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Relativistic quantum transport theory of hadronic matter: The coupled nucleon,D,
and pion system

Guangjun Mao, L. Neise, H. Sto¨cker, and W. Greiner
Institut für Theoretische Physik der J. W. Goethe-Universita¨t, Postfach 11 19 32, D-60054 Frankfurt am Main, Germany

~Received 23 March 1998!

We derive the relativistic quantum transport equation for the pion distribution function based on an effective
Lagrangian of the QHD-II model. The closed-time-path Green’s function technique and the semiclassical,
quasiparticle, and Born approximations are employed in the derivation. Both the mean field and collision term
are derived from the same Lagrangian and presented analytically. The dynamical equation for the pions is
consistent with that for the nucleons andD’s which we developed before. Thus, we obtain a relativistic
transport model which describes the hadronic matter withN, D, andp degrees of freedom simultaneously.
Within this approach, we investigate the medium effects on the pion dispersion relation as well as the pion
absorption and pion production channels in cold nuclear matter. In contrast to the results of the nonrelativistic
model, the pion dispersion relation becomes harder at low momenta and softer at high momenta as compared
to the free one, which is mainly caused by the relativistic kinetics. The theoretically predicted freepN→D
cross section is in agreement with the experimental data. Medium effects on thepN→D cross section and
momentum-dependentD-decay width are shown to be substantial.@S0556-2813~99!00203-4#

PACS number~s!: 24.10.Jv, 13.75.Cs, 21.65.1f, 25.75.2q
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I. INTRODUCTION

Pion physics is an important topic in nuclear physics. R
cently, it received renewed interest in relativistic heavy-i
collisions because pions are the most abundantly produ
particles at relativistic energies. Studies of pionic many-bo
degrees of freedom in high-energy nucleus-nucleus c
sions were initiated by Gyulassy and Greiner@1# and by
Migdal @2#. Since then, considerable efforts from both e
perimental@3–9# and theoretical@10–26# groups were made
to study various aspects of the in-medium pion dispers
relation and pion dynamics, such as the pion spectrum
pion and antipion flow in hot and dense nuclear matter.
cause of the high interaction cross section of the pion w
the nuclear environment, they are continuously absorbed
forming D resonances which then decay again into pio
Therefore, pions have a chance to be emitted during
whole course of the reaction. While the high-energy tail
the pion spectrum provides information about compres
and excited nuclear matter in the early reaction stage,
low-energy part of the pion spectrum and pion flow cont
information of the in-medium pion potential and nucle
equation of state~EOS! @24,26#. The low- and high-energy
pions originate from different stages of the collision. A d
tailed study of the pion dynamics allows to extract the tim
evolution of heavy-ion collisions.

On the other hand, dileptons produced fromp1-p2 an-
nihilation @17,27–30# provide information on the high
density phase at time scales of 1 fm/c. Since dileptons can
leave the reaction volume essentially undistorted by fin
state interactions, as was first pointed out by Gale and
pusta@27#, they are expected to be a good tool for an inv
tigation of the violent phases of high-energy heavy-i
collisions. Recent data by the CERES Collaboration@31#
show a substantial modification of the dileptons yield wh
might be explained either by many-body effects@32# or by
PRC 590556-2813/99/59~3!/1674~26!/$15.00
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an enhancedr-meson production~via p1-p2 annihilation!
and a droppingr mass in the medium@33,34#. Indeed, the
properties of ther meson as well as theD resonance are
strongly influenced by the change of pion property in t
medium due to the larger→p1p2 and D→Np decay
widths. A detailed knowledge of pion dynamics in heavy-i
collisions is a prerequisite for a quantitative description
dilepton production at SIS and SPS energies.

It was recently proposed that the difference betweenp2

andp1 spectra can be attributed to the influence of isos
and Coulomb fields@35#. This should allow one to extract th
effective Coulomb field at the instant of the average p
emission. Comparison of spectra of positively and negativ
charged pions can also be used to learn about the freeze
of the pions during the expansion phase@36,37#. It then pro-
vides a method to determine the size of fireball during
nuclear expansion process.

Since the importance of pions in heavy-ion collisions h
been recognized for more than two decades, one may be
that elementary pion properties in the hot and dense nuc
matter are already well understood. Unfortunately, the sit
tion is quite different from this expectation: understandi
the pion dynamics in high-energy nucleus-nucleus collisio
is still a major challenge to modern nuclear physics. T
paradoxical circumstance seems to be mainly due to theo
ical rather than experimental inadequacies. Experiments h
been able to record the pion spectrum@6,8,38# and pion flow
and antiflow@9,39# with rather high accuracy. A reasonab
strict treatment of pions in the transport theories is, howev
still not available. Most theoretical approaches included
interaction of the pions with the surrounding nuclear medi
only by collision processes. A free-particle assumption w
usually assigned to pions, while it is well known that th
pion dispersion relation will be changed substantially in t
medium due to the strongp-wave interaction. Some author
@21,22,26# implemented the real part of the pion optical p
1674 ©1999 The American Physical Society
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PRC 59 1675RELATIVISTIC QUANTUM TRANSPORT THEORY OF . . .
tential from the nonrelativisticD-hole model@40# to study
the pion spectrum. In Ref.@26# a phenomenological param
etrization suggested by Gale and Kapusta@27# was also tried.
However, different model treatments gave rather differ
results. None of the currently available models are able
reproduce the experimental spectrum over the entire rang
energy. The source of the problem seems to be that the
served quantities are sensitive to several of the unkno
pion properties in the hot and dense matter. The most im
tant ones are the in-medium pion dispersion relation~the real
part of the pion self-energy! and the in-medium pion cros
sections~the imaginary part of the pion self-energy!. A self-
consistent treatment of both the real part and imaginary
of the pion self-energy is necessary to obtain useful inform
tion from experimental observable. However, in transp
theories one usually uses the experimentally determined
cross sections and incorporates a dispersion relation from
nonrelativistic D-hole model or simply employs the free
particle assumption. A self-consistent description of pions
transport models has not even been reached in the non
tivistic case. In the present work, we still do not have a fu
self-consistent treatment. But we go a step further than
present available relativistic transport theories; i.e., we de
the in-medium pion dispersion relation and the in-medi
pion cross sections from the same Lagrangian and treat t
in a relativistic description.

Another daunting obstacle to a quantitative description
pions in heavy-ion collisions is the width and shape of theD.
As has been pointed out before, when a pion in the hot
dense matter collides with a nucleon, it will be absorbed
create aD. Then theD decays again into a pion-nucleo
‘‘pair.’’ Thus the amplitude for creating and absorbing pio
will be sensitive to the in-mediumD-decay width, which
must be modified by the presence of matter due to the
tential energies ofN, D, andp. However, in the presently
available transport models, the freeD-decay width is com-
monly employed. From the theoretical point of view, real
tic models for describing pions in dynamical process
should in principle at least also treat deltas and nucle
simultaneously in an unified framework.

It is the purpose of this paper to develop the relativis
transport theory for pions within the framework of the re
tivistic Vlasov-Uehling-Uhlenbeck~RVUU! and relativistic
Boltzmann-Uchling-Uhlenbeck ~RBUU! equation. The
RVUU model has been applied successfully in studying
high-energy heavy-ion collisions@15,41–45#. In Ref.@15# we
briefly discussed a possible extension to include the p
degree of freedom. By means of the density matrix meth
Wanget al. @46# developed a transport theory for theN, D,
andp system. In their work pions are treated as a free p
ticle; detailed expressions of the collision term are not giv
explicitly. On the other hand, in Refs.@47–53# we developed
a set of self-consistent equations forN, D, and N* (1440)
distribution functions in which both mean field and collisio
term are derived from the same effective Lagrangian
expressed analytically. However, mesons (s,v,p) were
treated as virtual particles. In a physically reasonable s
nario, the creation and destruction of real as well as virt
mesons ought to be described simultaneously and on
same self-consistent footing@54#. Hence, one is forced to
solve coupled Boltzmann equations not only for baryons
t
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also for all relevant mesons. This will cause significant n
merical difficulties and might be beyond the ability of mo
ern computers. As a first practical step, let us here treat
pions explicitly. The pion is the most frequently observ
meson. The other mesons still remain treated as virtual
sons. This is the main strategy of our present work. Here
should note that the transport equations fors andv mesons
were discussed in Refs.@15,55# based on the Walecka mode
@56#. In Ref. @55# the mesons turn out to be treated as fr
particles due to the approximations used in that work. Al
no concrete expressions for the collision term were giv
there. We will come back to this point in Sec. III.

Starting from an effective Lagrangian of the QHD-
model @56# we here derive a RVUU equation for the pio
distribution function in which both the mean field and th
collision term are derived simultaneously and expressed a
lytically. In our framework a fully relativistic treatment is
realized and medium effects are included. Furthermore,
treatN, D, andp in an unified framework based on the sam
effective Lagrangian and finally obtain a set of coupled eq
tions for hadronic matter. The paper is organized as follo
In Sec. II we briefly review the closed-time-path Green
function technique which plays a central role in our deriv
tion. An effective Lagrangian for theN, D, and p system
interacting through the exchange of virtual mesons is a
presented there. In Sec. III we derive the RVUU-type tra
port equation for the pion distribution function. The ma
ingredients of the equation are the relativistic mean field a
collision terms, which are calculated from the same effect
Lagrangian and presented analytically in Secs. IV and
respectively. In Sec. VI we present the numerical results
the in-medium pion dispersion relation andD-formation
cross section. Finally, a summary and outlook are given
Sec. VII.

II. PRELIMINARIES

In the present work we employ the closed-time-pa
Green’s function technique. For a detailed description of t
Green’s function technique for nonequilibrium system, w
refer to Refs.@57,58#. Here we give a brief review for the
reader’s convenience. In the Heisenberg picture the Gre
function GF(1,2) of fermions andDB(1,2) of bosons can be
defined on the time contour depicted in Fig. 1 as

iGF~1,2![^T@CH~1!C̄H~2!#&, ~1!

iDB~1,2![^T@FH~1!FH~2!#&2^FH~1!&^FH~2!&, ~2!

FIG. 1. Contour along the axis for an evaluation of the opera
expectation value. In practice,t0 is shifted to2` and tmax to 1`.
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where 1, 2 denotex1 ,x2 ; CH(1) andC̄H(2) represent the
field operators of the nucleon and delta in the Heisenb
picture andFH(1) andFH(2) are those of thes,v,p, and
r. Here we have specified the initial state by assuming
its density operator commutes with the particle-number
erator@57#. Furthermore, we assume that the initial state
mits the Wick decomposition~is noncorrelated!. Thus, in Eq.
~1! the expectation value of a single fermionic field vanish
In the case of bosonic Green’s functions, the contributio
from classical expectation values have been subtracte
order to concentrate on the field fluctuations around the c
sical values. On the other hand, the second term on the r
hand side of Eq.~2! explicitly indicates the presence of th
mean field. According to the position of field operators o
the time contour, we have four different Green’s functio
for fermions,

iGF
22~1,2!5^TcCH~1!C̄H~2!&,

iGF
11~1,2!5^TaCH~1!C̄H~2!&,

iGF
12~1,2!5^CH~1!C̄H~2!&,

iGF
21~1,2!52^C̄H~2!CH~1!&, ~3!

and four for bosons,

iDB
22~1,2!5^TcFH~1!FH~2!&2^FH~1!&^FH~2!&,

iDB
11~1,2!5^TaFH~1!FH~2!&2^FH~1!&^FH~2!&,

iDB
12~1,2!5^FH~1!FH~2!&2^FH~1!&^FH~2!&,

iDB
21~1,2!5^FH~2!FH~1!&2^FH~1!&^FH~2!&. ~4!

HereTc is the chronological ordering operator andTa is the
antichronological ordering operator. The designations2 and
1 are attributed to the respective time path shown in Fig

We further on express theGF(1,2) andDB(1,2) in a com-
pact matrix form

iGF~1,2!5S iGF
22~1,2! iGF

21~1,2!

iGF
12~1,2! iGF

11~1,2!
D ~5!

and

iDB~1,2!5S iDB
22~1,2! iDB

21~1,2!

iDB
12~1,2! iDB

11~1,2!
D . ~6!

