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Variational approach to collective excitations
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We discuss a variational approach to collective excitations in a boson formalism based on quasiparticles.
Bosons are defined in correspondence with pairs of quasiparticles and boson images of fermion operators are
constructed by means of a mapping procedure of Marumori-type. Phonons of the type used within the random
phase approximatiofRPA) are introduced as Bogoliubov transformations of these bosons. The variables
entering into the definition of these phonons as well as of the quasiparticle operators are fixed simultaneously
by minimizing the expectation value of the boson Hamiltonian in the vacuum of the phonons. The approach is
tested within an exactly solvable two-level model which is characterized by a pairing Hamiltonian. A quite
good agreement is found for the energies of the ground state and of the'fiestclted state. The comparison
with the Bardeen-Cooper-Schrieffer method and the quasiparticle RPA as well as with some recent self-
consistent RPA-type approaches is discusg88556-28189)01103-9

PACS numbds): 21.60.Jz, 74.20.Fg

[. INTRODUCTION veloped for the best determination of these quantities. They
usually lead to the construction of a set of nonlinear equa-
The study of correlations in quantum many-body systemgions which are solved iteratively. Difficulties inherent in the
is a subject of great interest among the physicists of varioupractical realization of this scheme are discussed in Ref.
fields. Such an interest is testified to by the continuous def13].
velopment of new methods which aim at improving the treat- For what concerns groufb), the main idea of these ap-
ment of these correlations and so at making the microscopiproaches consists of transferring first the whole problem onto
description of collective excitations as reliable as possible. an appropriate boson space. This space is built by means of
Among the approaches which have attracted more atterboson operators which are the “images” of the fermion op-
tion in this field, a preeminent role is certainly played by theerators defining the standard RPA phonons. These boson op-
random phase approximati¢RPA). This represents, in fact, erators also allow to define new boson phonons. By means of
the simplest theory of excited states which admits the possian appropriate procedure, any fermion operator is mapped
bility that the ground state is not of purely independent-onto its boson image so that all calculations can be per-
particle character but may contain correlatiphf As is well ~ formed in this space.
known, however, this theory suffers from an internal incon- A clear advantage of the boson approach over the fermion
sistency due to the replacement, during the derivation of itene is that the internal inconsistency typical of RPA is fully
equations, of the expectation values in the correlated groundvercome. Evaluating the expectation value of a boson op-
state by the corresponding values in the uncorrelated ogrator in the correlated ground state does not cause indeed
Hartree-FockHF) one. This is usually known as the quasi- any difficulty since it can now be done without an explicit
boson approximatiofQBA). This important drawback has knowledge of the wave function of this state. Moreover, the
provided the starting point for the elaboration of several apphonon operators are ideal bosons and so also the problems
proaches attempting to restore the self-consistency of theelated to the definition of the ground state of the system as
theory. Among the first who have dealt with this problem wevacuum of non-commutating fermion phondi$)] are over-
quote Harg2] and Rowe[3]. Since then, several other ap- come. The standard RPA equations can be easily derived in
proaches have appeared within the same subject both ibrrespondence with the use of a ‘“zeroth-order” boson
nuclear physic§4—-18 and in other fieldd19]. Also the = Hamiltonian. Therefore, this boson formalism offers an effi-
present work has to be set in this context. cient way of going beyond RPA which consists of making
These approaches can be essentially divided into twase of higher-order boson images of the Hamiltor{ia8].
groups: (8 those formulated in a fermion formalism Similarly to what happens in the self-consistent fermion ap-
[2-13,19 and(b) those in which one has instead turned to aproaches to RPA, this leads to a set of nonlinear equations.
boson formalisnj14—18. For what concerns the first group, Of course, using this boson formalism also leads to a viola-
searching for the self-consistency and therefore avoiding théon of the Pauli principle and this problem has been the
QBA ultimately implies evaluating expectation values of subject of a recent investigatida7].
one- and two-body operators in ti@nknown correlated The purpose of the present work is that of further devel-
ground state. Various approximation schemes have been deping an RPA-type approach to collective excitations within
a boson formalism. Differently from previous works on this
subject{ 17,18 we will base this formalism on quasiparticles.
*Electronic address: samba@ct.infn.it This will allow a simultaneous treatment of particle-hole and
Electronic address: dang@rikaxp.riken.go.jp particle-particle (hole-holg correlations. In short, we will
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first perform a standard Bogoliubov transformation and deall the basic features of a realistic calculation and so also the
fine a set of boson operators in correspondence with quasextension of the formalism to any other case does not give
particle pair operators. A boson space will be defined incause for special concerns.

