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Doorway concept at high excitation energy
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The spreading of transition strength is studied in the doorway picture by taking the coupling to the con-
tinuum explicitly into account. The internal~configurational! coupling mixes the doorway state with the
background states and is responsible for all the states actually having a decay width. Therefore, external mixing
of the states via the continuum is induced. If it is large, resonance trapping appears and the states will be
demixed. Thus the residual interaction is effectively reduced. As a consequence, the spreading of transition
strength can be small also at high excitation energy. The relation to the golden rule is discussed.
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I. INTRODUCTION

Recently, the giant dipole resonance observables h
been investigated experimentally in hot rotating nuclei@1#.
The results showed, among others, that collisional damp
at the temperatureT'2 MeV is practically the same as a
zero temperature. This result is a challenge for the theor
is necessary to prove the doorway concept under the co
tions of extremely high excitation energy. In doing this, o
has to consider the quantum system as being open, i.e.
should take into account that the nuclear states are embe
in the continuum of decay channels.

The properties of open quantum systems are discusse
recent theoretical papers; see e.g.,@2–5# and further refer-
ences therein. At high level density, short-lived states e
whose collectivity originates from their coupling to the co
tinuum. These states appear together with long-lived state
a result of resonance trapping. This so-called external col
tivity occurs additionally to the well-known collectivity o
intrinsic nature known from the properties of giant res
nances at low excitation energy@5#.

At high level density, the interference of external and
ternal collectivity influences significantly the distribution
the dipole strength over the states as well as their widths
positions in energy@5#. The interference pattern shows su
den changes in the distribution of the collective strength a
critical value of the level density. It coincides qualitative
with experimental results obtained at high excitation ene
in nuclei ~see e.g.,@6#! under the assumption that the sprea
ing is so small that the interference picture is not washed

The spreading of the strength of an originally simple st
over states with a more complicated structure is descri
usually under the following assumptions@7#. The back-
ground statesR are chosen to be equidistant with level spa
ing D and to have vanishing decay width. The squares of
coupling matrix elementsvR of these states to the simp
state are substituted by the energy independent average
^V2&. It follows then for ^V2&.D2, that the strength distri-
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bution has a Breit-Wigner shape with the spreading widthG↓

given by the golden rule@7#,

G↓52p
^V2&

D
. ~1!

The same result is found by considering the average c
section@8#. If ^V2& scales withD, as assumed in e.g.,@9#, Eq.
~1! means thatG↓ saturates as a function of the level densi

The spreading widthsG↓ of isobar analogue resonance
obtained from experimental data are, indeed, almost indep
dent of the excitation energy@10#. The same is true for the
imaginary part of the optical potential used in analyzing sc
tering data@11#. General theoretical arguments in favor of
saturation ofG↓ as a function of the excitation energy a
given in @12#. They are based on the idea of chaotization
the intrinsic dynamics@13#. A doorway state interacting
through an internal interaction with a large set of backgrou
states, whose escape widths are nonzero, is considere
@13#.

The interplay between giant resonances and backgro
states is investigated in the framework of the continuum s
model in@14#. In this model, the direct internal mixing of th
states as well as their external mixing via the continuum
taken into account. The results showed the following t
results. First, the mixing of the doorway state with the ba
ground states is effectively reduced at high level density
to the external mixing leading to resonance trapping. S
ondly, missing spectroscopic strength in the standard met
of analyzing the data appears when the unitarity of theS-
matrix is not taken properly into account. The unitarity
important especially at the top of resonances. Here the c
tributions from other resonances to the cross section sh
be added by accounting for the phases in order not to vio
unitarity. Indeed, a selective transparency at the top of re
nances is observed experimentally@15#. Thus, the interplay
between giant resonances and background states via the
tinuum leads to results which are unexpected from the p
of view of bound state calculations.

The properties of the long-lived states are studied in so
other papers. For example in@16#, experimental data on neu
tron resonances in53Cr are analyzed on the basis of th
164 ©1999 The American Physical Society
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PRC 59 165DOORWAY CONCEPT AT HIGH EXCITATION ENERGY
doorway concept and shown to resemble trapped state
@17#, the 4\v isoscalar monopole giant resonance in208Pb is
investigated in the random phase approximation with c
tinuum. Some narrow resonances appear in the cross se
which are shown to arise from resonance trapping.

