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Unbound states by analytic continuation in the coupling constant
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The energies and widths of resonance states are determined by the analytic continuation of bound-state
energies as functions of a potential strength parameter~‘‘the coupling constant’’!. Various numerical examples
show the applicability of the method to systems decaying to two- and three-body channels. The examples
include unbound states of the nuclei5He, 5Li, 9Be, and9B, described ina1N anda1a1N microscopic
cluster models. Some states considered are controversial. Here they are well defined, and their questionable
features are understood to arise from their proximity to the complex-energy region of unphysical resonances
with negative energies and positive widths.@S0556-2813~99!00103-X#

PACS number~s!: 25.70.Ef, 21.60.Gx, 27.10.1h, 27.20.1n
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I. INTRODUCTION

In addition to bound states, nuclei have a large numbe
discrete unbound states@1#. In standard nuclear structur
models square-integrable bases are used, disregarding th
olds and the decay of some states. The instability of a sta
often essential. Neglecting it may lead to false conclusi
about other properties as well. The problem is especi
acute for light nuclei, which often have just one bound st
or none. Without consideration of unbound states or dis
garding their instability, the description is incomplete a
unreliable.

In recent years, however, new phenomena discovere
the field of unstable nuclei have revived the interest in
bound states. One of the most prominent phenomena is
‘‘Borromean’’ binding @2#. A system is called Borromean i
it is bound but can be decomposed into three subsyste
any two of which cannot form a bound state. Examples
the nuclei 6He and 11Li, composed ofa1n1n and 9Li
1n1n, respectively.

Unbound states may be put on the same footing as bo
states by the concept of theS-matrix pole~see, e.g.,@3,4#!.
The pole position in different regions of the complex plane
used to characterize the unbound states~resonances, ‘‘virtual
states,’’ etc.!. The techniques to find the poles of theSmatrix
have been mostly limited to simple interactions and syste
For composite nuclear systems one should treat the struc
and the instability simultaneously. Although there ex
methods designed for resonance states~see, e.g., Refs.@5,6#!,
it is desirable to deduce the properties of unbound st
from the eigenvalues and eigenfunctions of suitable Ham
tonians. For that purpose computational methods develo
for bound states can be used effectively. Two methods of
type are widely used in atomic and nuclear physics. In
first method, called the real stabilization method@7#, the
Schrödinger equation is solved in a box and the resonan
are singled out from the continuum by exploiting their s
bility against changes of the box size. In this method one
to solve the Schro¨dinger equation with many different bo
sizes, and with the many-dimensional box to contain a m
PRC 590556-2813/99/59~3!/1391~9!/$15.00
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tiparticle system, it is sometimes difficult to find the appr
priate box sizes. The method turns out to be suitable
narrow resonances only. In the second method, called
complex scaling method~CSM! @8#, the coordinater is ro-
tated into the complex plane by the transformationr→eiur ,
which transforms the resonance wave function into a squ
integrable function, while leaving the pole position inta
The CSM involves the calculation of complex matrix el
ments and the solution of a complex eigenvalue problem
main difficulty is that the Hamiltonian is non-Hermitian, an
the variational method used does not give an energy m
mum. Thus it becomes cumbersome to optimize the ba
The CSM has nevertheless proved to be suitable for exp
ing resonances, but not virtual states.

A third bound-state-type method@9# is that of the analytic
continuation in a coupling constant~ACCC!. This approach
draws on the intuitive picture that unbound states can
related to bound states by continuation to weaker bindi
More precisely, the unbound-state problem is first tra
formed into a bound-state problem by artificially changing
strength parameter in the potential. Then the square roo
the bound-state energy is continued analytically as a func
of the strength parameter to complex values by a Pade´ ap-
proximant. The coefficients of the Pade´ approximant are de-
termined by the real eigenvalues of the Hamiltonian for s
eral different potential strengths. Matrix elements of t
Hamiltonian are real and need not be calculated repeate
contrary to the real stabilization method or the CSM.