terms of these bosons and a mapping procedure will allow us The model has been first employed byddasen-Feldman

to transform all fermion operators of interest into equivalenf20] and refers to a system of nucleons interacting in an

operators acting in this boson space. As a further step, RPAaverage potential via a pairing force. The Hamiltonian is

type phonons will be constructed as Bogoliubov transformatherefore of the type

tions of these bosons and the structure of both the quasipar-

ticles and the phonons will be simultaneously fixed by ~ - +

minimizing the expectation value of the boson Hamiltonian H _; 'EJNI'_GJZJ_, \/Q—i\/Q_J’AJ Ajrs @

in the vacuum of these phonons under some constraints. '

These constraints are related to the conservation of the payith

ticle number(otherwise violated in this quasiparticle formal-

ism) and to the fermion and boson nature of the quasiparticle N +

and phonon operators, respectively. Of course, performing NJ:% &jmjm » @

this minimization is equivalent to solving a set of nonlinear

equations, which is formally similar to what is already seen

in the case of fermion self-consistent approaches. A_‘r:i[a_’rafr]o 3)

This way of proceeding shares some common points with NG
well known approaches like the Bardeen-Cooper-Schrieffer
(BCS method [or, more in general, the Hartree-Fock- where Qj=j+% and aJ-Tm creates a particle with angular-
Bogoliubov (HFB) on€] and the quasiparticle RPEQRPA). momentuny and projectiorm. The simplifying hypothesis is
For what concerns the similarity with the first one, one no-that there are only two single-particle levels with the same
tices already at this stagbut it will be clearer in the follow- angular momentum. Hence, the indenf a;rm will be used
ing) that the present way of proceeding reminds a kind ofthereafter to distinguish lower and upper level, while the
“higher order” BCS. The step forward with respect to BCS angular momentum remains unchanged. We will also replace
originates from the second Bogoliubov transformation whichQj by Q, for simplicity.
leads to a new vacuum, used to evaluate the expectation
values of the Hamiltonian and of the number operator, whicfbbey
is richer in structure than the standard quasiparticle vacuum.

A similarity with the QRPA is also evident due to the Al
introduction of an RPA-like phonon which, although an ideal [A| ,AT,]: 8 ( 1— _J) , (4)
boson, closely reminds the standard QRPA one. However, ! Q
important differences between the two approaches can be A
seen since, in the present ca@gpoth the quasiparticles and [N; ,AJT,]= djj ,ZAI-T. (5)
the phonons are fixed simultaneousli) the ground state
energy(rather than the excitation energy as in QRR#the  These commutators define an @Jalgebra for each level
basic objective of the procedure afiiil) this is a variational and the two-level model satisfies an SU@)SU(2) alge-
procedure. Pointii) also represents a further point of differ- bra. Thanks to this special group structure, the derivation of
ence with the work of Refl18] which was instead focused the exact eigenvalues of the Hamiltonian only requires some
on the excitation energy of the system. Last but not least, weimple angular-momentum algebra for the construction of
mention the fact that the boson Hamiltonian which is used irthe matrix to be diagonalized. The calculations are per-
this calculation and which is truncated at four-boson terms i$ormed within a space whose basic configurations are char-
considerably more refined than the one which would be sufacterized by distributions of particles in seniority-zero states
ficient to obtain the standard RPA equations working in ain both lower and upper levels.

e operatorsN;, Al, and the Hermitian conjugaté
the commutation relations

boson formalism. In this work we shall limit ourselves to the study of the
The paper is organized as follows. In Sec. Il, we will ground state and of the first'Oexcited state of the system.
describe the procedure. In Sec. Ill, we will show severalDifferently from Ref.[20], however, we will not only con-

applications of this procedure in the case of an exactly solvsider a system with a particle numbiie=2Q but we will
able two-level model. In the same section, we will also com~ather leaveN free to vary in the whole interval (0¢%).

pare this approach with others like BCS, QRPA and some As has been anticipated in the Introduction, we will make
recently developed fermion self-consistent approaches. Fiise of a quasiparticle formalism and so we introduce the
nally, in Sec. IV, we will summarize the results and draw Bogoliubov-Valatin transformation

some conclusions.

