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Doorway concept at high excitation energy
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The spreading of transition strength is studied in the doorway picture by taking the coupling to the con-
tinuum explicitly into account. The interndtonfigurational coupling mixes the doorway state with the
background states and is responsible for all the states actually having a decay width. Therefore, external mixing
of the states via the continuum is induced. If it is large, resonance trapping appears and the states will be
demixed. Thus the residual interaction is effectively reduced. As a consequence, the spreading of transition
strength can be small also at high excitation energy. The relation to the golden rule is discussed.
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[. INTRODUCTION bution has a Breit-Wigner shape with the spreading witkh
given by the golden rulg7],
Recently, the giant dipole resonance observables have )
been investigated experimentally in hot rotating nu¢ldi FL:277<V_ 1)
The results showed, among others, that collisional damping D °

at the temperaturd~2 MeV is practically the same as at
zero temperature. This result is a challenge for the theory. The same result is found by considering the average cross
is necessary to prove the doorway concept under the condsection[8]. If (V?) scales withD, as assumed in e.49], Eq.
tions of extremely high excitation energy. In doing this, one(1) means thaf' ' saturates as a function of the level density.
has to consider the quantum system as being open, i.e., one The spreading width§'! of isobar analogue resonances
should take into account that the nuclear states are embeddebtained from experimental data are, indeed, almost indepen-
in the continuum of decay channels. dent of the excitation energyl0]. The same is true for the
The properties of open quantum systems are discussed imaginary part of the optical potential used in analyzing scat-
recent theoretical papers; see e[@+5] and further refer- tering datg/11]. General theoretical arguments in favor of a
ences therein. At high level density, short-lived states exissaturation ofl'! as a function of the excitation energy are
whose collectivity originates from their coupling to the con- given in[12]. They are based on the idea of chaotization of
tinuum. These states appear together with long-lived states aise intrinsic dynamicg13]. A doorway state interacting
a result of resonance trapping. This so-called external collec¢hrough an internal interaction with a large set of background
tivity occurs additionally to the well-known collectivity of states, whose escape widths are nonzero, is considered in
intrinsic nature known from the properties of giant reso-[13].
nances at low excitation enerd]. The interplay between giant resonances and background
At high level density, the interference of external and in-states is investigated in the framework of the continuum shell
ternal collectivity influences significantly the distribution of model in[14]. In this model, the direct internal mixing of the
the dipole strength over the states as well as their widths anstates as well as their external mixing via the continuum are
positions in energy5]. The interference pattern shows sud- taken into account. The results showed the following two
den changes in the distribution of the collective strength at aesults. First, the mixing of the doorway state with the back-
critical value of the level density. It coincides qualitatively ground states is effectively reduced at high level density due
with experimental results obtained at high excitation energyto the external mixing leading to resonance trapping. Sec-
in nuclei(see e.g.[6]) under the assumption that the spread-ondly, missing spectroscopic strength in the standard method
ing is so small that the interference picture is not washed oubf analyzing the data appears when the unitarity of $he
The spreading of the strength of an originally simple statematrix is not taken properly into account. The unitarity is
over states with a more complicated structure is describetmportant especially at the top of resonances. Here the con-
usually under the following assumptio¥]. The back- tributions from other resonances to the cross section should
ground state® are chosen to be equidistant with level spac-be added by accounting for the phases in order not to violate
ing D and to have vanishing decay width. The squares of thanitarity. Indeed, a selective transparency at the top of reso-
coupling matrix elementsi of these states to the simple nances is observed experimentdlyf]. Thus, the interplay
state are substituted by the energy independent average valbetween giant resonances and background states via the con-
(V2). It follows then for(V?)>D?, that the strength distri- tinuum leads to results which are unexpected from the point
of view of bound state calculations.
The properties of the long-lived states are studied in some
*Electronic address: persson@mpipks-dresden.mpg.de other papers. For example|ih6], experimental data on neu-
"Electronic address: rotter@mpipks-dresden.mpg.de tron resonances it°Cr are analyzed on the basis of the
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doorway concept and shown to resemble trapped states. R=0 is the doorway state. The real coupling matrix ele-
[17], the 4: o isoscalar monopole giant resonanc€ifPbis  mentsvg=v are chosen constant and are normalized accord-
investigated in the random phase approximation with coning to[9,19],

tinuum. Some narrow resonances appear in the cross section

which are shown to arise from resonance trapping.

