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Pseudospin symmetry in Zr and Sn isotopes from the proton drip line to the neutron drip line
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Based on the relativistic continuum Hartree-Bogoliubov theory, the pseudospin approximation in exotic
nuclei is investigated in Zr and Sn isotopes from the proton drip line to the neutron drip line. The quality of the
pseudospin approximation is shown to be connected to the competition between the pseudocentrifugal barrier
and the pseudospin orbital potential~PSOP!. The PSOP depends on the derivative of the difference between the
scalar and vector potentialsdV/dr. If dV/dr50, the pseudospin symmetry is exact. The pseudospin symmetry
is found to be a good approximation for normal nuclei and to become much better for exotic nuclei with a
highly diffuse potential, which havedV/dr;0. The energy splitting of the pseudospin partners is smaller for
orbitals near the Fermi surface~even in the continuum! than the deeply bound orbitals. The lower components
of the Dirac wave functions for the pseudospin partners are very similar and almost equal in magnitude.
@S0556-2813~99!00801-8#

PACS number~s!: 21.10.Hw, 21.10.Pc, 21.60.Jz, 27.60.1j
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I. INTRODUCTION

The concept of pseudospin is based on the experime
observation that single particle orbitals withj 5 l 11/2 and
j 5( l 12)21/2 lie very close in energy and can therefore

labeled as pseudospin doublets with quantum numberñ5n

21, l̃ 5 l 21, and s̃5s51/2. This concept was originally
found in spherical nuclei 30 years ago@1,2#, but later proved
to be a good approximation in deformed nuclei as well@3#. It
is shown that the pseudospin symmetry remains an impor
physical concept even in the case of triaxiality@4#.

Since the suggestion of pseudospin symmetry, much
fort has been made to understand its origin. Apart from
rather formal relabeling of quantum numbers, various p
posals for an explicit transformation from the normal sche
to the pseudospin scheme have been made in the las
years and several nuclear properties have been investig
in this scheme@5–9#. Based on the single-particle Hami
tonian of the oscillator shell model the origin of pseudos
was proved to be connected to the special ratio in
strength of the spin-orbit and orbit-orbit interactions@10,8#
and the unitary operator performing a transformation fr
normal spin to pseudospin space was discussed@8–12#.
However, it was not explained why this special ratio is
lowed in nuclei. The relation between the pseudospin sy
metry and relativistic mean field~RMF! theory@13# was first
noted in Ref.@7#, in which Bahriet al. found that the RMF
explains approximately the strengths of spin-orbit and or
orbit interactions in nonrelativistic calculations. In a rece
paper Ginocchio took this a step further and revealed
pseudo-orbital angular momentum is nothing but the ‘‘orb
angular momentum’’ of the lower component of the Dir
wave function@14#. He also built a connection between th
pseudospin symmetry and the equality in magnitude but
ference in sign in the scalar and vector potentials@14,15#.

To understand to what extent it is broken in real nuc
PRC 590556-2813/99/59~1!/154~10!/$15.00
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some investigation along this line has been done for squ
well potentials@14# and for spherical solutions of the RM
equations@16#. By relating the pseudospin symmetry back
the Dirac equation through the framework of relativistic co
tinuum Hartree-Bogoliubov~RCHB! theory @18#, the pseu-
dospin approximation in real nuclei was shown to be co
nected to the competition between the pseudocentrifu
barrier ~PCB! and the pseudospin orbital potential~PSOP!,
which is mainly decided by the derivative of the differen
between the scalar and vector potentials. This is genera
any Dirac spinor system with spherical symmetry. With t
scalar and vector potentials derived from a self-consis
relativistic Hartree-Bogoliubov calculation, the pseudosp
symmetry and its energy dependence have been discuss
Ref. @17#.

Highly unstable nuclei with extreme proton and neutr
ratios are now accessible with the help of radioactive nuc
beam facilities. The physics connected to the extreme n
tron richness in these nuclei and the low density in the t
of their distributions has attracted more and more atten
not only in nuclear physics but also in other fields such
astrophysics@19,20#. New exciting discoveries have bee
made by exploring hitherto inaccessible regions in
nuclear chart. It is very interesting to investigate the ps
dospin symmetry approximation both in normal and exo
nuclei. For this purpose, we will use RCHB theory, which
the extension of the RMF and the Bogoliubov transformat
in the coordinate representation, and provides not only a
fied description of the mean field and pairing correlation b
also the proper description for the continuum and its c
pling with the bound state@18,21#. As this theory takes into
account the proper isospin dependence of the spin-orbit te
it is able to provide a good description of global experime
tal data not only for stable nuclei but also for exotic nuc
throughout the nuclear chart@18#. It is very interesting to
examine the pseudospin symmetry approximation in ex
154 ©1999 The American Physical Society
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PRC 59 155PSEUDOSPIN SYMMETRY IN Zr AND Sn ISOTOPES . . .
nuclei, in which the mean field potentials are expected to
highly diffuse.