T _ t I
aim—Ujajm_Ujajm, (6)

Il. THE FORMALISM whereajm=(—1)j*maj_m and
In order to avoid a notation otherwise rather cumbersome,

we will illustrate the formalism directly in the case of the uf+ovi=1. (7)

exactly solvable model which has been chosen as a test for

our calculations. This model, although rather simple, offerdVe also define the statg as the quasiparticle vacuum, i.e.,
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[b;,bj1=[b/ ,bl1=0. (16)

a’jm|>=0- 8 i M

Inverting Eq.(6) (and its Hermitian conjugateve can now
rewrite any fermion operator in this quasiparticle formalism.
The Hamiltonian(1) becomes

[bl ' ]] 5|] '
We define the statg as the vacuum of the operatdrs, i.e.,

bj|)=0. (17)

A=co+ 2 (c)ili+ 2 (Ci( AT+ 4D+ (ca)ATA - i
i i ] In correspondence with the fermion space

+ 20 (Cay(ATN+AA)+ 20 (Co)y (ATAT+ A A) F={(ADMAMD), o=MM'=Q, (18

VN where the indicesj(M) and (j',M") refer to the lower and
; (o) NiN;, © higher level, respectively, we therefore define the boson
space
with
1 B={(bHM(b )}, 0<M.M'<Q, (19
Al= \/_[a Tal1°, (10)
2 a one-to-one correspondence existing between the stakes of
and B. By resorting to a mapping procedure, we can con-
/(/j = 2 aijajma (12 struct the boson image in this space of any fermion operator.
m

and whose coefficients can be found in H&fl]. Similarly,
the particle number 0peratd§t=Eij becomes

N=2023 vf+2 (ul-0)Nj+2VQ2 upj(Af+A4).
i i J

The procedure which has been employed in this work is the
same which has been used in previous wgd& and is of
Marumori-type. Namely, it is required that corresponding
fermion and boson matrix elements are equal. Some details
of the mapping procedure are given in the Appendix. Here
we simply show the boson images of the Hamilton{@h

and of the particle number operatdr). These are, respec-

(120  tively,

As is well known, the minimization of the expectation

value I:IB=a+§i: ,Bi(br+bi)+§j: 7ijbinj

2
AN =c,=0O 22¢,—G ?—G92< i i) ,
<| |> Co Z vi(2e vi) Z uiv +2 ¢” (b bT+bb)+2 2 e”k(bTbTbk‘Fblbjbi)

(13
with respect to the variablag ,v; and under the constraint +|§<:j kz iJ_klbi’rbj’rbkbl ;]: E Pijki
ST 2__
<|N|>_ZQ; vi=N (14 X(bTbTbTbﬁbrbkbjbi), (20

which guarantees the conservation of the particle number igyhere the coefficients are given in the Appendix, and

average, gives rise to the BCS equations. In particular, it can
be shown by making use of the Thouless theof2h] that a
necessary(although not sufficien{22]) condition for this
minimum to occur is that

NB:aN_’_; (Bn)j(b+ bj)+; (7w)ib]b;

<|(H )\N)a]maj m’|> 0’ (15)

+2 2 (€n) Ijk(b

[by+Dblb;by), (21)
i<
where\ is the Lagrange multiplier. Equatiori$), (14), and
(15) define the well-known BCS equations for the variablesyjth
UJ' y Ujs and\.

The variational procedure that we are going to study in
this work draws inspiration from that just mentioned for BCS
and examines its extension to a higher order. To perform this
procedure, keeping in mind that we want to describe 0
excited states, we introduce a set of zero angular-momentum
boson operatorb’r in correspondence with the quasiparticle
pair operators4T These boson operators obey the standard
commutation relat|ons

CYNZZQE sz, (226)
J

(Bn)j=2VQuju;, (22b)

(7n)j=2(uf—v?), (220
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where theX andY coefficients are such to guarantee boson
commutation relations to thgandq" operators, namely they

2
2 (BN)I| 88+ S| 1— — i _ al
' Q satisfy the conditions

(en)ijk= 5
1+5” \[ 1+5IJ 1_5) Z (XIVXIV’_Y:}YIVI):ﬁy,,r, (243)

Sik Sik
1+6,

Bui- (229 2 (XY= XY =0 (24D

- N ) we suppose thX andY coefficients to be realWe call|0)
In bothHg andNg the boson expansion has been truncateqne vacuum of the operatog, , i.e.
at four-boson terms but in the case Iﬁg these last terms

turn out to be zero. An analysis of the quality of the Hamil- q,/0)=0. (25
tonian (20) is provided in the Appendix. Inverting the expressiof23) (and its Hermitian conjugate

We are now ready to implement a variational procedurgyng using Eq25) we can evaluate the expectation value of
of BCS type in the new boson spaBeFor this purpose we any boson operator in the vacuupd) without explicitly

first perform the Bogoliubov transformation for bosons knowing this state. These quantities are functions of the vari-
ablesu, v, X, andY. The variational procedure that we will
QIZE_ (Xj”bjT—Y]-Vbj), (23) \e/;ﬁjlgre in this work consists of minimizing the expectation
i

2

(0|HB|0)=QZ vi2(26i—Gvi2)—GQZ<Ei U +2, Vi Yrvj”+i2<j b 2 (YIXI+XIY])