~In[18], the restructuring of an open quantum system tak- > viL=vYD=W. (4)

ing place at high level density under critical conditions is R#0

studied in detail in the one channel case. Under certain con-
ditions, the restructuring is a second-order phase transition, Lo
While the short-lived state is a collective state with contri—r.here’ the sum runs over tiébackground states lying in the

butions of all theN resonance states, the wave functions Ofmterval[— L/2L/2]. [In contrast to the doorway concept in-

the long-lived trapped states are mixed at most with those o\fOI\/ed in the Hamlltc_)nlar(B), the Hamllyonlan used ifd.3]
their neighbors. couples all states directly to the continuum from the very

We will present, in the following, results obtained for the beginning] . . . .
spreading of transition strength in the doorway picture. Ac- The eﬁgptlve Haml_lton operator E‘@ IS comple>§, €.,
cording to this picture only the doorway state is, due to itsnon-Hermman. The eigenvalues & give the _energleE_R
spectroscopic properties, coupled directly to the decay chaﬁi-nd half-widthsl'r/2 of all N+ 1 states. The eigenfunctions
nel. We take this coupling explicitly into account. Our results
are as follows: The internal mixing of the doorway state with
the background states creates an ensemble of resonance D=2, Crr PR’ ()
states with nonvanishing decay widths. As a consequence, R’
the interplay between internal and external interaction is im-
portant and determines the value of the spreading of transform a biorthogonal set witf®g|®z)=1 (for details, see
tion strength. If the states are overlapping, the external mixf3]). The ¢y are defined by ¢} ={x}® 7 where the{x} are
ing causes resonance trapping, that is narrow resonangge N eigenfunctions oh and 7 is the wave function of the
states are created together with a broad one. This reducggorway state. To study the wave functions of the resonance
effectively the mixing of the states and leads to a saturatiortates, we normalize the coefficients according to
(or even to a decreagef the spreading at high level density.

The original situation of one broad state overlapping many
long-lived states is restored.

In Sec. Il the model based on the doorway concept is |brre
presented and in Sec. Ill the model used is studied analyti-
cally. The interplay between internal and external mixing is
illustrated numerically and discussed in Sec. IV. The resultdJsing this normalization we have the following relation:
of our investigations are discussed in the last section.

2 |crr|? _ |crr|?
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Il. MODEL DESCRIPTION Pr=T"brol" - @
Following the doorway concept, the spreading of the tran-
sition strength of the doorway state is described by the (
+1)X(N+1) Hamiltonian[10]

In the following we are interested in the sum of the widths
of the narrow states,

H=H—iAA" . (2

r,=> Tg=I"-T, . (8)
Here, H consists of three partgi) the NXN part h with R#0
eigenvalueseg describing theN discrete stategR), R
=1,... N, (ii) the IX1 part corresponding to the unper-
turbed doorway stat®) and(iii) the real coupling vectoy
between doorway and discrete states with elemegtsThe
second part-iAA™ of H couples the system to the decay

I', describes how much of the escape width of the doorway
state is spread to the background stakes0.

channel and makes the Hamilton operator non-Hermitian. lIl. ANALYTICAL STUDIES
According to the doorway concept, onfjAA" Jo,=I"1/2
#+0 wherel'! is the escape width of the doorway state. Thus A. The two resonance approximation
H reads Let us study the interaction between the doorway state
0 V' T 0 and one of the background states. This interaction is de-
H=( )_ '_( ) _ (3  scribed by
V h 2\0 0
0 v i (TT 0
In this paper we mostly use the following assumptionstfor H2=(U ER) - 5( 0 O) : 9

andV: h is diagonal with diagonal elemenéx, distributed
according to a picket-fence, i.d)=const. We number the
N+ 1 states from—N/2 to N/2 and writeeg=DR. The state The eigenvalues of Eq9) are
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i 2
_1t
eg+ 2I‘ )
(10)