It should be pointed out that the four Green’s functions
Eq. ~5! are not independent. They satisfy the following re
tions:

iGF
22~1,2!5u~ t12t2!iGF

12~1,2!1u~ t22t1!iGF
21~1,2!,

~7!

iGF
11~1,2!5u~ t12t2!iGF

21~1,2!1u~ t22t1!iGF
12~1,2!.

~8!

Hereu(t12t2) is defined as
rg

at
-
-

.
s
in
s-
t-

s

.

-

u~ t12t2!5H 1, t1is later on a contour thant2 ,

0, t1is earlier on a contour thant2 .
~9!

The same relations hold for the boson Green’s functions
Eq. ~6!.

In order to use the powerful perturbation expansi
method of field theory, we choose the interaction pictu
The time-ordered products in Eqs.~1! and ~2! can then be
rewritten as

^T@CH~1!C̄H~2!#&5 K TFexpS 2 i
«

dxHI~x! D
3C I~1!C̄ I~2!G L , ~10!

^T@FH~1!FH~2!#&5 K TFexpS 2 i
«

dxHI~x! D
3F I~1!F I~2!G L , ~11!

^FH~1!&5 K TFexpS 2 i
«

dxHI~x! DF I~1!G L . ~12!

Here c I(1),c̄ I(2) andF I(1),F I(2) represent the field op
erators in the interaction picture;Wdx[Wdtdx, W stands for
an integral along the time axis given in Fig. 1. The definiti
of Eqs.~3! and ~4! and the relations of Eqs.~7!, ~8! are still
valid in the interaction picture for both the full Green’s fun
tions GF(1,2),DB(1,2) and zeroth-order Green’s function
~i.e., noninteracting Green’s functions! GF

0(1,2),DB
0(1,2).

The detailed expressions of the zeroth-order Green’s fu
tions as well asHI in Eqs.~10!–~12! are determined by the
specific effective Lagrangian used in the model. As a p
liminary step towards a complete description of hadro
matter, we first consider a system consisting of real nucleo
D’s and pions interacting through the exchange of virtu
s,v,p, andr mesons. In order to avoid extensive cancel
tions of large terms to correctly describe the smallS-wave
pN scattering length, we choose the phenomenolog
pseudovector form for thepNN and pDD coupling. With
this choice of coupling, the value of theS-wavepN scatter-
ing length turns out to be20.010 @56# while the empirical
value is20.01560.015@59#. The inclusion of ther-meson
degree of freedom is important for thepp scattering due to
vector meson dominance@60#. We furthermore include two
nonlinear meson coupling termsspp and rpp which are
applied only to thepp scattering. The total effective La
grangian can then be written as

L5LF1LI . ~13!

HereLF is the Lagrangian density for free nucleon,D, and
meson fields,
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LF5c̄@ igm]m2MN#c1c̄Dn@ igm]m2MD#cD
n 1

1

2
]ms]ms

2U~s!2
1

4
vmnvmn1U~v!1

1

2
~]mp]mp2mp

2 p2!

2
1

4
rmnrmn1

1

2
mr

2rm•rm, ~14!

and U(s),U(v) are the self-interaction part of the scal
field @61# and vector field@62,63#,

U~s!5
1

2
ms

2s21
1

3
b~gNN

s s!31
1

4
c~gNN

s s!4, ~15!
ld

in
e

de
e

cte
w
ly

n

U~v!5
1

2
mv

2 vmvmS 11
~gNN

v !2

2

vmvm

Z2 D , ~16!

respectively. Here the field tensor for the rho and omega
given in terms of their potential fields by

rmn5]mrn2]nrm ~17!

and

vmn5]mvn2]nvm . ~18!

The interaction LagrangianLI consists of baryon-baryon
baryon-meson, and meson-meson terms, which are give
LI5LNN1LDD1LDN1Lsp1Lrp

5gNN
s c̄~x!c~x!s~x!2gNN

v c̄~x!gmc~x!vm~x!1gNN
p c̄~x!gmg5t•c~x!]mp~x!2

1

2
gNN

r c̄~x!gmt•c~x!rm~x!

1gDD
s c̄Dn~x!cD

n ~x!s~x!2gDD
v c̄Dn~x!gmcD

n ~x!vm~x!1gDD
p c̄Dn~x!gmg5T•cD

n ~x!]mp~x!

2
1

2
gDD

r c̄Dn~x!gmT•cD
n ~x!rm~x!2gDN

p c̄Dm~x!]mp~x!•S1c~x!2gDN
p c̄~x!ScDm~x!•]mp~x!

1
1

2
gspmss~x!p~x!•p~x!1grp@]mp~x!3p~x!#•rm~x!

5gNN
A c̄~x!GA

Nc~x!FA~x!1gDD
A c̄Dn~x!GA

DcD
n ~x!FA~x!2gDN

p c̄Dm~x!]mp~x!•S1c~x!

2gDN
p c̄~x!ScDm~x!•]mp~x!1gpp

A p i~x!GA
pp j~x!FA~x!. ~19!
the

ex
In the above expressionsc(x) is the Dirac spinor of the
nucleon andcDm(x) is the Rarita-Schwinger spinor of theD
baryon. t is the isospin operator of the nucleon andT is
the isospin operator of theD. HereS andS1 are the isospin
transition operator between the isospin 1/2 and 3/2 fie
gNN

p 5 f p /mp ,gDN
p 5 f * /mp ;GA

N5gAtA ,GA
D 5 gATA ,GA

p

5gA
ptA

p ,A5s,v,p,r, the symbols and notation are given
Tables I and II for the baryon-baryon-meson vertex and m
son interaction vertex, respectively.

The zeroth-order Green’s functions of nucleons andD’s
as well as mesons corresponding to the free Lagrangian
sity of Eq. ~14! are summarized in Appendix A, where th
distribution functions of negative-energy states are negle
for fermions. They are kept for bosons. Considering that
will derive a transport equation for the pion in which we on

TABLE I. Symbols and notation used for the baryon-baryo
meson vertex;Pm is the transformed four-momentum.

A mA gNN
A gDD

A gA tA TA FA(x) DA
m DA

i

s ms gNN
s gDD

s 1 1 1 s(x) 1 1
v mv 2gNN

v 2gDD
v gm 1 1 vm(x) 2gmn 1

p mp gNN
p gDD

p P” g5 t T p~x! 1 d i j

r mr 2
1
2 gNN

r 2
1
2 gDD

r gm t T rm(x) 2gmn d i j
s.

-

n-

d
e

treat the real pion with positive-energy states, we rewrite
zeroth-order Green’s functions of the pion as

Dp
077~x,k!5

61

k22mp
2 6 i e

2
p i

v~k!
d@k02v~k!# f p~x,k!,

~20!

Dp
012~x,k!52

p i

v~k!
d@k02v~k!#@11 f p~x,k!#, ~21!

Dp
021~x,k!52

p i

v~k!
d@k02v~k!# f p~x,k!; ~22!

herev(k) is the energy of the pion.-

TABLE II. Symbols and notation used for the interaction vert
involving only mesons.

A gpp
A gA

p tA
p FA(x)

s 1
2 gspms 1 d i j s(x)

r grp i (p1q)m « i jk rk
m(x)
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III. DERIVATION OF THE QUANTUM TRANSPORT
EQUATION FOR PIONS

A. Dyson equation and pion self-energy

With the discussions of Sec. II we can write down t
pion Green’s function in the interaction picture as

iDp~1,2!d i j 5 K TFexpS 2 i
«

dxHI~x! DpI~1!pI~2!G L
2 K TFexpS 2 i

«
dxHI~x! DpI~1!G L

3 K TFexpS 2 i
«

dxHI~x! DpI~2!G L ; ~23!

herei, j 51, 2, 3 represent the isospin indices of pion. In t
following we suppress this subscript because at the end
will obtain a RVUU-type transport equation which is ave
aged on the isospin. Furthermore, the second term on
right-hand side of Eq.~23! vanishes in the spin- and isospin
saturated system. By expanding Eq.~23! perturbatively one
can obtain the Dyson equation for the pion Green’s functi
which reads as

iDp~1,2!5 iDp
0 ~1,2!1

«
dx3« dx4Dp

0 ~1,4!P~4,3!iDp~3,2!;

~24!

hereP(4,3) is the self-energy of the pion, which is also
matrix on the time contour:

P~4,3!5S P22~4,3! P21~4,3!

P12~4,3! P11~4,3!
D . ~25!

Equation ~24! is coupled to the Dyson equation of th
nucleon@48,52#,

iG~1,2!5 iG0~1,2!1
«

dx3« dx4G0~1,4!S~4,3!iG~3,2!,

~26!

andD @50#,

iGab~1,2!5 iGab
0 ~1,2!

1
«

dx3« dx4Gan
0 ~1,4!Snm~4,3!iGmb~3,2!,

~27!

through the self-energy terms ofP(4,3), S(4,3), and
Snm(4,3). HereG(1,2),Gab(1,2) are Green’s functions o
the nucleon andD, andS(4,3),Snm(4,3) are the respective
self-energies. Equations~24!, ~26!, and~27! are a set of dy-
namical equations for the hadronic matter. From Eqs.~26!
and ~27! we have derived the RVUU-type transport equ
tions for the nucleon@15,47–49,52# andD @50,51# distribu-
e

he

,

-

tion functions. In this work we will develop a transport equ
tion for the pion distribution function from Eq.~24!, in
which both the mean field and collision term will be e
pressed analytically. Since the lowest-order Feynman
grams contributing to the two-body scattering cross secti
are the Born diagrams, we consider the pion self-ene
P(4,3) up to theBorn approximation. In principle, one
should calculate the in-medium cross sections and me
fields for all the particles within a relativisticG-matrix
theory. However, since we have to deal with many react
channels and many degrees of freedom, such calculat
seem to be out of the present practical possibilities. Fo
qualitative insight in the cross sections and potentials
think that the Born approximation will be sufficient. A com
parison between the cross sections forsNN→NN* andsNN→ND*
calculated inG-matrix theory@64,65# and in the Born ap-
proximation @47,48# shows differences only of the order o
10–20 %.

The pion self-energy up to the Born term can be writt
as

P~4,3!5PHF~4,3!1PBorn~4,3!; ~28!

here PHF(4,3) is the Hartree-Fock self-energy of the pio
and PBorn(4,3) is the Born self-energy. The correspondi
Feynman diagrams are given in Figs. 2, 3, and 4.

In Fig. 3 we only take the baryon loops into account sin
the contributions of meson loops (s-p andr-p mixed loop!
are negligible@66# at zero temperature~finite temperatures
are not taken into account explicitly in the present fram
work of microscopic transport theory!. Furthermore, since
the pseudovector form is chosen for thepNN and pDD
coupling, as discussed in Ref.@56# ~Sec. 8.3!, the contribu-
tion of the sigma-pion coupling term to thepN S-wave
scattering lengths is small, of ordermp

2 /(MNms), and can be
neglected; we drop the contribution of Fig. 2~a! and Fig. 2~b!
to the pion self-energy. Therefore, only Fig. 2~c! contributes
to the Hartree-term of the pion self-energy, which plays
role in the case that a large amount of pions are produce
relativistic heavy-ion collisions at very high energy. For t
Born term we consider the Feynman diagrams contribut
to the p1N→p1N, p1D→p1D, and p1p→p1p
elastic scattering processes as depicted in Fig. 4. For
same reason we neglect the contribution of thes exchange

FIG. 2. Feynman diagrams contribute to the Hartree term of
pion self-energy. The wavy line denotes the exchanged virtual
son, the solid line, double line, and dashed line represent
nucleon,D, and pion, respectively.
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in Figs. 4~a! and 4~b!. The Hartree-Fock self-energ
PHF(4,3) and Born self-energyPBorn(4,3) can then be ex
pressed as

PHF~4,3!5PH~4,3!1P loop~4,3!, ~29!

P loop~4,3!5PNN21~4,3!1PDD21~4,3!1PDN21~4,3!

1PND21~4,3!, ~30!