Here we will extend the previous investigation to the ca
of exotic nuclei. The pseudospin splitting in Zr and Sn is
topes has been studied from the proton drip line to the n
tron drip line. The energy splitting of the pseudospin partn
and their energy and isospin dependence will be addres
An outline of the RCHB formalism is briefly reviewed i
Sec. II. In Sec. III, the Dirac equation and the formalis
leading to the pseudospin symmetry is presented. The en
splitting of the pseudospin partners and its energy dep
dence are given in Sec. IV. The pseudospin orbital poten
which breaks the pseudospin symmetry, will be studied
Sec. V. In Sec. VI, the wave function of pseudospin partn
will be studied. A brief summary is given in the last sectio

II. OUTLINE OF RCHB THEORY

RCHB theory is obtained by combining the RMF and t
Bogoliubov transformation in the coordinate representat
@21#, and its detailed formalism and numerical solution c
be found in Ref.@18# and references therein. RCHB theo
can give a fully self-consistent description of the chain
lithium isotopes@21# ranging from 6Li to 11Li. The halo in
11Li has been successfully reproduced in this self-consis
picture and excellent agreement with recent experime
data is obtained. The contribution from the continuum h
been taken into account and proved to be crucial to un
stand the halo in exotic nuclei. Based on RCHB theory
new phenomenon, ‘‘giant halo,’’ has been predicted. T
‘‘giant halo’’ is composed not only of one or two neutron
as is the case in halos in lightp-shell nuclei, but also up to
six neutrons@22#. The development of skins and halos a
their relation to the shell structure are systematically stud
with RCHB theory in Ref.@23#, where both pairing and
blocking effects have been treated self-consistently. Th
fore RCHB theory is very suitable for the examination of t
pseudospin approximation in exotic nuclei.

The basic ansatz of RMF theory starts from a Lagrang
density by which nucleons are described as Dirac parti
interacting via the exchange of various mesons and phot
The mesons considered are the scalar sigma (s), vector
omega (v), and isovector vector rho (rW ). The isovector vec-
tor rho (rW ) meson provides the necessary isospin asymme
The scalar sigma meson moves in the self-interacting fiel
cubic and quadratic terms with strengthsg2 andg3 , respec-
tively. The Lagrangian then consists of free baryon and m
son parts and the interaction part with minimal couplin
together with the nucleon mass M, and
ms ,gs , mv , gv , mr , gr , the masses and couplin
constants of the respective mesons:

L5c̄~ i ]”2M !c1
1

2
]ms]ms2U~s!2

1

4
VmnVmn

1
1

2
mv

2 vmvm2
1

4
RW mnRW mn1

1

2
mr

2rW mrW m2
1

4
FmnFmn

2gsc̄sc2gvc̄v” c2grc̄r”W tWc2ec̄A” c. ~1!

The field tensors for the vector mesons are given as
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Vmn5]mvn2]nvm,

RW mn5]mrW n2]nrW m2gr~rW m3rW n!,

Fmn5]mAW n2]nAW m. ~2!

For a realistic description of nuclear properties, a nonlin
self-coupling of the scalar mesons turns out to be cru
@24#:

U~s!5
1

2
ms

2s21
g2

3
s31

g3

4
s4. ~3!

The classical variation principle gives the following equ
tions of motion:

$aW •pW 1VV~rW !1b@M1VS~rW !#%c i5e ic i ~4!

for the nucleon spinors and

2Ds1U8~s!52gsrs ,

~2D1mv
2 !vm5gv j m~rW !,

~2D1mr
2!rW m5gr jWm~rW !,

2DA0
m~rW !5e jr

m~rW !, ~5!

with U8(s)5]sU(s) and D52]m]m for the mesons,
where

VV~rW !5gvv” 1grr”W tW1
1

2
e~12t3!A”W , VS~rW !5gss~rW !

~6!

are the vector and scalar potentials, respectively, and
source terms for the mesons are

rs5(
i 51

A

c̄ ic i , j m~rW !5(
i 51

A

c̄ ig
mc i ,

jWm~rW !5(
i 51

A

c̄ ig
mtWc i , j p

m~rW !5(
i 51

A

c̄ ig
m

12t3

2
c i , ~7!

where the summations are over the valence nucleons on
should be noted that as usual, the present approach neg
the contribution of negative energy states, i.e., the no-
approximation, which means that the vacuum is not po
ized. The coupled equations~4! and ~5! are nonlinear quan-
tum field equations, and their exact solutions are very co
plicated. Thus the mean field approximation is genera
used: i.e., the meson field operators in Eq.~4! are replaced by
their expectation values, so that the nucleons move indep
dently in the classical meson fields. The coupled equati
are self-consistently solved by iteration.

For spherical nuclei, i.e., systems with rotational symm
try, the potential of the nucleon and the sources of me
fields depend only on the radial coordinater. The spinor is
characterized by the quantum numbersl , j , andm, and the
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isospin t56 1
2 for neutrons and protons, respectively. T

other quantum number is denoted byi. The Dirac spinor has
the form

c~rW !5S g

f D 5S i
Gi

l j ~r !

r
Yjm

l ~u,f!