In @18#, the restructuring of an open quantum system t
ing place at high level density under critical conditions
studied in detail in the one channel case. Under certain c
ditions, the restructuring is a second-order phase transi
While the short-lived state is a collective state with con
butions of all theN resonance states, the wave functions
the long-lived trapped states are mixed at most with thos
their neighbors.

We will present, in the following, results obtained for th
spreading of transition strength in the doorway picture. A
cording to this picture only the doorway state is, due to
spectroscopic properties, coupled directly to the decay ch
nel. We take this coupling explicitly into account. Our resu
are as follows: The internal mixing of the doorway state w
the background states creates an ensemble of reson
states with nonvanishing decay widths. As a conseque
the interplay between internal and external interaction is
portant and determines the value of the spreading of tra
tion strength. If the states are overlapping, the external m
ing causes resonance trapping, that is narrow reson
states are created together with a broad one. This red
effectively the mixing of the states and leads to a satura
~or even to a decrease! of the spreading at high level densit
The original situation of one broad state overlapping ma
long-lived states is restored.

In Sec. II the model based on the doorway concep
presented and in Sec. III the model used is studied ana
cally. The interplay between internal and external mixing
illustrated numerically and discussed in Sec. IV. The res
of our investigations are discussed in the last section.

II. MODEL DESCRIPTION

Following the doorway concept, the spreading of the tr
sition strength of the doorway state is described by theN
11)3(N11) Hamiltonian@10#

H5H2 iAA1 . ~2!

Here, H consists of three parts:~i! the N3N part h with
eigenvalueseR describing theN discrete statesuR&, R
51, . . . ,N, ~ii ! the 131 part corresponding to the unpe
turbed doorway stateu0& and~iii ! the real coupling vectorV
between doorway and discrete states with elementsvR . The
second part2 iAA1 of H couples the system to the deca
channel and makes the Hamilton operator non-Hermit
According to the doorway concept, only@AA1#00[G↑/2
Þ0 whereG↑ is the escape width of the doorway state. Th
H reads

H5S 0 VT

V h D 2
i

2 S G↑ 0

0 0D . ~3!

In this paper we mostly use the following assumptions foh
and V: h is diagonal with diagonal elementseR distributed
according to a picket-fence, i.e.,D5const. We number the
N11 states from2N/2 to N/2 and writeeR5DR. The state
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R50 is the doorway state. The real coupling matrix e
mentsvR5v are chosen constant and are normalized acco
ing to @9,19#,

(
RÞ0

vR
2/L5v2/D[W. ~4!

Here, the sum runs over theN background states lying in th
interval @2L/2,L/2#. @In contrast to the doorway concept in
volved in the Hamiltonian~3!, the Hamiltonian used in@13#
couples all states directly to the continuum from the ve
beginning.#

The effective Hamilton operator Eq.~3! is complex, i.e.,
non-Hermitian. The eigenvalues ofH give the energiesER
and half-widthsGR/2 of all N11 states. The eigenfunction

FR5(
R8

cRR8wR8 ~5!

form a biorthogonal set witĥFRuFR&>1 ~for details, see
@3#!. ThewR are defined by$w%5$x% % h where the$x% are
the N eigenfunctions ofh andh is the wave function of the
doorway state. To study the wave functions of the resona
states, we normalize the coefficients according to

ubRR8u
25

ucRR8u
2

^FRuFR&
5

ucRR8u
2

(R9ucRR9u
2

. ~6!

Using this normalization we have the following relation:

GR5G↑ubR0u2 . ~7!

In the following we are interested in the sum of the widt
of the narrow states,

Gv5 (
RÞ0

GR5G↑2G0 . ~8!

Gv describes how much of the escape width of the doorw
state is spread to the background statesR5” 0.

III. ANALYTICAL STUDIES

A. The two resonance approximation

Let us study the interaction between the doorway st
and one of the background states. This interaction is
scribed by

H25S 0 v

v eR
D 2

i

2 S G↑ 0

0 0D . ~9!

The eigenvalues of Eq.~9! are
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166 PRC 59E. PERSSON AND I. ROTTER
l65

eR2
i

2
G↑

2
6

eR1
i

2
G↑

2 A11
4v2

S eR1
i

2
G↑D 2

'

eR2
i

2
G↑

2
6

eR1
i

2
G↑

2 S 11
2v2

S eR1
i

2
G↑D 2D .

~10!

In the last step, it was assumed thatv is small. Using Eq.
~10! one can show

l1[ER2
i

2
GR

'eRS 11
v2

eR
21

~G↑!2

4
D 2

i

2

G↑v2

eR
21

~G↑!2

4

. ~11!