PBorn~4,3!5Pa~4,3!1Pb~4,3!1Pc~4,3!1Pd~4,3!,
~31!

where the lower subscriptsN21 andD21 in Eq. ~30! denote
the particles described by the nucleon andD distribution
functions rather than the antiparticles which are not ta
into account in this work because the gap between the ef
tive masses of particles and antiparticles is much larger t
the pion mass even at 3 times normal density~see Fig. 5!.
For even higher densities and temperatures the productio
particle and antiparticle pairs becomes more important
the anti-particle degree of freedom should be taken into
count. The lower subscriptsa, b, c, d in Eq. ~31! denote the
terms contributed from Figs. 4~a!–4~d!, respectively.
PDD21(4,3) @corresponding to Figs. 3~c! and 3~d!# and
PND21(4,3) @corresponding to Figs. 3~g! and 3~h!# are usu-

FIG. 3. Feynman diagrams contribute to the Fock term~one
baryon loop! of the pion self-energy. Different lines denote th
different particles as described in the caption of Fig. 2.

FIG. 4. Feynman diagrams contribute to the Born term of
pion self-energy. Different lines denote the different particles
described in the caption of Fig. 2. The imaginary part of~a! con-
tributes to thepN→pN elastic cross section, and~b! to the pD
→pD, ~c!,~d! to thepp→pp elastic cross section, respectively
n
c-
n

of
d

c-

ally neglected in the investigation of the influence of t
in-medium pion dispersion relation on the pion dynamics
relativistic heavy-ion collisions@16,17,21,22,26#. However,
it was recently reported that more than 30% of nucleons
excited to the resonance states, especially theD resonance, in
Au1Au collisions at an incident energy of 2 GeV/nucleo
@67#. That means that the contributions of Figs. 3~c!, 3~d! and
3~g!, 3~h! should be taken into account once the problem
the in-medium pion dispersion relation is concerned inrela-
tivistic heavy-ion collisions. To our knowledge, up to now no
investigation of this has been made in transport theor
Here we note that this effect has been addressed in s
nonrelativistic calculations of the pion self-energy in sta
nuclear matter at finite temperature@68#.

The concrete expressions of self-energies in Eqs.~29!–
~31! can be written down according to the standard Feynm
rules:

PH~4,3!5
3

4
~gspms!2d~3,4!

«
dx38Dp

0 ~38,38!iDs
0~38,4!,

~32!

PNN21~4,3!522i ~gNN
p !2tr@P” g5G0~3,4!P” g5G0~4,3!#,

~33!

PDD21~4,3!525i ~gDD
p !2tr@P” g5Gmn

0 ~3,4!P” g5G0,nm~4,3!#,
~34!

PDN21~4,3!5
4

3
i ~gDN

p !2tr@G0~3,4!PmPnGnm
0 ~4,3!#,

~35!

PND21~4,3!5
4

3
i ~gDN

p !2tr@PmPnGmn
0 ~3,4!G0~4,3!#,

~36!

e
s

FIG. 5. The gap between the effective masses of particles
antiparticles as a function of density. Universal coupling streng
for the nucleons andD’s are assumed.
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Pa~4,3!5 (
r 4t5t6

«
dx5« dx6^r ugpp

r Gr
pur 4&Dp

0 ~4,3!^r 4ugpp
r Gr

pur &tr$^t6ugNN
r Gr

Nut5&G
0~5,6!

3^t5ugNN
r Gr

Nut6&G
0~6,5!%Dr

0~4,6!Dr
0~5,3!DrDr , ~37!

Pb~4,3!5 (
r 4T5T6

«
dx5« dx6^r ugpp

r Gr
pur 4&Dp

0 ~4,3!^r 4ugpp
r Gr

pur &tr$^T6ugDD
r Gr

DuT5&G
0,sr~5,6!

3^T5ugDD
r Gr

DuT6&Grs
0 ~6,5!%Dr

0~4,6!Dr
0~5,3!DrDr , ~38!

Pc~4,3!52 (
r 4r 5r 6

«
dx5« dx6^r ugpp

A GA
pur 4&Dp

0 ~4,3!^r 4ugpp
A GA

pur &^r 6ugpp
A GA

pur 5&Dp
0 ~5,6!

3^r 5ugpp
A GA

pur 6&Dp
0 ~6,5!DA

0~4,6!DA
0~5,3!DADA , ~39!

Pd~4,3!52 (
r 4r 5r 6

«
dx5« dx6^r ugpp

A GA
pur 4&Dp

0 ~4,5!^r 4ugpp
B GB

pur 5&Dp
0 ~5,6!^r 5ugpp

A GA
pur 6&Dp

0 ~6,3!

3^r 6ugpp
B GB

pur &DA
0~4,6!DB

0~5,3!DADB . ~40!
-
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In Eqs.~37!–~40!, A, B5s,r;r ,r 4 ,r 5 ,r 6 represent the isos
pin of pions,t5 ,t6 denote the isospin of nucleons andT5 ,T6
of D’s. The definition of the symbols is given in Tables I an
II. The transformed four-momentumPm in Eqs. ~33!–~36!
stems from the derivative coupling of the baryon-baryo
pion vertex used in our calculations.

B. Kadanoff-Baym equation

Introducing the differential operator of the Klein-Gordo
field

D̂01
215]m

1 ]1
m1mp

2 ~41!

and applying it to the both sides of Eq.~24!, with the help of
relation @69#

D̂01
21Dp

0 ~1,2!52d~1,2!, ~42!

we obtain

D̂01
21iDp~1,2!52 id~1,2!2

«
dx3P~1,3!iDp~3,2!.

~43!

It has been shown in Sec. II that only two components
Dp(1,2) are independent, from which the dynamical eq
tions for the distribution function and the spectral functi
can be constituted@70#. Since we will use thequasiparticle
approximationin the derivation, the spectral function turn
out to be ad function on the mass shell. Thus, in the pres
work it will be sufficient to consider only one component
Dp(1,2), i.e., Dp

21(1,2), which is directly related to the
single-particle density matrix in the case oft15t2 @57#. The
equation of motion forDp

21(1,2) can be extracted from Eq
~43!. Before doing it, let us firstly look at the Feynman di
grams in Figs. 2, 3, and 4 which will be taken into accou
under Born approximation.
-

f
-

t

t

As is well known, the RVUU-type transport equation co
tains two important ingredients, i.e., the transport part rela
to the real part of the pion self-energy and the collision te
corresponding to the imaginary part. The Hartree term
Fig. 2~c! only contributes to the real part. However, the lo
diagrams in Fig. 3 and the Born diagrams in Fig. 4 inclu
both real and imaginary parts. It should be pointed out t
the baryon lines in Fig. 3 denoted by the symbolsN or D
represent virtual baryons~nucleon or delta! when one calcu-
lates the real part of the self-energies. They are not on-s
particles. The corresponding terms for thes and v self-
energies are neglected in the derivation of Ref.@55# for thes
and v transport equations because they used the restric
that all Green’s functions in the Feynman diagrams sho
be on the mass shell. Consequently, mesons (s andv) be-
came free particles in their framework. To our opinion,
computing the real part of self-energies, which mainly rela
to the virtual processes, it is not necessary to keep all p
ticles on the mass shell which will essentially give the ima
nary part. It is well known that the particle-hole excitation
very important for the in-medium pion dispersion relatio
which will certainly have influence on the pion spectra a
pion flow in relativistic heavy-ion collisions@26# and should
be taken into account in any realistic transport models
pions. For the imaginary part of the self-energies from o
loop diagrams in Fig. 3, we include only the contributions
Figs. 3~e! and 3~h!, which contribute to the importan
D-formation process ofN1p→D and D-decay process o
D→N1p, respectively. The reason is as follows: the co
tributions of the imaginary part of Figs. 3~a!–3~d!, in which
both the baryon lines are on the mass shell, correspond to
process that a nucleon (D) decays into a nucleon (D) and a
pion, which is forbidden due to energy-momentum cons
vation ~here we do not consider the Cherenkov radiation d
cussed in Ref.@71#; this process might be possible at hig
densities where the pion has a spacelike four-momentum
to its large potential!; Figs. 3~f! and 3~g! do not correspond
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to realistic physical processes when the pion has a pos
energy. Since the matrix elements are the same for b
D-formation andD-decay processes, we only need to calc
late the imaginary part of Fig. 3~e! explicitly. In view of the
Born diagrams we take only the imaginary parts into acco
and drop all the real parts which in principle are the corr
tions to the real part of the Hartree-Fock self-energies. T
ve
th
-

t
-
e

imaginary part of the self-energies can be expressed
Pcoll

67(1,3), which is defined as

Pcoll
67~1,3!5PBorn

67 ~1,3!1P3~e!
67~1,3!; ~44!

here P3(e)
67(1,3) represents the imaginary part of Fig. 3~e!.

The equation of motion forDp
21(1,2) can then be written a
ing
ion.
nd
The
@]m
1 ]1

m1mp
2 1PH~1!# iDp

21~1,2!52E
t0

t

dx3@ReP loop
22~1,3!# iDp

21~3,2!2E
t

t0
dx3Pcoll

21~1,3!i @ReDp
11~3,2!#

2E
t0

t1
dx3@Pcoll

12~1,3!2Pcoll
21~1,3!# iDp

21~3,2!1E
t0

t2
dx3Pcoll

21~1,3!

3@ iDp
12~3,2!2 iDp

21~3,2!#. ~45!

Equation~45! is the so-called Kadanoff-Baym equation@72#. Here the symbol ‘‘Re’’ denotes the real part of the correspond
self-energies. The second term on the right-hand side of Eq.~45! corresponds to the spreading width in the spectral funct
It should be dropped under the quasiparticle approximation@70# which will be introduced later. The structure of the third a
fourth terms on the right-hand side of Eq.~45! implies that they contribute to the collision term of the transport equation.
concrete expressions of the self-energies read as

PH~1!5
3

4
~gspms!2H E

t0

t

dx38Dp
022~38,38!iDs

022~38,1!1E
t

t0
dx38Dp

011~38,38!iDs
012~38,1!J , ~46!

PNN21
22

~1,3!522i ~gNN
p !2tr@P” g5G022~3,1!P” g5G022~1,3!#, ~47!

PDD21
22

~1,3!525i ~gDD
p !2tr@P” g5Gmn

022~3,1!P” g5G022,nm~1,3!#, ~48!

PDN21
22

~1,3!5
4

3
i ~gDN

p !2tr@G022~3,1!PmPnGnm
022~1,3!#, ~49!

PND21
22

~1,3!5
4

3
i ~gDN

p !2tr@PmPnGmn
022~3,1!G022~1,3!#, ~50!

P3~e!
67 ~1,3!5

4

3
i ~gDN

p !2tr@G076~3,1!PmPnGnm
067~1,3!#. ~51!

The expressions of the Born terms are rather complicated. If one does not write out the isospin factor explicitly,Pa
67(1,3) can

be expressed as

Pa
67~1,3!;E

t0

t

dx5E
t0

t

dx6Dp
067~1,3!$tr@G077~5,6!G077~6,5!#DA

067~1,6!DA
077~5,3!

1tr@G066~5,6!G066~6,5!#DA
066~1,6!DA

067~5,3!2tr@G076~5,6!G067~6,5!#DA
066~1,6!DA

077~5,3!

2tr@G067~5,6!G076~6,5!#DA
067~1,6!DA

067~5,3!%. ~52!

Other Born terms can be written down in the same way.

C. RVUU equation of the pion

Defining X5 1
2 (x11x2),y5x12x2 ,x85x32x2 , and taking the Wigner transformation on the both sides of Eq.~45!, we

arrive at
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F1

4
]m

X]X
m2 iPm]m

X2P21mp
2 1PH~X!1ReP loop

22~X,P!2
i

2
]X

mPH~X!]m
P1

i

2
]P

m ReP loop
22~X,P!]m

X2
i

2
]X

m ReP loop
22~X,P!]m

PG
3 iDp

21~X,P!52E dyeiPyE
2`

t

dx8@Pcoll
12~y2x8,X!iDp

21~x8,X!2Pcoll
21~y2x8,X!iDp

12~x8,X!#. ~53!

Here we have adopted thesemiclassical approximation, in which the Green’s functions and self-energies are assumed t
peaked around the relative coordinate and smoothly changing with the center-of-mass coordinate. The details of th
transformation are given in Appendix B. The Hermitian conjugate equation of Eq.~53! reads as

F1

4
]m

X]X
m1 iPm]m

X2P21mp
2 1PH~X!1ReP loop

22~X,P!1
i

2
]X

mPH~X!]m
P2

i

2
]P

m ReP loop
22~X,P!]m

X1
i

2
]X

m ReP loop
22~X,P!]m

PG
3 iDp

21~X,P!52E dyeiPyE
t

`

dx8@Pcoll
21~y2x8,X!iDp

12~x8,X!2Pcoll
12~y2x8,X!iDp

21~x8,X!#. ~54!

