian density for free nucleak, and
Here 6(t,—t,) is defined as meson fields,
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1 1 0] 2 )

EF_ ¢[I ’)/,u‘?,u M N] ¢+ lpAv[l 7#‘9# MA]¢A+ ﬁ oo U(w)= Emf)wﬂw” 1+ (gNZN) w;(: ) , (16)

—U(o)— = L 0"+ U(w)+ 1((9 mHm— me ) respectively. Here the field tensor for the rho and omega are

4 ,uV 2 y22 ™ . . . . .
given in terms of their potential fields by
1 1 - _
— Zp'uvp'u'y'i‘ Emf,pﬂp“, (14) p/.LV_&,u.pV aupp. (17)
) ) and

and U(o),U(w) are the self-interaction part of the scalar
field [61] and vector field 62,63, ©,,=0,0,—d,0,. (18

1 1 o 1 The interaction Lagrangiarf, consists of baryon-baryon,
U(O-):Emio-z—'_§b(gNNU)3+ZC(gNN0—)4a ) grangiar, y Y

£| = ‘cNN+ ‘CAA+ ‘CAN+ ‘C(TﬂTJ'_ ‘Cp‘IT
_ _ _ 1 _
=GR P(X) (%) = Gt (X) 7, (X) 0H(X) + IRt (X) 7, ¥5 T $(X) 8 77(X) = 5 IR (X) 7, 7 0 p(X)
+ g ¥a ) YK (X) T (X) = g2 a tha(X) ¥, PR (X) 0H(X) + QXA ha(X) ¥, YT - ha(X) 9 ar(X)

1 — — —
- EQZA%V(X)Y,LT'lﬂZ(X)P"(X)—QZN%M(X)@“TF(X)'S+ $(X) = gANP(X) Sthp ,(X) - 9 aw(X)

1
+ 5 90xMe(X) 7(X) - 7(X) + G 9 7(X) X 71(X) ] P (X)

= GANPOOT RPOO P A + A3 Y2, OO T RUE )P AX) — GENta u(X) 7 75(X) - ST g(X)

— GENH(X)Spu(X) - P ar(X) + g (O T £ (X) P A(X). (19

baryon-meson, and meson-meson terms, which are given by

In the above expressiong(x) is the Dirac spinor of the treat the real pion with positive-energy states, we rewrite the

nucleon andy, ,(x) is the Rarita-Schwinger spinor of tie  zeroth-order Green’s functions of the pion as
baryon. 7 is the isospin operator of the nucleon amdis
the isospin operator of th&. HereS andS" are the isospin .
transition operator between the isospin 1/2 and 3/2 fields. A% 7 (x,k)= —
gNN =f,/m, 05y = f*/m, ;TN=ya7a T2 = yaTa . I'Z K—mitie w(k)
=vya7a ,A=0,0,m,p, the symbols and notation are given in (20
Tables | and Il for the baryon-baryon-meson vertex and me-
son interaction vertex, respectively.

The zeroth-order Green'’s functions of nucleons asl A% (x,k)=— k) 5[ko o(K)][1+f(x,kK)], (21
as well as mesons corresponding to the free Lagrangian den- (
sity of Eq. (14) are summarized in Appendix A, where the
distribution functions of negative-energy states are neglected 0
for fermions. They are kept for bosons. Considering that we A7 (X k)=~ (k)
will derive a transport equation for the pion in which we only

5[ko o(K) ] 7(x,k),

5[ko o(K)]f.(x.k); (22

TABLE |. Symbols and notation used for the baryon-baryon- herew (k) is the energy of the pion.
meson vertexP , is the transformed four-momentum.

A My Oun ghs  ¥a 7a Ta ®A(0 DX DL  involving only mesons.

o m, gﬁN gZA 1 1 1 U(X) 1 1 gA yﬁ s (DA(X)
® m, —gin g8 Y. 1 1 o¥x) -g* 1 ik A A

T M. gin gin Pys 7 T 7% 1§ o 300-M, 1 Sij a(x)
pomM, =38 —3%a Y. T T P g & p Upm i(p+a), Sijk Pk (%)

TABLE II. Symbols and notation used for the interaction vertex
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Ill. DERIVATION OF THE QUANTUM TRANSPORT >
EQUATION FOR PIONS ’ N
{ |
A. Dyson equation and pion self-energy \\ /’
With the discussions of Sec. Il we can write down the
pion Green’s function in the interaction picture as -
1A (1,2 6 =<T exp{ - ifdxH|(x) 77,(1)17|(2)}> ..........
(c)
_ < T ex;{ _ ifdxH|(x) m(l)b FIG. 2. Feynman diagrams contribute to the Hartree term of the
pion self-energy. The wavy line denotes the exchanged virtual me-

son, the solid line, double line, and dashed line represent the
. nucleon,A, and pion, respectively.
m(Z)D, (23 P pectively

><<T ex;{—iidxw(x)
tion functions. In this work we will develop a transport equa-
herei, j=1, 2, 3 represent the isospin indices of pion. In thetion for the pion distribution function from Eq(24), in
following we suppress this subscript because at the end wehich both the mean field and collision term will be ex-
will obtain a RVUU-type transport equation which is aver- pressed analytically. Since the lowest-order Feynman dia-
aged on the isospin. Furthermore, the second term on thgrams contributing to the two-body scattering cross sections
right-hand side of E¢(23) vanishes in the spin- and isospin- are the Born diagrams, we consider the pion self-energy
saturated system. By expanding E83) perturbatively one 1I(4,3) up to theBorn approximation In principle, one
can obtain the Dyson equation for the pion Green’s functionshould calculate the in-medium cross sections and meson
which reads as fields for all the particles within a relativisti€&-matrix
theory. However, since we have to deal with many reaction
channels and many degrees of freedom, such calculations
iAw(l,Z)=iA?T(l,Z)+idx3fdx4A?T(1,4)H(4,3)iAW(3,2); seem to be out of the present practical possibilities. For a
(24) qualitative insight in the cross sections and potentials we
think that the Born approximation will be sufficient. A com-
parison between the cross sectionsdgif, .y aNdoNN_Na
calculated inG-matrix theory[64,65 and in the Born ap-
proximation[47,48 shows differences only of the order of

herell(4,3) is the self-energy of the pion, which is also a
matrix on the time contour:

10-20 %.
I (43 II""(43 The pion self-energy up to the Born term can be written
I1(4,39 = +- ++ : (25 as
(43 I177(43
Equation (24) is coupled to the Dyson equation of the T1(4,3) = TT1e(4,3) + T ggr(43)] (29)
y y orn\ 19/,

nucleon[48,52,

hereIl,-(4,3) is the Hartree-Fock self-energy of the pion
iG(1,2)=iG°(l,2)+fdx3 dx,G%1,43(4,3iG(3,2), and I1g(4,3) is the Born self-energy. The corresponding
Feynman diagrams are given in Figs. 2, 3, and 4.

(26) In Fig. 3 we only take the baryon loops into account since
the contributions of meson loops{7 andp-7 mixed loop
andA [50], are negligible[66] at zero temperaturéinite temperatures
are not taken into account explicitly in the present frame-
iGa,B(liz):iG?yB(lvz) work of microscopic transport thegryFurthermore, since

the pseudovector form is chosen for taeNN and wAA
0 ” ) coupling, as discussed in R¢b6] (Sec. 8.3, the contribu-
+fdx3fdx4Gw(1,4)2 (4,3iG ,4(3,2), tion of the sigma-pion coupling term to theN Swave
scattering lengths is small, of order/(Mym,), and can be
(27) neglected; we drop the contribution of FigaRand Fig. Zb)
to the pion self-energy. Therefore, only FigcRcontributes
through the self-energy terms dfl(4,3), 2(4,3), and to the Hartree-term of the pion self-energy, which plays a
2,.(4,3). HereG(1,2),G,4(1,2) are Green's functions of role in the case that a large amount of pions are produced in
the nucleon and, and>(4,3).%,,(4,3) are the respective relativistic heavy-ion collisions at very high energy. For the
self-energies. Equation(24), (26), and(27) are a set of dy- Born term we consider the Feynman diagrams contributing
namical equations for the hadronic matter. From H@6) to the #+N—#+N, 7+A—=7+A, and 7+7— 7+
and (27) we have derived the RVUU-type transport equa-elastic scattering processes as depicted in Fig. 4. For the
tions for the nucleo15,47—49,52and A [50,5]] distribu- same reason we neglect the contribution of thexchange
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FIG. 3. Feynman diagrams contribute to the Fock tdéome
baryon loop of the pion self-energy. Different lines denote the
different particles as described in the caption of Fig. 2.

in Figs. 4a) and 4b). The Hartree-Fock self-energy
IT,,=(4,3) and Born self-energ¥lz,(4,3) can then be ex-
pressed as

I4p(4,3 =114(4,3) +1Lj6op(4.3), (29

H|00p(4'3) = HNN71(4,3) + HAA71(4!3) + HAN71(4,3)

+HNA71(413)1 (30)

Mgom(4,3)=11,(4,3) + (4,3 + 11(4,3 +114(4,3),
31

where the lower subscripts " andA ™! in Eq. (30) denote
the particles described by the nucleon atddistribution

functions rather than the antiparticles which are not take
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FIG. 5. The gap between the effective masses of particles and
antiparticles as a function of density. Universal coupling strengths
for the nucleons and’s are assumed.

ally neglected in the investigation of the influence of the
in-medium pion dispersion relation on the pion dynamics in
relativistic heavy-ion collision$16,17,21,22,26 However,
it was recently reported that more than 30% of nucleons are
excited to the resonance states, especialhAtihesonance, in
Au+Au collisions at an incident energy of 2 GeV/nucleon
[67]. That means that the contributions of Fig&c)33(d) and
3(g), 3(h) should be taken into account once the problem of
the in-medium pion dispersion relation is concernedeiia-
tivistic heavy-ion collisionsTo our knowledge, up to now no
investigation of this has been made in transport theories.
Here we note that this effect has been addressed in some
nonrelativistic calculations of the pion self-energy in static
nuclear matter at finite temperatUi@s].