In the last step, it was assumed thais small. Using Eq.
(10) one can show

i
)\+EER_ EFR
1+ v? | [o? 11
~€Er ) (I‘T)Z 2 ) (FT)Z . ( )
ex+
R 4 R 4
HereEg~eg (for sufficiently smallv) and
I'y?
FFWWZF(E!R) 12
er+ 1

are the energy and width of the background sRit&urther,
the widthI, of the broader state can be found from ELp),

—2Imx =I'"-Tj . (13

FO_

According to these equationBg increases withy andl’
decreases with for fixed I'". This corresponds to the well-
known result that the internal mixing spreads the strength
away from the original doorway state.

Equationg(12) and(13) show, however, also the effect of
resonance trapping as can be seen by fixingnd varying
I'". For isolated resonance states, igxs>1"1/2, it follows
I'r~v°I"!/e3 which increases witl'! (for fixed v). Further,
I'o/TT~1—v?ei=const, i.e., the ratio between the strength
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andeg- 1. For a dense spectrufwhich is in the regime of
resonance trappind,'>D) it follows

1 [+ v2 [+ rt

I‘v% ijoc deF(e)— ijoc deW—ZWW ,
e+ ——
4
(14

whereD andvg are assumed to be independent of energy.
Equation (8) meansI''>T', since ';=0. Thus, Eq.(14)
makes sense only under the condition

I'>27W. (15)

Note that Eq(15) does not imply >D but relates the value
v?=WDtoI".

A more general derivation of Eq14) will be given in
Sec. Il B while a numerical proof can be found in Sec. IV.
Equation(14) means that, as long 48 >2#7W, the sum
', of widths of the narrow states doest depend onl'.

The only dependence is aN=v?/D.

B. Solution of the secular equation

Now, let us derive the valu€&', directly by considering
the eigenvalues df{, Eq. (3). They can be found from the
solutions of the secular equation,

i i m=+N/2
Er— 5Trt 5T1=0? i (16)

2

m=—N/2
ER_

I'ge—mD

By splitting Eq.(16) into its real and imaginary part, one can
show thatEg=0 is a solution for the real part of the equa-
tion. The right hand side of Eq16) can be exactly calcu-
lated forN—, see e.g.[13]. In this limit and forEg~0,
the imaginary part of Eq(16) reduces to

LR

r
| w

T_To= ) _R
I'-Trr=27W 1/tanl‘( 5D

The broad statdR=0 lies in the center of the spectrum.
Assumingl’o>D it holds tanliwI'¢/(2D))~1 and thus

Fo=TT-27W, (18

which remains at the broad state and the total strength does

not depend od’!. In the opposite cas@verlapping statés
er<I''/2, it holdsT"'g~4v?/T'" which is independent of en-
ergy and inversely proportional 1'. The widthT'g of the
stateR decreasewith increasing’’, i.e., it is a trapped state.
In contrast to the width'g, the widthI'y of the broad state
increases with increasin§j! also in this casel'y/I''=1
—4p?/(I'")2—1 for largeI'". Thus, as a result of resonance
trapping, the broad state accumulates almost all of the avai
able widthI'!

ie.,

L,=T"-Ty=27W . (19
This is the same result as E{.4) obtained by using the two
resonance approximation. Equatigh9 holds for I'y>0
meaning 2r'W<TI'T according to Eq(18). This condition is
}he same as Ed15).

" We can also find the width of background states with

whereas the width of the other state becomes, o gies very close to 0 by assuming tiiat<D. In this

very small. For detailed investigations on resonance trapzose tantw['n/(2D))~ 7T'r/(2D) and thus

ping, see e.gl2-4].

