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Pseudospin symmetry in Zr and Sn isotopes from the proton drip line to the neutron drip line
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Based on the relativistic continuum Hartree-Bogoliubov theory, the pseudospin approximation in exotic
nuclei is investigated in Zr and Sn isotopes from the proton drip line to the neutron drip line. The quality of the
pseudospin approximation is shown to be connected to the competition between the pseudocentrifugal barrier
and the pseudospin orbital potentiBISOB. The PSOP depends on the derivative of the difference between the
scalar and vector potentiad®//dr. If dV/dr=0, the pseudospin symmetry is exact. The pseudospin symmetry
is found to be a good approximation for normal nuclei and to become much better for exotic nuclei with a
highly diffuse potential, which haveV/dr~0. The energy splitting of the pseudospin partners is smaller for
orbitals near the Fermi surfag¢even in the continuujrthan the deeply bound orbitals. The lower components
of the Dirac wave functions for the pseudospin partners are very similar and almost equal in magnitude.
[S0556-281®9)00801-9

PACS numbses): 21.10.Hw, 21.10.Pc, 21.60.Jz, 27.60.

[. INTRODUCTION some investigation along this line has been done for square
well potentials[14] and for spherical solutions of the RMF

The concept of pseudospin is based on the experimentaiquationg16]. By relating the pseudospin symmetry back to
observation that single particle orbitals wifk-1+1/2 and the Dirac equation through the framework of relativistic con-
j=(+2)—1/2 lie very close in energy and can therefore betinuum Hartree-Bogoliubo¥RCHB) theory[18], the pseu-
labeled as pseudospin doublets with quantum numisen dospig apprﬁximation in reaLnucIei W?IS ShOWHdtO be '?On_|
—1, T=1-1, andS=s=1/2. This concept was originally "SCted to the competition between the pseudocentrifuga
found in spherical nuclei 30 years agh?2], but later proved bar_rler_(PCB)_ and th_e pseudospin o_rblt_al potent(ﬂSOB,
to be a good approximation in deformed nuclei as i@l It which is mainly decided by the derlvgnve of _th(_a difference
is shown that the pseudospin symmetry remains an importa etween the scalar and vector potentials. This is general for

physical concept even in the case of triaxiafitj. any Dirac spinor system with spherical symmetry. With the

Since the suggestion of pseudospin symmetry, much e]§calar and vector potentials derived from a self-consistent

fort has been made to understand its origin. Apart from théelativistic Hartree-Bogoliubov calculation, the pseudospin

rather formal relabeling of quantum numbers, various pro_symmetry and its energy dependence have been discussed in
' ef. [17].

posals for an explicit transformation from the normal schemd? h oo
Highly unstable nuclei with extreme proton and neutron

to the pseudospin scheme have been made in the last 20

years and several nuclear properties have been investigat %I'OS are now accessible _W'th the help of radioactive nuclear
in this scheme5-9]. Based on the single-particle Hamil- eam facilities. The physics connected to the extreme neu-

tonian of the oscillator shell model the origin of pseudospin’©N fichness in these nuclei and the low density in the tails
was proved to be connected to the special ratio in thé’f their dllstr|but|ons has.attracted mqre and more attention
strength of the spin-orbit and orbit-orbit interactigit®,g) ~ MOt enly in nuclear physics but also in other fields such as
and the unitary operator performing a transformation from@Strophysics{19,24. New exciting discoveries have been
normal spin to pseudospin space was discudseel?. Made by exploring hitherto inaccessible regions in the
However, it was not explained why this special ratio is al-nuclear chart. It is very interesting to investigate the pseu-
lowed in nuclei. The relation between the pseudospin symdospin symmetry approximation both in normal and exotic
metry and relativistic mean fieldRMF) theory[13] was first  nuclei. For this purpose, we will use RCHB theory, which is
noted in Ref[7], in which Bahriet al. found that the RMF  the extension of the RMF and the Bogoliubov transformation
explains approximately the strengths of spin-orbit and orbitin the coordinate representation, and provides not only a uni-
orbit interactions in nonrelativistic calculations. In a recentfied description of the mean field and pairing correlation but
paper Ginocchio took this a step further and revealed thaalso the proper description for the continuum and its cou-
pseudo-orbital angular momentum is nothing but the “orbitalpling with the bound statfl18,21]. As this theory takes into
angular momentum” of the lower component of the Dirac account the proper isospin dependence of the spin-orbit term,
wave function[14]. He also built a connection between the it is able to provide a good description of global experimen-
pseudospin symmetry and the equality in magnitude but diftal data not only for stable nuclei but also for exotic nuclei
ference in sign in the scalar and vector potentjai,15. throughout the nuclear chafi8]. It is very interesting to

To understand to what extent it is broken in real nuclei,examine the pseudospin symmetry approximation in exotic

