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Variational approach to collective excitations
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We discuss a variational approach to collective excitations in a boson formalism based on quasiparticles.
Bosons are defined in correspondence with pairs of quasiparticles and boson images of fermion operators are
constructed by means of a mapping procedure of Marumori-type. Phonons of the type used within the random
phase approximation~RPA! are introduced as Bogoliubov transformations of these bosons. The variables
entering into the definition of these phonons as well as of the quasiparticle operators are fixed simultaneously
by minimizing the expectation value of the boson Hamiltonian in the vacuum of the phonons. The approach is
tested within an exactly solvable two-level model which is characterized by a pairing Hamiltonian. A quite
good agreement is found for the energies of the ground state and of the first 01 excited state. The comparison
with the Bardeen-Cooper-Schrieffer method and the quasiparticle RPA as well as with some recent self-
consistent RPA-type approaches is discussed.@S0556-2813~99!01103-6#

PACS number~s!: 21.60.Jz, 74.20.Fg
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I. INTRODUCTION

The study of correlations in quantum many-body syste
is a subject of great interest among the physicists of vari
fields. Such an interest is testified to by the continuous
velopment of new methods which aim at improving the tre
ment of these correlations and so at making the microsc
description of collective excitations as reliable as possibl

Among the approaches which have attracted more at
tion in this field, a preeminent role is certainly played by t
random phase approximation~RPA!. This represents, in fact
the simplest theory of excited states which admits the po
bility that the ground state is not of purely independe
particle character but may contain correlations@1#. As is well
known, however, this theory suffers from an internal inco
sistency due to the replacement, during the derivation o
equations, of the expectation values in the correlated gro
state by the corresponding values in the uncorrelated
Hartree-Fock~HF! one. This is usually known as the quas
boson approximation~QBA!. This important drawback ha
provided the starting point for the elaboration of several
proaches attempting to restore the self-consistency of
theory. Among the first who have dealt with this problem w
quote Hara@2# and Rowe@3#. Since then, several other ap
proaches have appeared within the same subject bot
nuclear physics@4–18# and in other fields@19#. Also the
present work has to be set in this context.

These approaches can be essentially divided into
groups: ~a! those formulated in a fermion formalism
@2–13,19# and~b! those in which one has instead turned to
boson formalism@14–18#. For what concerns the first group
searching for the self-consistency and therefore avoiding
QBA ultimately implies evaluating expectation values
one- and two-body operators in the~unknown! correlated
ground state. Various approximation schemes have been
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veloped for the best determination of these quantities. T
usually lead to the construction of a set of nonlinear eq
tions which are solved iteratively. Difficulties inherent in th
practical realization of this scheme are discussed in R
@13#.

For what concerns group~b!, the main idea of these ap
proaches consists of transferring first the whole problem o
an appropriate boson space. This space is built by mean
boson operators which are the ‘‘images’’ of the fermion o
erators defining the standard RPA phonons. These boson
erators also allow to define new boson phonons. By mean
an appropriate procedure, any fermion operator is map
onto its boson image so that all calculations can be p
formed in this space.

A clear advantage of the boson approach over the ferm
one is that the internal inconsistency typical of RPA is fu
overcome. Evaluating the expectation value of a boson
erator in the correlated ground state does not cause ind
any difficulty since it can now be done without an explic
knowledge of the wave function of this state. Moreover, t
phonon operators are ideal bosons and so also the prob
related to the definition of the ground state of the system
vacuum of non-commutating fermion phonons@10# are over-
come. The standard RPA equations can be easily derive
correspondence with the use of a ‘‘zeroth-order’’ bos
Hamiltonian. Therefore, this boson formalism offers an e
cient way of going beyond RPA which consists of maki
use of higher-order boson images of the Hamiltonian@18#.
Similarly to what happens in the self-consistent fermion a
proaches to RPA, this leads to a set of nonlinear equati
Of course, using this boson formalism also leads to a vio
tion of the Pauli principle and this problem has been
subject of a recent investigation@17#.

The purpose of the present work is that of further dev
oping an RPA-type approach to collective excitations with
a boson formalism. Differently from previous works on th
subject@17,18# we will base this formalism on quasiparticle
This will allow a simultaneous treatment of particle-hole a
particle-particle~hole-hole! correlations. In short, we will
1422 ©1999 The American Physical Society
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PRC 59 1423VARIATIONAL APPROACH TO COLLECTIVE EXCITATIONS
first perform a standard Bogoliubov transformation and
fine a set of boson operators in correspondence with qu
particle pair operators. A boson space will be defined
terms of these bosons and a mapping procedure will allow
to transform all fermion operators of interest into equivale
operators acting in this boson space. As a further step, R
type phonons will be constructed as Bogoliubov transform
tions of these bosons and the structure of both the quas
ticles and the phonons will be simultaneously fixed
minimizing the expectation value of the boson Hamiltoni
in the vacuum of these phonons under some constra
These constraints are related to the conservation of the
ticle number~otherwise violated in this quasiparticle forma
ism! and to the fermion and boson nature of the quasipart
and phonon operators, respectively. Of course, perform
this minimization is equivalent to solving a set of nonline
equations, which is formally similar to what is already se
in the case of fermion self-consistent approaches.