We drop the term of]X
m]m

X in Eqs. ~53! and ~54! since it may be viewed as of higher order than the other terms within
gradient expansionused in the Wigner transformation. If one would keep this term, the pion Green’s function cou
nonzero for off-shell four-momenta@73#. In this paper we only consider real on-shell pions. The summation of Eqs.~53! and
~54! gives

@P22mp
2 2PH~X!2ReP loop

22~X,P!# iDp
21~X,P!50, ~55!

and the subtraction of them yields

H Pm]m
X1

1

2
]X

mPH~X!]m
P1

1

2
]X

m ReP loop
22~X,P!]m

P2
1

2
]P

m ReP loop
22~X,P!]m

XJ iDp
21~X,P!

5
1

2
@Pcoll

12~X,P!Dp
21~X,P!2Pcoll

21~X,P!Dp
12~X,P!#. ~56!
un
s

l-
av
ve

-
of

as a
stic
two

as a
or-
al-
rgy.
nly
in-

be
l
tis-
tic
tion
ort
rel-
or-
Now we introduce thequasiparticle approximationand dress
the masses and momenta in the zeroth-order Green’s f
tions appearing in the self-energies with the effective mas
and momenta. The canonical variablesX, P are then trans-
formed to the kinetic variablesx, p which will be used in the
RVUU code for the simulation of relativistic heavy-ion co
lisions. Since the pion is a pseudoscalar particle, we h
Pm5pm . Medium effects are included through the effecti
mass which is defined as

mp*
2~x,p!5mp

2 1PH~x!1ReP loop
22~x,p!. ~57!

The on-shell condition is guaranteed by Eq.~55!:

p0
22v* 2~p!50; ~58!

here

v* ~p!5@p21mp*
2~x,p!#1/2. ~59!

We further define a distribution function

iDp
21~x,p!5

p

v* ~p!
ZBd@p02v* ~p!# f p~x,p,t!, ~60!

where
c-
es

e

ZB
21512

1

2v* ~p!

] ReP loop
22~x,p!

]p0
U

p05v* ~p!

. ~61!

In the following we drop the derivative term in Eq.~61!
since it will cause significant difficulty in deriving the colli
sion term. In the nuclear medium the quantum numbers
the pion can be either transported as a physical pion or
D-hole bound state. In several studies of the nonrelativi
D-hole model one considers the mixing between these
branches of the pion dispersion relation@21,22,26#. In this
case strength is redistributed between the two branches
function of momentum. Therefore, the wave function ren
malization factor is essential and in principle it can be c
culated from the energy dependence of the pion self-ene
However, in practical applications in transport theories o
phenomenological simulations of this mixing have been
vestigated, Since we neglect theD-hole branch in our rela-
tivistic dynamical treatment, we putZB

2151. This does not
cause any difficulty with the conservation laws as can
seen from Eq.~F3!. We simply obtain a different but stil
conserved current. An improvement over this not very sa
factory situation might be achieved if one studies relativis
transport theories beyond the quasiparticle approxima
@70#. Especially, the inclusion of bound states in transp
theory has been, however, studied only in a very few non
ativistic cases near equilibrium up to now, e.g., for the f
mation of deutron in nuclear matter@74#. It is clear that the
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relativistic bound-state problem is much more involved th
the nonrelativistic one. Therefore, we neglect this probl
here. Through inserting Eq.~60! into Eq.~56! one obtains the
self-consistent RVUU equation for the pion distributio
function:

H pm]m
x 1

1

2
]x

mPH~x!]m
p 1

1

2
]x

m ReP loop
22~x,p!]m

p

2
1

2
]p

m ReP loop
22~x,p!]m

x J f p~x,p,t!

v* ~p!
5Fc~x,p!.

~62!

In Appendix F we show that this equation satisfies the c
servation laws of the current and energy-momentum ten
The left-hand side of Eq.~62! is the transport part and th
right-hand side is the collision term, which includes tw
parts,

Fc~x,p!5FNp→D~x,p!1Fel~x,p! , ~63!

stemming from theNp→D process andp-hadron elastic
scattering processes, respectively. Other reactions are no
cluded in the present work. The collision term can be furt
expressed via in-medium differential cross sections~Sec. V!.

IV. CALCULATION OF THE MEAN FIELD

In Sec. III we derived the RVUU-type transport equati
for the pion distribution function. The left-hand side of th
equation is the transport part and the right-hand side is
collision term. The heart of the equation is the mean fie
which relates to the in-medium pion dispersion relation, a
the p-relevant in-medium differential cross sections. In th
section and the next section we will evaluate concrete
pressions of them. Before coming to it, we would like
emphasize again that in the present work we consider o
the p meson as a real meson.s,v, andr mesons are still
viewed as virtual ones. In other words, the terms relating
the distribution functions ofs,v, andr mesons vanish. Af-
ter Wigner transformation, Eqs.~46!–~50! turn out to be

PH~x!5
3

4
~gspms!2E d4q

~2p!4
Dp

022~x,q!iDs
022~x,0!,

~64!

PNN21
22

~x,p!522i ~gNN
p !2E d4q

~2p!4

3tr@p”g5G022~x,q!p”g5G022~x,p1q!#,

~65!

PDD21
22

~x,p!525i ~gDD
p !2E d4q

~2p!4

3tr@p”g5Gmn
022~x,q!p”g5G022,nm~x,p1q!#,

~66!
n

-
r.

in-
r

e
,
d

x-

ly

o

PDN21
22

~x,p!

5
4

3
i ~gDN

p !2E d4q

~2p!4
tr@G022~x,q!pmpnGnm

022

3~x,p1q!#, ~67!

PND21
22

~x,p!

5
4

3
i ~gDN

p !2E d4q

~2p!4
tr@pmpnGmn

022~x,q!G022

3~x,p1q!#. ~68!

In the next step we insert the zeroth-order Green’s functi
for baryons~Appendix A! and pions@Eqs. ~20!–~22!# into
Eqs.~64!–~68! to obtain concrete expressions of the real p
of the pion self-energies. Several approximations are m
here. First, we take the quasiparticle approximation in wh
the free masses and momenta in the zeroth-order Gre
functions are addressed by the effective masses and
menta. Second, the first term on the right-hand side of
~20!, which will appear in Eq.~64! in the calculation of the
Hartree term, is dropped as usually done according to
physical arguments~otherwise, it will cause divergence!
@75#. Third, in computing Eqs.~65!–~68!, we drop the con-
tributions of antiparticles contained in the baryon Gree
functions ofG022(x,q) and Gmn

022(x,q). The zeroth-order
Green’s functions used in this section then read as

Ds
022~x,q!5

1

q22ms
21 i e

, ~69!

Dp
022~x,q!52

p i

v* ~q!
d@q02v* ~q!# f p~x,q,t!, ~70!

G022~x,q!5
q”1m*

2E* ~q!
F 1

q02E* ~q!1 i e

12p id@q02E* ~q!# f ~x,q,t!G , ~71!

Gmn
022~x,q!5

q”1mD*

2ED* ~q!
Dmn~q!F 1

q02ED* ~q!1 i e

12p id@q02ED* ~q!# f D~x,q,t!G , ~72!

where E* (q)5@q21m* 2#1/2, ED* (q)5@q21mD*
2#1/2, and

Dmn(q) is given in Appendix A. The definition ofm* and
mD* will be given later. It is interesting to notice that only th
Green’s functions on the upper branch of the time conto
which are similar to the ones used in the standard effec
field theory, enter in the calculations.

The Hartree term can be directly worked out,

PH~x!52
1

4
~gsp!2rS~p!; ~73!
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hererS(p) is the scalar density of pions:

rS~p!5
3

2~2p!3E dq
1

Aq21mp*
2

f p~x,q,t!. ~74!

For the one-loop diagrams we have to distinguish the
and virtual baryons. The first terms on the right-hand side
Eqs. ~71! and ~72! describe the virtual nucleon and delt
which are denoted by theN andD in the Feynman diagram
in Fig. 3. The second terms with distribution functions re
resent the real nucleon and delta, and denoted by theN21

andD21 on the Feynman diagrams. Through inserting E
~71! and~72! into Eqs.~65!–~68!, after some straightforward
algebra we obtain the real part of the self-energies:

RePNN21
22

~x,p!

522~gNN
p !2E d3q

~2p!3F A~p,q!

4E* ~q!E* ~p1q!

3
f ~x,q,t!

E* ~p1q!2E* ~q!2p0

1p0→2p0G , ~75!

RePDD21
22

~x,p!

525~gDD
p !2E d3q

~2p!3F B~p,q!

4ED* ~q!ED* ~p1q!

3
f D~x,q,t!

ED* ~p1q!2ED* ~q!2p0

1p0→2p0G , ~76!

RePDN21
22

~x,p!

5
4

3
~gDN

p !2E d3q

~2p!3F C~p,q!

4E* ~q!ED* ~p1q!

3
f ~x,q,t!

ED* ~p1q!2E* ~q!2p0

1p0→2p0G , ~77!

RePND21
22

~x,p!

5
4

3
~gDN

p !2E d3q

~2p!3F D~p,q!

4ED* ~q!E* ~p1q!

3
f D~x,q,t!

E* ~p1q!2ED* ~q!2p0

1p0→2p0G ; ~78!

here,

A~p,q!54@pm
2 ~p•q!A22m* 2pm

2 12~p•q!A
2 #, ~79!

~p.q!A5
1

2
$@E* ~q!1p0#22E* 2~p1q!2pm

2 %, ~80!
al
f

-

.

B~p,q!52
8

9mD*
4 $2pm

4 mD*
2@~p•q!B2mD*

2#

22pm
2 ~p•q!B

2@~p.q!B23mD*
2#25pm

2 mD*
4

3@~p•q!B22mD*
2#22~p•q!B

2@2~p•q!B
2

12~p•q!BmD*
215mD*

4#%, ~81!

~p.q!B5
1

2
$@ED* ~q!1p0#22ED*

2~p1q!2pm
2 %, ~82!

C~p,q!52
8

3mD*
2 @pm

4 12pm
2 ~p•q!C2mD*

2pm
2 1~p•q!C

2 #

3@~p•q!C1m* 21m* mD* #, ~83!

~p.q!C5
1

2
$@E* ~q!1p0#22ED*

2~p1q!1mD*
22m* 22pm

2 %,

~84!

D~p,q!5
8

3mD*
2 @mD*

2pm
2 2~p•q!D

2 #

3@~p•q!D1m* mD* 1mD*
2#, ~85!

~p.q!D5
1

2
$@ED* ~q!1p0#22E* 2~p1q!1m* 22mD*

22pm
2 %.

~86!

Here we already dropped the contributions from virtu
particle-particle excitations~which are divergent!, in consis-
tent with the mean field approximation. Otherwise, one h
to renormalize it which may be difficult in many situation
The effective mass of pion is defined in Eq.~57!. The effec-
tive masses and momenta of nucleon andD are defined as
@48,50,52,53#

m* ~x!5MN2gNN
s s~x!, ~87!

mD* ~x!5MD2gDD
s s~x!, ~88!

pN
m~x!5PN

m2gNN
v vm~x!, ~89!

pD
m~x!5PD

m2gDD
v vm~x!. ~90!

The mean fields ofs(x) andvm(x) are obtained through the
following field equations within thelocal density approxima-
tion:

ms
2s~x!1b~gNN

s !3s2~x!1c~gNN
s !4s3~x!

5gNN
s rS~N!1gDD

s rS~D!1
1

2
gspmsrS~p!, ~91!

mv
2 vm~x!1

~gNN
v !2mv

2

Z2
@vm~x!#35gNN

v rV
m~N!1gDD

v rV
m~D!.

~92!
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The scalar and vector densities of the nucleon andD are
defined as

rS~ i !5
g~ i !

~2p!3E dq
mi*

Aq21mi*
2

f i~x,q,t!, ~93!

rV
m~ i !5

g~ i !

~2p!3E dq
qm

Aq21mi*
2

f i~x,q,t!. ~94!

The abbreviationsi 5N,D, and g( i )54, 16, correspond to
the nucleon and delta, respectively.