0556-2813/99/5@)/154(10)/$15.00 PRC 59 154 ©1999 The American Physical Society



PRC 59 PSEUDOSPIN SYMMETRY IN Zr AND Sn ISOTOPES ... 155

nuclei, in which the mean field potentials are expected to be QMY =gl e?— P,
highly diffuse.
Here we will extend the previous investigation to the case @V:&M’;y_ avﬁﬂ_gp(ﬁﬂxﬁy),

of exotic nuclei. The pseudospin splitting in Zr and Sn iso-
topes has been studied from the proton drip line to the neu-
tron drip line. The energy splitting of the pseudospin partners
and their energy and isospin dependence will be addresse
An outline of the RCHB formalism is briefly reviewed in
Sec. Il. In Sec. lll, the Dirac equation and the formalism .
leading to the pseudospin symmetry is presented. The enerégq'
splitting of the pseudospin partners and its energy depen- 1 g g
dence are given in Sec. IV. The pseudospin orbital potential, U(o)= —m502+ 22 34 28 4
which breaks the pseudospin symmetry, will be studied in 2 3 4
Sec. V. In Sec. VI, the wave function of pseudospin partners
will be studied. A brief summary is given in the last section.

Fiv = gAY — "M, @

Igbr a realistic description of nuclear properties, a nonlinear
self-coupling of the scalar mesons turns out to be crucial

()

The classical variation principle gives the following equa-
tions of motion:

Il. OUTLINE OF RCHB THEORY {@-p+ V(D) + BIM+Ve() ]} = s 4)

RCHB theory is obtained by combining the RMF and the ,
Bogoliubov transformation in the coordinate representatiorior the nucleon spinors and
[21], and its detailed formalism and numerical solution can
be found in Ref[18] and references therein. RCHB theory
can give a fully self-consistent description of the chain of

_A0-+U,(0-):_g(rpsv

2 _ H e
lithium isotopeg21] ranging from®Li to 'Li. The halo in (—A+my)w*=g,j (),
1 i has been successfully reproduced in this self-consistent R o
picture and excellent agreement with recent experimental (—A+m§)p“=gpj"(r),
data is obtained. The contribution from the continuum has
been taken into account and proved to be crucial to under- —AAg(F)zejﬁ(F), (5)

stand the halo in exotic nuclei. Based on RCHB theory, a

new phenomenon, “giant halo,” has been predicted. The,;, U'(0)=0,U(s) and A=—g"g, for the mesons
“giant halo” is composed not only of one or two neutrons, \ here 7 H '
as is the case in halos in lightshell nuclei, but also up to

six neutrong22]. The development of skins and halos and R 1 ) ) R
their relation to the shell structure are systematically studied V\(r)=g,b+9,p7+ Ee(l— m3)A, Vg(r)=g,o(r)
with RCHB theory in Ref.[23], where both pairing and ©)
blocking effects have been treated self-consistently. There-

fore RCHB theory is very suitable for the examination of the ;.o the vector and scalar potentials, respectively, and the

pseudospin approximation in exotic nuclei. ~ source terms for the mesons are
The basic ansatz of RMF theory starts from a Lagrangian

density by which nucleons are described as Dirac particles A A
interacting via the t_axchange of various mesons and photons. pszz _i,/,i , j#(()zz %7’% ,
The mesons considered are the scalar sigp (vector i=1 i=1
omega f»), and isovector vector rhpj. The isovector vec- A
- . . . _ . 1-7
tor rho (p) meson provides the necessary isospin asymmetry. ) ol APy = o S (7
The scalar sigma meson moves in the self-interacting field of JAr) .21 i () .21 Y e @)

cubic and quadratic terms with strengtipsandg;, respec-
tively. The Lagrangian then consists of free baryon and mewhere the summations are over the valence nucleons only. It
son parts and the interaction part with minimal coupling,should be noted that as usual, the present approach neglects
together with the nucleon mass M, and the contribution of negative energy states, i.e., the no-sea
My.9s» M,, d,, mM,, @,,themassesand coupling approximation, which means that the vacuum is not polar-
constants of the respective mesons: ized. The coupled equatiorid) and(5) are nonlinear quan-
tum field equations, and their exact solutions are very com-
) 1 1 plicated. Thus the mean field approximation is generally
L=ylid— M)‘/’J“Eau‘f‘w”_ U(a)— ZQMVQMV used: i.e., the meson field operators in Ej.are replaced by
their expectation values, so that the nucleons move indepen-
dently in the classical meson fields. The coupled equations
are self-consistently solved by iteration.
o . . . For spherical nuclei, i.e., systems with rotational symme-
— Qoo y—g,pbiy— gpzﬂ/;;v//— ey (1)  try, the potential of the nucleon and the sources of meson
fields depend only on the radial coordinateThe spinor is
The field tensors for the vector mesons are given as  characterized by the quantum numbkrs j, andm, and the