This way of proceeding shares some common points w
well known approaches like the Bardeen-Cooper-Schrie
~BCS! method @or, more in general, the Hartree-Foc
Bogoliubov~HFB! one# and the quasiparticle RPA~QRPA!.
For what concerns the similarity with the first one, one n
tices already at this stage~but it will be clearer in the follow-
ing! that the present way of proceeding reminds a kind
‘‘higher order’’ BCS. The step forward with respect to BC
originates from the second Bogoliubov transformation wh
leads to a new vacuum, used to evaluate the expecta
values of the Hamiltonian and of the number operator, wh
is richer in structure than the standard quasiparticle vacu

A similarity with the QRPA is also evident due to th
introduction of an RPA-like phonon which, although an ide
boson, closely reminds the standard QRPA one. Howe
important differences between the two approaches can
seen since, in the present case,~i! both the quasiparticles an
the phonons are fixed simultaneously,~ii ! the ground state
energy~rather than the excitation energy as in QRPA! is the
basic objective of the procedure and~iii ! this is a variational
procedure. Point~ii ! also represents a further point of diffe
ence with the work of Ref.@18# which was instead focuse
on the excitation energy of the system. Last but not least,
mention the fact that the boson Hamiltonian which is used
this calculation and which is truncated at four-boson term
considerably more refined than the one which would be s
ficient to obtain the standard RPA equations working in
boson formalism.

The paper is organized as follows. In Sec. II, we w
describe the procedure. In Sec. III, we will show seve
applications of this procedure in the case of an exactly s
able two-level model. In the same section, we will also co
pare this approach with others like BCS, QRPA and so
recently developed fermion self-consistent approaches.
nally, in Sec. IV, we will summarize the results and dra
some conclusions.

II. THE FORMALISM

In order to avoid a notation otherwise rather cumberso
we will illustrate the formalism directly in the case of th
exactly solvable model which has been chosen as a tes
our calculations. This model, although rather simple, off
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all the basic features of a realistic calculation and so also
extension of the formalism to any other case does not g
cause for special concerns.

The model has been first employed by Ho¨gaasen-Feldman
@20# and refers to a system of nucleons interacting in
average potential via a pairing force. The Hamiltonian
therefore of the type

Ĥ5(
j

e j N̂ j2G(
j , j 8

AV jAV j 8Aj
†Aj 8 , ~1!

with

N̂j5(
m

ajm
† ajm , ~2!

Aj
†5

1

A2
@aj

†aj
†#0, ~3!

where V j5 j 1 1
2 and ajm

† creates a particle with angular
momentumj and projectionm. The simplifying hypothesis is
that there are only two single-particle levels with the sa
angular momentum. Hence, the indexj of ajm

† will be used
thereafter to distinguish lower and upper level, while t
angular momentum remains unchanged. We will also repl
V j by V, for simplicity.

The operatorsN̂j , Aj
†, and the Hermitian conjugateAj

obey the commutation relations

@Aj ,Aj 8
†

#5d j j 8S 12
N̂j

V
D , ~4!

@N̂j ,Aj 8
†

#5d j j 82Aj
† . ~5!

These commutators define an SU~2! algebra for each leve
and the two-level model satisfies an SU(2)^ SU(2) alge-
bra. Thanks to this special group structure, the derivation
the exact eigenvalues of the Hamiltonian only requires so
simple angular-momentum algebra for the construction
the matrix to be diagonalized. The calculations are p
formed within a space whose basic configurations are c
acterized by distributions of particles in seniority-zero sta
in both lower and upper levels.

In this work we shall limit ourselves to the study of th
ground state and of the first 01 excited state of the system
Differently from Ref. @20#, however, we will not only con-
sider a system with a particle numberN52V but we will
rather leaveN free to vary in the whole interval (0,4V).

As has been anticipated in the Introduction, we will ma
use of a quasiparticle formalism and so we introduce
Bogoliubov-Valatin transformation

a jm
† 5ujajm

† 2v j ã jm , ~6!

whereã jm5(21) j 2maj 2m and

uj
21v j

251. ~7!

We also define the stateu& as the quasiparticle vacuum, i.e
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1424 PRC 59M. SAMBATARO AND N. DINH DANG
a jmu&50. ~8!

Inverting Eq.~6! ~and its Hermitian conjugate! we can now
rewrite any fermion operator in this quasiparticle formalis
The Hamiltonian~1! becomes

Ĥ5c01(
i

~c1! iN̂i1(
i

~c2! i~A i
†1Ai !1(

i j
~c3! i jA i

†Aj

1(
i j

~c4! i j ~A i
†N̂j1N̂jAi !1(

i j
~c5! i j ~A i

†A j
†1AjAi !