Now we calculate the accumulated width of the back-

ground statesl",, for N,L— at a fixedD=L/N. We as-

Irio~4v3T! (20)

sume that the width of each background state follows fromwhich is the same result as HG2) taken ateg~0. Equation

the two resonance approximation, E&j2). The energy shifts
of the states are small because eBghmust lie betweereg

(18) means that the statB=0 can be identified with the
broad state formed by trapping the states in its neighborhood
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while the state®R+ 0 near toE=0 are trapped states accord- 10°
ing to Eq.(20). This result corresponds to that obtained in
the two resonance approximation, Sec. Il A. 107 F

C. Spreading width 10%F

We consider the Hamiltoniaft{, EqQ. (3), in a base in L 108l
which the real parH is diagonal. Diagonalizingd with the e
orthonormal matrixO we get in the new base

104
H'=H'—i(A")(A")*, (21

whereH'=0"THO and A’=0"A. Because onlyA,#0 it
holds Ak Org WhereOg, is the component of the doorway 10,
state in the wave function of the background sf&te0. In

the picket fence modéDr, is given by the strength function.

0
Forv>D, it follows [7] 10
rt rt o (b)
! 2:
S T P 22 102}
Ea+|—
Rol2
‘T’I 10° l
Iy
with T'! determined by the golden rule E@). If the nondi- 1ot l J J
agonal elements of the second parttf are small, the reso- {
nances are isolated and the eigenvalues are approximate s
equal to the diagonal elements. This giNgg2~ (AR)>. 4 4
Accor_ding to Eq._(22)_, the C(_)upling vectorsAR)? of the 108 L e e — .
statesR increase with increasingf!. When the resonances ' ' E : :
start to overlap, resonance trapping comes into play. This R
must be taken into account in the parametrization of the in-
teraction({V?) in the golden rulg1).
107" (c) ]
IV. NUMERICAL STUDIES ,n?‘;“’“m.
-2 | *
A. Interplay between internal and external mixing N 10
=
Due to the internal interaction, not only the doorway state™ N
but also all the background states have a decay width. Thu uf: 107¢
an external mixing of the states is induced, which become: ' .
important if the states are overlapping. In the following we ;4L . -~
study numerically the influence of this mixing onfg .
Let us consider values &l which are not restricted by

the condition(15). In Fig. 1(a) we show the eigenvalue pic- 1078 g

ture I'r/2 versusEg (in units of L/2) for somel'" (marked

C\?E“Otgf ‘?orre?po_”d'gg cur\)es”N=298, ?:0'(_’027' I’“,‘Pd FIG. 1. (@) I'w/2 and Eg (in units of L/2) for different I'
=0.01, i.e.,0/D=1.2>1. In all cases| =ND=2>1". (marked in the plot The full lines on the left side are calculated

D_ue to the internal mixing:TaII Sta_tes aCtu_a"y ha\{e a d_ecay from Eq.(12) for Eg<0 and the full lines on the right from E¢R2)
width. At small values off"' the internal interaction mixes o £.>0. The unperturbed energies of the background states

the states so strongly that the original doorway state is NOfre+1/N,+2/N, . .. (in units ofL/2). (b) T'x/2 andEg (in units of
much broader than its neighbors, i.e., it loses its identity. A /2) by varying "' from I''=10"2 (diamond$ to T''=1 (full
largeI'!, however, the widths of all statéwhich are shown circles. The eg are = 1/(2N), = 3/(2N), . . . (in units of L/2). (c)
in the figure but one are equal and much smaller than ther /2 (points andTI',/2 (diamond$ versusI'! (all in units of L/2).
width of the state in the center of the spectrum. This correThe ey are as in(a). The full line marksl''=27W=0.063. In(a),
sponds to the original assumption of equal and very smallb), and(c), W=10"2, L=2, andN=298.

(zero widths of the background states.

In Fig. 1(a) alsoI'(E)/2 calculated according to the two where Eq.(15) is fulfilled. By way of contrast, the bound
resonance approximation E¢L2) for Ex<O (full lines on  state calculation describes well the results only for shiall
the lef) and (Ag..o)? for Eg>0 from Eqgs.(22) and(1) with  i.e., forT''=10"2 and 10°2. For largerT'!, the state at zero
(V®)=v2 (full lines on the right are shown.(Both curves energy has a widtfi'y, much larger than the widthBg.., of
are, of course, symmetric arourttk=0.) The agreement all the other states due to resonance trapping. IThe, are
betweenl'r.o/2 and I'(E)/2 is good forI''=0.1 and 1  much smaller than the values obtained from Eg8) and(1)
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with (V?)=v2. ForI''=1, the widths of all states but one 10 - - ARSI
are more than three orders of magnitude smaller than the | et °
width of the state in the center. There &tdong-lived states 08k (@)