1 o ,ul* ﬁ#V]'?**#l v
+§mwwﬂw _ZR”VR +§mppﬂp _ZFMVF
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isospint=*+1 for neutrons and protons, respectively. The

other quantum number is denoted ibyrhe Dirac spinor has 4mr2pg(r)= 2, [|G(D)]2+|F ()|
the form p=1
N
Gl _ 2 2
g i .r<r>Y}m(0’¢) 2 (1GNP +[Fa(r)]?],
w<F>=(f)= Ei) - X,  ® :
—— (0 1) Yjn(6,¢) Amr2py(r) =E [1Go(r) 2+ |Fo(r)|2]. (13

where Yj,(6,¢) are the spinor spherical harmonics andThe Laplace equation can be solved by using the Green’s
Gll(r) andFl(r) are the radial wave function for upper and function:
lower components. They are normalized according to the re-

lation ¢(r)=f0 F2dr' G y(r,r)sy(r'), (14)
f dr[|G(r)|2+|Fl(r)|?]=1. (90  where for massive fields
0
. ) . 1
The radial equation of spinors, E(f), can be reduced as Gy(r,r')= 2m (e‘mq&" Hl_g=mglr+r'ly  (15)

"(r)+[M +VS(I’)+VV(F)]GIJ(I‘) and for the Coulomb field

I J
G ()= —E+ ;

1 for r>r’,

1’ for r<r’. (16)

Gy(r,r')=

P ) H(r)—[M+Vg(r)—Vy(r)1F(r),

ar
(10) Equations(10) and(11) could be solved self-consistently
in the usual RMF approximation. However, EQ.0) does

where not contain the pairing interaction, as the classical meson

fields are used in RMF theory. In order to have the pairing
—(j+1/2) for j=1+1/2, interaction, one has to quantize the meson fields, which leads

i i to a Hamiltonian with a two-body interaction. Following the

+(j+1/2 for j=I1-1/2. standard procedure of Bogoliubov transformation, a Dirac

Hartree-Bogoliubov equation could be derived and then a
The meson field equations become simply radial Laplacnified description of the mean field and pairing correlation

&Fl(r)=

equations of the form in nuclei could be achieved. For details, see BR8] and
references therein. The RHB equations are as follows:
(ﬁ22§+2¢ (r) (11) h=x A [ Y
———=—+m =54(r), -
g2 ror ¢ ¢ f d3r’< YI=g Y], @
A _h+)\ lﬂv @b'v

wherem,, are the meson masses ¥ o, »,p and for pho-
tons (m,=0). The source terms are

where

h(r,r")={a-p+Vy(r)+BIM+Vgr)1}8(r,r') (18

Sy(r)
is the Dirac Hamiltonian and the Fock term has been ne-
—0,ps— 020%(r)—gzo(r) forthe o field, glected as is usually done in RMF theory. The pairing poten-
' tial is
JwPy forthe o field,
= r for the field, - o
gpp3( ) P - Akk’ r r’ Jdgrlf d3
epc(r) for the Coulomb field,
(12 X X Vi e (3 Taf i (1,7, (19)
Kk
Amr2py(r)= z [IGi(N]2=|Fi(r)|?], It is obtained from the one-meson-exchange interaction
Vi 7 (Fr';rar}) in the pp channel and the pairing tensor
R k=V*UT:

4mt%p,(1) =2, [IG(OIP+ IR, ke (1) =(la@ely =g v (DT, (20
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The nuclear density is as follows: tion, i.e., the relativistic continuum Hartree-Bogoliubov
theory [18]. It is then applicable to both exotic nuclei and

> > il Nk ilj o2 normal nuclei. In Eq(17), the eigen r in pairs of

; ):% g '\',‘(r)* '\',J(r ). 1) ormal nucle g(17), the eigenstates occu pairs o

opposite energies. When spherical symmetry is imposed on

the solution of the RCHB equations, the wave function can
As in Ref.[18], V used for the pairing potential in EQL9) is be written as

either a density-dependent two-body force of zero range with
interaction strengtlV, and nuclear matter densipg,

Gy (1)
_ 1 p(r) i T |
V(rl,rz)—V05(r1_rz)Z[l_O'la'z] jﬁ? , (22 by = Flier) - Yim(0,6) x:(1),
o-r)
or a Gogny-type finite-range force with the parameters
mi Wi, B Hi, andM; (i=1,2) [25]:
, GV (r)
V(ry,rp)= >, eli=/ul’ (W, + B;P"—H;P"—M;P’P"). I— |
i=12 = |
o-r