The ACCC method has hitherto been applied only in
few simple test cases owing probably to the high accur
required of the solution of the bound-state problem by
Padéapproximation. The emergence of reliable methods
solve few-body problems has, however, widened the ap
cability of the ACCC method. In our previous paper@10# we
tested the ACCC method by comparing its performance w
those of the direct numerical integration~DNI! and of the
CSM. The examples included both two-body and three-bo
resonances. The satisfactory agreement found in these c
demonstrates that the ACCC method provides an effec
description of nuclear resonances.
1391 ©1999 The American Physical Society
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The purpose of this paper is to apply the ACCC method
some specific unbound states, which test the analytic c
tinuation technique. One is anS-wave resonance or a virtua
state, whose trajectory near threshold shows a behavior q
different from resonances in other partial waves. We w
also consider three-body systems, which accommodate
well-behaved resonance states and irregular ones.

The three-body systems to be considered are the B
romean systems9Be5a1a1n and 9B5a1a1p, and the
two-body systems to be considered are their subsyst
5He5a1n and 5Li5a1p. They will be described micro-
scopically, i.e., as nine- and five-nucleon systems, resp
tively. The terms ‘‘three-body’’ and ‘‘two-body’’ refer to the
number of clusters we consider. The structure of the nu
9Be and9B was recently investigated in a microscopic thre
cluster model by Arai, Ogawa, and two of the present
thors ~Y.S. and K.V.! @11#. They applied the CSM metho
and found all low-lying resonances except the 1/21 states.
The 1/21 state of 9Be, known to have an enhanced elect
dipole transition to the ground state, has an energy of
keV above thea1a1n threshold and a width of about 22
keV @12#. Its analog state in9B is also of considerable inter
est~see, e.g., Refs.@13–15#!, but its energy has not yet bee
determined experimentally. The ACCC method offers
possibility to study these states.

In Sec. II we outline the ACCC method. As an illustr
tion, a simple two-body model will be discussed. Some re
nances of5He and5Li will be examined in the microscopic
two-cluster models ofa1n anda1p. Section III is devoted
to three-body systems, and as an application, a few r
nances of9Be and9B will be discussed, with particular em
phasis on the 1/21 states. Some conclusions are drawn
Sec. IV.

II. ANALYTIC CONTINUATION IN
COUPLING CONSTANTS

A. Poles of theS matrix: A simple example

We assume that the Hamiltonian of the system is writ
as H(l)5H11lH2 , whereH2 is an attractive interaction
such thatH has a bound state for some values ofl. Whenl
is decreased the bound state approaches threshold and
become a resonance or a virtual state. The value ofl for
which E(l)50 will be denoted byl0 .

The S-matrix formulation provides a unified descriptio
of discrete and continuum states. The discrete states ar
sociated with the poles of the scattering matrixSl(k), where
l is the orbital angular momentum. The matrixSl(k), defined
originally for positive real wave numberk, can be continued
analytically to the complexk plane. As is well known@3,4#,
the poles on the positive imaginaryk axis belong to bound
states, while the poles on the negative imaginary axis a
imply negative energies, but the corresponding wave fu
tions diverge exponentially at large distances. Such ‘‘stat
are called virtual or antibound states. If a pole is located
the fourth quadrant of the complexk plane, i.e.,

k5kR2 ikI , kR.0, kI.0, ~1!

then its complex energy isE5\2k2/2m[ER2 iG/2, where
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kRkI.0. ~2!

If kR.kI , thenER.0 and the pole corresponds to an exp
nentially decaying state or ‘‘resonance,’’ with positionER
and widthG. This will only give rise to a resonant structur
in Sl(k) for real momenta ifG is sufficiently small. IfkR
,kI , then the real part of the energy becomes negative,
the ‘‘resonance’’ is said to be ‘‘unphysical.’’ TheS matrix
will also have another pole atk52kR2 ikI in the third
quadrant, which corresponds to a quasistationary state, w
is associated with capture, and it is sometimes called
antiresonance.