HereER'eR ~for sufficiently smallv) and

GR'
G↑v2

eR
21

~G↑!2

4

5G~eR! ~12!

are the energy and width of the background stateR. Further,
the widthG0 of the broader state can be found from Eq.~10!,

G0522 Iml25G↑2GR . ~13!

According to these equations,GR increases withv andG0
decreases withv for fixed G↑. This corresponds to the well
known result that the internal mixingv spreads the strengt
away from the original doorway state.

Equations~12! and~13! show, however, also the effect o
resonance trapping as can be seen by fixingv and varying
G↑. For isolated resonance states, i.e.,eR@G↑/2, it follows
GR'v2G↑/eR

2 which increases withG↑ ~for fixed v). Further,
G0 /G↑'12v2/eR

25const, i.e., the ratio between the streng
which remains at the broad state and the total strength d
not depend onG↑. In the opposite case~overlapping states!,
eR!G↑/2, it holdsGR'4v2/G↑ which is independent of en
ergy and inversely proportional toG↑. The widthGR of the
stateR decreaseswith increasingG↑, i.e., it is a trapped state
In contrast to the widthGR , the widthG0 of the broad state
increases with increasingG↑ also in this case,G0 /G↑51
24v2/(G↑)2→1 for largeG↑. Thus, as a result of resonanc
trapping, the broad state accumulates almost all of the av
able widthG↑ whereas the width of the other state becom
very small. For detailed investigations on resonance tr
ping, see e.g.,@2–4#.

Now we calculate the accumulated width of the bac
ground states,Gv , for N,L→` at a fixedD5L/N. We as-
sume that the width of each background state follows fr
the two resonance approximation, Eq.~12!. The energy shifts
of the states are small because eachER must lie betweeneR
es

il-
s
p-

-

and eR61. For a dense spectrum~which is in the regime of
resonance trapping,G↑.D) it follows

Gv'
1

DE
2`

1`

deG~e!5
v2

D E
2`

1`

de
G↑

e21
~G↑!2

4

52pW ,

~14!

whereD and vR are assumed to be independent of ener
Equation ~8! meansG↑.Gv since G0>0. Thus, Eq.~14!
makes sense only under the condition

G↑.2pW. ~15!

Note that Eq.~15! does not implyv.D but relates the value
v25W D to G↑.

A more general derivation of Eq.~14! will be given in
Sec. III B while a numerical proof can be found in Sec. IV

Equation~14! means that, as long asG↑.2pW, the sum
Gv of widths of the narrow states doesnot depend onG↑.
The only dependence is onW5v2/D.

B. Solution of the secular equation

Now, let us derive the valueGv directly by considering
the eigenvalues ofH, Eq. ~3!. They can be found from the
solutions of the secular equation,

ER2
i

2
GR1

i

2
G↑5v2 (

m52N/2

m51N/2
1

ER2
i

2
GR2mD

. ~16!

By splitting Eq.~16! into its real and imaginary part, one ca
show thatER50 is a solution for the real part of the equ
tion. The right hand side of Eq.~16! can be exactly calcu-
lated for N→`, see e.g.,@13#. In this limit and forER'0,
the imaginary part of Eq.~16! reduces to

G↑2GR52pW•1/tanhS pGR

2D D . ~17!

The broad stateR50 lies in the center of the spectrum
AssumingG0@D it holds tanh„pG0 /(2D)…'1 and thus

G05G↑22pW, ~18!

i.e.,

Gv5G↑2G052pW . ~19!

This is the same result as Eq.~14! obtained by using the two
resonance approximation. Equation~19! holds for G0.0
meaning 2pW,G↑ according to Eq.~18!. This condition is
the same as Eq.~15!.

We can also find the width of background states w
energies very close to 0 by assuming thatGR!D. In this
case tanh„pGR /(2D)…'pGR /(2D) and thus

GRÞ0'4v2/G↑ ~20!

which is the same result as Eq.~12! taken ateR'0. Equation
~18! means that the stateR50 can be identified with the
broad state formed by trapping the states in its neighborh
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PRC 59 167DOORWAY CONCEPT AT HIGH EXCITATION ENERGY
while the statesRÞ0 near toE50 are trapped states accor
ing to Eq. ~20!. This result corresponds to that obtained
the two resonance approximation, Sec. III A.