A Lagrange multiplier\ is introduced to fix the particle
number for the neutron and proton &=Trp, and Z
=Tr pp. Using the above equation, E(L7) depends only on the
In order to describe both continuum and bound states selfadial coordinates and can be expressed as the following
consistently, we use RHB theory in a coordinate representdntegro-differential equations:

deUr(r)+;Gu(r)—[E+>\—Vv(r)+Vs(r)]Fu(r)+rf r'dr’A(r,r’")Fy(r')=0,
dF:r(r)_;Fu(r)+[E+)\_Vv(r)_Vs(r)]Gu(r)‘H’j r'dr'A(r,r')Gy(r')=0,
dcfjvr(r) +§Gv<r>+[E—x+vv<r>—vs<r>]Fv(r>+rf rdrA(r,r)Fy(r') =0,
dFdVr(r)—?va—[E—A+vv<r>+vs(r>]ev<r>+rf rdrA(r,r)Gy(r')=0, (25

where the nucleon mass is included in the scalar potevitjgd). For the § force of Eq.(22), Eq. (25) is reduced to normal

coupled differential equations and can be solved with the shooting method by Runge-Kutta algorithms. For the case of Gogny
force, the coupled integro-differential equations are discretized in space and solved by finite-element methods. The numerical
details can be found in Ref18]. Now we have to solve Egq$25) and(11) self-consistently for the RCHB case. As the
calculation with Gogny force is very time-consuming, we solve them only for one case in order to fix the interaction strength
for the & force in Eq.(22).

Ill. PSEUDOSPIN SYMMETRY

The Dirac equation in RMF theory or in the canonical basis of RCHB theory describes a Dirac spinor witkl massng
in a scalar potentiaV/s(r) and a vector potentia¥y(r). With e=M+E, the potentiaV=V,,(r)+Vs(r), which is around

—50 MeV, and the effective masM*=M+VS(F), the relation between the upper and lower components of the wave
function can be written as

1 .. 1 - -
=— (oc-p)f, f=— (0 ) 26
9=y (o-P) rTvIRCAIL (26

Then the coupled equations are reduced to uncoupled ones for the upper and lower components, respectively. Effectively we
get the corresponding Scliimger equation for both components:
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TN 1 . o . .1 N
(0~p)m(0-p)g=(E—V)g, (U'p)m(ﬂ'p)fZ(EJrZM —V)f. (27)

In the spherical cas&/ depends only on the radius. We choose the phase convention of the vector spherical harmonics as

(- DY)p==Y}, (28)
where
e 1+1, j=I+1/2,
=215 21 joi—a 29

Herel’ is nothing but the pseudo-orbital angular momenfumfter some tedious procedures, one gets the radial equation for
the lower and upper components, respectively:

S O B PV PSRy Sy 30
gz Evarart O T e a0 HEVIFI). %9

d? 1 d2M*—V) d | . 1+ 1 d(2M*=V)|
a@ ( ) d Gli(r)— K ( K)+ « d( ) Gli(r)

dr? E+2M*-V dr dr r2 E+2M* -V I dr

=—(E+2M* —V)(E-V)Gl(r), (3D

[
where the pseudospin approximation will be good. Thus, the com-

parison of the relative magnitude of the PGB1— «)/r?,
k(k=1)=1"(I"+1), «(k+1)=I(1+1). (32) and the PSOP can provide us with some information on the
pseudospin symmetry.
It is clear that one Cah use either HGO) or, equivalently, In a recent pape[l?]' the mechanism behind the pseu-
Eq. (31) to get the eigenvaluek and the corresponding dospin symmetry was studied and the pseudospin symmetry
eigenfunctions. Normally Eq(31) is used in the literature \as shown to be connected to the competition between the
and the spin-orbital splitting is discussed in connection withpcp and PSOP, which is mainly decided by the derivative of

the corresponding spin-orbital potential the difference between the scalar and vector potentials. With
the scalar and vector potentials derived from a self-consistent
1 K d( 2M* V) RCHB calculation, the pseudospin symmetry and its energy
E+2M* -V r dr ' dependence have been discussed. Here in this paper we will
extend the previous investigation to the case of exotic nuclei.
If Eg. (30) is used instead and the PSOP term The pseudospin symmetry for exotic nuclei is investigated
for Zr and Sn isotopes from the proton drip line to the neu-
1 «kdVv tron drip line. The isospin and energy dependence of the
E-Vr dr pseudospin approximation will be investigated in detail in

the following section.
is neglected, then the eigenvaluEsfor the samel’ will
degenerate. This is the phenomenon of pseudospin symmetry

observed i 1,2]. It means that Eq26) is the transformation IV. ENERGY SPLITTING OF THE PSEUDOSPIN
between the normal spin formalism and the pseudospin for- PARTNERS
malism.