The above discussion can be illustrated with a squ
well potential @H15p2/2m,H25V(r ), V(r )52lV0(r
,a), V(r )50(r>a)]. The Schro¨dinger equation then can
be solved analytically, which makes it possible to locate
S-matrix poles easily. The upper panel of Fig. 1 displa
some of the poles forl 50 and 1 for a square well potentia
The parameters are the same as used in Refs.@16,1#:
\2/2m54 MeV fm2, a52 fm, l51, andV0525 MeV for
l 50 and 12.25 MeV forl 51. There are two bound state
and one virtual state in theS wave and one bound state an
one virtual state in theP wave. There are, in addition, som
poles located in the third and fourth quadrants of the co
plex k plane. The middle panel of Fig. 1 displays the traje
tories of the poles corresponding to the second bound s
and to the virtual state in theS wave and that belonging to
the P-wave bound state, as the coupling constantl is de-
creased. By decreasingl, the S-wave bound-state and
virtual-state poles approach each other along the imagin
axis and merge atb5ka52 i . By further decreasingl, the
poles move, symmetrically, perpendicular to the imagin
axis into the fourth and third quadrants, respectively. TheS
pole represents a bound state for 0.890,l<1. It represents a
virtual state or an unphysical resonance for 0.804,l
<0.890 and corresponds to a resonance forl<0.804. The
non-S-wave poles behave differently. The bound-sta
P-wave pole meets its virtual-state partner at the origin, a
both leave the origin, symmetrically with respect to t
imaginary axis and tangentially with respect to the real ax
One of the poles corresponds to a resonance for 0.110,l
<0.806, but by further decreasingl, it enters the unphysica
region. The lowest panel shows the real parts of the 1S and 0
P energies (ER) as functions ofl. The two curves behave
very differently near threshold. By decreasingl, theS-state
energy touches theER50 axis, and turns negative again—
reflecting the fact that the pole moves, through the origin
the negative imaginaryk axis—and it shows a kink where
Rek becomes nonzero. On the other hand, the passage o
P-wave state through the threshold is smooth.

B. Analytic continuation of the square root of the energy

In Refs. @9,1# it has been shown that, for a two-bod
system interacting with an attractive short-range potent
the wave numberkl behaves near the threshold askl(l)
; iAl2l0 for l .0 andk0(l); i (l2l0) for l 50. It is thus
convenient to introduce the variable

x5Al2l0, with kl~l0!50, ~3!
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and continuekl(x), which is an analytic function in the
bound-state regionl.l0 , to the unbound regionl,l0 .
The threshold behavior ofkl(x) allows one to perform the
analytic continuation with a Pade´ approximant of the form

kl~x!5 i
c01c1x1c2x21•••1cMxM

11d1x1d2x21•••1dNxN . ~4!

For the S-wave pole, however, more careful conside
ations are necessary. As shown in Fig. 1 the sharp off-tur
the pole trajectory from the imaginaryk axis ~with the coin-
cidence of the two poles! takes place below zero at a certa
2 i k̄0(k̄0>0), with the behavior at the kink similar to tha
for l .0:

k0~l!1 i k̄0; iAl2l̄0 for l'l̄0 , ~5!

FIG. 1. S-matrix poles in a square well potential of radiusa and
depth2lV0 . Uppermost panel:S- andP-wave poles in the com-
plex b5ka plane, wherek is the wave number;l51. The dotted
lines mark Imb56Reb. Middle panel:S- and P-wave pole tra-
jectories in theb plane, with somel values displayed. The dotte
line as above. Lowest panel:~real parts of! the energies of the 1S
and 0P states as a function ofl.
of

wherel̄0 is defined byk0(l̄0)52 i k̄0 . Since the continua-
tion is problematic at the kink, the variablex should be cho-
sen to be zero at the kink. The definition ofx in Eq. ~4! is
therefore replaced by

x5Al2l̄0 with k0~ l̄0!52 i k̄0 . ~6!

The (M1N11) coefficients of the@N,M # Padéapprox-
imant ~4! are calculated in the bound-state region and th
are therefore real. Ifl,l0 ~or l̄0), thenx will be imaginary
and kl(x) may become complex. To determine the coe
cientsci anddi , we solve the bound-state problem for va
ous values of the coupling constantl(.l0) and try to find
the threshold valuel0 or the kink valuel̄0 . To have a reli-
able approximation, one has to know theci and di values
accurately, and for that, one has to solve the bound-s
problem to high accuracy~typically four or more digits!,
especially near the threshold. To solve the bound-state p
lem, we use the stochastic variational method with correla
Gaussian bases@17,18#. A point to be emphasized here
that one must accurately and consistently calculate a rang
states with deep to weak binding up through the thresh
and that is a challenge for a variational calculation.