+ 2 2 SIKI Y (YIXIXRYT+HYIYIYRY P+ YIYTYY)

<) k=1

+ > Z piki 2 (YIXIYRYTHYIYIXIY P+ YIYIXEYT+HYIXIYEY U+ XPY Y RY T+ XPYTYRY]) - (26)

<j<k

with respect to all these variables under the constraint that (O|I:|,'3qTqT,|O)=0 (29)

(0|Ng|0)=202 vZ+2> (WP-v?) 2 (Y]))2=N, (where Hy=Hg—\Ng and \ is again a Lagrange multi-
! ! v 5 plier), which closely recalls Eq(15). However, differently
(27) from the BCS case where it is true by construction that

and with the further constraints given by E¢8), (243, and . N
(24D). ? VBB, (249 (J(H=AN)a]|)=0, (30)
The formal similarity between this minimization and the
one performed in BCS is evident. However, the new vacuunfiothing can be said priori concerning the matrix element
|0) exhibits a structure much richer than the BCS vaclium (0|Hq’|0). Whenever nonnegligible matrix elements of
This can be seen in detail by noticing that, as a result of thsuch a form were present, they would cause, of course, a
condition (25), it is [22] “disturbance” in the definition of|0) anqu|O) as ground
and excited states of the system, respectively. In such a case,
B 1 v et in order to have a more appropriate definition of these states,
0)=Noex E%: (YX )i biby [1) (28 one should resort to some extra operations like, for instance,
a diagonalization in the spad¢0),q’|0), ...}. In general,

and remembering thd) is the image of the quasiparticle the use of a more general Bogoliubov transformat(2)

- - . including a “shift” term [22] could also be taken into ac-
vacuum(). To the extent thakl andNg are good images of count. In all the cases examined in this work, however, this

H andN, this minimization is expected to be more effective problem has never occurred since the matrix elements
than the BCS one. ot
. - . H Ith h | h I -
Following arguments similar to those employed in BCS(O|_ 80,/0). although not exactly .zero, aveAe,\ways re
and, in particular, by making use of the Thouless theorem fofained ”]rUCh smaller than the matnx elementiH({)0) or
bosong[22], it is possible to show that such a minimization (0|q,Hgq,,|0). Therefore, we will not pay much attention
implies that to this problem in this work. We remark, in any case, that the
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EXC
EXC

EGR
EGR
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FIG. 1. Ground state enerdZGR) and excitation energy of the FIG. 2. As in Fig. 1 but folN=38.

first 0" state(EXC) as a function of the variabM described in the

text and for a number of particléé=4. Both energies are divided transition from a normal to a superfluid phase/at0.28. In

by 2e, € being the difference between the two single-particle enerthe present approach, instead, this phase transition occurs at

gies. The angular momentum of the levelsj is11/2. The results V=0.37. Both these transitions turn out to be hardly visible

refer to exact calculationgolid lineg, BCS (dotted line, QRPA  in the behavior of these energies. For a strength smaller than

(dot-dashed ling and the present approatttashed lines the critical valuevV=0.37, our results are almost identical to
the exact ones whereas for larger valued/ahey start de-

Hamiltonian |3||’3 is not diagonal in the one-phonon space Viating although always remaining within 2% from the exact

{q']0)} and so its diagonalization in this space is indispensvalues. Similar calculations performed using other choices of

able for a correct definition of the excited states. the parameters of the Hamiltonian confirm qualitatively these
results(see also another example in the followjing

Ill. CALCULATIONS AND DISCUSSION

The calculations that we will first discuss refer to the an-
gular momentunj =% and to single-particle energies=
—1 and e,=1 (in arbitrary unit3. Results obtained are
shown in Figs. 1-5. In each figure we plot, in the lower part,
the ground state energy while, in the upper part, the excita-
tion energy of the first O state[both energies are divided by
2e=2(e,— €1)]. In Figs. 1-3, these energies are plotted as a
function of the variablé&/ = G()/2¢ and refer to systems with
number of particlelN=4, 8, and 12, respectively. In Figs. 4 /
and 5, instead, we fix two values of this variable (V 0 ’ ’ : ’
=0.5 and 1.0, respectivelyand plot these energies fou
ranging from O up to &. In each figure, results are shown
for BCS (dotted ling, present approactdashed ling and
exact calculationgsolid line). In addition, in the case of the
energy of the first excited state, we also show the results
obtained within the QRPA22] (dot-dashed ling

EGR

A. Ground state energies

Regarding the ground state energies, a glance at all figures
shows that the results obtained within the present approach 0 02 0.4 0.6 08 1
are systematically located between exact and BCS results. V
Particularly interesting is the cade=20 =12 (half filling)
shown in Fig. 3. In this case, in fact, BCS solutions exhibit a FIG. 3. As in Fig. 1 but foN=12.