We use here the nonlinear Lagrangian parameter set

In Eq. (30), the term which splits the pseudospin partners . ) e
is simply the PSOP. The hidden symmetry for the pseu_NLSH [26] which could provide a good description of all

dospin approximation is revealed @//dr=0, which is nuclei from oxygen to lead. As we study not only the closed

more general and includéé=0 discussed ifi14] as a spe- shell nuclei, but also the open shell nuclei, the inclusion of
cial case. For exotic nuclei with highly diffuse potentials, pairing is necessary. The pairing interaction strength is the

dV/dr~0 may be a good approximation and then the pseu-Same as in Ref22]. The int'eraction strength in.the pairing
dospin symmetry will be good. But generaliyy/dr=0 is force of zero range, Eq22), is properly renormalized by the

not always satisfied in the nuclei and the pseudospin symm&-alm.".ano][1 of RC]:'HB theory with (ﬁognyt fol_rce_t. tilnce WE usef
try is an approximation. However, if a pairing force of zero range, we have to limit the number o

continuum levels by a cutoff energy. For each spin-parity
channel, 20 radial wave functions are taken into account,

1_
w(1~ ) which corresponds roughly to a cutoff energy of 120 MeV

I’2

<
1

1 kdV
E-Vr dr
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150 found for the energy splitting between pseudospin partners in

Sn Neutron
10 1595n: The single-particle energies ok;3 and A, are
e ' ' —9.645 and—-10.11 MeV, respectively. The single-particle
0 1i13/2 12 K ;
nor2 2t H energies for other pseudospin partners'ifsn are—11.74

-10 . and —13.87 MeV for Ag, and 1g,, partners,—22.46 and
— 20 i —25.50 MeV for 25, and If 5, partners, and-33.63 and
2 30 i —36.58 for &,,, and 1d;, partners, respectively. Although
L% - we show only the neutron single-particle levels'iSn and

1 12071 as examples here, the same are found in other Sn and
- Zr isotopes. It is usually seen that the pseudospin symmetry
approximation becomes better near the Fermi surface, which
is in agreement with the experimental observation.
0 2 4 6 8 10 12 In Fig. 1 there are also two pairs of pseudospin partners
(@) f[fm] (3p3; and X, partners and 2, and lhg, partners near
the threshold, apart from the fours pairs of pseudospin part-
1207, Neutron ners below the Fermi level. The energies for these two pairs
of pseudospin partners arel.581 and—1.031 MeV for the
3psp and X, partners and-2.549 and—2.620 MeV for
the 2f;, and lhg,, partners, respectively. Considering their

pseudospin orbital angular momenture2 and 4, their
T splittings

E [MeV]

B BT

T AE =
21 +1

are only —0.1100 MeV and 0.788910 2 MeV, respec-
tively. This is due to the energy dependence and the diffuse-
ness of the potential in exotic nuclei, which we will discuss
in the following. The energy dependence of pseudospin part-
FIG. 1. The single-particle levels in the canonical basis for theners has been discussed in Réfs7,14,16. As is seen in
neutron in(a) **%Sn and(b) **%Zr. The Fermi surface is shown by a Fig. 1, the normal splitting is such that the orbitiT
dashed line. The bound pseudospin partners are marked by boxeg_. 1/2 is below the orbitaj =T—1/2, except for gy, and

2fg, partners. The same also happens fog2and 3y,

for a fixed box radiusR=20 fm. For the fixed cutoff energy partners in Zr isotopes. The pseudospin splitting depends on
and for the box radiuR, the strengthV, of the pairing force the derivative of the difference between the scalar and vector
in Eq. (22) is determined by adjusting the correspondingpotentials,dV/dr, which is small for exotic nuclei with a
pairing energy— 3 Tr A« to that of a RCHB calculation us- highly diffuse potential. The integration ofl{//dr)|F|? over
ing the finite-range part of the Gogny force DI&b]. We  r gives the splitting of the pseudospin partners, whose sign
use the nuclear matter denstly152 fm 2 for pg. will decide the normal splitting or the reverse. The subtle

The quality of pseudospin symmetry can be understoodletails of the potential are crucial for the pseudospin split-
more clearly by considering the microscopic structure of theing.
wave functions and the single-particle energies in the canoni- To see the behavior of the pseudospin partners around the
cal basis. As shown in Ref18], the particle levels for the Fermi level and the isospin dependence of the pseudospin
bound states in a canonical basis are the same as those $plitting, we show the single-particle levels near the Fermi
solving the Dirac equation with the scalar and vector potensurface in the canonical basis for the Sn and Zr isotopes with
tials from RCHB theory. Therefore Eq§30) and (31) are  an even neutron number as a function of the mass number in
valid in the canonical basis after the pairing interaction had=ig. 2. The Fermi level is shown by the dashed line. The
been taken into account and are very suitable for a discussigrseudospin splitting for the pseudospin partneid;2and
of the pseudospin symmetry. 3sy0, remains small in Zr and Sn isotopes from the proton