overlapped by a broad state what can be described bylEq.
only when the residual interactidiv?) is parametrized in a

proper manner. o 08T c

For illustration, we show in Fig. (b) the motion of the S 25102 .o uuueee +
eigenvalue€g—(i/2)I'g in the complex plane as a function ~— o4t . .
of increasingl’! for the resonance states lying in the center | 5102 .. aeeet” + h
of the spectrumfW andN are the same as in Fig(a]. In 02 1162 + I

order to avoid the “hole” in the density of the background Freeereeneeenneendd & po RELE

states aE=0 (where the doorway state ligghe spectrum SRRSO P IR o2

of the discrete background states is shifted, in this calcula: 09,3 02 o 700
tion, by = 1/(2N) (in units ofL/2) as compared to Fig.(d). r’

Internal mixing creates a spectrum which is almost equidis- , . ,

tant in the center and has a distribution of the widths sym-  10°¢ ’

metrical around the centgdiamonds in Fig. (b)]. By reso- (b)

nance trapping, the widths of all states but one equilibrate 10
and theN trapped states return back to the original positions

8 o
of the N discrete (unmixed background states atg= N s PO 3'
+1/(2N),=3/(2N) ... (in units of L/2) [full circles in Fig. T L0l . e300 e,
1(b)]. This picture shows very clearly that at high level den- £ 0 . ot? ¢ ', IRRRS.E PN
sity, there is again one short-lived state which overldps . gettloc o e ce ey,
; 104F L eatt 200007 o AT PRERSES

long-lived states. 1880 e ot et Nt

In Fig. 1(c) we showI'g/2 andT',/2 versusI'' for the O e el
sameW andN as in Fig. 1a). For smalll'!, the widthT'g of [ ...**"
the broadest state is in the same order of magnitude as th ;46 s s s s

-0.05 0.00 0.05 0.10 0.15 0.20

width of its neighbors and consequently>T",. This is true
as long asI''<s27W=0.063. In the regionl''~27W °R

(marked with a line _in the plotthe external mixing starts to FIG. 2. (a) |bog? versusI'! (in units of L/2) for N=298 and
play a role. The widths of background states being oversome W (marked in the plot The crosses correspond @'
lapped by the doorway state start to decrease with increasing27W. (b) |bgg |2 for the background state witsy= 0.1 for some
I'" (resonance trappingndI’y approached’ . As a conse- T'! (in units of L/2); N=298 andW=0.02.T''=0 is marked with
quencel r.o<2D for all I'" andI',<T', for largeI''. The  diamonds and'=1 with full circles. The four curves marked by
states at the borders of the spectrum, not being overlapped lmpen circles are for'=0.1, 0.18, 0.32, and 0.56.

the broad state, continue to increase in width and thys
saturatesI(, is the sum oveall I'g..¢). The numerical satu-
ration value,I',=5.8W, is in good agreement with the ana-

lytical resultl’,=27W, Eq. (14). ; - - 1 _
; v - with eg=0.1 calculated for some differeft’ andW=0.02.
Figure 1 shows that dt' <2aW the spreading is so large As Ionz aslI''<27W, the|bgrr|? are almost independent of

that the doorway state can hardly be identified. This situatioaTT :
) . ) ; . and the corresponding values are covered by the values
is described by the bound state calculation with the intern or T'=0 (diamonds. For I'' >27W, the wave function

. . T> . . . .
interactionv. At I''>2#7W, however, the original situation ets purer with increasing’! (in the base ofh). It is

of one state being much broz_ider thz_in QII th_e ot_her ones ||%R0|2>|bRR’¢O|2 for [R'—R|>1 becausdbgo|2=T's [see
restored by resonance trapping. This situation is well deE 7]
scribed by the two resonance approximation. Here, the re=d:\ Ol d2il he i lav b . |
sidual interactiorv is effectively reduced Figures 1 an lllustrate the Interplay between interna
We studv now the wave functions 0]; the states. In Fi and external interaction. A strong internal interaction de-
2(a) we sho)\//v|b 12 [compare Eqs(5) and (6)] of the door— g'stroys the doorway picture but induces an external mixing of
00 P 9 all the resonance states. If the external interaction gets