-8 1 ) ) 1
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" ' ' ' three approaches that we are using. Let us begin with BCS,
for instance. The problems concerning this case are well
. known in literature and are discussed in some detail in Ref.
[23]. We will recall them here because they are of great help
in examining our approach.
A low-lying excited state withiJ=0 can be written, in the

1 quasiparticle formalism of this paper, as a linear combination
of the type

EXC

0.5
At

[0) =25 clAll). (3D)

j Such a state has components corresponding to various num-
ber of particles. However, in order to describe a system with
N particles, it is reasonable to require that it should at least
have anN-particle component. We can easily identify a state
of the form(31) for which this is not the case. To see this we
note that, remembering the quasiparticle version of the par-

ticle number operatoN (12), the constraint(14) and the
5 5 0 15 20 25 definition (8) of the vacuum), one has

2t

EGR

3t

4t

FIG. 4. Ground state enerdGR) and excitation energy of the (N=N)|)= 20> ui AT (32)
first 0t state(EXC) as a function of the particle numbBrand for i
a fixed valueV=0.5. Further details are as in Fig. 1.

. . . 2 ™
Before proceeding with the discussion of the results orlf |#n} is @ normalized-particle state and;, the probability
the excited states, it is appropriate to insert a parenthesis dghat it is contained i), we can write
spurious states.

B. Spurious states (N=N)[)=2 d3(N=N)|yhp)= 2 da(n—N)| ).
The case that we are going to treat in this paper, hamely " " (33)
that of excitedJ=0 states, is a very delicate one in all the

T T T T This tells us that the stat€82) has no component witm
oal _ =N and therefore should be excluded when calculating the
N properties of the excited two quasiparticle states wWith0.

In the special case of our two-level model, since we can
- form at most two linearly independent states of the form of
Eqg. (31, eliminating the statd32) means being left with
only one state of this form. The coefficients of this state
] can be fixed by simply requiring its orthogonality to E§2)
and its normalization. One finds

E Y Usv o

C]_: T 7
\/ull)1+ Uzvz

u,v
Chm——a—a . (34)

\/U1U1+ U2U2

These coefficients define the structure of the excited BCS
state withJ=0 whose energy has been plotted in Figs. 1-5.
Spurious states are also observed in the approach under
consideration in this paper and this fact can be understood on
8 . . . . the basis of the same arguments already employed for BCS.
0 5 10 15 20 25 Starting, in fact, from the expressig@l) for the boson im-
N age of the number operator, expressing this in terms ofithe
and g operators and making use of Eq25) and (27), one
FIG. 5. As in Fig. 4 but fov=1.0. can write

5|
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. approach provides a quite good agreement with the exact
(Ng—N)[0)=2> |E (Bn)j (X +Y]) + Z Ek (en)ij results for all three values ®f examined. These values refer
' . = to the interval (0,20) but, as can also be seen in Figs. 4 and

| v r 7 5, excited energies are symmetrical with respect to the value
X EW YEY | (X+ YY)+ 27] YiYi N=20. We have already observed in Sec. Il A that this last

case(Fig. 3 is the one presenting a normal-superfluid phase

X (X4 Y) + ]qIIO) transition and it can be noticed, especially in the case of

> XYy
7

(Xt Yi)

QRPA and in the present approach, how the excited energies
N start deviating more and more from the exact ones while
Eq5p|0)' (39 approaching the transition points. Still in this case we also
. see that our results are quite close to those obtained in QRPA
where we have tru_ncated . expression at the one-phon%”e the difference with the BCS results is more marked.
component, Followm_g the same reasoning as for mf For the remainingN values and particularly for increasing
(33), we see that this state has no component withN . . .
particles and so has to be excluded from our calculations. Wgalues of the strengtif (see Fig. 5, for |nstan¢ei|ﬁergnces

are more pronounced and the present approach is the one

are, therefore, left with only one “physical” phonoq;;h . : .
whose structure can be fixed by requiring its orthogonality toWh'Ch provides the best agreement with the exact results.

qZp and its normalization. The energies of the figures, for
what concerns the procedure under study, refer to this
“physical” phonon. It is worth noticing, in any case, thatthe  In a quite recent publication by Dukelsky, ple, and
phononsqlp and q;gh are almost exactly those which result Schuck{26], the same two-level model discussed in this pa-
from the diagonalization ol in the one-phonon space Per has been used as a testing ground for three different
{q7]0)}. The energy of the Stakﬂ?;rplo), in particular, is al- many-body approaches for the treatment of correlations in
ways found quite low. So the same plots can also be obtainéger™i Systems: the self-consistent particle-particle RPA
by performing this diagonalization and simply neglecting the(SCPPRPA, the variational RPAVRPA) and the Brekner-
lowest (or “spurious”) eigenvalue. Hartree-Fock BHF) _metho_d. It is not our intention to make _