Fi
l j ~r !

r
~sW •rŴ !Yjm

l ~u,f!
D x t~ t !, ~8!

where Yjm
l (u,f) are the spinor spherical harmonics a

Gi
l j (r ) andFi

l j (r ) are the radial wave function for upper an
lower components. They are normalized according to the
lation

E
0

`

dr@ uGi
l j ~r !u21uFi

l j ~r !u2#51. ~9!

The radial equation of spinors, Eq.~4!, can be reduced as

e iGi
l j ~r !5S 2

]

]r
1

k i

r DFi
l j ~r !1@M1VS~r !1VV~r !#Gi

l j ~r !,

e iFi
l j ~r !5S 1

]

]r
1

k i

r DGi
l j ~r !2@M1VS~r !2VV~r !#Fi

l j ~r !,

~10!

where

k5H 2~ j 11/2! for j 5 l 11/2,

1~ j 11/2! for j 5 l 21/2.

The meson field equations become simply radial Lapl
equations of the form

S 2
]2

]r 2
2

2

r

]

]r
1mf

2 D f5sf~r !, ~11!

wheremf are the meson masses forf5s,v,r and for pho-
tons (mf50). The source terms are

sf~r !

55
2gsrs2g2s2~r !2g3s3~r ! for the s field,

gvrv for the v field,

grr3~r ! for the r field,

erc~r ! for the Coulomb field,

~12!

4pr 2rs~r !5(
i 51

A

@ uGi~r !u22uFi~r !u2#,

4pr 2rv~r !5(
i 51

A

@ uGi~r !u21uFi~r !u2#,
e-

e

4pr 2r3~r !5 (
p51

Z

@ uGp~r !u21uFp~r !u2#

2 (
n51

N

@ uGn~r !u21uFn~r !u2#,

4pr 2rc~r !5 (
p51

Z

@ uGp~r !u21uFp~r !u2#. ~13!

The Laplace equation can be solved by using the Gree
function:

f~r !5E
0

`

r 82dr8Gf~r ,r 8!sf~r 8!, ~14!

where for massive fields

Gf~r ,r 8!5
1

2mf

1

rr 8
~e2mfur 2r 8u2e2mfur 1r 8u! ~15!

and for the Coulomb field

Gf~r ,r 8!5H 1/r for r .r 8,

1/r 8 for r ,r 8.
~16!

Equations~10! and ~11! could be solved self-consistentl
in the usual RMF approximation. However, Eq.~10! does
not contain the pairing interaction, as the classical me
fields are used in RMF theory. In order to have the pair
interaction, one has to quantize the meson fields, which le
to a Hamiltonian with a two-body interaction. Following th
standard procedure of Bogoliubov transformation, a Di
Hartree-Bogoliubov equation could be derived and then
unified description of the mean field and pairing correlati
in nuclei could be achieved. For details, see Ref.@18# and
references therein. The RHB equations are as follows:

E d3r 8S h2l D

D 2h1l
D S cU

cV
D 5ES cU

cV
D , ~17!

where

h~rW,rW8!5$aW •pW 1VV~rW !1b@M1VS~rW !#%d~rW,rW8! ~18!

is the Dirac Hamiltonian and the Fock term has been
glected as is usually done in RMF theory. The pairing pot
tial is

Dkk8~rW,rW8!52E d3r 1E d3r 18

3(
k̃k̃8

Vkk8,k̃k̃8~rWrW8;rW1rW18!k k̃k̃8~rW1 ,rW18!. ~19!

It is obtained from the one-meson-exchange interact
Vkk8,k̃k̃8(r

WrW8;rW1rW18) in the pp channel and the pairing tenso
k5V* UT:

kkk8~rW,rW8!5^uakak8u&5cV
k ~rW !* cU

k8~rW !T. ~20!
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The nuclear density is as follows:

r~rW,rW8!5(
i l j

gil j cV
il j ~rW !* cV

il j ~rW8!. ~21!

As in Ref.@18#, V used for the pairing potential in Eq.~19! is
either a density-dependent two-body force of zero range w
interaction strengthV0 and nuclear matter densityr0 ,

V~r1 ,r2!5V0d~r12r2!
1

4
@12s1s2#S 12

r~r !

r0
D , ~22!

or a Gogny-type finite-range force with the paramet
m i ,Wi ,Bi ,Hi , andMi ( i 51,2) @25#:

V~r1 ,r2!5 (
i 51,2

e[ ~r12r2!/m i ]
2
~Wi1Bi P

s2Hi P
t2Mi P

sPt!.

~23!

A Lagrange multiplierl is introduced to fix the particle
number for the neutron and proton asN5Tr rn and Z
5Tr rp .