The neutron single-particle levels 1¥°Sn and*?%Zr are  drip line to the neutron drip line. The pseudospin symmetry
given in Figs. 1a) and Xb), respectively. The four sets of remains even valid for exotic nuclei. The pseudospin sym-
pseudospin partners, i.e., dd, and X;,,1f5, and metry near the neutron drip line becomes better than that
2ps, 197 and Asn, and Aj, and 3,),, are marked by  near theg-stability line. In Fig. 2a), there is a kink for the
boxes. As seen in the figure, the energy splitting betweesingle-particle levels in the continuum, as the contribution
pseudospin partners decreases with decreasing binding effem the continuum becomes important and the potential be-
ergy. The single-particle energy ofsg, in 2%r is  comes diffuse around®®Sn. But the splitting for 5, and
—6.00 MeV, and its partnerdy, is —5.86 MeV; the split- 2fg, partners and &, and lhy,, partners in Sn isotopes is
ting is 0.14 MeV. While 3, is —31.62 MeV, M3, small and the pseudospin symmetry approximation is very
—33.23 MeV, the splitting is 1.61 MeV, which is bigger good, independent of whether they are in the continuum or
than the former one by a factor of 10. The same situation isiear the threshold. Therefore we can see that pseudospin

]
2 4 6 8 10 12
(b) r [fm]
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— 5 -
E’ . 10 | -
=, B 10132 7]
> [31/2 08 -1
> | Z .
< < o 06 -
O -10 F—<¢ 2 - w
i :
» -15 Wi . 0.4 I T
|m
-20 P T 1gqlgl|| 0'2_ -
90 110 130 150 170 190
(a) A 0.0 L L L .
-40 -30 -20 -10 0
LNSLIN SLANLINL UL N LI B N N NN B N N BN §
4} .
>
) W25
= 0 ; 1.0 F -
>
o -4 ->—”\ _ 08 |- -
2 1h11/2
(7] B L -
7)) pd5/2 —
Y 04 -
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(b) A 0.0 k- 4
FIG. 2. The single-particle energies of the neutron in the canoni- _02 1 L 1 1
cal basis as a function of the mass number (8rSn and(b) Zr 40 -30 -20 -10 0
isotopes. The dashed line indicates the chemical potential. E [MeV]

symmetry is very well preserved for the orbital near the FIG. 3. The pseudospin orbit splitingAE=(Ejj_i-1;
threshod energy and in the continuum region. —Efj=7+12/(21+1) versus the binding energi=[1Ej;_7 1

In order to see the energy dependence and the isospin(T + 1)ETj:T—1/ﬂ/(2T+1) for Zr and Sn isotopes. From left to
dependence of the pseudospin orbital splitting more clearlysight, the pseudospin partners correspond to

we plot (1d3p2,25112), (1f 512, 2P312) , (19712, 2d5p0), and (Azpp,3sy9), re-
o o spectively.
AE:E|j:|—1/2_E|j:|+1/2
21+1 be expected for the orbital near the threshold, particularly for
nuclei near the particle drip line.
versus
|E~Ij it +1)ETj T V. PSEUDOSPIN ORBITAL POTENTIAL
E= = - .
ol +1 To understand why the energy splitting of the pseudospin

partner changes with different binding energies and why the
for the bound pseudospin partners in Sn and Zr isotopes ipseudospin approximation is good in RMF energy, the PSOP
Fig. 3. In both isotopes, a monotonous decreasing behavi@and PCB should be examined carefully. Unfortunately, it is
with decreasing binding energy is clearly seen. The psewery hard to compare them clearly, as the PSOP has a sin-
dospin splitting for 3, and 25, is more than 10 times gularity atE~V. As we are only interested in the relative
smaller than that of &, and 1d;,. As far as the isospin magnitude of the PCB and PSOP, we introduce the effective
dependence of the pseudospin orbital splitting is concerned®®CB, (E—V)«x(x—1)/r?, and the effective PSOP,
the splitting in Sn isotopes gives a monotonous decreasinfk/r)dV/dr, for comparison. They correspond to the PCB
behavior with the increasing isospin. Particularly fas;2  and the PSOP multiplied by a common fackor V, respec-
and 1dg, partners, the pseudospin splitting ¥Sn is only tively.
half of that in %Sn. Just as we expected, the pseudospin The effective PSOP does not depend on the binding en-
symmetry in neutron-rich nuclei is better. In Zr isotopes,ergy of the single-particle level, but depends on the angular
although the situation is more complicat@dg., the effect of momentum and parity. On the other hand, the effective PCB
the deformation which is neglected hgrihe pattern is more depends on the energy. Comparing these two effective po-
or less the same, i.e., a monotonous decreasing behavior witéntials one can see the energy dependence of the pseudospin
decreasing binding energy and a monotonous decreasing b&ymmetry. They are given in Fig. 4 fas,, (lower) andds,
havior with isospin. From these studies, we see that the pseappe) of 2%Zr in an arbitrary scale.
dospin symmetry remains a good approximation for both The pseudospin approximation is much better for the less
stable and exotic nuclei. A better pseudospin symmetry cabound pseudospin partners, because the effective PCB is
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FIG. 4. The comparison of the effective pseudocentrifugal bar- = 06 2 4 6 8 10 0 2 4 6 8 10