C. Spreading width

We consider the HamiltonianH, Eq. ~3!, in a base in
which the real partH is diagonal. DiagonalizingH with the
orthonormal matrixO we get in the new base

H85H82 i ~A8!~A8!1, ~21!

where H85OTHO and A85OTA. Because onlyA05” 0 it
holdsAR8}OR0 whereOR0 is the component of the doorwa
state in the wave function of the background stateR5” 0. In
the picket fence modelOR0 is given by the strength function
For v.D, it follows @7#

~AR8 !25
DG↑

4p

G↓

ER
21S G↓

2
D 2 ~22!

with G↓ determined by the golden rule Eq.~1!. If the nondi-
agonal elements of the second part ofH8 are small, the reso
nances are isolated and the eigenvalues are approxim
equal to the diagonal elements. This givesGR/2'(AR8 )2.

According to Eq.~22!, the coupling vectors (AR8 )2 of the
statesR increase with increasingG↑. When the resonance
start to overlap, resonance trapping comes into play. T
must be taken into account in the parametrization of the
teraction^V2& in the golden rule~1!.

IV. NUMERICAL STUDIES

A. Interplay between internal and external mixing

Due to the internal interaction, not only the doorway st
but also all the background states have a decay width. T
an external mixing of the states is induced, which becom
important if the states are overlapping. In the following w
study numerically the influence of this mixing ontoGv .

Let us consider values ofW which are not restricted by
the condition~15!. In Fig. 1~a! we show the eigenvalue pic
ture GR/2 versusER ~in units of L/2) for someG↑ ~marked
near the corresponding curves!, N5298, D50.007, and
W50.01, i.e.,v/D51.2.1. In all cases,L5ND52.G↑.
Due to the internal mixing,all states actually have a deca
width. At small values ofG↑ the internal interaction mixes
the states so strongly that the original doorway state is
much broader than its neighbors, i.e., it loses its identity.
largeG↑, however, the widths of all states~which are shown
in the figure! but one are equal and much smaller than
width of the state in the center of the spectrum. This cor
sponds to the original assumption of equal and very sm
~zero! widths of the background states.

In Fig. 1~a! also G(E)/2 calculated according to the tw
resonance approximation Eq.~12! for ER,0 ~full lines on
the left! and (ARÞ08 )2 for ER.0 from Eqs.~22! and~1! with
^V2&5v2 ~full lines on the right! are shown.~Both curves
are, of course, symmetric aroundER50.! The agreemen
betweenGRÞ0/2 and G(E)/2 is good for G↑50.1 and 1
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where Eq.~15! is fulfilled. By way of contrast, the bound
state calculation describes well the results only for smallG↑,
i.e., for G↑51023 and 1022. For largerG↑, the state at zero
energy has a widthG0 much larger than the widthsGRÞ0 of
all the other states due to resonance trapping. TheGRÞ0 are
much smaller than the values obtained from Eqs.~22! and~1!

FIG. 1. ~a! GR/2 and ER ~in units of L/2) for different G↑

~marked in the plot!. The full lines on the left side are calculate
from Eq.~12! for ER,0 and the full lines on the right from Eq.~22!
for ER.0. The unperturbed energieseR of the background state
are61/N,62/N, . . . ~in units ofL/2). ~b! GR/2 andER ~in units of
L/2) by varying G↑ from G↑51023 ~diamonds! to G↑51 ~full
circles!. The eR are 61/(2N),63/(2N), . . . ~in units of L/2). ~c!
GR/2 ~points! andGv/2 ~diamonds! versusG↑ ~all in units of L/2).
The eR are as in~a!. The full line marksG↑52pW50.063. In~a!,
~b!, and~c!, W51022, L52, andN5298.
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168 PRC 59E. PERSSON AND I. ROTTER
with ^V2&5v2. For G↑51, the widths of all states but on
are more than three orders of magnitude smaller than
width of the state in the center. There areN long-lived states
overlapped by a broad state what can be described by Eq~1!
only when the residual interaction̂V2& is parametrized in a
proper manner.