The concrete expressions of self-energies in Eg9)—
31) can be written down according to the standard Feynman
ules:

into account in this work because the gap between the effec-
tive masses of particles and antiparticles is much larger than
the pion mass even at 3 times normal densige Fig. 5.

For even higher densities and temperatures the production ofI1,,(4,3)=
particle and antiparticle pairs becomes more important and
the anti-particle degree of freedom should be taken into ac-
count. The lower subscripts b, ¢, d in Eq. (31) denote the
terms contributed from Figs. (d—-4(d), respectively.
ITAx-1(4,3) [corresponding to Figs. (8) and 3d)] and

3 2 'AO/ar aryi AO/ar
Z(go"lrmo') 5(314)de3A77(3 13 )|A0_(3 14)1
(32

Myn-1(4,3) = —2i (gl [ PysG2(3,4 PysG°(4,3)],

33
ITya-1(4,3) [corresponding to Figs.(§) and 3h)] are usu- 33
L Maa-1(4,3=—5i(g5,) T PysGp, (34 PysGO"(4,3)],
— < (34)
lﬁ\ﬁ\
T 4
B — _i(aT )2 0 upre0
(a) (b) (C) (d) HAN 1(413) 3|(gAN) tr[G (374)P P GV/,L(413):|1
(35
FIG. 4. Feynman diagrams contribute to the Born term of the
pion self-energy. Different lines denote the different particles as 4
described in the caption of Fig. 2. The imaginary part@fcon- Mar-1(4.3)= —i (g™ )2t PAP*G° (3.4G%4.3
tributes to thewN— 7N elastic cross section, ar{th) to the 7A Na-2(43 3 (92070 w3, )GT(4.9],
— A, (c),(d) to the mm— 77 elastic cross section, respectively. (36)
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Ma(43= > fdxsf dxe(r|gs, I 7IrayA%(4,3)(r |2, I 7| r)tr{(ts|gfnT Nts) G%(5.,6)

T P T
r4t5t6

X(ts| gk Ite)G%(6,5}A%(4,6)A%(5,3D,D,,, (37)

M,(4,3= 2, fdxs dX6<r|g’;wrmr4>A?7(413)<r4|g€rﬁF;T|r>tr{<T6|ggAF§|T5>GO’Up(5'6)

T4TsTg

X(Ts|gRaT'5|Te)Go,(6,5}1A%4,6)A%5,3D,D,,, (39)

M(43=— > fdxsfdxwlgﬁﬂrz\’lr4>A?,<4,3)<r4|gﬁwFX|r><re|g¢;wFZ|r5>A?T<5,6>

F4l'sle

X(rs|gh. L Alr6)A%(6,5AR(4,6)A%(5,3DaDa, (39)

My(4.9=- >, fdxf, dxo(r| 97U RIr o)A 7(4,5/(1al07T3l15) AS(5.6)(1sl07 T AIre) A%(6,3)

r4fsle

X(rg|g2, T'FIr)AR(4,6)A2(5,3DaDg . (40)

In Eqgs.(37)—(40), A, B=a,p;r,r4,r's,r¢ represent the isos- As is well known, the RVUU-type transport equation con-
pin of pions,ts,ts denote the isospin of nucleons afg,Tg  tains two important ingredients, i.e., the transport part related
of A’s. The definition of the symbols is given in Tables | and to the real part of the pion self-energy and the collision term
Il. The transformed four-momentum,, in Egs. (33)-(36)  corresponding to the imaginary part. The Hartree term of
stems from the derivative coupling of the baryon-baryon-Fig. 2(c) only contributes to the real part. However, the loop

pion vertex used in our calculations. diagrams in Fig. 3 and the Born diagrams in Fig. 4 include
both real and imaginary parts. It should be pointed out that
B. Kadanoff-Baym equation the baryon lines in Fig. 3 denoted by the symbhisr A
Introducing the differential operator of the Klein-Gordon represent virtual baryongucleon or deltawhen one calcu-
field lates the real part of the self-energies. They are not on-shell
particles. The corresponding terms for theand o self-
Aglt= Jrdf+m2 (41)  energies are neglected in the derivation of R&%] for the &

and w transport equations because they used the restriction
and applying it to the both sides of E@4), with the help of that all Green’s functions in the Feynman diagrams should
relation[69] be on the mass shell. Consequently, mesensufd w) be-
came free particles in their framework. To our opinion, in
computing the real part of self-energies, which mainly relates
to the virtual processes, it is not necessary to keep all par-
ticles on the mass shell which will essentially give the imagi-
we obtain nary part. It is well known that the particle-hole excitation is
very important for the in-medium pion dispersion relation
AglliAw(1,2)= —i5(1,2)—fdx3H(1,3)iA,T(3,2). which will certainly have influence on the pion spectra and
pion flow in relativistic heavy-ion collisiong26] and should
(43 be taken into account in any realistic transport models for

It has been shown in Sec. Il that only two components ofions. For the imaginary part of the self-energies from one-
A_(1,2) are independent, from which the dynamical equaloop diagrams in Fig. 3, we include only the contributions of
tions for the distribution function and the spectral functionFigs. 3€) and 3h), which contribute to the important
can be constitutefi70]. Since we will use thejuasiparticle ~ A-formation process oN+7— A and A-decay process of
approximationin the derivation, the spectral function turns A— N+, respectively. The reason is as follows: the con-
out to be as function on the mass shell. Thus, in the presentributions of the imaginary part of Figs(8—3(d), in which
work it will be sufficient to consider only one component of both the baryon lines are on the mass shell, correspond to the
A,(1,2), i.e.,A_"(1,2), which is directly related to the process that a nucleo decays into a nucleon\) and a
single-particle density matrix in the casetgt=t, [57]. The  pion, which is forbidden due to energy-momentum conser-
equation of motion forA " (1,2) can be extracted from Eq. vation(here we do not consider the Cherenkov radiation dis-
(43). Before doing it, let us firstly look at the Feynman dia- cussed in Ref[71]; this process might be possible at high
grams in Figs. 2, 3, and 4 which will be taken into accountdensities where the pion has a spacelike four-momentum due
under Born approximation. to its large potentia) Figs. 3f) and 3g) do not correspond

AotA%(1,2=-5(1,2), 42)
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to realistic physical processes when the pion has a positivenaginary part of the self-energies can be expressed by
energy. Since the matrix elements are the same for bothl_(1,3), which is defined as

A-formation andA-decay processes, we only need to calcu-

late the imaginary part of Fig.(8) explicitly. In view of the oy (1,3 =TIg,(1, 3)+1'[3(e)(1 3); (44

Born diagrams we take only the imaginary parts into account

and drop all the real parts which in principle are the correchereIl3;(1,3) represents the imaginary part of Fige)3
tions to the real part of the Hartree-Fock self-energies. Th@he equation of motion foA _*(1,2) can then be written as

[aLo+m2+TTy(D]IA, T (1,9 =~ Jtdxg[ReH,;(;p(l,s)]iA;*(s,z)— Jtodx3ngoﬁ(1,3)i[ReA;+(3,2)]
tg t

t
J dxg[nco”(1,3)—Hgoﬁ(l,s)]mf(s,z)+ftzdxgngoﬁ(l,s)
X[IAL7(3,2—-iA77(3,2]. (45

Equation(45) is the so-called Kadanoff-Baym equatipf2]. Here the symbol “Re” denotes the real part of the corresponding
self-energies. The second term on the right-hand side of45j.corresponds to the spreading width in the spectral function.
It should be dropped under the quasiparticle approximafié@hwhich will be introduced later. The structure of the third and
fourth terms on the right-hand side of E45) implies that they contribute to the collision term of the transport equation. The
concrete expressions of the self-energies read as

HH(1)=§(g”m(,)2[ ft:dxéA?T(3’,3’)iA2(3’,1)+f:odng?f*(S’,?)iAS*(3’,1) : (46)
Myy-1(1,3)==2i(g 2 PysG®~(3,)PysG" ~(13)], (47)

5113 = =5i(g5) [ PsGy, (3 DPysG® ~"#(1,3)], (48)

Myy-2(1.3)= —n(gAN>2tr[G°“(3 DP“P'G), (1,3)], (49)

My 2(1.3)= —|<gAN>2tr[P#P”G°”<3 DG (13)], (50

M5(1.3= i(gzmztr[ewf(&l)PMP”GSf(l.s)]. (51)

The expressions of the Born terms are rather complicated. If one does not write out the isospin factor eXplicifty,3) can
be expressed as

a

(1,3~ tdx5J' dxgA%" 7 (1,3){tr[ G 7(5,6)G°*7(6,5]A%" " (1,60 A%7 (5,3
0

+t[G*=(5,6/G°**(6,5]A%" (1,60 A2 7 (5,3 -t G°**(5,6)G°* 7 (6,5 1A% (1,6 AS" 7 (5,3
—tr[G**7(5,6/G°*~(6,5]A%" (1,6 A2" " (5,3)}. (52

Other Born terms can be written down in the same way.
C. RVUU equation of the pion

Defining X= 3 (X;+X,),Yy=X;—X,,X’ =X3—X,, and taking the Wigner transformation on the both sides of (&§), we
arrive at
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1 i
7 Pu 04— 1P 3, — P24 mZ+ Ty (X) + Rell oo X,P) = 5 4TT4(X) d), +

2 aﬂ Rell oop(X,P) 0 — —aﬂ Rell oop(X,P) ),

2 2

XiA_ T (X,P)=— fdyépyf dX' [T gy (Y =X, X)I A T (X", X) = g (Yy—=X", X)I AL~ (x",X)]. (53

Here we have adopted ttsemiclassical approximatigrn which the Green’s functions and self-energies are assumed to be
peaked around the relative coordinate and smoothly changing with the center-of-mass coordinate. The details of the Wigner
transformation are given in Appendix B. The Hermitian conjugate equation ofd3greads as