In Eqs.~87!–~90! we have dropped the Fock term of th
nucleon andD self-energies since it makes only a small co
tribution. The Feynman diagrams for the Hartree term
nucleon andD self-energies can be drawn in the same way
in Fig. 2 by replacing the pion external line with the nucle
andD line. One may notice that the main contributions to t
mean field of the nucleon andD come from the Hartree term
while to the pion from the Fock term~one-loop diagrams!.
The situation is caused by the pseudovector coupling for
pion adopted in our considerations. If one uses pseudosc
coupling for pNN and pDD vertex, the pion will have a
scalar self-energy from the Hartree term similar to the nuc
on’s andD’s. But this term turns out to be so large that t
effective mass of the pion will become almost 5 times m
massive at the normal density of nuclear matter than in
vacuum@66#. This may not be a realistic case.

V. CALCULATION OF THE COLLISION TERM

A. In-medium Np˜D cross section andD-decay width

Now we come to calculate the right-hand side of Eq.~62!,
i.e., the collision term. The part corresponding to t
D-formation cross section reads as

FNp→D~x,p!

5
1

2
@P3~e!

12 ~x,p!Dp
21~x,p!2P3~e!

21 ~x,p!Dp
12~x,p!#

5E d3q

~2p!3E d3k

~2p!3
~2p!4d~4!~p1q2k!

3W~p,q,k!~F2
02F1

0!; ~95!

hereF2
0 ,F1

0 are the Nordheim-Uehling-Uhlenbeck factors
the gain (F2

0) and loss (F1
0) terms:

F2
05@11 f p~x,p,t!#@12 f ~x,q,t!# f D~x,k,t!, ~96!

F1
05 f p~x,p,t! f ~x,q,t!@12 f D~x,k,t!#. ~97!

W(p,q,k) is the transition probability of theNp→D pro-
cess:
-
f
s

e
lar

-

e
e

W~p,q,k!52
~gDN

p !2

6v* ~p!E* ~q!ED* ~k!
tr@~q”1m* !pmpn

3~k”1mD* !Dnm~k!#

5
~gDN

p !2

v* ~p!E* ~q!ED* ~k!

1

18mD*
2 @~mD* 1m* !2

2mp*
2#2@~m* 2mD* !22mp*

2#. ~98!

In working out the second equality of Eq.~98! we have used
the relationsk5p1q andp•q5(mD*

22m* 22mp*
2)/2 from

the energy-momentum conservation and on-shell conditio
In the above derivation all baryons are treated as elem

tary particles as usually done in quantum field theory. Ho
ever, theD is a resonance that can decay. A mass distribut
function of the Breit-Wigner form is commonly introduce
to describe the resonances with broadwidths@19,76#. How-
ever, one mostly discusses the problem in free space. H
we assume that the same form of distribution function
plies to the medium with free quantities replaced by effect
quantities. That is, we introduce a Breit-Wigner function f
the D resonance in the medium,

F~mD*
2!5

1

p

m0* G* ~ upu!

~mD*
22m0*

2!21m0*
2G* 2~ upu!

, ~99!

where G* (upu) is the in-medium momentum-depende
D-decay width.p is the relative momentum between nucle
and pion in theD-rest system:

p25
@mD*

22~m* 1mp* !2#@mD*
22~m* 2mp* !2#

4mD*
2

. ~100!

m0* is defined by Eq.~88! with the freeD massMD replaced
by its resonance massM0 . Inserting the mass-distribution
function of Eq.~99! into Eq. ~95!, we have

FNp→D~x,p!5E d3q

~2p!3E d3k

~2p!3E dmD*
2~2p!4d~4!

3~p1q2k!W~p,q,k!F~mD*
2!~F2

02F1
0!

5E d3q

~2p!3
ysabs~s!~F2

02F1
0!. ~101!

In the second line of the above equation we already
pressed the collision term with the cross section@77#. Since
we are now in theD-rest system, the effective total energy
the systems equals the effectiveD massmD* . Heresabs(mD* )
reads as

sabs~mD* !5
2p

upu
~gDN

p !2

9mD*
3 @~mD* 1m* !22mp*

2#2

3@~m* 2mD* !22mp*
2#F~mD*

2!. ~102!

Performing an average over the initial states and writing
F(mD*

2) explicitly, we arrive at the cross section of theNp
→D process:
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sNp→D* ~mD* !5
~gDN

p !2

18mD*
3upu

@~mD* 1m* !22mp*
2#2

3@~m* 2mD* !22mp*
2#

3
m0* G* ~ upu!

~mD*
22m0*

2!21m0*
2G* 2~ upu!

.

~103!

According to Ref.@78#, the resonant cross section can also
expressed by means of the decay width:

sNp→D* 5
4p

upu2

~2J11!

~2s11!

~2I 11!

~2t11!~2r 11!

3
m0*

2G* 2~ upu!

~mD*
22m0*

2!21m0*
2G* 2~ upu!

; ~104!
e

hereI, J are the isospin and spin of theD;t,s are that of the
nucleon; andr is the isospin of the pion. Comparing Eq
~103! and ~104! we obtain the in-mediumD-decay width,
which reads as

G* ~ upu!5
upu

16pm0*

~gDN
p !2

6mD*
3 @~mD* 1m* !22mp*

2#2

3@~m* 2mD* !22mp*
2#. ~105!

In this way, we give a clear-cut relation between in-mediu
D-decay width andD-formation cross section.

B. Elastic pion-hadron scattering

In this subsection we derive analytical expressions for c
culating the in-mediump1N→p1N,p1D→p1D, and
p1p→p1p elastic scattering cross sections. The cor
sponding part of the collision term can be written as
Fel~x,p!5
1

2
@PBorn

12 ~x,p!Dp
21~x,p!2PBorn

21 ~x,p!Dp
12~x,p!#

5E d3p2

~2p!3E d3p3

~2p!3E d3p4

~2p!3
~2p!4d~4!~p1p22p32p4!W~p,p2 ,p3 ,p4!~F22F1!; ~106!

hereF2 ,F1 are again the Nordheim-Uehling-Uhlenbeck factors,

F25@11 f p~x,p,t!#@16 f H2
~x,p2 ,t!# f H3

~x,p3 ,t! f H4
~x,p4 ,t!, ~107!

F15 f p~x,p,t! f H2
~x,p2 ,t!@16 f H3

~x,p3 ,t!#@16 f H4
~x,p4 ,t!#, ~108!

H2 ,H3 ,H4 can bep, N, or D; the symbol1 assigns to bosons and2 to fermions. The transition probabilityW(p,p2 ,p3 ,p4)
for different channels reads as

WpN→pN~p,p2 ,p3 ,p4!5
~gpp

r gNN
r !2

16v* ~p!E* ~p2!v* ~p3!E* ~p4!
TaFa , ~109!

WpD→pD~p,p2 ,p3 ,p4!5
~gpp

r gDD
r !2

16v* ~p!ED* ~p2!v* ~p3!ED* ~p4!
TbFb , ~110!

Wpp→pp~p,p2 ,p3 ,p4!5
1

16v* ~p!v* ~p2!v* ~p3!v* ~p4!
(
AB

@~gpp
A !4TcFc1~gpp

A gpp
B !2TdFd#1p3↔p4 , ~111!

whereA, B5s,r. HereTa–d is the isospin matrix andFa–d is the spin matrix. The subscriptsa, b, c, d denote the terms
contributed from Figs. 4~a!–4~d!, respectively. The concrete expressions forTa–d andFa–d are

Ta5 (
t2r 3t4

^r utr
pur 3&^r 3utr

pur &^t4utrut2&^t2utrut4&Dr
i Dr

j , ~112!

Tb5 (
T2r 3T4

^r utr
pur 3&^r 3utr

pur &^T4uTruT2&^T2uTruT4&Dr
i Dr

j , ~113!

Tc5 (
r 2r 3r 4

^r utA
pur 3&^r 3utA

pur &^r 4utA
pur 2&^r 2utA

pur 4&DA
i DA

j , ~114!
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Td5 (
r 2r 3r 4

^r utA
pur 4&^r 4utB

pur 2&^r 2utA
pur 3&^r 3utB

pur &DA
i DB

j , ~115!

Fa5~gr
p!2Dr

mDr
ntr@gr~p” 21m* !gr~p” 41m* !#F 1

~p2p3!22mr
2G 2

, ~116!

Fb5~gr
p!2Dr

mDr
ntr@gr~p” 21mD* !Dsr~p2!gr~p” 41mD* !Drs~p4!#F 1

~p2p3!22mr
2G 2

, ~117!

Fc5~gA
p!4DA

mDA
n F 1

~p2p3!22mA
2G 2

, ~118!

Fd5~gA
pgB

p!2DA
mDB

n
1

~p2p3!22mB
2

1

~p2p4!22mA
2

. ~119!
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i.e.,
We further express the right-hand side of Eq.~106! by the
differential cross sections@77#

Fel~x,p!5E d3p2

~2p!3
ypsp~s,t !~F22F1!dV; ~120!

heresp(s,t) represents the in-medium differential cross s
tions of p1N→p1N,p1D→p1D, and p1p→p1p
elastic scattering. Its concrete expressions can be obta
through computing Eqs.~112!–~119! and finally transform-
ing it into the center-of-mass system. We give explicit e
pressions ofspN→pN(s,t),spD→pD(s,t), andspp→pp(s,t)
in Appendix C. After averaging over initial states, the i
medium total cross sections can be calculated through
following equations:

spN→pN* 5
1

4E spN→pN~s,t !dV, ~121!

spD→pD* 5
1

16E spD→pD~s,t !dV, ~122!

spp→pp* 5
1

6E spp→pp~s,t !dV. ~123!

Of course, in calculating thespD→pD* one should also take
the D-decay width into account. However, the strict tre
ment of Breit-Wigner distribution function as in Sec. I
might cause complexity in the derivation procedure since
are now concerning twoD’s in a scattering process. Pract
cally, we usually introduce a centroidD mass in numerica
calculations which can include the influence ofD decay ef-
fectively. For a detailed description of the method we refe
Refs. @48,50,52#. At the end we can rewrite Eq.~62!, the
RVUU-type transport equation of the pion, in the followin
form:
-

ed

-

he

-

e

o

H pm]m
x 1

1

2
]x

mPH~x!]m
p 1

1

2
]x

mReP loop
22~x,p!]m

p

2
1

2
]p

mReP loop
22~x,p!]m

x J f p~x,p,t!

v* ~p!

5E d3q

~2p!3
ysabs~s!~F2

02F1
0!

1E d3p2

~2p!3
ypsp~s,t !~F22F1!dV. ~124!

The first term on the right-hand side of Eq.~124! stems from
theNp→D process~it is angle independent in the center-o
mass system! and the second term represents thep-hadron
elastic scattering. It is of course interesting to investigate
p-hadron inelastic scattering processes, which may war
further studies.

VI. NUMERICAL RESULTS AND DISCUSSIONS

In this section we present our numerical results for
in-medium pion dispersion relation,D-formation cross sec-
tion, and momentum-dependentD-decay width. The calcula-
tions are performed in symmetric nuclear matter at zero te
perature. The baryon distribution functions in Eqs.~75!–~78!
and~93!, ~94! are replaced by the correspondingu functions.
The coupling strengths ofgNN

s ,gNN
v , andb, c, Z are deter-

mined by fitting the known ground-state properties for in
nite nuclear matter. In this work we take parameter set 2
Ref. @79#, which givesgNN

s 511.77, gNN
v 513.88, b(gNN

s )3

513.447, c(gNN
s )4510.395, and Z53.655. The corre-

sponding saturation properties are the following: binding
ergy Ebin5215.75 MeV, saturated effective nucleon ma
mN* /MN50.6, compressibilityK5200 MeV, and saturation
densityr050.1484 fm23.

For the coupling strengths ofgDD
s and gDD

v , no direct
information from experiments is available. For simplicit
we employ the argument of universal coupling strengths,
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gDD
s 5gNN

s andgDD
v 5gNN

v @80#. Other choices of theD cou-
pling strengths now in the literature@61,81# are not consid-
ered here since they give unreasonable results for the
dispersion relation. In this case, we do not have a nonzerD
distribution in relativistic mean field calculations@79,81#.
The contributions of Eqs.~76! and~78! to the real part of the
pion self-energy vanish in the present calculations of
pion dispersion relation. It is, of course, not a realistic si
ation of the dynamical process of energetic heavy-ion co
sions, where a rather large amount of nucleons are excite
the resonance states@67#. The contributions of Eqs.~76! and
~78! will certainly enter the pion dispersion relation an
might play an important role because of the large spin
isospin factors of theD resonance. Therefore, for the use
the in-medium pion dispersion relation presented in t
work in the study of high-energy heavy-ion collisions,
should be viewed as a preliminary step approaching to
realistic description.