For illustration, we show in Fig. 1~b! the motion of the
eigenvaluesER2( i /2)GR in the complex plane as a functio
of increasingG↑ for the resonance states lying in the cen
of the spectrum@W andN are the same as in Fig. 1~a!#. In
order to avoid the ‘‘hole’’ in the density of the backgroun
states atE50 ~where the doorway state lies!, the spectrum
of the discrete background states is shifted, in this calc
tion, by 61/(2N) ~in units ofL/2) as compared to Fig. 1~a!.
Internal mixing creates a spectrum which is almost equid
tant in the center and has a distribution of the widths sy
metrical around the center@diamonds in Fig. 1~b!#. By reso-
nance trapping, the widths of all states but one equilibr
and theN trapped states return back to the original positio
of the N discrete ~unmixed! background states ateR5
61/(2N),63/(2N) . . . ~in units of L/2) @full circles in Fig.
1~b!#. This picture shows very clearly that at high level de
sity, there is again one short-lived state which overlapsN
long-lived states.

In Fig. 1~c! we showGR/2 and Gv/2 versusG↑ for the
sameW andN as in Fig. 1~a!. For smallG↑, the widthG0 of
the broadest state is in the same order of magnitude as
width of its neighbors and consequentlyGv.G0. This is true
as long asG↑<2pW50.063. In the regionG↑'2pW
~marked with a line in the plot!, the external mixing starts to
play a role. The widths of background states being ov
lapped by the doorway state start to decrease with increa
G↑ ~resonance trapping! andG0 approachesG↑. As a conse-
quence,GRÞ0,2D for all G↑ andGv,G0 for largeG↑. The
states at the borders of the spectrum, not being overlappe
the broad state, continue to increase in width and thusGv
saturates (Gv is the sum overall GRÞ0). The numerical satu-
ration value,Gv55.8W, is in good agreement with the ana
lytical resultGv52pW, Eq. ~14!.

Figure 1 shows that atG↑,2pW the spreading is so larg
that the doorway state can hardly be identified. This situa
is described by the bound state calculation with the inter
interactionv. At G↑@2pW, however, the original situation
of one state being much broader than all the other one
restored by resonance trapping. This situation is well
scribed by the two resonance approximation. Here, the
sidual interactionv is effectively reduced.

We study now the wave functions of the states. In F
2~a! we showub00u2 @compare Eqs.~5! and ~6!# of the door-
way state versusG↑ ~in units ofL/2) for N5298,L52, and
some differentW5const. Whenub00u251, the doorway state
is aligned with the decay channel, i.e., the state is pure in
channel base. Figure 2~a! shows the following results.~i! The
value ub00u2 decreases with increasingW. ~ii ! At small G↑,
ub00u2!1, i.e., the internal interactionv mixes the doorway
state strongly with its neighbors.~iii ! At G↑52pW @marked
by crosses in Fig. 2~a!# resonance trapping starts to ta
place due to the external mixing, as can be seen for all cu
corresponding to different constant values ofW. ~iv! At G↑

.2pW, the stateR50 aligns with the decay channel an
ub00u2→1. This means that the mixing of the states is effe
e
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tively reduced due to the external mixing.
In Fig. 2~b! we show ubRR8u

2 for the background state
with eR50.1 calculated for some differentG↑ andW50.02.
As long asG↑,2pW, the ubRR8u

2 are almost independent o
G↑ and the corresponding values are covered by the va
for G↑50 ~diamonds!. For G↑.2pW, the wave function
gets purer with increasingG↑ ~in the base ofh). It is
ubR0u2@ubRR8Þ0u2 for uR82Ru@1 becauseubR0u2}GR @see
Eq. ~7!#.

Figures 1 and 2 illustrate the interplay between inter
and external interaction. A strong internal interaction d
stroys the doorway picture but induces an external mixing
all the resonance states. If the external interaction g
strong, the original picture of one short-lived state toget
with N long-lived states will be restored: one state becom
much broader than all the other ones and the wave funct
of all states become more or less pure. Effectively, the
sidual interaction, which is responsible for the mixing of t
wave functions, starts to decrease with increasingG↑ at G↑

'2pW.

B. The role of W

In this subsection we keepG↑ constant. First, we study th
behavior of the resonances as a function of the mean l

FIG. 2. ~a! ub00u2 versusG↑ ~in units of L/2) for N5298 and
some W ~marked in the plot!. The crosses correspond toG↑

52pW. ~b! ubRR8u
2 for the background state witheR50.1 for some

G↑ ~in units of L/2); N5298 andW50.02.G↑50 is marked with
diamonds andG↑51 with full circles. The four curves marked b
open circles are forG↑50.1, 0.18, 0.32, and 0.56.
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PRC 59 169DOORWAY CONCEPT AT HIGH EXCITATION ENERGY
distanceD5L/N. One way to decreaseD is to push the
spectrum together, i.e., to changeL. To keepW5const, Eq.
~4!, thevR must be multiplied by a factorAD.