1 i i
— I+ i1PHP,— P2+ mZ+TT(X) + Rell oy X,P) + 5 axn (X) 35, =5 98 Rell o X,P) )+ =

7 > 5 9% Relloo (X, P) 3,

A;J’(X,P):—fdyeipyf dX' [y (Yy—x", X)IAL (X", X) =TT (y—x", X)iA - T (x",X)]. (54)

We drop the term of?&&ﬁ in Egs. (53) and (54) since it may be viewed as of higher order than the other terms within the
gradient expansiorused in the Wigner transformation. If one would keep this term, the pion Green’s function could be
nonzero for off-shell four-momen{&3]. In this paper we only consider real on-shell pions. The summation of(E8sand

(54) gives

[PZ—m,zT—HH(X)—ReH[)O‘p(X,P)]iA;*(X,P):O, (55

and the subtraction of them yields

1 1 1

P“a + = a"HH(X)a (9“ Rellj 5(X, P)a (9“ Rellj5o0(X, P)& —F(X,P)
[Hcol,(x P)A_ " (X,P)—TI_; (X,P)AL~(X,P)]. (56)
|

Now we introduce thquasip:_irticle approximatioand dress B 1 dRellgo(X,p)
the masses and momenta in the zeroth-order Green’s func- Zgt=1- " . (6D
tions appearing in the self-energies with the effective masses 20*(p) 9Po po=w* (p)

and momenta. The canonical variablsP are then trans-
formed to the kinetic variables p which will be used inthe |n the following we drop the derivative term in E¢61)
RVUU code for the simulation of relativistic heavy-ion col- since it will cause significant difficulty in deriving the colli-
lisions. Since the pion is a pseudoscalar particle, we havgion term. In the nuclear medium the quantum numbers of
=p, . Medium effects are included through the effective the pion can be either transported as a physical pion or as a
mass which is defined as A-hole bound state. In several studies of the nonrelativistic
A-hole model one considers the mixing between these two
mf,z(x,p)sz,+ I (x) + Rell gop(X, p)- (57) branches of the pion dispersion relatif2i,22,24. In this
case strength is redistributed between the two branches as a

The on-shell condition is guaranteed by E85): function of momentum. Therefore, the wave function renor-
malization factor is essential and in principle it can be cal-
pé—w* 2(p)=0: (58) culated from the energy dependence of the pion self-energy.

However, in practical applications in transport theories only
phenomenological simulations of this mixing have been in-
vestigated, Since we neglect thehole branch in our rela-
tivistic dynamical treatment, we pit; '=1. This does not
cause any difficulty with the conservation laws as can be
seen from Eq(F3). We simply obtain a different but still
We further define a distribution function conserved current. An improvement over this not very satis-
factory situation might be achieved if one studies relativistic
transport theories beyond the quasiparticle approximation
Zgd[ p°— w* (p)]f .(X,p,7), (60) [70]. Especially, the inclusion of bound states in transport
w*(p) theory has been, however, studied only in a very few nonrel-
ativistic cases near equilibrium up to now, e.g., for the for-
where mation of deutron in nuclear mattgr4]. It is clear that the

here

o* (p)=[p?+m:2(x,p)]*2 (59

AT (x,p)=
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relativistic bound-state problem is much more involved thanﬂgh}l(xyp)
the nonrelativistic one. Therefore, we neglect this problem

here. Through inserting E¢60) into Eq.(56) one obtains the 4 d*q
self-consistent RVUU equation for the pion distribution = §i(gZN)2J 4tr[G°"(X,q)p”p”GS;7
function: (2m)
1 1 X(x,p+a)], (67)
prIs+ EﬂfHH(X)ﬁfﬁE&f Rell ,on(X,p) 5, M (x,p)

4

f(X,p,7) 4 ZJ d*q
- =i(gT tr[ p“p”G%. " (x,q)G° ~
31(95n) (2m) [p“p"G,, (X,0)

0*(p)

1
=5 df Rell|50(X,p) 77,

2 P :FC(X!p)'

(62) X (x,p+q)]. (68)

In Appendix F we show that this equation satisfies the conin the next step we insert the zeroth-order Green'’s functions
servation laws of the current and energy-momentum tensofor baryons(Appendix A and pions[Egs. (20)—(22)] into

The left-hand side of Eq(62) is the transport part and the Eqgs.(64)—(68) to obtain concrete expressions of the real part
right-hand side is the collision term, which includes two of the pion self-energies. Several approximations are made
parts, here. First, we take the quasiparticle approximation in which
the free masses and momenta in the zeroth-order Green’s
functions are addressed by the effective masses and mo-
menta. Second, the first term on the right-hand side of Eq.
stemming from theN7—A process andr-hadron elastic (20, which will appear in Eq(64) in the calculation of the
scattering processes, respectively. Other reactions are not iflartree term, is dropped as usually done according to the
cluded in the present work. The collision term can be furthePhysical arguments(otherwise, it will cause divergente

expressed via in-medium differential cross secti¢®ec. \j.  [75]- Third, in computing Eqs(65)—(68), we drop the con-

tributions of antiparticles contained in the baryon Green's
functions of G~ ~(x,q) and G,, (x,0). The zeroth-order

Green’s functions used in this section then read as

FC(X!p):FNW%A(X!p)_{—FeI(X!p) ’ (63)

IV. CALCULATION OF THE MEAN FIELD

In Sec. lll we derived the RVUU-type transport equation

for the pion distribution function. The left-hand side of the Ao"(x Q= 69)
equation is the transport part and the right-hand side is the o ' qz—m§+ie’

collision term. The heart of the equation is the mean field,

which relates to the in-medium pion dispersion relation, and i

the 7-relevant in-medium differential cross sections. In this A?T"(x,q)z — 8 go— 0* ()1 .(x,q,7), (70)
section and the next section we will evaluate concrete ex- w*(q)

pressions of them. Before coming to it, we would like to

emphasize again that in the present work we consider only 4+ m* [ 1

G’ (x,q)=

the = meson as a real mesoa,w, andp mesons are still
viewed as virtual ones. In other words, the terms relating to
the distribution functions ofr, w, andp mesons vanish. Af-
ter Wigner transformation, Eq$46)—(50) turn out to be

2E* (q)| do—E* (@) +ie

+2wi5[qo—E*<q)]f(x,q,r)l, (71

3 dq
Iy(x)=~(g,,Mm, zf —— A% T (x,q)iAY T (x,0), . 4+my
H(X)=7(9 ) 2T (X,Q)id; (x,0) GO (x,q) = o A D,.(Q) : .
(64) 2B} (q) go— Ex(Q)+ie
_ .o d% +27i 8o~ Z(q)]fA(X.q,T)l, (72)
i n-1(X,p) = —2i(gnn) fw
0-- 0-- where E*(q)=[g?+m*?]"% EX(q)=[g*+m}?*]"% and
Xt[pysG™ ~(x,q)pysG° ™~ (x,p+q)], D,.(q) is given in Appendix A. The definition ofn* and
(65) mxwill be given later. It is interesting to notice that only the
Green'’s functions on the upper branch of the time contour,
d*q which are similar to the ones used in the standard effective
Iy, -1(x,p)= —5i(ggA)2f — field theory, enter in the calculations.
(2m)* The Hartree term can be directly worked out,

Xt pysGY, ~ (X, ) pysGP™ T (x,p+0a)],
(66)

1
HH(X):_Z(QUW)ZPS(TF); (73)
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herepg(7) is the scalar density of pions:

8 4 %2 * 2
B(p,q)=— ——712p,mi[(p-q)g—mj
9mjy

(74) —2p2(p-q)3[(p.q)s— 3m;%]—5p2my*

X[(p-q)g—2m%i%]—2(p-q)3[2(p-q)3
+2(p-q)gmyx?+5mx 1}, (81)

3 1
Ps(W): 2(277)3f dquw(x,q,ﬂ.

For the one-loop diagrams we have to distinguish the real
and virtual baryons. The first terms on the right-hand side of
Egs. (71 and (72) describe the virtual nucleon and delta,
which are denoted by thd andA in the Feynman diagrams

in Fig. 3. The second terms with distribution functions rep-
resent the real nucleon and delta, and denoted byNthe
andA~! on the Feynman diagrams. Through inserting Egs.
(71) and(72) into Eqgs.(65)—(68), after some straightforward  C(p,q)=—
algebra we obtain the real part of the self-energies:

1 * 2 *x2 2
(P-@)e=51[EX(A) +po]~Ex (PTA)—P,}, (82

8
3m*2[pi+ 2p2(p-d)c—miZp2+(p-q)E]
A

- X[(p-Q)c+m*2+m*my], (83
Rell-1(X,p)
1
- agt )ZJ dg [ A (p-a)c=5{[E* () + po)®~ EX*(p+q) + my*—m*2—pi},
" (2m)3 4E* ()E* (p+a) (84)
f(xa.7) +po——p (75) 2,2 2
—pol, B .
E*(p+q)_E*(q)_p0 0 0 D(p:Q)— 3m22[mA p,u, (pq)D]
* 1k * 2
ReTl;{_+(x.p) X[(p-q)p+m*mjg+mjx-], (85
3
=—5(92A)2J q | B(p. (p. q)D—E{[E (@)+pol*~E**(p+q) +m*?—m{?—p7}.
(2m)° 4B} ()EX(p+a) ©6)
fa(x,a,7) +Po——Pol, (76) Here we already dropped the contributions from virtual
EX(p+q)—EX(q)—po particle-particle excitationévhich are divergent in consis-

tent with the mean field approximation. Otherwise, one has
to renormalize it which may be difficult in many situations.
The effective mass of pion is defined in E§7). The effec-
4 [ C(p.q) tive masses and momenta of nucleon andre defined as
_ —(QZN)ZJ q (p.q [48,50,52,53

3 (2m)3 4E* (Q)EX(p+0)

Rell , \-1(x,p)

m* (X)=My—g{no(X), (87)
Rk +Po——p (77
EX(p+a)—E*()—po | M3 () =M~ g5,0(x), (88)
- K(X)=PL&—gunyo™(X), 89
Rell ;- 1(X,p) PN(X) =Py = grne (x) (89
4( _ )2j a[ D PA(X)=PE—gx 0" (X). (90
2 (YAN
3l4EA(q E*(p+q) The mean fields of-(x) andw*(x) are obtained through the
following field equations within théocal density approxima-
fa(x.0,7) . tion:
" " +Po— —Pol|: (78)
E*(p+a)—EX(a)—po

mZo(x) +b(gRn) 2a?(X) + c(gRn) *o3(x)
here, 1
:gﬁNPS(N)+gZAPS(A)+Egmmaps(ﬂ), 91
A(p,Q)=4[p2(p-a)a—2m*2p2+2(p-q)al, (79

2 (gNN)2 p ® )
mzw*(x) + ———[@*(X)1*=ginpl(N) + g2 pl(A).