1(
i j

~c6! i j N̂iN̂j , ~9!

with

A j
†5

1

A2
@a j

†a j
†#0, ~10!

N̂j5(
m

a jm
† a jm, ~11!

and whose coefficients can be found in Ref.@21#. Similarly,
the particle number operatorN̂5( j N̂ j becomes

N̂52V(
j

v j
21(

j
~uj

22v j
2!N̂j12AV(

j
ujv j~A j

†1Aj !.

~12!

As is well known, the minimization of the expectatio
value

^uĤu&5c05V(
i

v i
2~2e i2Gv i

2!2GV2S (
i

uiv i D 2

,

~13!

with respect to the variablesuj ,v j and under the constrain

^uN̂u&52V(
j

v j
25N ~14!

which guarantees the conservation of the particle numbe
average, gives rise to the BCS equations. In particular, it
be shown by making use of the Thouless theorem@25# that a
necessary~although not sufficient@22#! condition for this
minimum to occur is that

^u~Ĥ2lN̂!a jm
† a j 8m8

† u&50, ~15!

wherel is the Lagrange multiplier. Equations~7!, ~14!, and
~15! define the well-known BCS equations for the variab
uj , v j , andl.

The variational procedure that we are going to study
this work draws inspiration from that just mentioned for BC
and examines its extension to a higher order. To perform
procedure, keeping in mind that we want to describe1

excited states, we introduce a set of zero angular-momen
boson operatorsbj

† in correspondence with the quasipartic
pair operatorsA j

† . These boson operators obey the stand
commutation relations
.

in
n

s

n

is

m

d

@bi ,bj
†#5d i j , @bi ,bj #5@bi

† ,bj
†#50. ~16!

We define the stateu) as the vacuum of the operatorsbj , i.e.,

bj u)50. ~17!

In correspondence with the fermion space

F[$~A j
†!M~A j 8

†
!M8u&%, 0<M ,M 8<V, ~18!

where the indices (j ,M ) and (j 8,M 8) refer to the lower and
higher level, respectively, we therefore define the bos
space

B[$~bj
†!M~bj 8

†
!M8u!%, 0<M ,M 8<V, ~19!

a one-to-one correspondence existing between the statesF
and B. By resorting to a mapping procedure, we can co
struct the boson image in this space of any fermion opera
The procedure which has been employed in this work is
same which has been used in previous works@18# and is of
Marumori-type. Namely, it is required that correspondi
fermion and boson matrix elements are equal. Some de
of the mapping procedure are given in the Appendix. H
we simply show the boson images of the Hamiltonian~9!
and of the particle number operator~12!. These are, respec
tively,

ĤB5a1(
i

b i~bi
†1bi !1(

i j
g i j bi

†bj

1(
i< j

f i j ~bi
†bj

†1bibj !1(
i< j

(
k

e i jk~bi
†bj

†bk1bk
†bjbi !

1(
i< j

(
k< l

d i jkl bi
†bj

†bkbl1 (
i< j <k

(
l

r i jkl

3~bi
†bj

†bk
†bl1bl

†bkbjbi !, ~20!

where the coefficients are given in the Appendix, and

N̂B5aN1(
j

~bN! j~bj
†1bj !1(

j
~gN! jbj

†bj

1(
i< j

(
k

~eN! i jk~bi
†bj

†bk1bk
†bjbi !, ~21!

with

aN52V(
j

v j
2 , ~22a!

~bN! j52AVujv j , ~22b!

~gN! j52~uj
22v j

2!, ~22c!
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~eN! i jk5

(
l

~bN! lFd i l d jk1d ikd j l S 12
2

V
d lkD G

A11d i jA11d i j S 12
2

V
D

2
d ik

11d i j

~bN! j2
d jk

11d i j

~bN! i . ~22d!

In both ĤB and N̂B the boson expansion has been trunca
at four-boson terms but in the case ofN̂B these last terms
turn out to be zero. An analysis of the quality of the Ham
tonian ~20! is provided in the Appendix.

We are now ready to implement a variational proced
of BCS type in the new boson spaceB. For this purpose we
first perform the Bogoliubov transformation for bosons

qn
†5(

j
~Xj

nbj
†2Yj

nbj !, ~23!
a

e
um

th

e
f
ve

S
fo
n

d

e

where theX andY coefficients are such to guarantee bos
commutation relations to theq andq† operators, namely they
satisfy the conditions

(
i

~Xi
nXi

n82Yi
nYi

n8!5dnn8 , ~24a!

(
i

~Xi
nYi

n82Xi
n8Yi

n!50 ~24b!

~we suppose theX andY coefficients to be real!. We call u0)
the vacuum of the operatorsqn , i.e.,

qnu0)50. ~25!