T (i i = =
way Stgt; Veri’/L\’/E_ (in lf[ns\jh()frl{éz)| jﬁrl'\‘ thzgd&L 2, a,?dt strong, the original picture of one short-lived state together
some difierentv=const. Wherbog" =1, (€ doorway State , ;, N long-lived states will be restored: one state becomes

is aligned with the decay channel, i.e., the state Is pure in th'r?nuch broader than all the other ones and the wave functions
channel bfg‘se- Figured ShOV\.’S the fqllowpg resultsi) ThTe of all states become more or less pure. Effectively, the re-
value |bog|* decreases with increasing. (ii) At small I', sidual interaction, which is responsible for the mixing of the

|bog?<1, i.e., the internal interaction mixes the doorway - o 1
I~ X wave functions, starts to decrease with increadingat I'
state strongly with its neighbor§ii) At I'' = 27W [marked ~27W ?

by crosses in Fig. @)] resonance trapping starts to take
place due to the external mixing, as can be seen for all curves
corresponding to different constant valuesvef (iv) At I'!
>27W, the stateR=0 aligns with the decay channel and In this subsection we kedp' constant. First, we study the
|bgd2— 1. This means that the mixing of the states is effec-behavior of the resonances as a function of the mean level

tively reduced due to the external mixing.
In Fig. 2(b) we show|bgrg|? for the background state

B. The role of W
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10° . . . TABLE I. T, for fixed I'" andv.
............. Lo
(a) PP R R R IR AR AR AR IR FU
107 , IR LA . e N+ 1 non-overlapping states
ol o * 2D>T'"; D>v W2
e . * celeee
| .ot .
1&10.2_ N Diy 3 Doorway picture(with trapping
=y ' ) """:::”l;'l 2aW<TIT; D>v 27W
10° 3 Doorway picture(with trapping
27W<T'T: D<v 27W
10* 100 1D 10 102 N+ 1 states with comparable widths
27W>TT: D<vp <r!
10° .
lr' ............. .“.4004
p 2o AR function ofN as soon as the doorway state overlaps its neigh-
107 ¢ oot 1  bors.
(b) R ‘ Now let us consider the properties of the system at a fixed
(>0} |o*” . valuev = \\WD instead ofW, compare Eq(4). In Fig. 3b),
I . TR P : I',/2 and somd g/2 versusW=0.0016D (in units of ')
JT§10-3 A N L -] are shown for a calculation with'=1 and increasingV by
fx I changingL. We have choseiN=998 which is larger than
S I that in Fig. 2a) and a fixedvg=0.04. For smallw, I,
whe e Ll 1 increases quadratically with increasiMy whereas forw
L >0.003, I', increases linearly withW. The value W
) . : }_33 ] o . =0.003(full line in the plob corresponds td''=2D.
10 10 10 For W<0.003, the resonance states do not overkfp,
w >(I'")2/4, and Eq.(12) gives T rxD ~2=W?2 for all R#0.