1
(P-@)a=5{[E*(@)+pol*~E*2(p+a)—p,}, (80 @2
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The scalar and vector densities of the nucleon Andre (QZN)Z
i W s ,k = — tr] * KAV
defined as (p,q,k) 60 (p)E* (Q)EX (k) [ (4+m*)p“p
=20 fd ™, (93 X (ke ma)0, (9]
P 2mp) gm0 (95)? L
= * *2[(mA+m*)
o*(p)E*(q)EX (k) 18m3
# %272 _ 2 %2
pli(i)=— () a (94) my <1 (m* —mj)*—m;<]. (98)

A £ (x,0, 7).
2mp) N

In working out the second equality of E(®8) we have used
the relationsk=p+q andp-q=(m%2—m*2—m*?)/2 from
The abbreviations=N,A, and y(i)=4, 16, correspond to the energy-momentum conservation and on-shell conditions.
the nucleon and delta, respectively. In the above derivation all baryons are treated as elemen-

In Egs.(87)—(90) we have dropped the Fock term of the tary particles as usually done in quantum field theory. How-
nucleon and\ self-energies since it makes only a small con-€ver, theA is a resonance that can decay. A mass distribution
tribution. The Feynman diagrams for the Hartree term offunction of the Breit-Wigner form is commonly introduced
nucleon and\ self-energies can be drawn in the same way ad0 describe the resonances with broadwidth8,7¢. How-
in Fig. 2 by replacing the pion external line with the nucleonever, one mostly discusses the problem in free space. Here
andA line. One may notice that the main contributions to thewe assume that the same form of distribution function ap-
mean field of the nucleon anil come from the Hartree term Plies to the medium with free quantities replaced by effective
while to the pion from the Fock terrfone-loop diagram)s ~ quantities. That is, we introduce a Breit-Wigner function for
The situation is caused by the pseudovector coupling for théhe A resonance in the medium,
pion adopted in our considerations. If one uses pseudoscalar A
coupling for 7NN and wAA vertex, the pion will have a F(mt?) = 1 ma I*(|p|) @9
scalar self-energy from the Hartree term similar to the nucle- A T (m*2— m*2)21 m* 2% 2

X ] . (m%—m3)2+mi°T*2(|p|)’
on’s andA'’s. But this term turns out to be so large that the
effective mass of the pion will become almost 5 times morewhere I'* (|p|) is the in-medium momentum-dependent
massive at the normal density of nuclear matter than in the -decay widthp is the relative momentum between nucleon

vacuum[66]. This may not be a realistic case. and pion in theA-rest system:
o [mi*=(m* +m3) [ — (m* —m7)?]
V. CALCULATION OF THE COLLISION TERM pT= a2 . (100
A

A. In-medium N#— A cross section andA-decay width

mg is defined by Eq(88) with the freeA massM , replaced
by its resonance madd,. Inserting the mass-distribution
function of Eq.(99) into Eq. (95), we have

Now we come to calculate the right-hand side of &),
i.e., the collision term. The part corresponding to the
A-formation cross section reads as

d3
FN7T—>A(X!p) FNWHA(X’p):J d j dm*2 277)45(4)

1 (2m)3) (2m)3

d3q f d3k d3q
= 2m)46W(p+q-k =f s)(F3—F9). 101
J'(Zw)s (277)3( m)"8M(p+q—k) (27T)3v0'abs( )(F3—F31) (101
XW(p,q,k)(F3—F?); (95  In the second line of the above equation we already ex-

pressed the collision term with the cross secfiéd]. Since
we are now in theé\-rest system, the effective total energy of
the systens equals the effectivA massmj . Hereo ;,d m})
reads as

hereF$,F{ are the Nordheim-Uehling-Uhlenbeck factors of
the gain £9) and loss FY) terms:

—[1+F,(x,p,)I[1—F(x,q,7)]fs(xk,7), (96) o) = 2T e (gAN) ol (mg o2
FO=f_(x,p,Nf(x,qD[1-fa(xkD].  (97) ><[(m*—mX)Z—m’;z]F(mX2 . (102

Performing an average over the initial states and writing out
W(p,q,k) is the transition probability of thélm—A pro-  F(m}?) explicitly, we arrive at the cross section of ther
cess: — A process:
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(QXN)Z

e R
A

OJI\CIWHA(mZ) =

X[(m* —m})?—m3?
msT*(|p|)
(mx%—ms3)2+ms2r*2(|p|)

(103
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herel, J are the isospin and spin of thet,s are that of the
nucleon; andr is the isospin of the pion. Comparing Egs.
(103 and (104) we obtain the in-mediunA-decay width,
which reads as

|pl (QZN)2

T*(|p|) = —
(IpD) T——

[(m%+m*)2—m*?2]?

X[(m* —m})2—m5?].

w

(105

According to Ref[78], the resonant cross section can also b, this way, we give a clear-cut relation between in-medium

expressed by means of the decay width:

. Am(20+1) (2141
INmoAT 012 (25+1) (2t+1)(2r+1)

mg 2T*2(|p|)

(M3 2=mg )2+ mg °T*(|p|)

(104

A-decay width and\-formation cross section.

B. Elastic pion-hadron scattering

In this subsection we derive analytical expressions for cal-
culating the in-mediumm+N—7+N,7+A—7+A, and
7+ 7— a+ar elastic scattering cross sections. The corre-
sponding part of the collision term can be written as

1
FeI(va) = E[Hgo;n(xi p)A;Jr(Xi p) - Hg;rn(xip)A:rTi(va)]

d3p d3p d3p
:J’ ZJ 3j 4 (2m) 48D (p+pa—pPs— Pa)W(P,P2,P3,Pa) (Fo—F1);

(2m)3) (2m)3) (2m)° (199
hereF,,F; are again the Nordheim-Uehling-Uhlenbeck factors,

Fo=[1+f,06p, DI[1= 1y, (X,P2, ) IF (X,P3, ) iy (X,Pg, 7). (107

Fi=f.06p, D), (%P2, D[1Efy (X,p3, D I[1 =, (X,ps,7) ], (108

H,,H3,H, can bemr, N, orA; the symbol+ assigns to bosons and to fermions. The transition probabili®/(p,p,,ps,P4)
for different channels reads as

Won . on(P.P2,P3.Pa) = (02,0k” To® (109
TR T 160 (D)E* (P @ (P)E* (pa) ©
(gfrﬂ'gZA)z
WﬂTA—vrrA(p!p 1p 1p ): qu)b! (110)
2T 160 (P)EX (P2) 0* (P3)ER (Pa)
1
W, mr(PyP2,P3,Pa) = > [(9A ) T @+ (gh,02.)2Te® gl +ps—ps, (11D

16w™ (p) w™* (P2) ™ (P3) @™ (P4) AB

whereA, B=o,p. HereT,_4 is the isospin matrix an@,_g is the spin matrix. The subscrips b, ¢, d denote the terms
contributed from Figs. @—4(d), respectively. The concrete expressionsTgry and®,_4 are

Ta:trEt <r|T:)T|r3><r3|T;T|r><t4|7-p|t2><t2|Tp|t4>DipD£J’ (112

2'3'4

Tb:TrET <r|T;T|r3><r3|T:;lr><T4|Tp|T2><T2|Tp|T4>DipDL’ (113
2314

Te= 2 (r|7Zlra)(ral 7ZIr)(ral 7ZIr 2)(r2| 7ZIr o) DDA, (114

rorary
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Td=”2r (r|7ZIr a)(r ol 78Ir 2)(r ol 7AIr 3)(r 3| 73|r)DADE (115
2134
1 2
®,=(7;)’DED v, (bt m*)y (¢4+m*)]{— (116
a P p=p P P (p_ps)z_mi
2
q)b:(')’Z,T)ZDgDZtr[')’p(pz"'mZ)DUp(pz)'yp(lb4+mZ)Dpa(p4)]{m : (117
3 P
2
®.=(y3)'DADA (o= pai—mi (118
—P3)T My
D= (vivE)?DLD} . (19
(P—Pp3)?— Mg (p—pa)—mj
|
We further express the right-hand side of E§06) by the 1 1 o
differential cross sectiong’7] P9+ 5 AT(X) 9+ 5 O Relljgo(X, P) 7,
o f -(X,p,7)
d°p, - Eﬁl‘Rel_[ P AL
Fe|(X,p)=fwvwaﬂ(s,t)(Fz—Fl)dQ; (120 2% loop(X:P) 7, w*(p)
d3
. . . . = _q S(S)(FO— |:0)
hereo .(s,t) represents the in-medium differential cross sec- (277)3”‘7313 2 1
tions of 7+ N—7w+N,7+A—7+A, and 7+ 7—w+m
elastic scattering. Its concrete expressions can be obtained d3p,
through computing Eqg112—(119 and finally transform- J 2 )3vﬂ0w(5,t)(Fz—F1)dQ. (124
aw

ing it into the center-of-mass system. We give explicit ex-

pressions ofr .n_ »n(S:1), 0 a_ za(S,1), ando . -(S,1) i ) )
in Appendix C. After averaging over initial states, the in- The first term on the right-hand side of E324) stems from

medium total cross sections can be calculated through th&eN7— A procesdit is angle independent in the center-of-
following equations: mass systejnand the second term represents théiadron

elastic scattering. It is of course interesting to investigate the
mr-hadron inelastic scattering processes, which may warrant