rier (PCB) (E— V) k(x—1)/r2 (dashed lines and dot-dashed lines rffm]

and the effective pseudospin orbital potentRSOR («/r)dV/dr FIG. 6. The upper componef& and lower componerf of the
(1320||d ling) in arbitrary scale fordy, (uppe) and sy, (lower) in  pirac wave functions for the pseudospin partners#fzr. The
%r. The dashed lines are fod},, and ,,,, and the dot-dashed phase of the Dirac wave functions for one of the pseudospin part-

lines are for 213, and 3,,. The insets show the same quantities, ners has been reversed in order to have a careful comparison.
but the ordinate is magnified and the abscissa is reduced to show the

behaviors of the effective PCB and the effective PSOP near th%ig. 2 with r are proportional to their contribution to the

nuclear surface. energy after some proper renormalization. It is clear that the

smaller for the more deeply bound states. This is in agre contribution of the effective PCBlashed lines or dot-dashed
ment with the results shown in Fig. 3. The effective PSO Ines) is much bigger than that of the effective PSGRIid

and the effective PCB are also given as insets in Fig. 4 irﬂjes)égzngﬁuiéhteh:?gxigigg 's two orders of magni-

order to show their behavior near the nuclear surface. i ) o~ i

In order to examine this carefully, we compare the effec- N Figs. 1 and 2 we notice that the orbita- | +1/2 is
tive PCB(dashed lines or dot-dashed linemd the effective generally below the orbitaj=1—1/2, except for §3, and
PSOP(solid lineg multiplied by the squares of the lower 2fs;, partners in Sn isotopes. The same situation also hap-
component wave functioff(r), which are given in Fig. 5, pens for 2, and 35,,, partners in Zr isotopes. As the pseu-
for 25y, (upper lefi, 3sy, (lower left), 1ds, (upper righi,  dospin splitting depends on the PSOP, which depends on the
and A, (lower right of 2°Zr in arbitrary scale. The pseu- subtle radial dependence of the potentials, sometimes the
dospin approximation is much better for the less bound pselPSOP may have positive or negative regions as a function of
dospin partners, because the effective PCB is smaller for thewhich cancel each other. The integration oM{dr)|F|?
more deeply bound states. This is in agreement with the reoverr gives the splitting of the pseudospin partners, whose
sults shown above. The integrated values of the potentials isign will decide the normal splitting or the reverse. That is

the reason why the orbitgl=1+1/2 is above the orbitaj

=T-1/2 for 3pz, and X, partners in Sn isotopes and for

1 I I ) I I ) )
——- PPE-V)k(—1)¥

™ — Feadvidr T I/\‘ . 2d5, and 3,), partners in Zr isotopes.

L [/ \ -ste T/ -3323 o

_,,' \\ 251/2 “I, \\ 1d3/2 i VI. WAVE FUNCTION OF PSEUDOSPIN PARTNERS
]

In the above discussion, we have seen that the PSOP is
much smaller than the PCB. Therefore, if we neglect the

4
b
i

_I’.’

B i“-‘ == FE-V)t-1) T 7] PSOP in Eq(30), the lower component of the Dirac wave

L\ Flondviar - 1 o _5.86 . functions for the pseudospin partners will be the same; i.e.,
[ \ -e00 PN 2d3/2 in the case of the exact pseudospin symmetry, the lower
7\ 3 T/ \ 7 component of the pseudospin partners should be identical
ol AT AP VAV, N (except for the phaseThe upper component of the Dirac

0 2 4 ? [f?n 6 2 4 6 8 wave functions can be obtained from the transformation in

Eq. (26), which depends on the quantum numlberThere-
FIG. 5. The comparison of the effective pseudocentrifugal bar-]core the S“!dy of t_he Dirac wave functions for th_e pseUdo_Sp'n
fier (PCB) (E—V)«(x—1)/r2 (dashed lines and dot-dashed lines Partners will .prowde a check for the psegdosp!n approxima-
and the effective pseudospin orbital potentiBBOB («/r)dvidr  tion in nuclei. As examples, the normalized single-nucleon
(solid line multiplied by the square of the wave functiénof the ~ Wave functions for the upp€G) and lower(F) components
lower components in arbitrary scale fog;, (upped ands,,, (lower) of the Dirac wave functions for the pseudospin partnefg,1