Inverting the expression~23! ~and its Hermitian conjugate!
and using Eq.~25! we can evaluate the expectation value
any boson operator in the vacuumu0) without explicitly
knowing this state. These quantities are functions of the v
ablesu, v, X, andY. The variational procedure that we wi
explore in this work consists of minimizing the expectati
value
~0uĤBu0!5V(
i

v i
2~2e i2Gv i

2!2GV2S (
i

uiv i D 2

1(
i j

g i j (
n

Yi
nYj

n1(
i< j

f i j (
n

~Yi
nXj

n1Xi
nYj

n!

1(
i< j

(
k< l

d i jkl (
nt

~Yi
nXj

nXk
tYl

t1Yi
nYj

tYk
tYl

n1Yi
nYj

tYk
nYl

t!

1 (
i< j <k

(
l

r i jkl (
nt

~Yi
nXj

nYk
tYl

t1Yi
nYj

tXk
tYl

n1Yi
nYj

tXk
nYl

t1Yi
nXj

tYk
tYl

n1Xi
nYj

nYk
tYl

t1Xi
nYj

tYk
nYl

t! ~26!
-

t
of
e, a

ase,
tes,
ce,

-
his
nts
e-

n
the
with respect to all these variables under the constraint th

~0uN̂Bu0!52V(
j

v j
212(

j
~uj

22v j
2!(

n
~Yj

n!25N,

~27!

and with the further constraints given by Eqs.~7!, ~24a!, and
~24b!.

The formal similarity between this minimization and th
one performed in BCS is evident. However, the new vacu
u0) exhibits a structure much richer than the BCS vacuumu&.
This can be seen in detail by noticing that, as a result of
condition ~25!, it is @22#

u0)5N0 expS 1

2(i j ~YX21! i j bi
†bj

†D u) ~28!

and remembering thatu) is the image of the quasiparticl
vacuumu&. To the extent thatĤB andN̂B are good images o
Ĥ andN̂, this minimization is expected to be more effecti
than the BCS one.

Following arguments similar to those employed in BC
and, in particular, by making use of the Thouless theorem
bosons@22#, it is possible to show that such a minimizatio
implies that
t

e

r

~0uĤB8qn
†qn8

† u0!50 ~29!

~where ĤB8[ĤB2lN̂B and l is again a Lagrange multi
plier!, which closely recalls Eq.~15!. However, differently
from the BCS case where it is true by construction that

^u~Ĥ2lN̂!an
†u&50, ~30!

nothing can be saida priori concerning the matrix elemen
(0uĤB8qn

†u0). Whenever nonnegligible matrix elements
such a form were present, they would cause, of cours
‘‘disturbance’’ in the definition ofu0) andqn

†u0) as ground
and excited states of the system, respectively. In such a c
in order to have a more appropriate definition of these sta
one should resort to some extra operations like, for instan
a diagonalization in the space$u0),qn

†u0), . . .%. In general,
the use of a more general Bogoliubov transformation~23!
including a ‘‘shift’’ term @22# could also be taken into ac
count. In all the cases examined in this work, however, t
problem has never occurred since the matrix eleme
(0uĤB8qn

†u0), although not exactly zero, have always r

mained much smaller than the matrix elements (0uĤB8 u0) or

(0uqnĤB8qn8
† u0). Therefore, we will not pay much attentio

to this problem in this work. We remark, in any case, that
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1426 PRC 59M. SAMBATARO AND N. DINH DANG
Hamiltonian ĤB8 is not diagonal in the one-phonon spa
$qn

†u0)% and so its diagonalization in this space is indispe
able for a correct definition of the excited states.

III. CALCULATIONS AND DISCUSSION

The calculations that we will first discuss refer to the a
gular momentumj 5 11

2 and to single-particle energiese15
21 and e251 ~in arbitrary units!. Results obtained are
shown in Figs. 1–5. In each figure we plot, in the lower pa
the ground state energy while, in the upper part, the exc
tion energy of the first 01 state@both energies are divided b
2e[2(e22e1)]. In Figs. 1–3, these energies are plotted a
function of the variableV5GV/2e and refer to systems with
number of particlesN54, 8, and 12, respectively. In Figs.
and 5, instead, we fix two values of this variableV (V
50.5 and 1.0, respectively! and plot these energies forN
ranging from 0 up to 4V. In each figure, results are show
for BCS ~dotted line!, present approach~dashed line!, and
exact calculations~solid line!. In addition, in the case of the
energy of the first excited state, we also show the res
obtained within the QRPA@22# ~dot-dashed line!.