1 further studies.
o-:rNﬂTrN:Zf Uﬂ'N—»wN(S!t)dﬂv (121)
VI. NUMERICAL RESULTS AND DISCUSSIONS
U:AﬂwA:ij O oaa(50)dQ, (122 _ In th_is sec_:tion we pr_esent our numericgl results for the
16 in-medium pion dispersion relatiod-formation cross sec-

tion, and momentum-dependehtdecay width. The calcula-
1 tions are performed in symmetric nuclear matter at zero tem-
;WHW:_j O (s,0)dQ. (123  Perature. The baryon distribution functions in EG&)—(78)
6 and(93), (94) are replaced by the correspondifdunctions.
The coupling strengths ajyy.9nn, @andb, ¢, Z are deter-
mined by fitting the known ground-state properties for infi-

the A-decay width into account. However, the strict treat- Nite nuclear matter. In this work we take parameter set 2 of
ment of Breit-Wigner distribution function as in Sec. Iv Ref. [79], which givesgry=11.77, gyy=13.88, b(gfin)°
might cause complexity in the derivation procedure since we=13-447, c(giy)*=10.395, and Z=3.655. The corre-
are now concerning twa’s in a scattering process. Practi- SPonding saturation properties are the following: binding en-
cally, we usually introduce a centroifl mass in numerical €9y Epin=—15.75 MeV, saturated effective nucleon mass
calculations which can include the influence/dfdecay ef- My/My=0.6, compressibility)K =200 MeV, and saturation
fectively. For a detailed description of the method we refer todensityp,=0.1484 fm 3.

Refs. [48,50,52. At the end we can rewrite Eq62), the For the coupling strengths az, and gi,, no direct
RVUU-type transport equation of the pion, in the following information from experiments is available. For simplicity,
form: we employ the argument of universal coupling strengths, i.e.,

o

Of course, in calculating the ™, . ., one should also take
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FIG. 6. The pion dispersion relation in symmetric nuclear matter \5 4 -—— plpy=1.0 . . \\
at saturation density. The solid line shows the free dispersion rela- 2 — - plpy=2.0 o S
tion. The dotted curves represent the in-medium dispersion relation { £ .¢ N -
for different branches as indicated in the figure. The upper and = N
lower hatched areas indicate regions of nonvanishing imaginary @ -8 (b) N
parts of theA-hole and nucleon-hole polarizations, respectively.
10 0.5 1.0 1.5 2.0 25 3.0
0xa=0xnn and gy, =0un [80]. Other choices of thé cou- 2
pling strengths now in the literatuf¢1,81 are not consid- <% } e
ered here since they give unreasonable results for the pion E 0 [ e
dispersion relation. In this case, we do not have a noniero : i
distribution in relativistic mean field calculatior§9,81. =) S nucleon-hole
The contributions of Eqg76) and(78) to the real part of the ) —— delta-hole
pion self-energy vanish in the present calculations of the 5 4 — total
pion dispersion relation. It is, of course, not a realistic situ- & =
ation of the dynamical process of energetic heavy-ion colli- _ N
sions, where a rather large amount of nucleons are excited to é’ (©) ~_
the resonance statg&7]. The contributions of Eqg76) and
(78) will certainly enter the pion dispersion relation and 8 0.5 1.0 15 2.0 2.5 3.0
might play an important role because of the large spin and p/m,

isospin factors of thé resonance. Therefore, for the use of

the in-medium pion dispersion relation presented in this FIG. 7. (a) The pion dispersion relation at different densitigs.

work in the study of high-energy heavy-ion collisions, it The real part of pion self-energy at different densities relating to the

should be viewed as a preliminary step approaching to thgion dispersion relation shown i@). (c) The contributions of dif-

realistic description. ferent excitation modes to the real part of pion self-energy. The
For the coupling strength affj,, we take the most com- calculations are performed at normal density.

monly used value2/47r=0.08[56]. The coupling strength

of g7\, can be fixed through using ELOS in free space. contribute only to the high branch of collective modes,
If (A)';']e takes My=939 MeV, M,=1232 MeV, m which can be neglected in the present consideration.

~138 MeV, and the empirical value df,=115 MeV, it Figure 6 ericts the in-medium piqn dispersion relation
turns outf*%/47=0.362, very close to the commonly used calculated W|th_ Eq_(59) at normal density. He_re we already
value of 0.37[40] [if one uses this value in Eq105), it drop the coniribution of the Hariree term since we do not
givesI'y=118 MeV, still within the errorbar of experimen- expe_ct a large pion distribution at the_ energy anq density
tal datd. In computing the real part of the pion self-energy considered. The areas of the nonvams_hmg Imaginary part
we use a cutoff factor oh2=exp(— 2p?/b?) with b=7 m._ (NIP) of the pion self-energy are also |nd|cqted in the figure.
as usually don¢16,17. The imaginary part of the pion self-energy in nuclear matter
' can be derived through inserting E¢g1) and(72) into Egs.
(65)—(68) and taking both the baryons on the mass shell. The
analytical expressions are given in Appendix D. It should be
Figure 5 displays the gap between the effective masses @ointed out that in calculating the pion dispersion relation of
particles and antiparticles at different densities. One can sdeq. (59) self-consistency is realized only in the real part of
that the mass gap is much larger than the pion mass even #ie pion self-energy. From the figure one can find that the
3 times the normal density. That means that the antiparticleA-h branch is above the area of NIP. The sound branch is

A. In-medium pion dispersion relation
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buried in the region of the NIP contributed from the nucleon- 7 7
hole excitation. For the pion branch, it first increases with the p
increase of momentum and then disappears in the region of

the NIP contributed from thé\-hole excitation when the 5
momentum is larger than 3 times the pion mass. That means Ek“
that at larger momenta the pion can be bounded inAhe -
resonance. This scenario is commonly used in transport mod- 3 3
els. In the figure one can also find another dotted curve bur- 2
ied in the region of the NIP fromA-hole excitation, which is
related to the case that a formaAddecays immediately.

Since we are mostly interested in the pion branch, in the
following we discuss it in detail. In Fig.(@ we show the
pion dispersion relation at different densities. The corre- 7
sponding pion self-energy is displayed in Fighjz At p
=2pg One can see the numerical instability since at that den-
sity the pion self-energy is very large compared to the pion 5
mass. Contrary to the results of the nonrelativistic model <,
[16] where the pion branch always starts from the point of =
w*=m_ since the pion self-energy is an explicit function of * 3
p? in that model, our results exhibit that the pion dispersion
relation(pion branch has a rather different behavior for dif-
ferent momenta. At lower momenta the pion has a positive L
self-energy, which causes the in-medium pion dispersion re-
lation to be harder than the free one. The pion self-energy b1 2 3 4 5 6 0 1z 3 4 5 6
decreases with the increase of momentum. Wih@&xceeds
the point around 100 MeV the self-energy becomes negative FIG. 8. The pion dispersion relatigdotted curvesat different
and correspondingly the dispersion relation becomes softefensities. The short-range correlations are taken into account in a
than the free one. One may argue that nucleons are not venpnrelativistic way with Migdal parametey =0.6. The solid lines
relativistic in nuclear matter; little difference is expected, forrepresent the free dispersion relation.
slow pions, between nonrelativistic and relativistic results. In
Appendix E we reduce our relativistic formulas to the non-
relativistic limit. It is shown that the relativistic effect stem- of the Migdal parameteg’. This method is frequently em-
ming from the Fermi motion of nucleons is negligible. But ployed in the relativistic mode]23] although it has never
there does exist an evident difference to the nonrelativisti®een checked carefully. We follow this way and take the
model mainly coming from the relativistic kinetics whesg ~ Pion self-energy under the random phase approximation as
instead ofp? is used. The dispersion relation of Figaymay
provide a possible explanation of the pion spectrum over
whole energy range. In R€f26] it was shown that the pion
yield is overestimated at low momentum whereas it is under-
estimated at high momentum when a free dispersion relatiowith g’ =0.6 we have recalculated the pion dispersion rela-
was used. Figure(Z) displays the contributions of different tion which is plotted in Fig. 8. The behavior of the pion
excitation modes to the real part of the pion self-energy. Onelispersion relation becomes quite strange and difficult to un-
can find the main contribution comes from thehole exci-  derstand. Similar results were obtained in Ré&f3]. That
tation as expected. The self-energy from the nucleon-holenight mean that it is unsuitable to incorporate short-range
excitation always has a positive value whereas the one froroorrelations in a relativistic model by means of a nonrelativ-
the A-hole excitation changes its sign from positive to nega-istic approach. A fully self-consistent inclusion of correlation
tive at a certain momentum point, which controls the behaveffects might be necessary, which is, however, quite compli-
ior of the pion dispersion relation. cated and needs to be discussed in a separate paper. Another

The above calculations are performed through consideringossibility is that the effective Lagrangian of E§9) might
the lowest-order Feynman diagrams. Short-range correlde valid only at lower order.
tions have not been included. In the nonrelativistic model, For a convenient use in the study of heavy-ion collisions,
the short-range correlations are taken into account by meange parametrize the results of Figiay as

Rell|;o,(X,P)
1+(g'/p%) Relljgop(X,P)

" (p,)= (125

1.10398+ 0.079047p+0.23201H%—0.04910p°, p=0.5p,,
w* =1 1.32175-0.1370+0.16503H>—0.01735683%, p=p,, (126
1.56304- 0.58523p+0.26119H°—0.037009p°, p=2p,.