To complete these notes on spuriousity, we briefly Com__here a thorqugh d|scu_55|on on these approaches and their
ment also on the QRPA case. Here, one systematically od0terconnections for which we refer, of course, to Reb].
serves a solution of the equations which is zero. The preS\Ne believe, however, that it is of some interest to see at _Ieas_t
ence of such a spurious solution can be easily understood diPW these approaches compare with the one discussed in this
the basis of Baranger's remar@4]. The starting point is the Paper within the same model.

fact that the Hamiltonian of the system and the particle num- FOr what concems the SCppRPA method, we simply re-
ber operator commute: mind the reader that this is a generalization of the ppRPA

[22] according to a fermion self-consistent scheme of the
[A,K]=0. (36) type outlined in the I_ntroduction. _In the special case of the
model under discussion, two addition and removal phonons

If we use the expressiof12) for N and we approximate this ©f the type used in the ppRPA are introduced and the SCp-

commutator according to the method of the linearizafibh PRPA ground ;tate Is Qefined as the vacuum Of. these
we find that phonons. RPA-like equations are then constructed which de-

pend on the amplitudes defining these phonons as well as on
. one- and two-body density matricéalso depending on these
[A.N]={H,2JQ > up;(A]+A4)|=0. (30  amplitudes. The set of nonlinear equations so constructed is
! solved iteratively.

The VRPA, instead, is somehow closer in spirit to the one
discussed in the present paper since it corresponds to a direct
minimization of the expectation value of the Hamiltonian in
Qf=2ya X ujvj(AjT+A,~) (38)  the SCppRPA ground state. The main differences with re-

! spect to the present approach are the fact that the VRPA is
fully developed in the fermion space and that it implies an
explicit knowledge of the ground state wave function.
[H,07= Q' (39) In Ref. [26] only ground state energies have been taken

' ' into account and only fo=2(). However, differently from

with w=0. Thisw is then a QRPA eigenvalue. Indeed, e the cases of Figs. 1-5, also negative values of the pairing

and Y coefficients of the QRPA spurious solution which areStrength G have been considered to simulate repulsion

found numerically turn out to be exactlyithin a normal- &mong particlelg. Moreover, the calculations have been per-

ization factoy those given by Eq(38). formed for j= = while the single-particle energies are the
same as in this work. In Table I, we have compared the
results of the different approaches in the ranged(5—0.5)
of the strengthVv explored in Ref[26].

We can now proceed examining the energies of the first A glance at the table shows that our approach provides a
excited state withJ=0. Also for these energies the presentvery good agreement with the exact results in the whole

D. Comparison with other recent calculations

In other words, the phonon

is a solution of the equation

C. The first excited J=0 state
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TABLE I. Results for the ground state ener@y arbitrary unitg vs the variablev described in the text.
The angular momentum of the levelsjis 19/2 and the number of particlesNs=20. For a description of the
approaches involved see Sec. Ill D.

\% Exact This work VRPA SCppRPA BHF
—-0.50 —18.55446 —18.55360 —18.55411 —18.55410 —18.68164
—0.45 —18.66849 —18.66784 —18.66821 —18.66821 —18.77071
-0.40 —18.78706 —18.78660 —18.78686 —18.78686 —18.86658
—-0.35 —18.91072 —18.91040 —18.91058 —18.91058 —18.97002
—0.30 —19.04010 —19.03990 —19.04001 —19.04001 —19.08190
—0.25 —19.17600 —19.17588 —19.17594 —19.17594 —19.20324
-0.20 —19.31939 —19.31933 —19.31936 —19.31936 —19.33521
-0.15 —19.47153 —19.47150 —19.47151 —19.47151 —19.47916
-0.10 —19.63406 —19.63405 —19.63405 —19.63405 —19.63667
—0.05 —19.80919 —19.80919 —19.80919 —19.80919 —19.80957
0.00 —20.00000 —20.00000 —20.00000 —20.00000 —20.00000
0.05 —20.21101 —20.21101 —20.21101 —20.21101 —20.21047
0.10 —20.44921 —20.44917 —20.44918 —20.44918 —20.44390
0.15 —20.72625 —20.72593 —20.72600 —20.72599 —20.70373
0.20 —21.06339 —21.06100 —21.06132 —21.06130 —20.99397
0.25 —21.50260 —21.48640 —21.48772 —21.48733 —21.31929
0.30 —22.12491 —22.03620 —22.04037 —22.03638 —21.68509
0.35 —23.03321 —22.77899 —22.72688 —22.70769 —22.09757
0.40 —24.24608 —23.97001 —23.52903 —23.47803 —22.56372
0.45 —25.68929 —25.39821 —24.42583 —24.33106 —23.09128
0.50 —27.29077 —26.98390 —25.40086 —25.25808 —23.68858