In order to describe both continuum and bound states s
consistently, we use RHB theory in a coordinate represe
th

s

lf-
a-

tion, i.e., the relativistic continuum Hartree-Bogoliubo
theory @18#. It is then applicable to both exotic nuclei an
normal nuclei. In Eq.~17!, the eigenstates occur in pairs o
opposite energies. When spherical symmetry is imposed
the solution of the RCHB equations, the wave function c
be written as

cU
i 5S i

GU
il j ~r !

r

FU
il j ~r !

r
~sW •rŴ !

D Yjm
l ~u,f!x t~ t !,

cV
i 5S i

GV
il j ~r !

r

FV
il j ~r !

r
~sW •rŴ !

D Yjm
l ~u,f!x t~ t !. ~24!

Using the above equation, Eq.~17! depends only on the
radial coordinates and can be expressed as the follow
integro-differential equations:
l
f Gogny
umerical
e
trength

ave

tively we
dGU~r !

dr
1

k

r
GU~r !2@E1l2VV~r !1VS~r !#FU~r !1r E r 8dr8D~r ,r 8!FV~r 8!50,

dFU~r !

dr
2

k

r
FU~r !1@E1l2VV~r !2VS~r !#GU~r !1r E r 8dr8D~r ,r 8!GV~r 8!50,

dGV~r !

dr
1

k

r
GV~r !1@E2l1VV~r !2VS~r !#FV~r !1r E r 8dr8D~r ,r 8!FU~r 8!50,

dFV~r !

dr
2

k

r
FV~r !2@E2l1VV~r !1VS~r !#GV~r !1r E r 8dr8D~r ,r 8!GU~r 8!50, ~25!

where the nucleon mass is included in the scalar potentialVS(r ). For thed force of Eq.~22!, Eq. ~25! is reduced to norma
coupled differential equations and can be solved with the shooting method by Runge-Kutta algorithms. For the case o
force, the coupled integro-differential equations are discretized in space and solved by finite-element methods. The n
details can be found in Ref.@18#. Now we have to solve Eqs.~25! and ~11! self-consistently for the RCHB case. As th
calculation with Gogny force is very time-consuming, we solve them only for one case in order to fix the interaction s
for the d force in Eq.~22!.

III. PSEUDOSPIN SYMMETRY

The Dirac equation in RMF theory or in the canonical basis of RCHB theory describes a Dirac spinor with massM moving
in a scalar potentialVS(rW) and a vector potentialVV(rW). With e5M1E, the potentialV5VV(rW)1VS(rW), which is around
250 MeV, and the effective massM* 5M1VS(rW), the relation between the upper and lower components of the w
function can be written as

g5
1

E2V
~sW •pW ! f , f 5

1

E12M* 2V
~sW •pW !g. ~26!

Then the coupled equations are reduced to uncoupled ones for the upper and lower components, respectively. Effec
get the corresponding Schro¨dinger equation for both components:



ics as

n for

158 PRC 59J. MENG, K. SUGAWARA-TANABE, S. YAMAJI, AND A. ARIMA
~sW •pW !
1

E12M* 2V
~sW •pW !g5~E2V!g, ~sW •pW !

1

E2V
~sW •pW ! f 5~E12M* 2V! f . ~27!

In the spherical case,V depends only on the radius. We choose the phase convention of the vector spherical harmon

~sW •rW !Yjm
l 52Yjm

l 8 , ~28!

where

l 852 j 2 l 5H l 11, j 5 l 11/2,

l 21, j 5 l 21/2.
~29!

Herel 8 is nothing but the pseudo-orbital angular momentuml̃ . After some tedious procedures, one gets the radial equatio
the lower and upper components, respectively:

F d2

dr2
1

1

E2V

dV

dr

d

drGFi
l j ~r !1Fk~12k!

r 2
2

1

E2V

k

r

dV

dr GFi
l j ~r !52~E12M* 2V!~E2V!Fi

l j ~r !, ~30!

F d2

dr2
2

1

E12M* 2V

d~2M* 2V!

dr

d

drGGi
l j ~r !2Fk~11k!

r 2
1

1

E12M* 2V

k

r

d~2M* 2V!

dr GGi
l j ~r !

52~E12M* 2V!~E2V!Gi
l j ~r !, ~31!
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where

k~k21!5 l 8~ l 811!, k~k11!5 l ~ l 11!. ~32!

It is clear that one can use either Eq.~30! or, equivalently,
Eq. ~31! to get the eigenvaluesE and the corresponding
eigenfunctions. Normally Eq.~31! is used in the literature
and the spin-orbital splitting is discussed in connection w
the corresponding spin-orbital potential

1

E12M* 2V

k

r

d~ 2M* 2V!

dr
.

If Eq. ~30! is used instead and the PSOP term

1

E2V

k

r

dV

dr

is neglected, then the eigenvaluesE for the samel 8 will
degenerate. This is the phenomenon of pseudospin symm
observed in@1,2#. It means that Eq.~26! is the transformation
between the normal spin formalism and the pseudospin
malism.