It was shown in Ref.@1# that both thel 50 and l 51
trajectories in Fig. 1 can be well reproduced by using
@5,5# Padéapproximant. ForSwaves,l̄0 is determined itera-
tively by searching for the value that produces the m
stable trajectory, independently of the choice of the set of
bound-state energies which are used to determine theci and
di values. If an incorrect value were used forl̄0 , then the
trajectory would be very unstable and would strongly depe
on the choice of the energy set as well as on the deg
@N,M # of the Pade´ approximant.

The threshold behavior of the pole trajectories shows
what extent the potential can confine a particle in an
bound state, and that, in turn, depends primarily on the p
etrability of its surface. It is well known that there is n
proper resonance without a barrier. To elucidate the dep
dence of the threshold behavior on barrier penetrability,
use a two-particle model with a two-range Gaussian poten

V~r !528lexp$2~r /2.5!2%1B exp$2~r /5!2%, ~7!

where we use units of\5c5m51 (m is the particle mass!.
The second term produces a potential barrier. This sim
problem can easily be solved by DNI@19#. The trajectories
of theS-wave resonances obtained by the ACCC method
by DNI are compared in Fig. 2 for five barrier heightsB
~includingB50). We see that the trajectories forB51.0 and
2.0 leave the imaginaryk axis near the origin~i.e., k̄0'0),
entering almost immediately the resonance region in a w
reminiscent of the trajectories of higher partial waves. T
trajectory passes fairly close to the real axis, implying sm
resonance widths. As the barrier height decreases, the tr
tory tends to be similar to that of anS-wave pole in the
purely attractive potential~Fig. 1!: it follows the negative
imaginary axis for a while, and the corresponding state
virtual; then it leaves the axis at a certain point (k̄0.0) into
the unphysical region before it enters the resonance reg
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C. Application to 5He and 5Li

As an application of the ACCC method to a two-bo
system, we calculate the resonance parameters of5He and
5Li. These have been determined byR-matrix analyses~see,
e.g., @20#! and have also been calculated by a microsco
cluster model@the resonating-group model~RGM!; see, e.g.,
@21##. The 3/22 and 1/22 resonances have been identifi
experimentally@12#, though the width of the latter is ver
large and its energy is uncertain. The existence of a 11

resonance is even more controversial@22#. A recent shell-
model calculation@23# puts it at 3–4 MeV for5He. If the
state were predominantly of single-particle nature as is fo
in Ref. @23#, its existence would be a great surprise.

We assume that the resonances in theA55 systems have
the two-cluster structure ofa1N. The wave function of the
a particle, Fa , is approximated by a (0s)4 harmonic-
oscillator configuration~the center-of-mass motion elim
nated! with size parametern[mv/2\50.26 fm22. It is too
difficult to use a more sophisticated wave function, es
cially in three-cluster model calculations. The trial wa
function is then given by

C5A$FaF~r !@Yl~ r̂ !3x1/2#JM%, ~8!

whereA is the antisymmetrizer andx1/2 is the spin function
of the nucleon. Our model is rather similar to that used
@21#. The radiala-N relative wave functionF(r ) is deter-
mined variationally by minimizing the energy. It was e
pressed as a combination of Gaussians with different fal
parameters. Since the wave function of thea particle is ap-
proximated by the simplest shell-model configuration,
have to use such an effective two-nucleon potential that
produces reasonably well the binding energy of thea par-
ticle with that configuration as well as two-nucleon scatt
ing data at low energies. As such a potential we used
Minnesota two-nucleon potential@24#. Its central term con-
tains an exchange parameteru, which determines the poten
tial strength in odd partial waves. The appropriateu value ū
depends somewhat on the system. Since the energy o
only composite subsystem, thea particle, does not depen
on u, it is convenient to choosel5u/ū, but for simplicity,

FIG. 2. Pole trajectories in the two-range Gaussian potentia
Eq. ~7!. ACCC results are compared with DNI results. The traje
tories are obtained by varyingl, and the points marked belong t
equidistantl. The dotted line marks Imk52Rek.
ic
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we consideredu itself as the variable. To facilitate the ana
lytic continuation, the bound-state calculation was perform
for a set ofu values.

Although the bound-state problem must be solved ma
times, the ACCC method does not require a large amoun
computer time. Since the Hamiltonian is linear in the co
pling constant, its matrix elements must be evaluated o
once. The diagonalization of the Hamiltonian, which must
repeated many times, is not very time consuming.