For the coupling strength ofgNN
p , we take the most com

monly used valuef p
2 /4p50.08 @56#. The coupling strength

of gDN
p can be fixed through using Eq.~105! in free space.

If one takes MN5939 MeV, MD51232 MeV, mp

5138 MeV, and the empirical value ofG05115 MeV, it
turns out f * 2/4p50.362, very close to the commonly use
value of 0.37@40# @if one uses this value in Eq.~105!, it
givesG05118 MeV, still within the errorbar of experimen
tal data#. In computing the real part of the pion self-ener
we use a cutoff factor ofL25exp(22p2/b2) with b57 mp

as usually done@16,17#.

A. In-medium pion dispersion relation

Figure 5 displays the gap between the effective masse
particles and antiparticles at different densities. One can
that the mass gap is much larger than the pion mass eve
3 times the normal density. That means that the antiparti

FIG. 6. The pion dispersion relation in symmetric nuclear ma
at saturation density. The solid line shows the free dispersion r
tion. The dotted curves represent the in-medium dispersion rela
for different branches as indicated in the figure. The upper
lower hatched areas indicate regions of nonvanishing imagin
parts of theD-hole and nucleon-hole polarizations, respectively.
on
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contribute only to the high branch of collective mode
which can be neglected in the present consideration.

Figure 6 depicts the in-medium pion dispersion relati
calculated with Eq.~59! at normal density. Here we alread
drop the contribution of the Hartree term since we do n
expect a large pion distribution at the energy and den
considered. The areas of the nonvanishing imaginary
~NIP! of the pion self-energy are also indicated in the figu
The imaginary part of the pion self-energy in nuclear mat
can be derived through inserting Eqs.~71! and~72! into Eqs.
~65!–~68! and taking both the baryons on the mass shell. T
analytical expressions are given in Appendix D. It should
pointed out that in calculating the pion dispersion relation
Eq. ~59! self-consistency is realized only in the real part
the pion self-energy. From the figure one can find that
D-h branch is above the area of NIP. The sound branch

r
a-
n
d
ry

FIG. 7. ~a! The pion dispersion relation at different densities.~b!
The real part of pion self-energy at different densities relating to
pion dispersion relation shown in~a!. ~c! The contributions of dif-
ferent excitation modes to the real part of pion self-energy. T
calculations are performed at normal density.
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buried in the region of the NIP contributed from the nucleo
hole excitation. For the pion branch, it first increases with
increase of momentum and then disappears in the regio
the NIP contributed from theD-hole excitation when the
momentum is larger than 3 times the pion mass. That me
that at larger momenta the pion can be bounded in theD
resonance. This scenario is commonly used in transport m
els. In the figure one can also find another dotted curve b
ied in the region of the NIP fromD-hole excitation, which is
related to the case that a formedD decays immediately.

Since we are mostly interested in the pion branch, in
following we discuss it in detail. In Fig. 7~a! we show the
pion dispersion relation at different densities. The cor
sponding pion self-energy is displayed in Fig. 7~b!. At r
52r0 one can see the numerical instability since at that d
sity the pion self-energy is very large compared to the p
mass. Contrary to the results of the nonrelativistic mo
@16# where the pion branch always starts from the point
v* 5mp since the pion self-energy is an explicit function
p2 in that model, our results exhibit that the pion dispers
relation~pion branch! has a rather different behavior for di
ferent momenta. At lower momenta the pion has a posi
self-energy, which causes the in-medium pion dispersion
lation to be harder than the free one. The pion self-ene
decreases with the increase of momentum. Whenp exceeds
the point around 100 MeV the self-energy becomes nega
and correspondingly the dispersion relation becomes so
than the free one. One may argue that nucleons are not
relativistic in nuclear matter; little difference is expected, f
slow pions, between nonrelativistic and relativistic results
Appendix E we reduce our relativistic formulas to the no
relativistic limit. It is shown that the relativistic effect stem
ming from the Fermi motion of nucleons is negligible. B
there does exist an evident difference to the nonrelativi
model mainly coming from the relativistic kinetics wherepm

2

instead ofp2 is used. The dispersion relation of Fig. 7~a! may
provide a possible explanation of the pion spectrum o
whole energy range. In Ref.@26# it was shown that the pion
yield is overestimated at low momentum whereas it is und
estimated at high momentum when a free dispersion rela
was used. Figure 7~c! displays the contributions of differen
excitation modes to the real part of the pion self-energy. O
can find the main contribution comes from theD-hole exci-
tation as expected. The self-energy from the nucleon-h
excitation always has a positive value whereas the one f
theD-hole excitation changes its sign from positive to neg
tive at a certain momentum point, which controls the beh
ior of the pion dispersion relation.

The above calculations are performed through conside
the lowest-order Feynman diagrams. Short-range corr
tions have not been included. In the nonrelativistic mod
the short-range correlations are taken into account by me
-
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of the Migdal parameterg8. This method is frequently em
ployed in the relativistic model@23# although it has never
been checked carefully. We follow this way and take t
pion self-energy under the random phase approximation

P8~pm!5
ReP loop

22~x,p!

11~g8/pm
2 ! ReP loop

22~x,p!
. ~125!

With g850.6 we have recalculated the pion dispersion re
tion which is plotted in Fig. 8. The behavior of the pio
dispersion relation becomes quite strange and difficult to
derstand. Similar results were obtained in Ref.@23#. That
might mean that it is unsuitable to incorporate short-ran
correlations in a relativistic model by means of a nonrelat
istic approach. A fully self-consistent inclusion of correlatio
effects might be necessary, which is, however, quite com
cated and needs to be discussed in a separate paper. An
possibility is that the effective Lagrangian of Eq.~19! might
be valid only at lower order.

For a convenient use in the study of heavy-ion collisio
we parametrize the results of Fig. 7~a! as

FIG. 8. The pion dispersion relation~dotted curves! at different
densities. The short-range correlations are taken into account
nonrelativistic way with Migdal parameterg850.6. The solid lines
represent the free dispersion relation.
v* 5H 1.1039810.0790471p10.232015p220.049101p3, r50.5r0 ,

1.3217520.13706p10.165035p220.0173563p3, r5r0 ,

1.5630420.585238p10.261195p220.0370091p3, r52r0 .

~126!

The unit ofv* andp is mp .
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B. D-formation cross section andD-decay width

Now let us turn to the collision term of the pion transpo
equation. In this subsection we study thepN→D cross sec-
tion and the momentum-dependentD-decay width, which are
the most important channels for pion absorption and prod
tion, both in free space and the nuclear medium. As has b
pointed out in Sec. V, theD is a physically decaying particle
A Breit-Wigner function is commonly introduced to describ
the broad width of theD resonance when one conside
D-relevant scattering processes@19,48,76#. Consequently,
the mass of theD has a distribution with respect to the tot
energy of the system. But in the framework of an effect
field theory one only treats a point particle with fixed ma
If one introduces an energy-dependent mass, corresp
ingly, one should introduce certain corrections on the int
action vertex. Brueckner@82# suggested a vertex function o

F5S 11R2~pp
2 !0

11R2pp
2 D 1/2

~127!

to fit the phase shift of a broad resonance away from

FIG. 9. Free cross sections for reactionsp1p→D11 and
p2p→D0. The dots are the experimental data from Ref.@83#. The
solid curve is our results calculated with the mass-dependent
pling strength while the dashed curve with the mass-indepen
coupling strength.
c-
en

.
d-

r-

e

resonance position. Herepp is the relative momentum be
tween nucleon and pion in theD-rest system.R is the radius
of the boundary of the internal region. The typical value f
the D is 0.98 fm@78#. In the same spirit a mixed version o
the form factor for theNDp vertex was used in our previou
works @48,50,52# which has essentially similar effects. Mor
conveniently, here we phenomenologically introduce a ma
dependent coupling~MDC! strength gDN

p (MD)5gDN
p F,

which will be used in the following calculations. The orig
nal coupling strengthgDN

p is afterwards referred to mass
independent coupling~MIC! strength.

Figure 9 displays thep1p→D11 and p2p→D0 cross
section in free space. The dots are the experimental
from Ref. @83#. The solid and dashed curves are our nume
cal results calculated with the mass-dependent~solid line!
and mass-independent~dashed line! coupling strength, re-
spectively. The results with MDC strength can reproduce
experimental data nearly perfectly. Furthermore, our calcu
tions are almost parameter free. OnlygDN

p was fixed by fit-
ting G05115 MeV. That implies that our theoretical frame
work for describing the pion is quite reasonable although
should be further checked in relativistic heavy-ion collision

In Fig. 10 we depict the momentum-dependentD-decay
width in free space, calculated with MDC and MI
strengths, respectively. Some phenomenological param
zations commonly used in the transport models are also
sented in the figure. Our results with the MDC strength
comparable with these parametrizations. But the decay w
calculated with the MIC strength increases very rapidly w
the increase of the pion momentum, which will open t
possibility that aD may have a mass much larger than
resonance mass@50#. This may not be the real case. In th
following calculations we will use the mass-dependent c
pling strength for theNDp vertex.

In Fig. 11 we show the in-mediumD-formation cross sec-
tion andD-decay width. The effective masses of nucleon a
D are determined by Eqs.~87! and~88!. The free pion mass
is used in~a! and~b! while the effective pion mass from th
dispersion relation of Fig. 7~a! is used in~c! and ~d!. From

u-
nt

FIG. 10. The momentum-dependentD-decay width in free
space. The solid line and long dash-dotted line are our results c
puted with MDC and MIC strengths, respectively. Dotted@84#,
dashed@85#, and dash-dotted@86# lines represent several phenom
enological parametrizations commonly used in the transp
models.
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the figure one can find the strong medium corrections. In
case of free pion mass, the effectiveD-decay width de-
creases rapidly with the increase of density. TheD-formation
cross section is enhanced near theD-resonance mass bu
suppressed at other region. The whole shape of curves
comes narrower compared to the free one. The in-med
D-decay width was studied by Kimet al. @87# where an ef-
fective pion mass stemming from the nucleon-hole excitat
was used. This kind of effective mass is very close to the f
mass as stated in their paper, and might be seen from
7~c!. They obtained a suppressedD-decay width at norma
density which is in qualitative agreement with our resu
However, in our calculations the Pauli blocking of the fin
nucleon is not taken into account; so a quantitative comp
son is not possible. The Pauli blocking is of course incor
rated in the transport equation~124!. The effects of Pauli
blocking alone on the in-medium resonance decay wi
were investigated by Effenbergeret al. in Ref. @88#.

In Figs. 11~c! and 11~d! the medium effects on the pio
are incorporated. Compared to Figs. 11~a! and 11~b! one can
find that the effective mass of the pion can change the res
completely, even the trend of the density dependence
seems that if the smaller effective mass of the pion is ta
into account, the in-mediumD-decay width increases a
compared to the free mass. The medium effects on
D-formation cross section are now exhibited to be import
only in the region where the formedD has the mass aroun
theD-resonance mass. It decreases with the increase of
sity. When the formedD is far away from its resonanc
mass, the medium corrections to theD-formation cross sec
tion are negligible.

FIG. 11. The in-mediumD-formation cross section andD-decay
width. In ~a! and~b! the free pion mass is used in the calculation
In ~c! and ~d! the effective pion mass is taken into account via t
dispersion relation of Fig. 7~a!.
e
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VII. SUMMARY AND OUTLOOK

A large amount of data with high accuracy for the pio
spectrum and pion flow has been accumulated. Ap-beam
facility will be available at GSI which will provide new and
specific data to help to understand the pion dynamics in r
tivistic heavy-ion collisions. However, a self-consistent tre
ment of pions, together with the nucleons andD’s, is still not
realized in current transport models. In view of this fact, w
have developed a RVUU-type transport equation for the p
distribution function based on an effective Lagrangian of
QHD-II model @56#. The closed-time-path Green’s functio
technique is employed and the semiclassical, quasipart
and Born approximations are adopted in our derivation.
have presented an unified approach to the following pr
lems: First, both the mean field~the real part of the pion
self-energy! and the collision term~the imaginary part of the
pion self-energy! of the transport equation are derived simu
taneously from the same effective Lagrangian and prese
analytically. Second, we treat the real pion and virtual p
on the same footing. Third, the transport equation of pion
derived within the same framework which we applied to t
nucleon@15,47–49,52# andD @50,51# before. Therefore, we
obtain a set of coupled equations for theN, D, andp system
which describes the hadronic matter in an unified way.