In Eq. ~30!, the term which splits the pseudospin partne
is simply the PSOP. The hidden symmetry for the ps
dospin approximation is revealed asdV/dr50, which is
more general and includesV50 discussed in@14# as a spe-
cial case. For exotic nuclei with highly diffuse potentia
dV/dr;0 may be a good approximation and then the ps
dospin symmetry will be good. But generally,dV/dr50 is
not always satisfied in the nuclei and the pseudospin sym
try is an approximation. However, if

U 1 k dVU!Uk~12k!
2 U,
E2V r dr r
h

try

r-

s
-

-

e-

the pseudospin approximation will be good. Thus, the co
parison of the relative magnitude of the PCBk(12k)/r 2,
and the PSOP can provide us with some information on
pseudospin symmetry.

In a recent paper@17#, the mechanism behind the pse
dospin symmetry was studied and the pseudospin symm
was shown to be connected to the competition between
PCB and PSOP, which is mainly decided by the derivative
the difference between the scalar and vector potentials. W
the scalar and vector potentials derived from a self-consis
RCHB calculation, the pseudospin symmetry and its ene
dependence have been discussed. Here in this paper we
extend the previous investigation to the case of exotic nuc
The pseudospin symmetry for exotic nuclei is investiga
for Zr and Sn isotopes from the proton drip line to the ne
tron drip line. The isospin and energy dependence of
pseudospin approximation will be investigated in detail
the following section.

IV. ENERGY SPLITTING OF THE PSEUDOSPIN
PARTNERS

We use here the nonlinear Lagrangian parameter
NLSH @26# which could provide a good description of a
nuclei from oxygen to lead. As we study not only the clos
shell nuclei, but also the open shell nuclei, the inclusion
pairing is necessary. The pairing interaction strength is
same as in Ref.@22#. The interaction strength in the pairin
force of zero range, Eq.~22!, is properly renormalized by the
calculation of RCHB theory with Gogny force. Since we u
a pairing force of zero range, we have to limit the number
continuum levels by a cutoff energy. For each spin-par
channel, 20 radial wave functions are taken into accou
which corresponds roughly to a cutoff energy of 120 Me
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for a fixed box radiusR520 fm. For the fixed cutoff energy
and for the box radiusR, the strengthV0 of the pairing force
in Eq. ~22! is determined by adjusting the correspondi
pairing energy2 1

2 Tr Dk to that of a RCHB calculation us
ing the finite-range part of the Gogny force D1S@25#. We
use the nuclear matter density0.152 fm23 for r0 .

The quality of pseudospin symmetry can be underst
more clearly by considering the microscopic structure of
wave functions and the single-particle energies in the can
cal basis. As shown in Ref.@18#, the particle levels for the
bound states in a canonical basis are the same as thos
solving the Dirac equation with the scalar and vector pot
tials from RCHB theory. Therefore Eqs.~30! and ~31! are
valid in the canonical basis after the pairing interaction h
been taken into account and are very suitable for a discus
of the pseudospin symmetry.

The neutron single-particle levels in150Sn and120Zr are
given in Figs. 1~a! and 1~b!, respectively. The four sets o
pseudospin partners, i.e., 1d3/2 and 2s1/2,1f 5/2 and
2p3/2,1g7/2 and 2d5/2, and 2d3/2 and 3s1/2, are marked by
boxes. As seen in the figure, the energy splitting betw
pseudospin partners decreases with decreasing binding
ergy. The single-particle energy of 3s1/2 in 120Zr is
26.00 MeV, and its partner 2d3/2 is 25.86 MeV; the split-
ting is 0.14 MeV. While 2s1/2 is 231.62 MeV, 1d3/2
233.23 MeV, the splitting is 1.61 MeV, which is bigge
than the former one by a factor of 10. The same situatio

FIG. 1. The single-particle levels in the canonical basis for
neutron in~a! 150Sn and~b! 120Zr. The Fermi surface is shown by
dashed line. The bound pseudospin partners are marked by bo
d
e
i-

by
-

s
on

n
en-
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found for the energy splitting between pseudospin partner
150Sn: The single-particle energies of 3s1/2 and 2d3/2 are
29.645 and210.11 MeV, respectively. The single-partic
energies for other pseudospin partners in150Sn are211.74
and213.87 MeV for 2d5/2 and 1g7/2 partners,222.46 and
225.50 MeV for 2p3/2 and 1f 5/2 partners, and233.63 and
236.58 for 2s1/2 and 1d3/2 partners, respectively. Althoug
we show only the neutron single-particle levels in150Sn and
120Zr as examples here, the same are found in other Sn
Zr isotopes. It is usually seen that the pseudospin symm
approximation becomes better near the Fermi surface, w
is in agreement with the experimental observation.