FIG. 3. (8 I',/2 (diamond$ and some of the largedf/2 ~ Thereforel', W2 For W>0.0032, resonance trapping is
(points versus 1D (all in units of T'1); N=298, W=const=0.05.  important, andl',«D~'«W according to Eq.(14). Thus
(b) T',/2 and somd /2 versusW (all in units of ['"). N=998 and  resonance trapping makes the increasg pwith W smaller
v=const=0.04 (instead ofwW=const). In(a) and(b) ['=1 andD  as compared to regions W where resonance trapping does
is varied by pushing the spectrum together. The full line@jrand  not play a role. This result is independent of any assumptions
(b) mark'"=2D, the dashed lines=D and the dash-dotted line on howwv scales withD. Note that in this calculation reso-
[in ()] T'=2mW. nance trapping starts at~500 (N=998) which is much
larger thanl''=1.
distanceD=L/N. One way to decreasP is to push the Further, in Fig. &), itis v=D atW~0.04(dashed ling
: B The transition fromv <D to v>D does not change the be-
spectrum together, i.e., 'to.changeTo keepW=const, Eq. havior of the system. The transition fromm®V<I' to
(4), thevg must be multiplied by a factoyD. 27W>T" takes place aW~0.16 (dash-dotted line Here,
Figure 3a) shov;/srvlz and some of the broadeBkr/2  the properties of the system change drastically from the
versus 1D =0.05/? (in units of I'") calculated by pushing goorway picture to a situation in which the width of the
the spectrum together foW=0.05,I'"=1, andN=298. As  proadest state is comparable with those of its neighbors. The
long as resonance trapping is not importantI'all, as well  stateR=0 and some of its neighbors start to decrease their
asT, increase with 1. At 1/D~2, corresponding td""  widths.T', approaches its maximum value determined By
~2D (marked with a full line in the plgttrapping of the  which is fixed in the present calculation.
resonance states overlapped by the doorway state starts to All these results show the same tendency as those shown
take place. Botl", andI'y saturate]',—27W=0.3. Note in Figs. 1 and 2. Trapping plays a role in the region from
that in these calculations the lengthof the spectrum is W=2v%T'! (corresponding to I''=2D) up to W
varied from 2000 to 2. Trapping starts to play derat 1D  <T'!/(2).
~2 corresponding th. ~ 150, which is much larger than the Note that the border where the range of the inner mixing
fixed valuel''=1. exceeds the length of the spectrum is\®@=L which gives
Itis v=D at 1D =20 in Fig. 3a), dashed line. Around W=0.5. Thus the change of the system behavior at\2
1/D ~ 20, the behavior of the system does not change. This is=I'! is not a border effect.
in contrast to the changes in the system taking place at the Summarizing the results, we state the followiltompare
onset of resonance trapping aDk2. Table ): The behavior of the system depends strongly on
A possibly more natural way to decreddds to increase resonance trapping, i.e., on the ratio between the two values
the numbe of resonance states in a fixed energy intervall'! and 27W. It is notdetermined by the ratio betweerand
L. Numerical calculations confirm the saturationIyf as a  D. The whole region fronD <T"'/2 [full line in Fig. 3(b)] up
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FIG. 4. T'r/2 andEg (in units ofL/2) for a Breit-Wigner shaped
distribution of theyv with width =0.3. L=2 andN=298. The
unperturbed energies; are as in Fig. (8). (a) I''=0.05 and some
differentW (marked in the plot (b) W=2 and 0.&I''<2 in steps
of Ig,ol'"=1/30. Somd"" are marked in the plot.

to I'' ~27W [dash-dotted line in Fig.(®)] is determined by
resonance trapping. HerE, increases linearly wittw: T",,
~27W. For 2eW>T", the internal mixing of the states
dominates, the doorway picture breaks down Bpdeaches
its maximum value determined Hy'.

C. Beyond the picket fence model

are formed which move away from the center of the spec-
trum. As a result, a strong internal coupling repels the
strength from the middle of the spectrum to the borders.

In order to study the influence of the coupling to the de-
cay channel we show in Fig() the eigenvalue picturBg/2
and Eg for N=298, «=0.3 [the same as in Fig.(d], but
using a fixedW=2 and somd"! ranging from 0.2 to 2. For
smallT'" we see two hump shapes as in Figa)4 At I'!
~0.3 the widths of the broadest states in both humps are of
the order of the level distand®. Local resonance trapping
takes place in each hump which creates two broad states.
These states attract each other in energy with further increas-
ing I'". Two-resonance trapping occurs and creates just one
broad state af'~0.9. As a result, the two humps disappear
and we have, at largE', just one broad hump around the
energyE=0.

Note that Figs. &) and 4b) have only illustrative char-
acter. They illustrate however boldly that the internal inter-
action spreads the strength whereas the external one gathers
it back to the original doorway state.