range ofV. The agreement remains quite good also outsidespondence with pairs of these quasiparticles. By means of a
this range: aV=1.0, for instance, our result deviates from mapping procedure of Marumori-type we have constructed
the exact one still by less than 1%. As far as the comparisohoson images of fermion operators truncating the expansion
with the other approaches is concerned, in the intervabf the boson operators at four-boson terms. RPA-type
(—0.5-0.3) our results are very close to the VRPA andphonons have been introduced as Bogoliubov transforma-
SCppRPA ones. For larger values ¥f instead, these ap- tions of the above bosons and we have also defined the
proaches start to deviate more and more from the exact vaground state of the system as the vacuum of these phonons.
ues. The minimization of the expectation value of the boson
To give a better insight into these results, we notice thatHamiltonian in this vacuum with respect to the variables

within our approach, a transition between normal and supelgefining the quasiparticles and the phonons operators has
fluid phases occurs at=0.32. Therefore, beyond this point gjowed to fix these variables.

guasiparticles begin to play a crucial role in our calculations. Important features of this boson procedure are (Hato

. £ 1261 § : 5 his critical val eﬁPA-type inconsistency occur@,) no explicit knowledge of
in Ref.[26] for G>0.1(i.e., V>0.25). Atthis critical value, the ground state wave function is required aiiid no ambi-

in fact, the RPA eigenvalue is seen to approach zero. How- ... o

ever, although a S%:RPA for superfluid sl?/ztems can alread uities .related to the nqngommutatmty of the phonon opera-
be f(;und in literaturg¢13], none of the approaches discussed "> exist. Also the variational aspect of .the procedure IS an
in Ref.[26] makes use of the quasiparticles formalism. important feature always allowing to identify the exact

For completeness we also show in Table | the resulté]round state energy as a lower bound of the calculation.
which refer to BHF: this method appears to be the one with AS @ test for our approach we have chosen an exactly
more difficulties in reproducing the exact results both forSolvable two-level model characterized by a pairing Hamil-
positive and negative values of the pairing strength. Furthefonian. Ground state energies have been found in a quite

discussion on this point, however, goes beyond the purpos&OOd agreement with the exact results, always remaining lo-
of the present work and we will skip it. cated between these and the BCS ones. We have also calcu-

lated the energy of the first'Oexcited state and compared it
with the BCS and QRPA values. Also in this case our ap-
proach has offered a quite good agreement with the exact
In this article we have examined a variational approach taesults providing globally the best results.

collective excitations within a boson formalism. Aiming at These calculations have all referred to a pairing Hamil-
providing a simultaneous treatment of particle-hole andonian and, in some cases, differences between the various
particle-particle(hole-holg correlations, we have first intro- approaches have not been found relevant. It would certainly
duced quasiparticles. Bosons have been defined in corrée quite interesting to perform a similar comparison in the

IV. SUMMARY AND CONCLUSIONS
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case of a more general Hamiltonian and some work is
planned in this direction. Already on the basis of the present
calculations, however, we can conclude that this approach
shows itself as a valid alternative to the QRPA in all its
different applications. Among these we mention, in particu-
lar, the proton-neutron QRPA which represents at the mo-
ment an essential tool of theoretical analysis in the field of
double-beta decay and which has recently been the object of
several studief27].
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APPENDIX

The mapping technique used in this work follows the
main lines of a procedure which has had several applications
in the past both in the fermion-boson corresponddrad}
and in the fermion-fermion ong29]. We refer to Ref[30]
for a general discussion of the method. Here, we simply out-
line its basic points.

The first step of the procedure consists in defining a fer-
mion spacd- and a boson spad&in a one-to-one correspon-
dence. We have already seen that, in the present case, these
spaces are those defined in E(¢8) and(19). In correspon-
dence with a given fermion operat@®g, the procedure
searches for a boson operafbg such that all the eigenval-
ues ofO in F are also eigenvalues &fg in B. The operator
Og defines the image dD in B.