A. Ground state energies

Regarding the ground state energies, a glance at all fig
shows that the results obtained within the present appro
are systematically located between exact and BCS res
Particularly interesting is the caseN52V512 ~half filling!
shown in Fig. 3. In this case, in fact, BCS solutions exhib

FIG. 1. Ground state energy~EGR! and excitation energy of the
first 01 state~EXC! as a function of the variableV described in the
text and for a number of particlesN54. Both energies are divided
by 2e, e being the difference between the two single-particle en
gies. The angular momentum of the levels isj 511/2. The results
refer to exact calculations~solid lines!, BCS ~dotted lines!, QRPA
~dot-dashed line!, and the present approach~dashed lines!.
-

-

t,
a-

a

ts

es
ch
ts.

transition from a normal to a superfluid phase atV50.28. In
the present approach, instead, this phase transition occu
V50.37. Both these transitions turn out to be hardly visib
in the behavior of these energies. For a strength smaller
the critical valueV50.37, our results are almost identical
the exact ones whereas for larger values ofV they start de-
viating although always remaining within 2% from the exa
values. Similar calculations performed using other choices
the parameters of the Hamiltonian confirm qualitatively the
results~see also another example in the following!.

r-

FIG. 2. As in Fig. 1 but forN58.

FIG. 3. As in Fig. 1 but forN512.
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Before proceeding with the discussion of the results
the excited states, it is appropriate to insert a parenthesi
spurious states.

B. Spurious states

The case that we are going to treat in this paper, nam
that of excitedJ50 states, is a very delicate one in all th

FIG. 4. Ground state energy~EGR! and excitation energy of the
first 01 state~EXC! as a function of the particle numberN and for
a fixed valueV50.5. Further details are as in Fig. 1.

FIG. 5. As in Fig. 4 but forV51.0.
n
on

ly

three approaches that we are using. Let us begin with B
for instance. The problems concerning this case are w
known in literature and are discussed in some detail in R
@23#. We will recall them here because they are of great h
in examining our approach.

A low-lying excited state withJ50 can be written, in the
quasiparticle formalism of this paper, as a linear combinat
of the type

u0,n&5(
i

ci
nA i

†u&. ~31!

Such a state has components corresponding to various n
ber of particles. However, in order to describe a system w
N particles, it is reasonable to require that it should at le
have anN-particle component. We can easily identify a sta
of the form~31! for which this is not the case. To see this w
note that, remembering the quasiparticle version of the p
ticle number operatorN̂ ~12!, the constraint~14! and the
definition ~8! of the vacuumu&, one has

~N̂2N!u&52AV(
i

uiv iA i
†u&. ~32!

If ucn& is a normalizedn-particle state anddn
2 the probability

that it is contained inu&, we can write

~N̂2N!u&5(
n

dn
2~N̂2N!ucn&5(

n
dn

2~n2N!ucn&.

~33!

This tells us that the state~32! has no component withn
5N and therefore should be excluded when calculating
properties of the excited two quasiparticle states withJ50.

In the special case of our two-level model, since we c
form at most two linearly independent states of the form
Eq. ~31!, eliminating the state~32! means being left with
only one state of this form. The coefficientsci

n of this state
can be fixed by simply requiring its orthogonality to Eq.~32!
and its normalization. One finds

c1
n52

u2v2

Au1
2v1

21u2
2v2

2
, c2

n5
u1v1

Au1
2v1

21u2
2v2

2
. ~34!

These coefficients define the structure of the excited B
state withJ50 whose energy has been plotted in Figs. 1–

Spurious states are also observed in the approach u
consideration in this paper and this fact can be understoo
the basis of the same arguments already employed for B
Starting, in fact, from the expression~21! for the boson im-
age of the number operator, expressing this in terms of theq†

and q operators and making use of Eqs.~25! and ~27!, one
can write
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~N̂B2N!u0).(
n

H(
j

~bN! j~Xj
n1Yj

n!1(
i< j

(
k

~eN! i jk

3F S (
h

Yk
hYj

hD ~Xi
n1Yi

n!1S (
h

Yk
hYi

hD
3~Xj

n1Yj
n!1S (

h
Xj

hYi
hD ~Xk

n1Yk
n!G J qn

†u0)

[qsp
† u0), ~35!

where we have truncated the expression at the one-pho
component. Following the same reasoning as for Eqs.~31!–
~33!, we see that this state has no component withn5N
particles and so has to be excluded from our calculations.
are, therefore, left with only one ‘‘physical’’ phononqph

†

whose structure can be fixed by requiring its orthogonality
qsp

† and its normalization. The energies of the figures,
what concerns the procedure under study, refer to
‘‘physical’’ phonon. It is worth noticing, in any case, that th
phononsqsp

† and qph
† are almost exactly those which resu

from the diagonalization ofĤB8 in the one-phonon spac
$qn

†u0)%. The energy of the stateqsp
† u0), in particular, is al-

ways found quite low. So the same plots can also be obta
by performing this diagonalization and simply neglecting t
lowest ~or ‘‘spurious’’! eigenvalue.

To complete these notes on spuriousity, we briefly co
ment also on the QRPA case. Here, one systematically
serves a solution of the equations which is zero. The p
ence of such a spurious solution can be easily understoo
the basis of Baranger’s remarks@24#. The starting point is the
fact that the Hamiltonian of the system and the particle nu
ber operator commute:

@Ĥ,N̂#50. ~36!