Within this approach we have investigated the in-medi
pion dispersion relation. In contrast to the results of the n
relativistic model where a softer dispersion relation over
whole momentum range is exhibited, the predicted
medium dispersion relation turns out to be harder at low
momenta and softer at higher momenta, compared to the
one. The main reason for the difference relies on the fact
in our relativistic model the pion self-energy has a relativis
kinetics pm while in the nonrelativistic model it explicitly
depends on three-momentump @40#, in which the real part of
the pion self-energy goes to zero whenp→0. However, a
pion in the nuclear medium should in principle suffer t
interaction of surrounding particles, whatever it moves
not. In our calculations the real part of the pion self-ener
has a positive value at smaller momenta@89#. Consequently,
the momentum dependence of the in-medium pion disper
relation becomes very flat and quite different from the fr
one and that of the nonrelativistic model. This will certain
have effects on the pion spectrum and pion flow as well
on the dilepton production since one of the important ch
nels p1p2→r→e1e2 explicitly depend on the slope o
dv/dp @27#. It would be very interesting to check this kin
of pion dispersion relation in the dynamical processes
relativistic heavy-ion collisions. Work on this aspect is
progress.

Considering that in the nuclear medium the absorpt
and production of pions are mostly realized through the f
mation and decay of theD resonance, we have studied th
D-formation cross section andD-decay width both in free
space and in the medium. Our theoretical prediction for
freeD-formation cross section is nearly in perfect agreem
with the experimental data. The computed freeD-decay
width is comparable to several phenomenological parame
zations commonly used in transport models. It is found t
the effective pion mass has a strong influence on the
dicted in-mediumD-formation cross section andD-decay

.
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width. It can even change the trend of the density dep
dence. After taking into account the medium corrections
the nucleon,D, and pion mass simultaneously, theD-decay
width turns out to be enhanced in the medium especially
higher momenta, while theD-formation cross section is sup
pressed around the resonance mass. When the formedD is
far away from its resonance mass, the medium effects on
D-formation cross section are negligible.

In investigating the in-medium pion dispersion relati
we have taken into account only the lowest-order diagra
stemming from the nucleon-hole andD-hole excitation. The
effects of short-range correlations have been addre
through following the method of the nonrelativistic mod
with Migdal parameterg8. But the results turn out to be
quite strange. In fact, short-range correlations can be con
ered in a relativistic model self-consistently by implementi

correlation terms like (c̄gmg5tc)2 and (c̄DmS1c)2 in the
effective Lagrangian of Eq.~19!. In the mean field approxi-
mation one should calculate the expectation value

^c̄gmg5tc& and ^c̄DmS1c& which corresponds to the con
densate of the pion field. Although a detailed investigation
correlation effects may go beyond the scope of the RV
approach, it is nevertheless very interesting to check the
fects of short-range correlations on the pion dispersion r
tion even in static nuclear matter within a relativistic mod
self-consistently. It would be extremely interesting if th
collective instability could be studied in a dynamical situ
tion.

As usually done in a microscopic transport theory
nonequilibrium system, the temperature degree of freedo
not taken into account in the present work. One might c
sider the temperature degree of freedom in nuclear matte
simply replacing the single-particle distribution functio
with the Fermi-Dirac~for fermions! and Bose-Einstein~for
bosons! distribution functions. In this way one can study th
effects of temperature on the predicted quantities. This
especially meaningful in the present case since theD distri-
bution will enter explicitly at certain temperatures@79#. Then
theDD21 andND21 excitations of Figs. 3~c!, 3~d! and 3~g!,
3~h! might play an important role on the in-medium pio
dispersion relation. This would be more close to the reali
situation of energetic heavy-ion collisions and requires f
ther studies.

As frequently emphasized in this paper, up to now
only treat the pion as a real particle. Other mesons suc
s,v, andr still remain virtual ones. It is of course interes
ing to develop transport equations forv and r mesons as
well as for other experimental observable mesonsK,
K* ,h,f, . . . within the present framework. Among them
the r meson is especially important for dilepton producti
which cannot be explained by current transport models. M
dium corrections to the properties ofv and r as well ash
mesons may provide a possible explanation@32–34,90–92#.

In almost all practically used RVUU-type transport calc
lations, the local-density approximation is employed in ord
to realize the numerical solution of the equation. This dro
the retardation effects of the mean field, although the eq
tion itself is constructed from the relativistic model. Fro
Eq. ~2! one can find that it is possible to describe the pro
gation of real as well as virtuals and v mesons simulta-
n-
n

at

he

s

ed

id-

f

f

f-
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neously. In this case one can obtain the time-dependent m
field and the transport equations for thes andv distribution
functions at the same time. It would be interesting to stu
this problem and explore it just from a theoretical point
view.
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APPENDIX A

In this appendix we present the zeroth-order Gree
functions of nucleon,D, and mesons used in this work.

~1! Nucleon:

^T@c~1!c̄~2!#&5 iG0~1,2!d t1 ,t
28
, ~A1!

iG0~1,2!5 i E d4k

~2p!4
G0~x,k!e2 ik~x12x2!, ~A2!

G077~x,k!5~k”1MN!F 61

k22MN
2 6 i e

1
p i

E~k!
d@k02E~k!# f ~x,k!G , ~A3!

G012~x,k!52
p i

E~k!
d@k02E~k!#@12 f ~x,k!#~k”1MN!,

~A4!

G021~x,k!5
p i

E~k!
d@k02E~k!# f ~x,k!~k”1MN!.

~A5!

~2! Delta:

^T@cDm~1!c̄Dn~2!#&52 iGmn
0 ~1,2!dT1 ,T

28
, ~A6!

iGmn
0 ~1,2!5 i E d4k

~2p!4
Gmn

0 ~x,k!e2 ik~x12x2!, ~A7!

Gmn
077~x,k!5~k”1MD!DmnF 61

k22MD
2 6 i e

1
p i

E~k!
d@k02E~k!# f D~x,k!G , ~A8!

Gmn
012~x,k!52

p i

E~k!
d@k02E~k!#

3@12 f D~x,k!#~k”1MD!Dmn , ~A9!
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Gmn
021~x,k!5

p i

E~k!
d@k02E~k!# f D~x,k!~k”1MD!Dmn ,

~A10!

Dmn5gmn2
1

3
gmgn2

1

3MD
~gmkn2gnkm!2

2

3MD
2

kmkn .

~A11!

~3! Mesons:

^T@FA~1!FB~2!#&5 iD ADA
0~1,2!dAB , ~A12!

whereA, B5s,v,p,r,

DA5DA
mDA

i , ~A13!

DA
m andDA

i are defined and listed in Table I, and

iDA
0~1,2!5 i E d4k

~2p!4
DA

0~x,k!e2 ik~x12x2!, ~A14!

DA
077~x,k!5

61

k22mA
26 i e

22p id@k22mA
2 # f A~x,k!,

~A15!

DA
067~x,k!522p id@k22mA

2 #@u~6k0!1 f A~x,k!#.
~A16!

Here the numbers 1, 2 representx1 ,x2 . t1 ,t28 denote the isos-
pin of nucleons and T1 ,T28 denote those of
D ’s. f (x,k), f D(x,k), and f A(x,k) are nucleon,D and
meson distribution functions, respectively. The abbreviat
for isospin on the distribution function has been suppress

APPENDIX B

In this appendix we perform the Wigner transformation
Eq. ~45!, which can be easily realized by means of the f
lowing formulas@73#:
n
d.

f
-

]x
m f ~x,y!→S 2 iPm1

1

2
]mD f ~X,P!, ~B1!

]y
m f ~x,y!→S iPm1

1

2
]mD f ~X,P!, ~B2!

h~x!g~x,y!→h~X!g~X,P!2
i

2

]h~X!

]Xm

]g~X,P!

]Pm
,

~B3!

h~y!g~x,y!→h~X!g~X,P!1
i

2

]h~X!

]Xm

]g~X,P!

]Pm
,

~B4!

E d4x8 f ~x,x8!g~x8,y!→ f ~X,P!g~X,P!

1
i

2F ] f ~X,P!

]Pm

]g~X,P!

]Xm

2
] f ~X,P!

]Xm

]g~X,P!

]Pm
G ; ~B5!

here

X5
1

2
~x1y!. ~B6!

After Wigner transformation the different terms in Eq.~45!
turn out to be
stanta-

.

]m
1 ]1

mDp
21~1,2!→S 1

4
]m

X]X
m2 iPm]m

X2P2DDp
21~X,P!, ~B7!

PH~1!Dp
21~1,2!→PH~X!Dp

21~X,P!2
i

2
]X

mPH~X!]m
PDp

21~X,P!, ~B8!

ReP loop
22~1,3!Dp

21~3,2!→ReP loop
22~X,P!Dp

21~X,P!1
i

2
@]P

m ReP loop
22~X,P!]m

XDp
21~X,P!2]X

m ReP loop
22~X,P!]m

PDp
21~X,P!#,

~B9!

Pcoll
12~1,3!Dp

21~3,2!→Pcoll
12~X,P!Dp

21~X,P!. ~B10!

In Eq. ~B10! we have dropped the contributions from derivative terms. That means that collisions are performed at in
neous time:Boltzmann ansatz@54,72#.

APPENDIX C

In this appendix we present analytical expressions of in-medium differential cross sections forp-hadron elastic scattering
~a! Differential cross section of in-mediumpN→pN scattering:
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spN→pN~s,t !5
1

~2p!2s

~grpgNN
r !2

2~ t2mr
2!2

@~m* 21mp*
222s!~m* 21mp*

2!1s21st2m* 2t#, ~C1!

where

s5~p1p2!25@v* ~p!1E* ~p2!#22~p1p2!2, ~C2!

t5
1

2
~2m* 212mp*

22s!2
1

2s
~m* 22mp*

2!212upuup3u cosu, ~C3!

upu5up3u5
1

2As
A~s2m* 22mp*

2!224mp*
2m* 2, ~C4!

andu is the scattering angle in c.m. system.
~b! Differential cross section of in-mediumpD→pD scattering:

spD→pD~s,t !5
1

~2p!2s

5~grpgDD
r !2

36mD*
4~ t2mr

2!2
@18mD*

4~mD*
21mp*

2!222mD*
6~18s111t !2mD*

4~36mp*
2s116mp*

2t218s2226st

27t2!1mD*
2~8mp*

2st24mp*
4t12mp*

2t224s2t26st22t3!1mp*
2t2~mp*

222s!1st2~s1t !#, ~C5!
ct

the
where

s5~p1p2!25@v* ~p!1ED* ~p2!#22~p1p2!2, ~C6!

t5
1

2
~2mD*

212mp*
22s!2

1

2s
~mD*

22mp*
2!2

12upuup3u cosu, ~C7!

upu5up3u5
1

2As
A~s2mD*

22mp*
2!224mp*

2mD*
2. ~C8!

~c! Differential cross section of in-mediumpp→pp
scattering:

spp→pp~s,t !5
1

~2p!2s
@D~s,t !1E~s,t !1~s,t↔u!#,

~C9!

D~s,t !5
3~gspms!4

256~ t2ms
2 !2

1
~grp!4

4~ t2mr
2!2

~4mp*
222s2t !2,

~C10!

E~s,t !5
~gspms!4

256~ t2ms
2 !~u2ms

2 !

1
~grp!4

8~ t2mr
2!~u2mr

2!
~s2t !~2s1t24mp*

2!

1S 1

2
gspmsgrpD 2F 4mp*

222s2t

8~ t2mr
2!~u2ms

2 !

1
t2s

8~ t2ms
2 !~u2mr

2!
G , ~C11!
where the functionD represents the contribution of the dire
term,E is the exchange term, and

s5~p1p2!25@v* ~p!1v* ~p2!#22~p1p2!2,
~C12!

t5
1

2
~4mp*

22s!12upuup3u cosu, ~C13!

u54mp*
22s2t, ~C14!

upu5up3u5
1

2
As24mp*

2. ~C15!