The boson operator is constructed via a step-by-step pro-
cedure. Each step involves the correspondence between in-
creasingly larger fermion and boson subspaces. The larger
these spaces are and, in general, the more complicated the
n-body structure of the boson operator will be. In this work,
wishing to construct boson images having at most four-

o ; 2 1
boson terms, it is enough to consider up to the two subspaceS(NF)i<13>: S5 5”(5“(6( 1— ﬁl) ( 1— O

t t At
={D. Al AALD AJALALD (A1)

and

B'={D).b{]),b/b}.|),b]b].bl.])}. (A2)

Finding the boson image amounts to finding a boson operator (/\/B)”k

such that corresponding matrix elements between these states
(suitably normalizegare equal. The procedure is, therefore,
of Marumori-type.

We have already discussed in Sec. Il the case of the fer-
mion number operatail2) which is mapped onto the boson
operator(21). In the case of the Hamiltoniaf®), the boson
image has the forni20) and the coefficients are

a=Cy, (A3a)
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5ijklz[

A(3)
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Bi=(C2)i, (A3b)
¥ij=20ij(C1)j+(C3)ij +46ij(Ce)ij » (A3c)
(Ne)?
d’ij_ ( )(2)[(C5)Ij+(c5)jl(1 5”)] (A?’d)
B
(Na)i?

( )(2)[2 ((CZ)|’+2(C4)|rk)A” I’k(NF)(Z)
F

- ikﬂj_ﬁjkﬁi}/(NB)

(2)

i (A3e)

(VR (Ve)if’
(NI (V)P

+4(Ce)ik+4(Co)ii+A(Co) kA

+E

( Cot2(Cy)i+2(C1)kt+4(Ce)y

(Ca)i ’|Aljl’k (C3)|’k(1 Sk )Al(JZ)m”

2
—aAu kI~ 2 (Vi’kAi(j,)m
I!

where

+yi/|A§f}/k>] / (Na)id (A3f)
(i
( B)|Jk|
_Igl bir J’Aljkl U (A39)
(2) = 1
(NF)” —5” 1_6 +1, (A4a)
(1 8 81830
X| (6 + 6 )2(1 ! + 6 2(1 l”
ij ik Qi ik Qj '
(Adb)
(Na)P'= 6 +1, (ASa)
3ij Oik 06+ (1= 6 6ik Sji) 2( 6ij + i+ Sjiw)
(A5b)
A(2> ,=(5“r5“r+5|]r5]|r)/(NB)|(]2)! (AGa)

ij,i']

ijk,i’j’k’:(é‘ii'(sjj/5kk'+ 5ii'5jk’5kj’+ 5ij,5]-k/5ki/

+ 8ij 6jir O + Gik Gjir Oy

+ Sk 8+ i) (Np)IiY - (A6b)
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TABLE II. Comparison between spectra of the Hamiltoni&hs (9) andH g (20) for three values of the
angular momentum Only the lowest 10 eigenvalues are shown. For further details see the Appendix.

j=11/2 j=15/2 j=19/2
Er Es Er Es Er Es
1 —17.069 —17.072 —22.064 —22.065 —27.065 —27.065
2 ~16.172 —16.194 —-21.231 —21.239 —26.282 —26.286
3 —14.813 ~14.912 ~19.961 —20.002 —25.088 —25.109
4 ~13.785 -13.812 —18.740 ~18.751 —23.751 ~23.816
5 -13.377 -13.717 —18.563 —18.692 —23.718 -23.725
6 —12.601 —12.700 ~17.707 —17.755 —22.774 —22.807
7 —~11.922 ~12.623 —17.090 —17.391 —22.313 —22.462
8 —11.200 —12.369 —16.340 —16.484 —21.501 —21.591
9 —10.821 —11.440 ~15.738 ~16.275 —20.824 —21.118
10 —10.558 —10.920 —15.602 —15.759 —20.635 —20.646

As a test on the quality of the boson Hamiltoni@®) we  (20) in the space(19). One observes a quite satisfactory
have made a comparison between fermion and boson spectegreement between fermion and boson spectra which testifies
In Table Il, columnsEg, we show the lowest 10 eigenvalues the good quality of this Hamiltonian. Of course, this agree-
of the fermion Hamiltonian(9) diagonalized in the space ment could be further improved by resorting to higher-order
(18) for three values of the angular momentjim', ¥, and  terms in the boson expansion of the Hamiltonian. However,
3. The coefficients of this Hamiltonian are functions of the with reference to possible realistic applications of the proce-
(u;,v;) Bogoliubov-Valatin variables and for these we havedure, we have preferred to test an expansion containing up to
taken the values resulting from the procedure of Sec. Il for &gyr-boson terms. The use of the higher-order terms would

strengthV=0.5 and a number of particldg=2(}. _ very likely be avoided in such applications because of its
In Table Il, columnsEg, we show the corresponding complexity.

spectra obtained by diagonalizing the boson Hamiltonian
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