The unit of * andpis m,.
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1050 1100 1150 1200 1250 1300 1350 1400 1450

100 FIG. 10. The momentum-dependeAtdecay width in free

space. The solid line and long dash-dotted line are our results com-
90 puted with MDC and MIC strengths, respectively. Dotteg#],
dashed 85], and dash-dottef86] lines represent several phenom-
enological parametrizations commonly used in the transport
models.

resonance position. Hene, is the relative momentum be-
tween nucleon and pion in the-rest systemR is the radius
of the boundary of the internal region. The typical value for
the A is 0.98 fm[78]. In the same spirit a mixed version of
the form factor for theNA 7 vertex was used in our previous
works[48,50,53 which has essentially similar effects. More
conveniently, here we phenomenologically introduce a mass-
1050 1100 1150 1200 1250 1300 1350 1400 1450 dependent coupling(MDC) strength gxy(Ma)=0xnF,
Invariant mass of system (MeV) which will be used in the following calculations. The origi-
nal coupling strengttg}, is afterwards referred to mass-

FIG. 9. Free cross sections for reactioms p—A*" and . ;
a~ p—AP. The dots are the experimental data from R88]. The independent couplingMIC) strength.

; ; + ++ - 0
solid curve is our results calculated with the mass-dependent cou- Ftl.gur(.a gdeSplays the_Fh pZAt antthr p—>A Crc;sls dat
pling strength while the dashed curve with the mass-independe ection In iree Space. € dots are the experimental aata

coupling strength. rom Ref.[83]. The solid _and dashed curves are our _numeri-
cal results calculated with the mass-dependsnotid line
and mass-independefdlashed ling coupling strength, re-
spectively. The results with MDC strength can reproduce the
experimental data nearly perfectly. Furthermore, our calcula-
tions are almost parameter free. Ow§, was fixed by fit-
Now let us turn to the collision term of the pion transport ting ',=115 MeV. That implies that our theoretical frame-
equation. In this subsection we study thl— A cross sec-  ork for describing the pion is quite reasonable although it
tion and the momentum-dependentdecay width, which are - should be further checked in relativistic heavy-ion collisions.
the most important channels for pion absorption and produc- |y Fig. 10 we depict the momentum-dependantiecay
tion, both in free space and the nuclear medium. As has beggidth in free space, calculated with MDC and MIC
pointed out in Sec. V, tha is a physically decaying particle. strengths, respectively. Some phenomenological parametri-
A Breit-Wigner function is Commonly introduced to describe zations Common|y used in the transport models are also pre-
the broad width of theA resonance when one considers sented in the figure. Our results with the MDC strength are
A-relevant scattering processg$9,48,76. Consequently, comparable with these parametrizations. But the decay width
the mass of thé has a distribution with respect to the total calculated with the MIC strength increases very rapidly with
energy of the system. But in the framework of an effectivethe increase of the pion momentum, which will open the
field theory one only treats a point particle with fixed mass.possibility that aA may have a mass much larger than its
If one introduces an energy-dependent mass, correspongesonance mag$0]. This may not be the real case. In the
ingly, one should introduce certain corrections on the interfollowing calculations we will use the mass-dependent cou-
action vertex. BrueckndB2] suggested a vertex function of pling strength for theNA 7 vertex.
12 In Fig. 11 we show the in-mediu-formation cross sec-
(127) tion andA-decay width. The effective masses of nucleon and
A are determined by Eq$87) and(88). The free pion mass
is used in(a) and(b) while the effective pion mass from the
to fit the phase shift of a broad resonance away from thelispersion relation of Fig.(d) is used in(c) and(d). From

B. A-formation cross section andA-decay width

1+R¥(p2)o
1+R%p?Z
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04 200 VIl. SUMMARY AND OUTLOOK
180
e EY 160 A large amount of data with high accuracy for the pion
2140 spectrum and pion flow has been accumulatedzAeam
E facility will be available at GSI which will provide new and
<T‘100 specific data to help to understand the pion dynamics in rela-
z 8 tivistic heavy-ion collisions. However, a self-consistent treat-
To 60 ment of pions, together with the nucleons axig, is still not

40

" realized in current transport models. In view of this fact, we

have developed a RVUU-type transport equation for the pion

1050 1150 1250 1350 1450 distribution function based on an effective Lagrangian of the
00 QHD-II model [56]. The closed-time-path Green'’s function
180 — o0 technique is employed and the semiclassical, quasiparticle,
o @ R and Born approximations are adopted in our derivation. We
2140 = P20 have presented an unified approach to the following prob-
E 0 lems: First, both the mean fieldhe real part of the pion
100 self-energy and the collision ternithe imaginary part of the
Z 8 pion self-energyof the transport equation are derived simul-
* 60 taneously from the same effective Lagrangian and presented
40 analytically. Second, we treat the real pion and virtual pion
_ 20 on the same footing. Third, the transport equation of pion is
T I I 0 105 1mse 2s Dwe 1aso derived within the same framework which we applied to the

n/m_ Invariant mass of system (MeV) nucleon[15,47-49,52 and A [50,51] before. Therefore, we
obtain a set of coupled equations for tReA, andw system
which describes the hadronic matter in an unified way.
Within this approach we have investigated the in-medium
pion dispersion relation. In contrast to the results of the non-
relativistic model where a softer dispersion relation over the
) . . . whole momentum range is exhibited, the predicted in-
the figure one can find the strong medium corrections. In thénedium dispersion relation turns out to be harder at lower
case of free pion mass, the effectivedecay width de- momenta and softer at higher momenta, compared to the free
creases rapidly with the increase of density. Théormation  one. The main reason for the difference relies on the fact that
cross section is enhanced near theesonance mass but in our relativistic model the pion self-energy has a relativistic
suppressed at other region. The whole shape of curves bginetics p, while in the nonrelativistic model it explicitly
comes narrower compared to the free one. The in-mediurdepends on three-momentyni40], in which the real part of
A-decay width was studied by Kirat al. [87] where an ef- the pion self-energy goes to zero whpna-0. However, a
fective pion mass stemming from the nucleon-hole excitatiorpion in the nuclear medium should in principle suffer the
was used. This kind of effective mass is very close to the freénteraction of surrounding particles, whatever it moves or
mass as stated in their paper, and might be seen from Figot. In our calculations the real part of the pion self-energy
7(c). They obtained a suppresséddecay width at normal has a positive value at smaller mome[#]. Consequently, -
density which is in qualitative agreement with our results.the momentum dependence of the in-medium pion dispersion
However, in our calculations the Pauli blocking of the final elation becomes very flat and quite different from the free

nucleon is not taken into account; so a quantitative compari©ne and that of the nonrelativistic model. This will certainly

son is not possible. The Pauli blocking is of course incorpoN@ve €ffects on the pion spectrum and pion flow as well as

rated in the transport equaticii24. The effects of Pauli on the dilepton production since one of the important chan-

+,.— + A ‘g
blocking alone on the in-medium resonance decay widt'€!S 7 7 —p—€ e explicitly depend on the slope of
were in?/estigated by Effenberget al. in Ref. [88]. y dw/dp [27]. It would be very interesting to check this kind

In Figs. 11c) and 11d) the medium effects on the pion of pion dispersion relation in the dynamical processes of

are incorporated. Compared to Figs(d)and 11b) one can relativistic heavy-ion collisions. Work on this aspect is in

. ) . rogress.
find that the effective mass of the pion can change the result% Considering that in the nuclear medium the absorption

completely, even the trend of the density dependence. g nroduction of pions are mostly realized through the for-
seems that if the smaller effective mass of the pion is takep,4tion and decay of thA resonance, we have studied the
into account, the in-mediund-decay width increases as A _formation cross section andi-decay width both in free
compared to the free mass. The medium effects on thgpace and in the medium. Our theoretical prediction for the
A-formation cross section are now exhibited to be importanfree A -formation cross section is nearly in perfect agreement
only in the region where the formedl has the mass around with the experimental data. The computed fraedecay

the A-resonance mass. It decreases with the increase of dewidth is comparable to several phenomenological parametri-
sity. When the formedA is far away from its resonance zations commonly used in transport models. It is found that
mass, the medium corrections to theformation cross sec- the effective pion mass has a strong influence on the pre-
tion are negligible. dicted in-mediumA-formation cross section and-decay

FIG. 11. The in-medium -formation cross section an-decay
width. In (a) and(b) the free pion mass is used in the calculations.
In (c) and(d) the effective pion mass is taken into account via the
dispersion relation of Fig.(d).
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width. It can even change the trend of the density depenneously. In this case one can obtain the time-dependent mean
dence. After taking into account the medium corrections orfield and the transport equations for theand w distribution

the nucleonA, and pion mass simultaneously, thedecay functions at the same time. It would be interesting to study
width turns out to be enhanced in the medium especially athis problem and explore it just from a theoretical point of
higher momenta, while tha-formation cross section is sup- View.

pressed around the resonance mass. When the foAmied

far away from its resonance mass, the medium effects on the ACKNOWLEDGMENTS
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quite strange. In fact, short-range correlations can be consid-
ered in a relativistic model self-consistently by implementing APPENDIX A

correlation terms like ¢y, ys7)2 and (44,S" )2 in the
effective Lagrangian of Eq.19). In the mean field approxi-
mation one should calculate the expectation value o

(v, ysmby and (¢, ,S" ) which corresponds to the con-

densate of the pion field. Although a detailed investigation of (Tl z/f(l)E(Z)])z iG%1,26, ., (A1)

correlation effects may go beyond the scope of the RVUU 12

approach, it is nevertheless very interesting to check the ef-

fects of short-range correlations on the pion dispersion rela- :~0 _ f

. . . oy o iG°(1,2) =i

tion even in static nuclear matter within a relativistic model

self-consistently. It would be extremely interesting if this

collective instability could be studied in a dynamical situa-

tion. G T (x,k)=(k+My)
As usually done in a microscopic transport theory for

nonequilibrium system, the temperature degree of freedom is

In this appendix we present the zeroth-order Green'’s
{unctions of nucleon)A, and mesons used in this work.
(1) Nucleon:

4
GOx,k)e k=% (A2)

27)4

*1

k2—MZ=*ie

not taken into account in the present work. One might con- _m _

sider the temperature degree of freedom in nuclear matter by - E(k) olko E(k)]f(x,k)l, (A3)
simply replacing the single-particle distribution functions

with the Fermi-Dirac(for fermiong and Bose-Einsteirtfor i

boson distribution functions. In this way one can study the G°"~(x,k)=— E® [ ko= E(K)J[1—f(x,K)](k+My),
effects of temperature on the predicted quantities. This is (A2)

especially meaningful in the present case sinceAtdistri-
bution will enter explicitly at certain temperatureg]. Then i
the AA~* andNA ~? excitations of Figs. &), 3(d) and 3g), G T (x,k)= H&[ko— E(K)JF(x,K)(K+My).
3(h) might play an important role on the in-medium pion (k)
dispersion relation. This would be more close to the realistic
situation of energetic heavy-ion collisions and requires fur- (2) pelta:
ther studies.