Figure 3~a! showsGv/2 and some of the broadestGR/2
versus 1/D50.05/v2 ~in units of G↑) calculated by pushing
the spectrum together forW50.05,G↑51, andN5298. As
long as resonance trapping is not important, allGRÞ0 as well
as Gv increase with 1/D. At 1/D'2, corresponding toG↑

'2D ~marked with a full line in the plot! trapping of the
resonance states overlapped by the doorway state star
take place. BothGv andG0 saturate,Gv→2pW50.3. Note
that in these calculations the lengthL of the spectrum is
varied from 2000 to 2. Trapping starts to play a roˆle at 1/D
'2 corresponding toL'150, which is much larger than th
fixed valueG↑51.

It is v5D at 1/D520 in Fig. 3~a!, dashed line. Around
1/D'20, the behavior of the system does not change. Th
in contrast to the changes in the system taking place at
onset of resonance trapping at 1/D'2.

A possibly more natural way to decreaseD is to increase
the numberN of resonance states in a fixed energy inter
L. Numerical calculations confirm the saturation ofGv as a

FIG. 3. ~a! Gv/2 ~diamonds! and some of the largestGR/2
~points! versus 1/D ~all in units of G↑); N5298, W5const50.05.
~b! Gv/2 and someGR/2 versusW ~all in units of G↑). N5998 and
v5const50.04 ~instead ofW5const). In~a! and~b! G↑51 andD
is varied by pushing the spectrum together. The full lines in~a! and
~b! mark G↑52D, the dashed linesv5D and the dash-dotted line
@in ~b!# G↑52pW.
to

is
he

l

function ofN as soon as the doorway state overlaps its nei
bors.

Now let us consider the properties of the system at a fi
valuev5AWD instead ofW, compare Eq.~4!. In Fig. 3~b!,
Gv/2 and someGR/2 versusW50.0016/D ~in units of G↑)
are shown for a calculation withG↑51 and increasingW by
changingL. We have chosenN5998 which is larger than
that in Fig. 2~a! and a fixedvR50.04. For smallW, Gv
increases quadratically with increasingW whereas forW
.0.003, Gv increases linearly withW. The value W
50.003~full line in the plot! corresponds toG↑52D.

For W,0.003, the resonance states do not overlap,eR
2

@(G↑)2/4, and Eq.~12! gives GR}D22}W2 for all RÞ0.
ThereforeGv}W2. For W.0.0032, resonance trapping
important, andGv}D21}W according to Eq.~14!. Thus
resonance trapping makes the increase ofGv with W smaller
as compared to regions ofW where resonance trapping doe
not play a role. This result is independent of any assumpti
on how v scales withD. Note that in this calculation reso
nance trapping starts atL'500 (N5998) which is much
larger thanG↑51.

Further, in Fig. 3~b!, it is v5D at W'0.04~dashed line!.
The transition fromv,D to v.D does not change the be
havior of the system. The transition from 2pW,G↑ to
2pW.G↑ takes place atW'0.16 ~dash-dotted line!. Here,
the properties of the system change drastically from
doorway picture to a situation in which the width of th
broadest state is comparable with those of its neighbors.
stateR50 and some of its neighbors start to decrease th
widths.Gv approaches its maximum value determined byG↑

which is fixed in the present calculation.
All these results show the same tendency as those sh

in Figs. 1 and 2. Trapping plays a role in the region fro
W*2v2/G↑ ~corresponding to G↑*2D) up to W
&G↑/(2p).

Note that the border where the range of the inner mix
exceeds the length of the spectrum is 2pW5L which gives
W50.5. Thus the change of the system behavior at 2pW
'G↑ is not a border effect.

Summarizing the results, we state the following~compare
Table I!: The behavior of the system depends strongly
resonance trapping, i.e., on the ratio between the two va
G↑ and 2pW. It is not determined by the ratio betweenv and
D. The whole region fromD&G↑/2 @full line in Fig. 3~b!# up

TABLE I. Gv for fixed G↑ andv.

Gv

N11 non-overlapping states
2D.G↑; D.v }W2

Doorway picture~with trapping!
2pW,G↑; D.v 2pW

Doorway picture~with trapping!
2pW,G↑; D,v 2pW

N11 states with comparable widths
2pW.G↑; D,v <G↑
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to G↑'2pW @dash-dotted line in Fig. 3~b!# is determined by
resonance trapping. Here,Gv increases linearly withW: Gv
'2pW. For 2pW.G↑, the internal mixing of the state
dominates, the doorway picture breaks down andGv reaches
its maximum value determined byG↑.