If we use the expression~12! for N̂ and we approximate this
commutator according to the method of the linearization@1#
we find that

@Ĥ,N̂#.FH,2AV (
j

ujv j~A j
†1Aj !G50. ~37!

In other words, the phonon

Q†52AV (
j

ujv j~A j
†1Aj ! ~38!

is a solution of the equation

@Ĥ,Q†#5vQ†, ~39!

with v50. Thisv is then a QRPA eigenvalue. Indeed, theX
andY coefficients of the QRPA spurious solution which a
found numerically turn out to be exactly~within a normal-
ization factor! those given by Eq.~38!.

C. The first excited J50 state

We can now proceed examining the energies of the
excited state withJ50. Also for these energies the prese
on

e
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st
t

approach provides a quite good agreement with the e
results for all three values ofN examined. These values refe
to the interval (0,2V) but, as can also be seen in Figs. 4 a
5, excited energies are symmetrical with respect to the va
N52V. We have already observed in Sec. III A that this la
case~Fig. 3! is the one presenting a normal-superfluid pha
transition and it can be noticed, especially in the case
QRPA and in the present approach, how the excited ener
start deviating more and more from the exact ones wh
approaching the transition points. Still in this case we a
see that our results are quite close to those obtained in QR
while the difference with the BCS results is more marke
For the remainingN values and particularly for increasin
values of the strengthV ~see Fig. 5, for instance! differences
are more pronounced and the present approach is the
which provides the best agreement with the exact results

D. Comparison with other recent calculations

In a quite recent publication by Dukelsky, Ro¨pke, and
Schuck@26#, the same two-level model discussed in this p
per has been used as a testing ground for three diffe
many-body approaches for the treatment of correlations
Fermi systems: the self-consistent particle-particle R
~SCppRPA!, the variational RPA~VRPA! and the Bru¨ckner-
Hartree-Fock~BHF! method. It is not our intention to mak
here a thorough discussion on these approaches and
interconnections for which we refer, of course, to Ref.@26#.
We believe, however, that it is of some interest to see at le
how these approaches compare with the one discussed in
paper within the same model.

For what concerns the SCppRPA method, we simply
mind the reader that this is a generalization of the ppR
@22# according to a fermion self-consistent scheme of
type outlined in the Introduction. In the special case of t
model under discussion, two addition and removal phon
of the type used in the ppRPA are introduced and the S
pRPA ground state is defined as the vacuum of th
phonons. RPA-like equations are then constructed which
pend on the amplitudes defining these phonons as well a
one- and two-body density matrices~also depending on thes
amplitudes!. The set of nonlinear equations so constructed
solved iteratively.

The VRPA, instead, is somehow closer in spirit to the o
discussed in the present paper since it corresponds to a d
minimization of the expectation value of the Hamiltonian
the SCppRPA ground state. The main differences with
spect to the present approach are the fact that the VRP
fully developed in the fermion space and that it implies
explicit knowledge of the ground state wave function.

In Ref. @26# only ground state energies have been tak
into account and only forN52V. However, differently from
the cases of Figs. 1–5, also negative values of the pai
strength G have been considered to simulate repuls
among particles. Moreover, the calculations have been
formed for j 5 19

2 while the single-particle energies are th
same as in this work. In Table I, we have compared
results of the different approaches in the range (20.5–0.5)
of the strengthV explored in Ref.@26#.

A glance at the table shows that our approach provide
very good agreement with the exact results in the wh
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TABLE I. Results for the ground state energy~in arbitrary units! vs the variableV described in the text.
The angular momentum of the levels isj 519/2 and the number of particles isN520. For a description of the
approaches involved see Sec. III D.

V Exact This work VRPA SCppRPA BHF

20.50 218.55446 218.55360 218.55411 218.55410 218.68164
20.45 218.66849 218.66784 218.66821 218.66821 218.77071
20.40 218.78706 218.78660 218.78686 218.78686 218.86658
20.35 218.91072 218.91040 218.91058 218.91058 218.97002
20.30 219.04010 219.03990 219.04001 219.04001 219.08190
20.25 219.17600 219.17588 219.17594 219.17594 219.20324
20.20 219.31939 219.31933 219.31936 219.31936 219.33521
20.15 219.47153 219.47150 219.47151 219.47151 219.47916
20.10 219.63406 219.63405 219.63405 219.63405 219.63667
20.05 219.80919 219.80919 219.80919 219.80919 219.80957
0.00 220.00000 220.00000 220.00000 220.00000 220.00000
0.05 220.21101 220.21101 220.21101 220.21101 220.21047
0.10 220.44921 220.44917 220.44918 220.44918 220.44390
0.15 220.72625 220.72593 220.72600 220.72599 220.70373
0.20 221.06339 221.06100 221.06132 221.06130 220.99397
0.25 221.50260 221.48640 221.48772 221.48733 221.31929
0.30 222.12491 222.03620 222.04037 222.03638 221.68509
0.35 223.03321 222.77899 222.72688 222.70769 222.09757
0.40 224.24608 223.97001 223.52903 223.47803 222.56372
0.45 225.68929 225.39821 224.42583 224.33106 223.09128
0.50 227.29077 226.98390 225.40086 225.25808 223.68858
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range ofV. The agreement remains quite good also outs
this range: atV51.0, for instance, our result deviates fro
the exact one still by less than 1%. As far as the compari
with the other approaches is concerned, in the inter
(20.5–0.3) our results are very close to the VRPA a
SCppRPA ones. For larger values ofV, instead, these ap
proaches start to deviate more and more from the exact
ues.