APPENDIX D

In this appendix we present analytical expressions of
imaginary part of the pion self-energy in nuclear matter.

~a! For spacelikepm ,

Im PNN21
22

~x,p!5
m* 2pm

2

pupu ~gNN
p !2~EF2E* !, ~D1!

where

EF5~m* 21kF
2 !1/2, ~D2!

E* 5min~EF ,Emax!, ~D3!

Emax5maxFm* ,EF2up0u,2
1

2
up0u1

1

2
upuS 12

4m* 2

pm
2 D 1/2G ,

~D4!
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Im PDD21
22

~x,p!5
5pm

2

18pupumD*
2 ~pm

4 22pm
2 mD*

2

110mD*
4!~gDD

p !2~EF
D2ED* !, ~D5!

and

EF
D5@mD*

21~kF
D!2#1/2, ~D6!

ED* 5min~EF
D ,Emax

D !, ~D7!

Emax
D 5maxFmD* ,EF

D2up0u,2
1

2
up0u1

1

2
upu

3S 12
4mD*

2

pm
2 D 1/2G , ~D8!

Im PDN21
22

~x,p!5
~gDN

p !2

12pupu
C~p,q!~EF2E* !, ~D9!

where

E* 5min~EF ,Emax!, ~D10!

Emax5maxFm* ,EF
D2up0u,2

1

2
up0ue

1
1

2
upuS e22

4m* 2

pm
2 D 1/2G , ~D11!
and

e5
pm

2 1m* 22mD*
2

pm
2

, ~D12!

C~p,q!5
1

3mD*
2 @pm

2 2~mD* 2m* !2#@pm
2 2~mD* 1m* !2#2.

~D13!

The definition ofEF andEF
D is the same as in Eqs.~D2! and

~D6!:

Im PND21
22

~x,p!5
~gDN

p !2

12pupu
C~p,q!~EF

D2E* !, ~D14!

where

E* 5min~EF
D ,Emax!, ~D15!

Emax5maxFmD* ,EF2up0u,2
1

2
up0ue8

1
1

2
upuS e82 2

4mD*
2

pm
2 D 1/2G , ~D16!

and

e85
pm

2 1mD*
22m* 2

pm
2

. ~D17!
ay
tions are

the

e

relativistic
~b! For timelikepm ,

Im PDN21
22

~x,p!5H ~gDN
p !2

12pupu
C~p,q!~Eu2Ed!, 0<pm

2 <~mD* 2m* !2,

0, otherwise,

~D18!

where

Eu5minFEF ,2
1

2
up0ue1

1

2
upuS e22

4m* 2

pm
2 D 1/2G , ~D19!

Ed5min~EF ,Emax!, ~D20!

Emax5maxFm* ,EF
D2up0u,2

1

2
up0ue2

1

2
upuS e22

4m* 2

pm
2 D 1/2G . ~D21!

For the timelikepm , the contributions of ImPNN21
22 (x,p) and ImPDD21

22 , which describe the particle-antiparticle dec
processes, vanish since we neglect the antiparticles in the present framework. In this work the numerical calcula
performed in cold nuclear matter with the assumption of chemical equilibrium, i.e.,EF

D5EF when aD is produced. In this case
the D-decay process is Pauli blocked since aD can only decay into a pion and a nucleon with a momentum smaller than
nucleon Fermi momentum, which leads to ImPND21

22 (x,p)50 whenp0.upu.

APPENDIX E

In this appendix we introduce the nonrelativistic approximation for Eqs.~75! and~77!. These two terms stemming from th
particle-hole andD-hole excitations are commonly considered in the nonrelativistic approach@40,16,21#. The effective masses
and energies in the expressions are replaced by the corresponding free ones. In order to make a complete non
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reduction we have to start from the full Green’s functions including the contribution of antiparticles. Equations~75! and~77!
then read as

RePNN21
22

~x,p!52~gNN
p !2E d3q

~2p!3FA~p,q!

2E~q!

f ~x,q,t!

@p01E~q!#22E2~p1q!
1pm→2pmG , ~E1!

RePDN21
22

~x,p!52
4

3
~gDN

p !2E d3q

~2p!3FC~p,q!

2E~q!

f ~x,q,t!

@p01E~q!#22ED
2 ~p1q!

1pm→2pmG , ~E2!

with the A(p,q) andC(p,q) defined by Eqs.~79! and ~83!. After some algebra we obtain

RePNN21
22

~x,p!524~gNN
p !2E d3q

~2p!3

MN
2 pm

2

E2~q!
F f ~x,q,t!

pm
2 /2E~q!2p•q/E~q!1p0

1pm→2pmG , ~E3!

RePDN21
22

~x,p!5
8

9
~gDN

p !2E d3q

~2p!3

f ~x,q,t!

E~q! F ~p•q!22MN
2 pm

2

MD
2

1
2pm

2 MN~MD1MN!

MD
2

1
~p•q!22MN

2 pm
2

2MD
2 E~q!

~MD1MN!22pm
2

pm
2 /2E~q!2p•q/E~q!2~MD

2 2MN
2 !/2E~q!1p0

1pm→2pmG , ~E4!
c
l-
n
ts
i

ns
at

og
e
l
e

cle-
f
in

tu-
he
is

e
ted

e

ct
-

o-
nta
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which are the same as Eqs.~8! and~11! in Ref. @14#. Taking
the nonrelativistic limitE(q)'MN , Eq. ~E3! becomes

RePNN21
22

~x,p!5~gNN
p !2pm

2 2vp

p0
22vp

2
rN , ~E5!

with vp5pm
2 /2MN . If one further neglects the relativisti

kinematics, i.e.,pm
2→2p2, it returns to the standard nonre

ativistic formula stemming from the particle-hole excitatio
@40,16#. Therefore, the relativistic effects stay in two aspec
one is the Fermi motion of nucleons in a nucleus which
small; that other one is the relativistic kinetics which tur
out to be substantial in our calculations as can be seen l
In the nonrelativistic limit, Eq.~E4! becomes

RePDN21
22

~x,p!5
4

9
~gDN

p !2
MNp2

MD
2

rN

1
8

9
~gDN

p !2
~MD1MN!

MD
2

pm
2 rN

2
1

9
~gDN

p !2
~MD1MN!22pm

2

MD
2

2vR

p0
22vR

2
p2rN ,

~E6!

with

vR5
pm

2

2MN
2

MD
2 2MN

2

2MN
. ~E7!

The first and second terms on the right-hand side~RHS! of
Eq. ~E6! are the nonresonant terms, which have no anal
in the nonrelativistic model. The third term can be reduc
(pm

2→2p2) to a similar term in the nonrelativistic mode
stemming from theD-hole excitation, but there exist som
:
s

er.

y
d

differences mainly caused by the different masses of nu
ons andD’s. The situation might be understood in view o
the fact that the problem of describing a spin-3/2 particle
relativistic quantum field theory remains unsolved. For
nately, the difference between the nonrelativistic limit of t
relativistic model and the standard nonrelativistic model
quantitatively insubstantial.

Figure 12~a! displays the pion dispersion relation~the
pion branch! at normal density. The solid line denotes th
free pion dispersion relation. The dotted line is calcula
with Eqs.~E5! and ~E6!, i.e., the nonrelativistic limit of the
relativistic model, but with the relativistic kinetics. Th
dashed line is computed by takingpm

2→2p2 in Eqs. ~E5!
and ~E6!. One can clearly see that the relativistic effe
~mainly from the kinematic origin! makes the pion disper
sion relation harder at low momenta and softer at high m
menta. Furthermore, the relativistic effect at low mome
mainly comes from the nonresonant terms, i.e., the first
second terms on the RHS of Eq.~E6!. If one switches off
these two terms, at low momenta the results~the dash-dotted
line! approach the dashed line while at high momenta th
approach the dotted line. Figure 12~b! depicts the pion dis-
persion relation~both the pion and theD-hole branches! at
different densities calculated with Eqs.~E5! and ~E6! and
pm

2→2p2. The short-range correlation effect is include
through Eq.~125! (pm

2→2p2) with g850.6. As one can see
from the figure, the obtained pion dispersion relation
nearly the same as that of the nonrelativistic model@16,21#
except the pion branch is a little harder at high momenta
this case one may conclude that the difference between
results of Fig. 6 and that of the nonrelativistic model main
stems from the relativistic kinetics.

APPENDIX F

In this appendix we derive the conserved current a
energy-momentum tensor.
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~1! Current. Make a four-dimension integration of mo
mentum on both sides of Eq.~62!, the right-hand side~the
collision term! goes to zero@77# and we have

FIG. 12. ~a! The pion dispersion relation~the pion branch! at
normal density. Different lines correspond to the different situatio
as explained in text.~b! The pion dispersion relation~the pion and
D-hole branch! at different densities. The calculations are pe
formed with Eqs.~E5! and ~E6! and pm

2→2p2. The short-range
correlation effect is taken into account by means of the Mig
parameter ofg850.6.
E d4pH pm]m
x 1

1

2
]x

mPH~x!]m
p 1

1

2
]x

m ReP loop
22~x,p!]m

p

2
1

2
]p

m ReP loop
22~x,p!]m

x J f p~x,p,t!

v* ~p!
50. ~F1!

It is straightforward to find the current conservation

]x
mJm~x!50, ~F2!

with

Jm~x!5E d4pFpm2
1

2
@]m

p ReP loop
22~x,p!#G f p~x,p,t!

v* ~p!
.

~F3!

We note that eachf p(x,p,t) is in principle accompanied by
a d function d„p02v* (p)… for on-shell pions.

~2! Energy-momentum tensor.Multiplying pm on both
sides of Eq.~62! and making a four-dimensional integratio
of the momentum, we arrive at

E d4ppmH pn]x
n1

1

2
]x

nPH~x!]n
p1

1

2
]x

nReP loop
22~x,p!]n

p

2
1

2
]n

pReP loop
22~x,p!]x

nJ f p~x,p,t!

v* ~p!
50. ~F4!

Our strategy is to extract the]x
n out of the whole equation

For the first term it is straightforward. The second term c
be rewritten as

2gmnE d4p
f p~x,p,t!

2v* ~p!
@]x

nPH~x!#.

With the help of Eqs.~73! and ~74!, it becomes

]x
nFgmn

1

8
~gsp!2rS

2~p!G .
The third and fourth terms can be written as

s

l

E d4ppm]n
pF1

2
@]x

n ReP loop
22~x,p!#

f p~x,p,t!

v* ~p!
G2E d4ppm]x

nF1

2
@]n

p ReP loop
22~x,p!#

f p~x,p,t!

v* ~p!
G

52gmnE d4p
1

2
@]x

n ReP loop
22~x,p!#

f p~x,p,t!

v* ~p!
2]x

nE d4p
1

2
pm@]n

p ReP loop
22~x,p!#

f p~x,p,t!

v* ~p!

52gmn]x
nE d4p

1

2
ReP loop

22~x,p!
f p~x,p,t!

v* ~p!
1gmnE d4p

1

2
ReP loop

22~x,p!]x
n
f p~x,p,t!

v* ~p!

2]x
nE d4p

1

2
pm@]n

p ReP loop
22~x,p!#

f p~x,p,t!

v* ~p!
. ~F5!

The second term of the above equation turns out to be



same
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2
1

4
gmnE d4p~]p

lpl! ReP loop
22~x,p!]x

n
f p~x,p,t!

v* ~p!

5
1

4
gmnE d4ppl@]p

l ReP loop
22~x,p!#]x

n
f p~x,p,t!

v* ~p!
1

1

4
gmnE d4ppl ReP loop

22~x,p!]p
l]x

n
f p~x,p,t!

v* ~p!

5
1

4
gmnE d4ppl@]p

l ReP loop
22~x,p!#]x

n
f p~x,p,t!

v* ~p!
1

1

4
gmnE d4ppl@]x

n]p
l ReP loop
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f p~x,p,t!
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5]x
n

1

4
gmnE d4ppl@]p

l ReP loop
22~x,p!#

f p~x,p,t!

v* ~p!
. ~F6!

In the first and second equalities of Eq.~F6! we have used the fact that the terms with the double derivative acting on the
quantity can be neglected in the gradient expansion. At the end we have the energy-momentum conservation

]x
nTmn~x!50, ~F7!

with

Tmn~x!5E d4ppmpn

f p~x,p,t!
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