C. Beyond the picket fence model

In realistic systems, thevR can have an energy depe
dence. In the following we do a small excursion investig
ing the question whether such an energy dependence i
ences the conclusions of this paper. We assume that thvR
decrease with an increasing energy differencee between the
background and the doorway state,

v~e!5
AWD

2p

a

e21a2/4
. ~23!

Here,a controls the width of the distribution and Eq.~4! still
holds.

In Fig. 4~a! we show the eigenvalue pictureGR/2 andER
~in units ofL/2) for G↑50.05,N5298,a50.3 and someW
ranging from 0.01 to 4. The caseW50.01 corresponds to a
narrow distribution of the widthsGR . As W increases,GR50
decreases and atW50.25, a broad structure is formed in th
distribution of GRÞ0 . For even largerW two hump shapes

FIG. 4. GR/2 andER ~in units ofL/2) for a Breit-Wigner shaped
distribution of thev with width a50.3. L52 and N5298. The
unperturbed energieseR are as in Fig. 1~a!. ~a! G↑50.05 and some
differentW ~marked in the plot!. ~b! W52 and 0.2<G↑<2 in steps
of lg10G

↑51/30. SomeG↑ are marked in the plot.
-
u-

are formed which move away from the center of the sp
trum. As a result, a strong internal coupling repels t
strength from the middle of the spectrum to the borders.

In order to study the influence of the coupling to the d
cay channel we show in Fig. 4~b! the eigenvalue pictureGR/2
and ER for N5298, a50.3 @the same as in Fig. 4~a!#, but
using a fixedW52 and someG↑ ranging from 0.2 to 2. For
small G↑ we see two hump shapes as in Fig. 4~a!. At G↑

'0.3 the widths of the broadest states in both humps ar
the order of the level distanceD. Local resonance trapping
takes place in each hump which creates two broad sta
These states attract each other in energy with further incr
ing G↑. Two-resonance trapping occurs and creates just
broad state atG↑'0.9. As a result, the two humps disappe
and we have, at largeG↑, just one broad hump around th
energyE50.

Note that Figs. 4~a! and 4~b! have only illustrative char-
acter. They illustrate however boldly that the internal inte
action spreads the strength whereas the external one ga
it back to the original doorway state.

Additionally, we have also calculated theGv for the case
that the levels are distributed in a more realistic manner.
have chosen a level distribution ofh according to the GOE
and random elementsvR of the internal interaction. We per
formed the calculations in the same manner as above for
picket-fence level distribution with constantvR ~Figs. 1 and
3!. After averaging over a number of random realizations
the Hamiltonian, the results forGv are the same as for th
picket fence.

Also in the two cases of an energy dependent inter
interaction and a random distribution ofeR andvR the inter-
nal mixing is reduced by the external one and the origi
picture with coexistence of states of very different lifetime
restored at largeG↑.

V. DISCUSSION

In this paper we studied analytically as well as nume
cally the spreading of transition strength in the doorway c
cept at high excitation energy. According to this picture, t
doorway state is coupled to a large number of backgro
states through the real internal interactionv. Further, it is
coupled, due to its spectroscopic properties, to the continu
~decay channel! by G↑ while the background statesGRÞ0
have an access to the continuum only via the doorway st

For 2pW[2pv2/D.G↑ the internal interaction destroy
the original doorway picture obtained from the spectrosco
properties of the states. This means, there does not ex
state the width of which is much larger than that of all t
other ones and the wave function of which is aligned w
the channel wave function. This situation is well describ
by a calculation without considering the coupling to the co
tinuum.