In Fig. 1 there are also two pairs of pseudospin partn
(3p3/2 and 2f 5/2 partners and 2f 7/2 and 1h9/2 partners! near
the threshold, apart from the fours pairs of pseudospin p
ners below the Fermi level. The energies for these two p
of pseudospin partners are21.581 and21.031 MeV for the
3p3/2 and 2f 5/2 partners and22.549 and22.620 MeV for
the 2f 7/2 and 1h9/2 partners, respectively. Considering the
pseudospin orbital angular momentuml̃ 52 and 4, their
splittings

DE5
El̃ j 5 l̃ 21/22El̃ j 5 l̃ 11/2

2 l̃ 11

are only 20.1100 MeV and 0.788931022 MeV, respec-
tively. This is due to the energy dependence and the diffu
ness of the potential in exotic nuclei, which we will discu
in the following. The energy dependence of pseudospin p
ners has been discussed in Refs.@17,14,16#. As is seen in
Fig. 1, the normal splitting is such that the orbitalj 5 l̃

11/2 is below the orbitalj 5 l̃ 21/2, except for 3p3/2 and
2 f 5/2 partners. The same also happens for 2d3/2 and 3s1/2
partners in Zr isotopes. The pseudospin splitting depend
the derivative of the difference between the scalar and ve
potentials,dV/dr, which is small for exotic nuclei with a
highly diffuse potential. The integration of (dV/dr)uFu2 over
r gives the splitting of the pseudospin partners, whose s
will decide the normal splitting or the reverse. The sub
details of the potential are crucial for the pseudospin sp
ting.

To see the behavior of the pseudospin partners around
Fermi level and the isospin dependence of the pseudo
splitting, we show the single-particle levels near the Fer
surface in the canonical basis for the Sn and Zr isotopes w
an even neutron number as a function of the mass numb
Fig. 2. The Fermi level is shown by the dashed line. T
pseudospin splitting for the pseudospin partners, 2d3/2 and
3s1/2, remains small in Zr and Sn isotopes from the prot
drip line to the neutron drip line. The pseudospin symme
remains even valid for exotic nuclei. The pseudospin sy
metry near the neutron drip line becomes better than
near theb-stability line. In Fig. 2~a!, there is a kink for the
single-particle levels in the continuum, as the contributi
from the continuum becomes important and the potential
comes diffuse around130Sn. But the splitting for 3p3/2 and
2 f 5/2 partners and 2f 7/2 and 1h9/2 partners in Sn isotopes i
small and the pseudospin symmetry approximation is v
good, independent of whether they are in the continuum
near the threshold. Therefore we can see that pseudo

e

es.
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symmetry is very well preserved for the orbital near t
threshod energy and in the continuum region.

In order to see the energy dependence and the iso
dependence of the pseudospin orbital splitting more clea
we plot

DE5
El̃ j 5 l̃ 21/22El̃ j 5 l̃ 11/2

2l̃ 11

versus

E5
l̃ El̃ j 5 l̃ 11/21~ l̃ 11!El̃ j 5 l̃ 21/2

2l̃ 11

for the bound pseudospin partners in Sn and Zr isotope
Fig. 3. In both isotopes, a monotonous decreasing beha
with decreasing binding energy is clearly seen. The ps
dospin splitting for 3s1/2 and 2d3/2 is more than 10 times
smaller than that of 2s1/2 and 1d3/2. As far as the isospin
dependence of the pseudospin orbital splitting is concern
the splitting in Sn isotopes gives a monotonous decrea
behavior with the increasing isospin. Particularly for 2s1/2
and 1d3/2 partners, the pseudospin splitting in170Sn is only
half of that in 96Sn. Just as we expected, the pseudos
symmetry in neutron-rich nuclei is better. In Zr isotope
although the situation is more complicated~e.g., the effect of
the deformation which is neglected here!, the pattern is more
or less the same, i.e., a monotonous decreasing behavior
decreasing binding energy and a monotonous decreasing
havior with isospin. From these studies, we see that the p
dospin symmetry remains a good approximation for b
stable and exotic nuclei. A better pseudospin symmetry

FIG. 2. The single-particle energies of the neutron in the can
cal basis as a function of the mass number for~a! Sn and~b! Zr
isotopes. The dashed line indicates the chemical potential.
in
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be expected for the orbital near the threshold, particularly
nuclei near the particle drip line.

V. PSEUDOSPIN ORBITAL POTENTIAL

To understand why the energy splitting of the pseudos
partner changes with different binding energies and why
pseudospin approximation is good in RMF energy, the PS
and PCB should be examined carefully. Unfortunately, it
very hard to compare them clearly, as the PSOP has a
gularity at E;V. As we are only interested in the relativ
magnitude of the PCB and PSOP, we introduce the effec
PCB, (E2V)k(k21)/r 2, and the effective PSOP
(k/r )dV/dr, for comparison. They correspond to the PC
and the PSOP multiplied by a common factorE2V, respec-
tively.

The effective PSOP does not depend on the binding
ergy of the single-particle level, but depends on the angu
momentum and parity. On the other hand, the effective P
depends on the energy. Comparing these two effective
tentials one can see the energy dependence of the pseud
symmetry. They are given in Fig. 4 fors1/2 ~lower! andd3/2
~upper! of 120Zr in an arbitrary scale.