in 2Zr. The dashed lines are fordj, and %,,, and the dot- and 2,,, 1fg, and 23,, 197, and Ag,, and gy,
dashed lines are ford, and 3,,. and 3, in 12%r are given in Fig. 6. Of course, the lower
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components are much smaller in magnitude compared with 1 xdV (1-«)
the upper component in E¢26). The phase of the Dirac E-VTradr < kK—z—
wave functions for one of the pseudospin partners has been
reversed in order to have a careful comparison. It is seen that

the lower components of the Dirac wave functions for thejs found under which the symmetry is preserved approxi-
pseudospin partners are very similar and are almost equal iately. We have examined this condition to see how good
magnitude, as observed also f6PPb in Refs[14,16. The  the pseudospin symmetry in RCHB theory is. For a given
similarity in the lower components of the wave function  angular momentum and parity channel, the effective PCB,
for the pseudospin partners near the Fermi surface is betteE — V) «(x—1)/r2, becomes stronger for the less bound
than for the deeply bound ones. The similarity in the lowerlevel; so the pseudospin symmetry for the weakly bound
components for the pseudospin partners with small pseustate is better than that for the deeply bound state, which is in
dospin orbital angular momentum is better than for the oneggreement with the experimental observatidn?]. Pseu-
with large pseudospin orbital angular momentum. As seen igjospin symmetry is found to be a good approximation even
Fig. 6, the similarity for pseudospin partnerds% and 312 for the exotic nuclei with a highly diffuse potential. The
is better than for pseudospin partnems,;4 and 2,,. The  apove conclusion has been well supported by RCHB calcu-
similarities for pseudospin partnedg, and 3,,, 1ds, lations for Zr and Sn isotopes from the proton drip line to the
and Z,,, are better than for the pseudospin partnefg,l neutron drip line. From the simple Dirac equation, it has
and 2035, 197, and AUgp. been shown that there are two equivalent ways to solve the

Although the lower components for the pseudospin partcoupled Dirac equation for the upper and lower components:
ners are very close to each other, the difference for the uppgle., the normal spin formalism and pseudospin formalism.
components is very big. The upper component of the Dira®oth formalisms are equivalent as far as the energies and
wave functions can be obtained from the transformation invave functions are concerned. Their relation is given by Eq.
Eq. (26), which for the sperical case can be reduced to th&26), which indicates that the unitary transformation from the
following: conventional formalism to the pseudospin formalism has “

d4F! helicity” [12,9,19. Summarizing our investigation, we con-
Gli(r)= 1 dRin) N fF!j(r) (39) clude the following.
: E-V dr r! ' (1) The quality of the pseudospin approximation is con-

o . ) nected to the competition between the PCB and PSOP which

As seen in Fig. 6, in the case of exact pseudospin sym mainly proportional to the derivative of the difference be-
metry, where bottE and F{/(r) are identical for the pseu- tween the scalar and vector potentielg/dr.
dospin partners, the upper compone@{(r) will be differ- (2) The pseudospin symmetry is a good approximation for
ent due to the term k(/r)F!‘(r). For pseudospin partners normal nuclei and becomes much better for exotic nuclei
with smallT, the contribution of the term«/r)Fli(r) be-  With highly diffuse potentials.
comes less important for largeand a similarity between the ~ (3) The pseudospin symmetry has a strong energy depen-
upper components can happen in the nuclear surface. As, fégnce. The energy splitting between the pseudospin partners
example, forr=6 fm, the upper components for the pseu-iS smaller for orbitals near the Fermi surface.

dospin partnersdg, and ,,,, 1fg, and 25, and Ay, (4) The energy difference between the orbitai T+ 1/2
and 3, in Fig. 6 are very similar. and the orbitaj =1 — 1/2 is always negative, except fop3,
and X, partners. The same situation also happens &ay,2
VIl. SUMMARY and 3, partners in Zr isotopes. The integration of

(dV/dr)|F|? over r gives the splitting of the pseudospin

In conclusion, the pseudospin symmetry is examined hartners, whose sign will decide the normal splitting or the
normal and exotic nuclei in the framework of RCHB theory. reverse

Based on RCHB theory the pseudospin approximation in ex- (5) The lower components of the Dirac wave functions for

ofic nuclel is investigated in Zr and Sn isotopes from thethe pseudospin partners are very similar and almost equal in

magnitude. The similarity in the lower components of the

competition between the PCB and PSOP, which is mainly\?i\]fscgugcgg;g? :ht:r? fgfiﬁg %Z%'BJ ‘Egﬂﬁ;s Orr]]iir the Fermi
a .

decided by the derivative of the difference between the scalar
and vector potentialdV/dr. If the derivative of the differ-
ence between the scalar and vector potentifédr van- ACKNOWLEDGMENT
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