At G↑'2pW the external interaction starts to reduce t
mixing of the states by giving back a large part of the ava
able widthG↑ to only one state. This situation is characte
ized by resonance trapping. ForG↑.2pW the original pic-
ture with one short-lived andN long-lived states is restored
One of the states has again a much larger width than all
others and the wave function of the doorway state as we
those of the background states are almost pure. Thus,
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phenomenological doorway picture finds its justification
the coupling of the states via the continuum is taken i
account. Table I shows that it holds always whenG↑

.2pW whereW contains the internal interactionv.
This picture is proven by us forG↑!L and 2pW!L

whereL is the length of the spectrum. This means, the r
toration of the original picture with coexistence of a sho
lived andN long-lived states at largeW is not a border effect.
It appears in realistic systems due to resonance trapping

In the golden ruleG↓52p^V2&/D, the interaction̂ V2&
appears in parametrized form. The parametrization inclu
the direct internal coupling of the states as well as the ex
nal coupling via the continuum. At high excitation ener
~high level density!, the external mixing of all the resonanc
states is large and therefore^V2& is small. The assumption
that ^V2& scales withD as proposed in@9# describes this
situation. That means long-lived resonance states coe
with a few short-lived resonance states also at high le
density. The mixing of the wave functions of these two typ
of resonance states is small.

Thus, resonance trapping correlates high level den
~smallD! with small ^V2& what is unexpected from the poin
of view of bound state calculations. As a consequence,
spreading widthsG↓ do not increase with increasing lev
.
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density. This outcome explains the experimental result@1#
according to which collisional damping at a temperature
about 2 MeV is the same as at zero temperature.

In the doorway picture, only one decay channel is imp
tant whereas in nuclei at high excitation energy many de
channels are open. Their coupling strengths to the sys
differ, however, considerably. In@4# it was shown that this
leads effectively to a small number of open decay chann
needed for describing the decay of the system in a cer
energy region. Therefore, the one channel approxima
used in this paper implies no major restriction of the app
cability of the results.

As a conclusion, we state that the interplay between in
nal and external mixing determines the spreading of tra
tion strength in an open quantum system. Pure states
exist even at large excitation energies. An equilibration
the states in relation to their decay widths does not occu

ACKNOWLEDGMENTS

Valuable discussions with T. Gorin, M. Mu¨ller, S. E. Mu-
raviev, and G. Soff are gratefully acknowledged. The pres
investigations were supported by the DFG and the SMW
.

tt.

ys.

i-
@1# A. Bracco et al., Phys. Rev. Lett.74, 3748 ~1995!; Nuovo
Cimento ~Proceedings SNEC98!; M. Mattiuzzi et al., Phys.
Lett. B 364, 13 ~1995!; Nucl. Phys.A612, 262 ~1997!.

@2# I. Rotter, Rep. Prog. Phys.54, 635 ~1991!; V. V. Sokolov and
V. G. Zelevinsky, Ann. Phys.~N.Y.! 216, 323 ~1992!; M.
Desouter-Lecomte, J. Lie´vin, and V. Brems, J. Chem. Phys
103, 15 ~1995!; V. V. Flambaum, A. A. Gribakina, and G. F
Gribakin, Phys. Rev. A54, 2066~1996!; Y. V. Fyodorov and
H. J. Sommers, J. Math. Phys.38, 1918~1997!.

@3# M. Müller, F.-M. Dittes, W. Iskra, and I. Rotter, Phys. Rev.
52, 5961~1995!.

@4# E. Persson, T. Gorin, and I. Rotter, Phys. Rev. E58 1334
~1998!.

@5# V. V. Sokolov, I. Rotter, D. V. Savin, and M. Mu¨ller, Phys.
Rev. C56, 1031~1997!; 56, 1044~1997!.

@6# M. Thoennessen,Proceedings of the Gull Lake Nuclear Phy
ics Conference on Giant Resonances@Nucl. Phys. A569
~1994!#; T. Suomijärvi et al., Phys. Rev. C53, 2258~1996!.

@7# A. Bohr and B. Mottelson,Nuclear Structure~Benjamin, New
York, 1969!, Vol. I.

@8# C. Mahaux and H. A. Weidenmu¨ller, Shell-Model Approach to
Nuclear Reactions~North-Holland, Amsterdam, 1969!.
@9# O. P. Sushkov and V. V. Flambaum, Nucl. Phys.A412, 13
~1984!.

@10# H. L. Harney, A. Richter, and H. A. Weidenmu¨ller, Rev. Mod.
Phys.58, 607 ~1986!; J. Reiter and H. L. Harney, Z. Phys. A
337, 121 ~1990!.

@11# C. Mahaux and G. R. Satchler, Nucl. Phys.A560, 5 ~1993!.
@12# B. Lauritzen, P. F. Bortignon, R. A. Broglia, and V. G

Zelevinsky, Phys. Rev. Lett.74, 5190~1995!.
@13# V. V. Sokolov and V. G. Zelevinsky, Phys. Rev. C56, 311

~1997!.
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