As frequently emphasized in this paper, up to now we <T[¢Au(1)JAv(2)]>:_iG?w(l!Z)&T - (AB)
only treat the pion as a real particle. Other mesons such as te
o,w, andp still remain virtual ones. It is of course interest-

(A5)

4

ing to develop transport equations fer and p mesons as iGO (1 2)=ij GO (x,k)e ka2 (A7)
well as for other experimental observable mesdfis pn (2m) ’
K*,7n,¢,... within the present framework. Among them,

the p meson is especially important for dilepton production o +1

which cannot be explained by current transport models. Me- GZ;*(x,k)=(Ik+ Ma)D . > >

dium corrections to the properties af andp as well asy k*=Mji=*ie

mesons may provide a possible explanafid®—34,90-92

.In almost all practic_ally used RVU_U—type transport calcu- + L'a[ ko— E(K)]fA(x,K) |,  (A8)
lations, the local-density approximation is employed in order E(k)
to realize the numerical solution of the equation. This drops
the retardation effects of the mean field, although the equa- o — i
tion itself is constructed from the relativistic model. From G, (Xk)=- Wts[ko—E(k)]
Eq. (2) one can find that it is possible to describe the propa-
gation of real as well as virtualr and @ mesons simulta- X[1—fA(X,K)](k+My)D,,, (A9)
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G% (k)= =~ ( 5[k0 E(K)]fa(x,K)(kK+M)D ., r?f(‘f(x,y)ﬂ(—iP“+%r7“)f(X,P), (B1)
(A10)
1 1 2 1
=G0~ 30 iy ke vk~ gk a¢f<x,y)~(|w+Eaﬂ)ﬂx,P), (82)
(A11)
(3) Mesons: M0G0y hOOG(X.P) i oh(X) ag(X,P)
X xX,Y)— s - = e —
(TIOADPe(2)])=IDAA(1 D505, (AL2) 9wy ? 2 axr P,
(B3)
whereA, B=o,w,m,p,
Da=DAD}, (A13) o) OGP+ i oh(X) ag(X,P)
D% andD!, are defined and listed in Table I, and (¥)90x.y)—h{X)( 2 gxe P,
(B4)

A0 : d4k 0 —ik(xq—x%5)
iAA(L,2)=i WAA(x,k)e 17X (Al14)
r

f d*’ F(x,x)g(x",y) —F(X,P)g(X,P)

0F ¥ _ _ 2_
Ay (k) 7 mi_l 2 o[ ke — mA]fA(Xk) i[ 9t (X.P) d9g(X,P)

(A15) 2

&P# IXH

A% T (x,k) = —2mi 5[k2—m,'i][0(tko)+fA(X,k)](-Am) _ 9TX.P) 99(X,P)
IXH P,

; (BY)

Here the numbers 1, 2 represenix,. t,,t; denote the isos-

pin of nucleons and T,,T, denote those of

A’'s. f(x,k), fa(x,k), and fa(x,k) are nucleonA and here
meson distribution functions, respectively. The abbreviation

for isospin on the distribution function has been suppressed.

1
X==(x+y). (B6)
APPENDIX B 2

In this appendix we perform the Wigner transformation of
Eq. (45), which can be easily realized by means of the fol-After Wigner transformation the different terms in E¢5)

lowing formulas[73]: turn out to be
|
1 u 1 " X 2 -+
JLA LT (1,2 a I—iPHy,—P?|A_T(X,P), (B7)
i
(DA, (L2 =TI(X)AL " (X,P) = 5 KIT4(X)IRA " (X,P), (B8)

- _ - _ i - _ - _
Relloop(1,3)A ;7 (3,2 = Rell g0y X,P)A ¥ (X,P) + 5[0k Relliggy(X, P)75A T (X,P)— d% Rellpon( X, P) LA (X, P)],
(B9)
0 (L,3A (3,2 =TT, (X,P)A_F(X,P). (B10)

In Eq. (B10) we have dropped the contributions from derivative terms. That means that collisions are performed at instanta-
neous timeBoltzmann ansatg54,72.

APPENDIX C

In this appendix we present analytical expressions of in-medium differential cross sectienddoiron elastic scattering.
(a) Differential cross section of in-mediumN— 7N scattering:
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Tons (S, t) = (gpﬂgﬁ'N)z[(m*zﬂLm*2—25)(m*2+m*2)+52+st—m*2t] (CY
T (2m)%s 2(t-md)? N T ’

where

s=(p+pa)?=[w*(p)+E*(p2)1°—(p+p2)? (C2
1 2 2 1 2 2\2
t=§(2m* +2m* —s)—g(m* —m*2)%+2|p||ps| cosh, (C3
1
[Pl =Ips| = ——=/(s—m*?—m%#)%— 4m; “m*?, (C4)
2Vs

and @ is the scattering angle in c.m. system.

(b) Differential cross section of in-mediumA — 7wA scattering:

1 5(gp7rgZA)2
(27m)2s 36my *(t—m>)?

O-'n'A—wn'A(Sat) =

[18m5 *(mi 2+ m*%)2—2m% °(18s+ 11t) — mj *(36m* 2s+ 16m* %t — 18s?— 26st

—7t2) + mi4(8m* ?st—4m* 4t + 2m* 212 — 48t — 65— t°) + m* 22 (m*2— 2s) + st¥(s+1)], (C5)

where

s=(p+py)?=[w*(p)+E5(p2)]°—(p+p)?% (C6)

1 1
t=5(2mi*+2m7?—s)— - (m}*—m7?)?

+2|p||ps| cosé, (C7)
1 * 2 * 2\ 2 * 2 k2
||0|=||03|=2—J§J(s—mA —m*%)2—4m*’miZ. (C8)

(c) Differential cross section of in-mediunr7— 7
scattering:

O e amn( ST = [D(s,t)+E(s,t)+(s,t—U)],

(2m)%s
(C9
3(dorMy)*  (Gpn)? ) )
= *2 _Dg—
Py 256(t—m2)? 4(t—m§)2(4m” MR
(C10
4
E(S,t) (g(TﬂTmU')

~ 256t-m2)(u-m?)

(9pm)"

—t)(2s+t—4m:?
8(t—m§)(u—m§)(s t)(2s+t—4m.°)

Am*?—2s—t

" 8(t—m2)(u—m2)

1 2
E ga’ﬂ'mogpﬂ')

.\ t—s
8(t—m2)(u—mp)

: (C1y

where the functio represents the contribution of the direct
term, E is the exchange term, and

s=(p+p2)2=[w*(p)+o*(p2)]*—(p+p)?

(C12
1 2
t= §(4ij —s)+2|p||ps| cosé, (C13
u=4m*?—s—t, (C14)
1
[pl=1ps| = 5v's—4m*. (C15

APPENDIX D

In this appendix we present analytical expressions of the
imaginary part of the pion self-energy in nuclear matter.
(a) For spacelikep,, ,

m*2p?
Imnal\j‘l(xip): 7T|p|M(glleN)z(EF_E*)u (D1)
where
Er=(m*?+k¢)™ (D2)
E* =min(Er ,Emay, (D3)
1 1 %2\ 172
Emax=ma m*,EF—|po|,—§|po|+§|p|<l— o? ,
"

(D4)
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2 and
IMII, «_1(X,p)= ————(p* —2pZm*?2
aa-1(%,P) 187T|p|m22(pﬂ p.mj pi+m*2_mzz o1
_ =t = D12
+10m}*)(9f.)*(EF~EL), (D) 02
and
C(p,q)= 2 — (m% —m*)2][p2 — (m} +m*)?]2.
B3 [t 24 (k)22 o5 CPO=glpim(mi—mt)Ilp (g m) ]
(D13)
EX=min(E2 ,E5.), (D7)
The definition ofEg andE?: is the same as in EqéD2) and
N N 1 1 (D6):
Ema=max m3 ,Eg —|po|, — 5 |po| + 5 [Pl (T2
—— _ AN A
4m22 1/2 ImHNA—l(X-p)_12ﬂ_|p| C(F’ﬂ)(EF E*)- (D14
X| 1= —; , (D8)
P where
(gZN)Z E*= min(Eé ' Emax)» (D15
- — _ *
Im HAN*l(X!p)_ 127T|p| C(p:Q)(EF E )1 (Dg) 1
Where Emax= max{ mi ,Eg—|pol,— §|po| €
E* =min(Eg ,E, 0y, (D10) 1 o amr2\ 2
" Eed w5l €2=—=| |, (D16)
A 1 Pu
Emax=m m*yEF_|p0|v_§|pO|6 and
1 4m+2\ 12 2t mk2—m*2
+§|p|(62_ 2 ) s (Dll) E’:p“A—z_ (Dl?)
P P
(b) For timelikep,,,
(QZN)ZC(p 0)(E,—Ey) 0$p2$(mz—m*)2
ImII, - a(x,p)={ 12m[p] "7 7070 =db : (D18)
0, otherwise,
where
1 1 4m*2\ 2
Ey=min EF,—§|po|€+§|p|(€2— > ) ; (D19
Py
Eq=min(Er . Emad, (D20)
1 1 4m*2\ 2
Emax:ma{m*=Eé_|p0|a_§|p0|€_§|p|(62_ 52 ) 1 (02D
"

For the timelikep,, the contributions of InbI-1(x,p) and ImII,,-., which describe the particle-antiparticle decay
processes, vanish since we neglect the antiparticles in the present framework. In this work the numerical calculations are
performed in cold nuclear matter with the assumption of chemical equilibriumEée,EF when aA is produced. In this case

the A-decay process is Pauli blocked sinca @&an only decay into a pion and a nucleon with a momentum smaller than the
nucleon Fermi momentum, which leads tollfy, 1(x,p) =0 whenpy>|p.