The calculation was done forJp53/22( l 51), 1/22( l
51), and 1/21( l 50). The resonance parameters predic
by the ACCC method forū50.98 are listed in Table I. Theu
values corresponding to the thresholds,u0 , are also listed in
the table. Sinceu0 is close toū50.98 for the 3/22 state, the
analytic continuation is very stable. For the 1/22 state, theu0

value is fairly far fromū, yet the analytic continuation in
volves little uncertainty.

The RGM results of@21# were obtained by performing
scattering calculations for complex energies. Table I sho
that our results are consistent with them. The two models
not exactly the same, and so small differences are natu
Whenever one energy is smaller than the other, the co
sponding widths behave similarly, which indicates a cons
tent shift specific to each partial wave. The RGM of R
@21# reproduces the experimental phase shifts excellen
but the resonance parameters agree with the empirical
rameters for only the 3/22 states. The discrepancy in th
position of the 1/22 state is caused by the fact that the p
rameters of a broad resonance are poorly defined empiric
The unique definition is that based on theS-matrix pole, and
if that definition is used in the analyses@25#, there is no
discrepancy.

More interesting is the 1/21 state. Figure 3 displays th
analytic continuation from the bound-state region by vary
u. In this case the distance between the physical valueū
50.98, andu0 is extremely large and this makes the analy
continuation rather unstable. The trajectory for the5He sys-
tem passes through the virtual-state region and the unph
cal region of the fourth quadrant and finally shows up in t
physical region before reachingū50.98. This trajectory is
reminiscent of theS-wave trajectory in a potential problem
of no barrier~see Fig. 2!. The pointū50.98 is very close to
the borderline separating the physical region from the
physical region. The energy of the state is therefore predic

f
-

TABLE I. Resonance energiesE and widthsG, given in units of

MeV, of 5He and5Li. ū50.98. The energy is counted from th
two-body threshold.

ACCC S matrix, RGMa Expt.b

Jp E G u0 E G E G

5He 3/22 0.77 0.64 1.10415 0.76 0.63 0.89 0.6
1/22 1.98 5.4 1.6775 1.89 5.20 561 461
1/21 12 190 2.2261

5Li 3/22 1.63 1.25 1.20588 1.67 1.33 1.97'1.5
1/22 3.0 6.4 1.800653 2.70 6.25 7212 562
1/21 42 197 2.428761

aReference@21#.
bReference@12#.
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to be much smaller than the width. Such a state does
show up in the phase shift, and so it cannot be calle
proper resonance. The case of5Li is similar to that of 5He,
except that the trajectory resembles the pattern of the fin
barrier case of Fig. 2. Because of the instability of the a
lytic continuation, the 1/21 resonance parameters in Table
are rather uncertain. Nevertheless, the shape of the traje
ries is likely to be qualitatively correct; so the 1/21 states
must lie close to the borderline between physical and
physical resonances. The present model could, of course
improved, but that would not help since this model rep
duces the experimental phase shifts, and so any improvem
should be accompanied by a rescaling of the parameters
example, the distortion of thea particle would increase the
binding for all states. For theA56 nuclei this effect is of the
order of 1 MeV@26#. This is an overall shift, which has to b
compensated for by a change ofu to restore the agreement i
other observables. Therefore, the resonance parameters
duced by our model are very likely realistic. We thus think
is fair to say that our results rule out the existence o
low-lying 1/21 resonance in5He and 5Li.

III. RESONANCES IN THREE-BODY SYSTEMS

A. Resonance of a Borromean system

The resonances of three-body systems have physical
nificance in various problems. It is of great interest to s
whether there are resonances in the three-nucleon syste
in the three-baryon systems ofLNN andSNN, and whether
the so-called dibaryon resonance exists in thepNN system.
The S-matrix pole trajectories have been studied for thr
body systems interacting via schematic potentials@27–29#.
In these works the Faddeev formalism was used for
three-body dynamics, and theS-matrix poles were obtained
by analytic continuation of the solution of the eigenval
equation of the Faddeev kernel. Recently, three-nucl
resonances were searched for by the CSM@30#.