To give a better insight into these results, we notice th
within our approach, a transition between normal and sup
fluid phases occurs atV50.32. Therefore, beyond this poin
quasiparticles begin to play a crucial role in our calculatio
The importance of a quasiparticle treatment is also stres
in Ref. @26# for G.0.1 ~i.e., V.0.25). At this critical value,
in fact, the RPA eigenvalue is seen to approach zero. H
ever, although a SCRPA for superfluid systems can alre
be found in literature@13#, none of the approaches discuss
in Ref. @26# makes use of the quasiparticles formalism.

For completeness we also show in Table I the res
which refer to BHF: this method appears to be the one w
more difficulties in reproducing the exact results both
positive and negative values of the pairing strength. Furt
discussion on this point, however, goes beyond the purp
of the present work and we will skip it.

IV. SUMMARY AND CONCLUSIONS

In this article we have examined a variational approach
collective excitations within a boson formalism. Aiming
providing a simultaneous treatment of particle-hole a
particle-particle~hole-hole! correlations, we have first intro
duced quasiparticles. Bosons have been defined in co
e

n
al
d

l-

t,
r-

.
ed

-
dy

ts
h
r
er
es

o

d

re-

spondence with pairs of these quasiparticles. By means
mapping procedure of Marumori-type we have construc
boson images of fermion operators truncating the expan
of the boson operators at four-boson terms. RPA-ty
phonons have been introduced as Bogoliubov transfor
tions of the above bosons and we have also defined
ground state of the system as the vacuum of these phon
The minimization of the expectation value of the bos
Hamiltonian in this vacuum with respect to the variabl
defining the quasiparticles and the phonons operators
allowed to fix these variables.

Important features of this boson procedure are that~i! no
RPA-type inconsistency occurs,~ii ! no explicit knowledge of
the ground state wave function is required and~iii ! no ambi-
guities related to the noncommutativity of the phonon ope
tors exist. Also the variational aspect of the procedure is
important feature always allowing to identify the exa
ground state energy as a lower bound of the calculation.

As a test for our approach we have chosen an exa
solvable two-level model characterized by a pairing Ham
tonian. Ground state energies have been found in a q
good agreement with the exact results, always remaining
cated between these and the BCS ones. We have also c
lated the energy of the first 01 excited state and compared
with the BCS and QRPA values. Also in this case our a
proach has offered a quite good agreement with the e
results providing globally the best results.

These calculations have all referred to a pairing Ham
tonian and, in some cases, differences between the var
approaches have not been found relevant. It would certa
be quite interesting to perform a similar comparison in t
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case of a more general Hamiltonian and some work
planned in this direction. Already on the basis of the pres
calculations, however, we can conclude that this appro
shows itself as a valid alternative to the QRPA in all
different applications. Among these we mention, in partic
lar, the proton-neutron QRPA which represents at the m
ment an essential tool of theoretical analysis in the field
double-beta decay and which has recently been the obje
several studies@27#.
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APPENDIX

The mapping technique used in this work follows t
main lines of a procedure which has had several applicat
in the past both in the fermion-boson correspondence@28#
and in the fermion-fermion one@29#. We refer to Ref.@30#
for a general discussion of the method. Here, we simply o
line its basic points.

The first step of the procedure consists in defining a
mion spaceF and a boson spaceB in a one-to-one correspon
dence. We have already seen that, in the present case,
spaces are those defined in Eqs.~18! and~19!. In correspon-
dence with a given fermion operatorÔF , the procedure
searches for a boson operatorÔB such that all the eigenval
ues ofÔF in F are also eigenvalues ofÔB in B. The operator
ÔB defines the image ofÔF in B.

The boson operator is constructed via a step-by-step
cedure. Each step involves the correspondence betwee
creasingly larger fermion and boson subspaces. The la
these spaces are and, in general, the more complicate
n-body structure of the boson operator will be. In this wo
wishing to construct boson images having at most fo
boson terms, it is enough to consider up to the two subsp

F85$u&,Aj
†u&,Aj

†Aj 8
† u&,Aj

†Aj 8
† Aj 9

† u&% ~A1!

and

B85$u!,bj
†u),bj

†bj 8
† u),bj

†bj 8
† bj 9

† u)%. ~A2!