APPENDIX E

In this appendix we introduce the nonrelativistic approximation for E&fs.and(77). These two terms stemming from the
particle-hole and\-hole excitations are commonly considered in the nonrelativistic appfd@ch6,2]. The effective masses
and energies in the expressions are replaced by the corresponding free ones. In order to make a complete nonrelativistic
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reduction we have to start from the full Green’s functions including the contribution of antiparticles. EquZbpasd (77)
then read as

- dq [A(p,a) f(x.q,7)
RH,1,=2”2J ——p.l, E1l
Sl s =2 ] (5 03 26(0) [por B -E2pra) P4 P Y
- 4 d%q [C(p,a) f(x,0,7)
RH,,=——”2f — =Py, E2
ell\y-1(x,p) =~ 3(94n) (2m) 2E(@) [po+E(q)]2—E§(p+q)+p” Py (E2)
with the A(p,q) andC(p,q) defined by Eqs(79) and(83). After some algebra we obtain
- d*q MipZ[ f(x.q.7)
Relly 2(%) =~ 4(0T)” | . ——" €3
NN "I (2m)® EAq)| p2I2E()—p-a/E(@)+py "
- 8 L &g f(xq7)|(p:9)?-Miph  2pIMy(My+My)
ReHANfl(le)_§(gAN) f(zw)3 E(q) L Mi + Mi
A2 M2nr2 2_ .2
(p-@)°~MRp2 (MatMy)2—p2 +pﬁ_p#]’ -

2M3E(q)  p2/2E(q)—p-a/E(q) — (M3 —MZ)/2E(q) + po

which are the same as Ed8) and(11) in Ref.[14]. Taking
the nonrelativistic limitE(q)~My, Eq. (E3) becomes

— T \2n2 zwp
Rell\-1(X,p) = (90N PrZ— 5 PN>
Po— wp

(E9)

differences mainly caused by the different masses of nucle-
ons andA’s. The situation might be understood in view of
the fact that the problem of describing a spin-3/2 particle in
relativistic quantum field theory remains unsolved. Fortu-
nately, the difference between the nonrelativistic limit of the
relativistic model and the standard nonrelativistic model is

with w,=p2/2M . If one further neglects the relativistic duantitatively insubstantial. -~ . .
. b m . F 1%a) displ th d laticih
kinematics, |.e.pi—>—p2, it returns to the standard nonrel- igure ~4a) displays the pion dispersion refatiofhe

ativistic formula stemming from the particle-hole excitation P'°" branch at normal density. The solid line denotes the

[40,16]. Therefore, the relativistic effects stay in two aspects:free pion dispersion relation. The dotted line is calculated

one is the Fermi motion of nucleons in a nucleus which is
small; that other one is the relativistic kinetics which turns
out to be substantial in our calculations as can be seen lat

In the nonrelativistic limit, Eq(E4) becomes

- 4 Myp?
— (T \2__ "N
RGHAN—l(va) g(gAN) Mi PN

8 (Mpy+My)
T \2 2
+§(gAN) M—ip“pN
2 .2
1(977 )Z(MA+MN) _p,u sz p2
~ o \YaAN PN
9 M3 Po— @R
(E6)
with
2 2 2
b, Mi—My
“RTOMy 2My &

The first and second terms on the right-hand $RES) of

Eq. (E6) are the nonresonant terms, which have no analogy

eq§shed line is computed by taki

with Egs. (E5) and(E6), i.e., the nonrelativistic limit of the
relativistic model, but with the relativistic kinetics. The
mi,— —p? in Egs. (E5)

and (E6). One can clearly see that the relativistic effect
(mainly from the kinematic originmakes the pion disper-
sion relation harder at low momenta and softer at high mo-
menta. Furthermore, the relativistic effect at low momenta
mainly comes from the nonresonant terms, i.e., the first and
second terms on the RHS of E(E6). If one switches off
these two terms, at low momenta the res(ie dash-dotted
line) approach the dashed line while at high momenta they
approach the dotted line. Figure (b2 depicts the pion dis-
persion relationboth the pion and thé-hole branchesat
different densities calculated with Eq&E5) and (E6) and
pi—>—p2. The short-range correlation effect is included
through Eq.(125) (p5— —p?) with g’=0.6. As one can see
from the figure, the obtained pion dispersion relation is
nearly the same as that of the nonrelativistic mddél,21]
except the pion branch is a little harder at high momenta. In
this case one may conclude that the difference between the
results of Fig. 6 and that of the nonrelativistic model mainly
stems from the relativistic kinetics.

APPENDIX F

in the nonrelativistic model. The third term can be reduced

(p5——p?) to a similar term in the nonrelativistic model  In this appendix we derive the conserved current and
stemming from theA-hole excitation, but there exist some energy-momentum tensor.
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1 1
f d4p( prd,+ EaQHH(x)a%Ea;‘ Rell jpop(X,P) 3,
fa(x.p7)
@*(p)
It is straightforward to find the current conservation

3,(x) =0, (F2)

0. (F1)

1 __
—5 Renloop(x,p)a;]

with

f-(x,p,7)

o*(p)
(F3)

We note that each_(x,p,7) is in principle accompanied by
a é function 8(py— w* (p)) for on-shell pions.

(2) Energy-momentum tensoMultiplying p, on both
sides of Eq(62) and making a four-dimensional integration
of the momentum, we arrive at

1 -
Pu— E[az Renloop(xyp)]

3 (x)= f d*p

1 1
f d4ppﬂfpvﬂ§+ 5 () 75+ 5 xRl Tig05(X, P) 77

1o | exp)
_anReHmp(x,p)aX w*—(p)zo. (F4
0 1 2 3 4 5 6 ) _
p/m, Our strategy is to extract th&, out of the whole equation.

For the first term it is straightforward. The second term can
FIG. 12. (a) The pion dispersion relatiofthe pion branchat  pe rewritten as

normal density. Different lines correspond to the different situations

as explained in textb) The pion dispersion relatiotthe pion and 4 f_(X,p,7)
A-hole branch at different densities. The calculations are per- —g,wf P
formed with Eqgs.(E5) and (E6) and p2— —p?. The short-range 20 (p)

correlation effect is taken into account by means of the MigdaIWith the help of Eqs(73) and (74), it becomes
parameter ofj’ =0.6. '

[9,I14(X)].

1
04 g (Qom) *p&(T)

(1) Current. Make a four-dimension integration of mo- %
mentum on both sides of E@62), the right-hand sidéthe
collision term goes to zerd77] and we have The third and fourth terms can be written as

fw(x,p,r)]

1 -
E[aEReHbop(x,p)] 0" (D)

1, fz(X.p,7) v
> Lox Reﬂloop(x,p)]—l - f d*pp.dy

d*pp,d"
J g ®*(p)

fa(x.p,7)
w*(p)

fﬂ'(xap! T)

1
v 4 -
ﬁxf d pzpp.[(?g REH|00p(X,p)] w*(p)

1 __
=—0Ou f d4p§[0£ Rell op(X,P)]

W(X1p77

, 1 o f ) 1 __ J=(xp,7)
:_g/waxf d4p§ReH|00p(x,p) o (D) +gWJ' d4p§ReH|OOp(x,p)(9

* w*(p)

) 1 - fz(x,p,7)
_(9xf d4p§ pﬂ[ﬂg ReHbop(X,p)]w*—(p). (F5

The second term of the above equation turns out to be
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1 J _ f(X.p,7)
— =g, | d*p(a*p,) Rell;oo(x,p)a———"
249ur | d°P(7pPy) Rl oo (X, P) a2 o)
1 __ f.(x,p,7) 1 . f-(X,p,7)
_ 4 A v_T 4 Nov_ T
= ng.vJ d pp)\[ap ReH|OOp(X7p)]&Xw*—(p)+ Zg,uVJ d*ppy ReHIoop(va)‘?paxw*—(p)
1 o Ja(xp,7) 1 , o f.(X,p,7)
= Zg,uvj d4p p)\[(?);; ReHIoop(va)]axw*—(p) + Zg/wf d4p p}\[(?x(?}r; ReHIoop(X1p)]w*—(p)
et o f (X,p,7)
Z(?XZgMVJ d4pp)\[(9>[; ReHIoop(Xap)] w*(p) . (F6)

In the first and second equalities of Eg6) we have used the fact that the terms with the double derivative acting on the same
guantity can be neglected in the gradient expansion. At the end we have the energy-momentum conservation

T u(X)=0, (F7)
with
f(X,p,7) 1 1 o f.(X,p,7)
TVx=J'd4 g, = (Ge) 24T — V—jd“ Rell . ,(X,p)———
ur(X) pp.P o (D) 9urg (Gon) (M) =07 | AP toop( X P) o (D)
1 o f(X,p,7) 1 o f(X,p,7)
- Ef d*pp,[d} ReHIoop(X1p)]w*—(p)+gp.vZJ d*pp, [} ReHIoop(X1p)]w*—(p)- (F8)
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