Additionally, we have also calculated thg for the case
that the levels are distributed in a more realistic manner. We
have chosen a level distribution bfaccording to the GOE
and random elementsg of the internal interaction. We per-
formed the calculations in the same manner as above for the
picket-fence level distribution with constang (Figs. 1 and
3). After averaging over a number of random realizations of
the Hamiltonian, the results fdr, are the same as for the
picket fence.

Also in the two cases of an energy dependent internal
interaction and a random distribution @ andv the inter-
nal mixing is reduced by the external one and the original
picture with coexistence of states of very different lifetime is
restored at largé&'".

V. DISCUSSION

In this paper we studied analytically as well as numeri-
cally the spreading of transition strength in the doorway con-
cept at high excitation energy. According to this picture, the
doorway state is coupled to a large number of background
states through the real internal interaction Further, it is
coupled, due to its spectroscopic properties, to the continuum

In realistic systems, theg can have an energy depen- (decay channglby T'! while the background staté8g.q

dence. In the following we do a small excursion investigat-haye an access to the continuum only via the doorway state.
ing the question whether such an energy dependence influ- £qr o \W=2702/D>T" the internal interaction destroys

ences the conclusions of this paper. We assume thaighe he griginal doorway picture obtained from the spectroscopic

decrease with an increasing energy differeadm®tween the
background and the doorway state,

VWD o

N0 2 e

(23

Here,« controls the width of the distribution and Ed@) still
holds.

In Fig. 4(a) we show the eigenvalue pictufg/2 andEg
(in units of L/2) for I''=0.05,N=298, «=0.3 and som&V
ranging from 0.01 to 4. The cas®=0.01 corresponds to a
narrow distribution of the width¥'r. As Wincreasesl'r_

properties of the states. This means, there does not exist a
state the width of which is much larger than that of all the
other ones and the wave function of which is aligned with
the channel wave function. This situation is well described
by a calculation without considering the coupling to the con-
tinuum.

At I''=27W the external interaction starts to reduce the
mixing of the states by giving back a large part of the avali-
able widthI'" to only one state. This situation is character-
ized by resonance trapping. FBf >27W the original pic-
ture with one short-lived anlll long-lived states is restored.
One of the states has again a much larger width than all the

decreases and #¥=0.25, a broad structure is formed in the others and the wave function of the doorway state as well as

distribution of I'g.o. For even largeV two hump shapes

those of the background states are almost pure. Thus, the
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phenomenological doorway picture finds its justification if density. This outcome explains the experimental reglilt
the coupling of the states via the continuum is taken intcaccording to which collisional damping at a temperature of
account. Table | shows that it holds always whén about 2 MeV is the same as at zero temperature.
>27W whereW contains the internal interactian In the doorway picture, only one decay channel is impor-
This picture is proven by us foF'<L and 2rW<L  tant whereas in nuclei at high excitation energy many decay
whereL is the length of the spectrum. This means, the reschannels are open. Their coupling strengths to the system
toration of the original picture with coexistence of a short-giffer, however, considerably. I4] it was shown that this
lived andN long-lived states at largé/ is nota border effect.  |ggds effectively to a small number of open decay channels
It appears in realistic systems due to resonance trapping. needed for describing the decay of the system in a certain
In the golden rulel''=2m(V?)/D, the interaction{V?) ~ energy region. Therefore, the one channel approximation
appears in parametrized form. The parametrization includegsed in this paper implies no major restriction of the appli-
the direct internal coupling of the states as well as the extereability of the results.
nal coupling via the continuum. At high excitation energy  As a conclusion, we state that the interplay between inter-
(high level density, the external mixing of all the resonance na| and external mixing determines the spreading of transi-
states is large and therefo(¥?) is small. The assumption ton strength in an open quantum system. Pure states may
that (V?) scales withD as proposed 9] describes this exist even at large excitation energies. An equilibration of

situation. That means long-lived resonance states coexighe states in relation to their decay widths does not occur.
with a few short-lived resonance states also at high level

density. The mixing of the wave functions of these two types
of resonance states is smgll. _ _ ACKNOWLEDGMENTS
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