Finding the boson image amounts to finding a boson oper
such that corresponding matrix elements between these s
~suitably normalized! are equal. The procedure is, therefo
of Marumori-type.

We have already discussed in Sec. II the case of the
mion number operator~12! which is mapped onto the boso
operator~21!. In the case of the Hamiltonian~9!, the boson
image has the form~20! and the coefficients are

a5c0 , ~A3a!
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b i5~c2! i , ~A3b!

g i j 52d i j ~c1! j1~c3! i j 14d i j ~c6! i j , ~A3c!

f i j 5A~NF! i j
~2!

~NB! i j
~2!

@~c5! i j 1~c5! j i ~12d i j !#, ~A3d!

e i jk5HA~NB! i j
~2!

~NF! i j
~2!F(

i 8
„~c2! i 812~c4! i 8k…D i j ,i 8k

~2!
~NF! i j

~2!G
2d ikb j2d jkb iJ Y ~NB! i j

~2! , ~A3e!

d i jkl 5HA~NF! i j
~2!~NB!kl

~2!

~NF!kl
~2!~NB! i j

~2!F „c012~c1! l12~c1!k14~c6! l l

14~c6! lk14~c6!kl14~c6!kk…D i j ,kl
~2!
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i 8

S ~c3! i 8 lD i j ,i 8k
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1~c3! i 8kS 12dkl

2

Vk
DD i j ,i 8 l

~2! D G
2aD i j ,kl

~2! 2(
i 8

~g i 8kD i j ,i 8 l
~2!

1g i 8 lD i j ,i 8k
~2!

!J Y ~NB!kl
~2! , ~A3f!

r i jkl 5A~NF! i jk
~3!

~NB! i jk
~3! (

i 8 j 8
~c5! i 8 j 8D i jk ,i 8 j 8 l

~3!

2 (
i 8< j 8

f i 8 j 8D i jk ,i 8 j 8 l
~3! , ~A3g!

where

~NF! i j
~2!5d i j S 12

1

V i
D11, ~A4a!

~NF! i jk
~3!5d i j d ikd jk6S 12

2

V i
D S 12

1

V i
D1~12d i j d ikd jk!

3F ~d i j 1d ik!2S 12
1

V i
D1d jk2S 12

1

V j
D G ,

~A4b!

~NB! i j
~2!5d i j 11, ~A5a!

~NB! i jk
~3!5d i j d ikd jk61~12d i j d ikd jk!2~d i j 1d ik1d jk!,

~A5b!

D i j ,i 8 j 8
~2!

5~d i i 8d j j 81d i j 8d j i 8!/~NB! i j
~2! , ~A6a!

D i jk ,i 8 j 8k8
~3!

5~d i i 8d j j 8dkk81d i i 8d jk8dk j81d i j 8d jk8dki8

1d i j 8d j i 8dkk81d ik8d j i 8dk j8

1d ik8d j j 8dki8!/~NB! i jk
~3! . ~A6b!
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TABLE II. Comparison between spectra of the HamiltoniansĤF ~9! andĤB ~20! for three values of the
angular momentumj. Only the lowest 10 eigenvalues are shown. For further details see the Appendix

j 511/2 j 515/2 j 519/2
EF EB EF EB EF EB

1 217.069 217.072 222.064 222.065 227.065 227.065
2 216.172 216.194 221.231 221.239 226.282 226.286
3 214.813 214.912 219.961 220.002 225.088 225.109
4 213.785 213.812 218.740 218.751 223.751 223.816
5 213.377 213.717 218.563 218.692 223.718 223.725
6 212.601 212.700 217.707 217.755 222.774 222.807
7 211.922 212.623 217.090 217.391 222.313 222.462
8 211.200 212.369 216.340 216.484 221.501 221.591
9 210.821 211.440 215.738 216.275 220.824 221.118
10 210.558 210.920 215.602 215.759 220.635 220.646
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As a test on the quality of the boson Hamiltonian~20! we
have made a comparison between fermion and boson spe
In Table II, columnsEF , we show the lowest 10 eigenvalue
of the fermion Hamiltonian~9! diagonalized in the spac
~18! for three values of the angular momentumj : 11

2 , 15
2 , and

19
2 . The coefficients of this Hamiltonian are functions of t
(ui ,v i) Bogoliubov-Valatin variables and for these we ha
taken the values resulting from the procedure of Sec. II fo
strengthV50.5 and a number of particlesN52V.

In Table II, columnsEB , we show the correspondin
spectra obtained by diagonalizing the boson Hamilton
l.

ys
tra.

a

~20! in the space~19!. One observes a quite satisfacto
agreement between fermion and boson spectra which tes
the good quality of this Hamiltonian. Of course, this agre
ment could be further improved by resorting to higher-ord
terms in the boson expansion of the Hamiltonian. Howev
with reference to possible realistic applications of the pro
dure, we have preferred to test an expansion containing u
four-boson terms. The use of the higher-order terms wo
very likely be avoided in such applications because of
complexity.
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