The pseudospin approximation is much better for the l
bound pseudospin partners, because the effective PC

i-

FIG. 3. The pseudospin orbit splittingDE5(El̃ j 5 l̃ 21/2

2El̃ j 5 l̃ 11/2)/(2 l̃ 11) versus the binding energyE5@ l̃ El̃ j 5 l̃ 11/2

1( l̃ 11)El̃ j 5 l̃ 21/2#/(2 l̃ 11) for Zr and Sn isotopes. From left to
right, the pseudospin partners correspond
(1d3/2,2s1/2),(1f 5/2,2p3/2),(1g7/2,2d5/2), and (2d3/2,3s1/2), re-
spectively.
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smaller for the more deeply bound states. This is in agr
ment with the results shown in Fig. 3. The effective PS
and the effective PCB are also given as insets in Fig. 4
order to show their behavior near the nuclear surface.

In order to examine this carefully, we compare the effe
tive PCB~dashed lines or dot-dashed lines! and the effective
PSOP~solid lines! multiplied by the squares of the lowe
component wave functionF(r ), which are given in Fig. 5,
for 2s1/2 ~upper left!, 3s1/2 ~lower left!, 1d3/2 ~upper right!,
and 2d3/2 ~lower right! of 120Zr in arbitrary scale. The pseu
dospin approximation is much better for the less bound ps
dospin partners, because the effective PCB is smaller for
more deeply bound states. This is in agreement with the
sults shown above. The integrated values of the potentia

FIG. 4. The comparison of the effective pseudocentrifugal b
rier ~PCB! (E2V)k(k21)/r 2 ~dashed lines and dot-dashed line!
and the effective pseudospin orbital potential~PSOP! (k/r )dV/dr
~solid line! in arbitrary scale ford3/2 ~upper! and s1/2 ~lower! in
120Zr. The dashed lines are for 1d3/2 and 2s1/2, and the dot-dashed
lines are for 2d3/2 and 3s1/2. The insets show the same quantitie
but the ordinate is magnified and the abscissa is reduced to sho
behaviors of the effective PCB and the effective PSOP near
nuclear surface.

FIG. 5. The comparison of the effective pseudocentrifugal b
rier ~PCB! (E2V)k(k21)/r 2 ~dashed lines and dot-dashed line!
and the effective pseudospin orbital potential~PSOP! (k/r )dV/dr
~solid line! multiplied by the square of the wave functionF of the
lower components in arbitrary scale ford3/2 ~upper! ands1/2 ~lower!
in 120Zr. The dashed lines are for 1d3/2 and 2s1/2, and the dot-
dashed lines are for 2d3/2 and 3s1/2.
e-

in

-
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he
e-
in

Fig. 2 with r are proportional to their contribution to th
energy after some proper renormalization. It is clear that
contribution of the effective PCB~dashed lines or dot-dashe
lines! is much bigger than that of the effective PSOP~solid
lines!. Generally the effective PSOP is two orders of mag
tude smaller than the effective PCB.

In Figs. 1 and 2 we notice that the orbitalj 5 l̃ 11/2 is
generally below the orbitalj 5 l̃ 21/2, except for 3p3/2 and
2 f 5/2 partners in Sn isotopes. The same situation also h
pens for 2d3/2 and 3s1/2 partners in Zr isotopes. As the pse
dospin splitting depends on the PSOP, which depends on
subtle radial dependence of the potentials, sometimes
PSOP may have positive or negative regions as a functio
r which cancel each other. The integration of (dV/dr)uFu2
over r gives the splitting of the pseudospin partners, who
sign will decide the normal splitting or the reverse. That
the reason why the orbitalj 5 l̃ 11/2 is above the orbitalj
5 l̃ 21/2 for 3p3/2 and 2f 5/2 partners in Sn isotopes and fo
2d3/2 and 3s1/2 partners in Zr isotopes.

VI. WAVE FUNCTION OF PSEUDOSPIN PARTNERS

In the above discussion, we have seen that the PSO
much smaller than the PCB. Therefore, if we neglect
PSOP in Eq.~30!, the lower component of the Dirac wav
functions for the pseudospin partners will be the same;
in the case of the exact pseudospin symmetry, the lo
component of the pseudospin partners should be iden
~except for the phase!. The upper component of the Dira
wave functions can be obtained from the transformation
Eq. ~26!, which depends on the quantum numberk. There-
fore the study of the Dirac wave functions for the pseudos
partners will provide a check for the pseudospin approxim
tion in nuclei. As examples, the normalized single-nucle
wave functions for the upper~G! and lower~F! components
of the Dirac wave functions for the pseudospin partners 1d3/2
and 2s1/2, 1f 5/2 and 2p3/2, 1g7/2 and 2d5/2, and 2d3/2
and 3s1/2 in 120Zr are given in Fig. 6. Of course, the lowe

r-

,
the
e

r-

FIG. 6. The upper componentG and lower componentF of the
Dirac wave functions for the pseudospin partners in120Zr. The
phase of the Dirac wave functions for one of the pseudospin p
ners has been reversed in order to have a careful comparison.
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components are much smaller in magnitude compared
the upper component in Eq.~26!. The phase of the Dirac
wave functions for one of the pseudospin partners has b
reversed in order to have a careful comparison. It is seen
the lower components of the Dirac wave functions for t
pseudospin partners are very similar and are almost equ
magnitude, as observed also for208Pb in Refs.@14,16#. The
similarity in the lower componentsF of the wave function
for the pseudospin partners near the Fermi surface is b
than for the deeply bound ones. The similarity in the low
components for the pseudospin partners with small ps
dospin orbital angular momentum is better than for the o
with large pseudospin orbital angular momentum. As see
Fig. 6, the similarity for pseudospin partners 2d3/2 and 3s1/2
is better than for pseudospin partners 1d3/2 and 2s1/2. The
similarities for pseudospin partner 2d3/2 and 3s1/2, 1d3/2
and 2s1/2 are better than for the pseudospin partners 1f 5/2
and 2p3/2, 1g7/2 and 2d5/2.

Although the lower components for the pseudospin p
ners are very close to each other, the difference for the up
components is very big. The upper component of the Di
wave functions can be obtained from the transformation
Eq. ~26!, which for the sperical case can be reduced to
following:

Gi
l j ~r !5

1

E2VF2
dFi

l j ~r !

dr
1

k

r
Fi

l j ~r !G . ~33!

As seen in Fig. 6, in the case of exact pseudospin s
metry, where bothE and Fi

l j (r ) are identical for the pseu
dospin partners, the upper componentsGi

l j (r ) will be differ-
ent due to the term (k/r )Fi

l j (r ). For pseudospin partner

with small l̃ , the contribution of the term (k/r )Fi
l j (r ) be-

comes less important for largerr and a similarity between the
upper components can happen in the nuclear surface. As
example, forr>6 fm, the upper components for the pse
dospin partners 1d3/2 and 2s1/2, 1f 5/2 and 2p3/2, and 2d3/2
and 3s1/2 in Fig. 6 are very similar.

VII. SUMMARY

In conclusion, the pseudospin symmetry is examined
normal and exotic nuclei in the framework of RCHB theor
Based on RCHB theory the pseudospin approximation in
otic nuclei is investigated in Zr and Sn isotopes from t
proton drip line to the neutron drip line. The quality of th
pseudospin approximation is shown to be connected to
competition between the PCB and PSOP, which is ma
decided by the derivative of the difference between the sc
and vector potentialsdV/dr. If the derivative of the differ-
ence between the scalar and vector potentialsdV/dr van-
ishes, the pseudospin symmetry is exact. The condi
dV/dr;0 may be a good approximation for exotic nuc
with a highly diffuse potential. Further a new condition
ys
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E2V

k

r

dV

dr
! k

~12k!

r 2

is found under which the symmetry is preserved appro
mately. We have examined this condition to see how go
the pseudospin symmetry in RCHB theory is. For a giv
angular momentum and parity channel, the effective PC
(E2V)k(k21)/r 2, becomes stronger for the less bou
level; so the pseudospin symmetry for the weakly bou
state is better than that for the deeply bound state, which
agreement with the experimental observation@1,2#. Pseu-
dospin symmetry is found to be a good approximation ev
for the exotic nuclei with a highly diffuse potential. Th
above conclusion has been well supported by RCHB ca
lations for Zr and Sn isotopes from the proton drip line to t
neutron drip line. From the simple Dirac equation, it h
been shown that there are two equivalent ways to solve
coupled Dirac equation for the upper and lower compone
i.e., the normal spin formalism and pseudospin formalis
Both formalisms are equivalent as far as the energies
wave functions are concerned. Their relation is given by
~26!, which indicates that the unitary transformation from t
conventional formalism to the pseudospin formalism hasp
helicity’’ @12,9,15#. Summarizing our investigation, we con
clude the following.

~1! The quality of the pseudospin approximation is co
nected to the competition between the PCB and PSOP w
is mainly proportional to the derivative of the difference b
tween the scalar and vector potentialsdV/dr.

~2! The pseudospin symmetry is a good approximation
normal nuclei and becomes much better for exotic nuc
with highly diffuse potentials.

~3! The pseudospin symmetry has a strong energy dep
dence. The energy splitting between the pseudospin part
is smaller for orbitals near the Fermi surface.

~4! The energy difference between the orbitalj 5 l̃ 11/2
and the orbitalj 5 l̃ 21/2 is always negative, except for 3p3/2
and 2f 5/2 partners. The same situation also happens for 2d3/2
and 3s1/2 partners in Zr isotopes. The integration
(dV/dr)uFu2 over r gives the splitting of the pseudospi
partners, whose sign will decide the normal splitting or t
reverse.

~5! The lower components of the Dirac wave functions f
the pseudospin partners are very similar and almost equ
magnitude. The similarity in the lower components of t
wave function for the pseudospin partners near the Fe
surface is closer than for the deeply bound ones.
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