As our variational method provides extremely accur
bound-state solutions for three particles or even m
@18,31#, we can extend our studies to three-body syste
From the behavior of the two-body pole trajectories one c
not tell a priori whether the three-body trajectories behave
the same way. To conjecture their qualitative behavior

FIG. 3. The trajectories of the 1/21 states in5He and 5Li as a
function of theu parameter. Herek is identified with E1/2. The
dotted line marks Imk52Rek.
ot
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would be convenient to think in terms of an ‘‘effective
two-body picture, but to set up such a picture is nontrivi
An example of a nontrivial three-body effect is the Efimo
effect @32#: the three-body system will have an infinite num
ber of bound states if none of the two-body subsystems h
bound state but all haveS states sharp at zero energy. Th
one can expect that the behavior of the three-body state
pends crucially on whether the subsystems have bound s
or not.

The physical system we shall study is Borromean, with
without two-body~Coulomb! barriers. To get a feeling for
the behavior of the trajectory in these cases, we now cons
a simple Borromean system of three spinless bosons of m
m, with \2/m541.47 MeV fm2, which interact via the po-
tential

V~r !5280l exp$2r 2%1B exp$2~r /3!2%. ~9!

The energies and lengths are in units of MeV and fm, resp
tively. Note that there are no two-body bound states fol
,1.5. Thus, if there is a resonance atl51, it will decay into
three-body channels. We were interested in zero-angu
momentum states. These can be constructed with great a
racy out of basis states in which the angular momentum
tween any two particles as well as that between the cente
mass of these two and the third particle is zero.

We compare the results of the ACCC method with tho
of the CSM. The three-body bound-state problem was sol
by the stochastic variational method@18#. The ACCC and
CSM trajectories obtained by varyingl are shown in Fig. 4
for B50 andB51 MeV. The two methods give the sam
pole positions for a wide range of the potential strength. T
branching-off point is~close to! the origin, irrespective of
whether the potential has a barrier or not. Thus the beha
of the Borromean system for theS wave is similar to a two-
body case with finite barrier. This is consistent with the we
known interpretation that the three-body system has an
fective barrier against disintegration even for zero orb
angular momentum.

B. Application to the resonances in9Be and 9B

The a1a1N type microscopic three-cluster model w
use for 9Be and 9B is a straightforward extension of thea
1N model used in Sec. II C for5He and5Li. The model has
been detailed in Ref.@11#, where it has been shown to repro
duce a number of properties of9Be and9B successfully. The
trial wave function is chosen as

C5(
m

(
l 1 ,l 2 ,L

A$Fa1
Fa2

Fl 1l 2L
m ~r 1

m ,r 2
m!

3@@Yl 1
~ r̂1

m!3Yl 2
~ r̂2

m!#L3x1/2#JM%, ~10!

where m stands for either of the two cluster arrangeme
(aN)a and (aa)N, and r1

m and r2
m denote the Jacobi coor

dinates belonging to the arrangementm. The variable func-
tions Fl 1l 2L

m (r 1
m ,r 2

m) are constructed by expansions in term

of Gaussians. In Ref.@11# the resonances were treated by t
CSM, and they showed good correspondence with exp
ment. The only exception is that the CSM was unable
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produce a 1/21 resonance, which was identified experime
tally near threshold for both nuclei. In the microscopica
1a1N model, the Minnesota force was adopted.

The coupling constantl has again been chosen to b
proportional tou. The appropriateu value recommended in
the literature is around 0.94; this makes8Be in the consisten
a1a model slightly unbound as it should be, and both5He
and 5Li are also unbound. As was mentioned in Sec. II C,
energy of thea particle is unaffected by the value ofu, but
since both thea1a and thea1N energies depend onu, the
two-body thresholds do also depend onu. Both 9Be and9B

FIG. 4. The trajectories of the resonance of a Borromean sys
interacting via the two-range Gaussian potential of Eq.~11!. The
valueB, given in MeV, denotes the strength of the repulsive pa
The ACCC trajectory as a function of the coupling constantl is
compared with the CSM result. Herek is identified withE1/2.
-

e

are Borromean, and so in the neighborhood ofū the lowest-
lying threshold is the three-body threshold, but that is not
case for largeru values that make the three-cluster states
our interest bound. In the procedure of analytic continuat
this requires subtle considerations.

Figure 5 displays the bound-state energy of the 1/22 state
in 9Be as a function ofu. The energy of the correspondin
a1a model of 8Be is also shown. The calculated value
the intrinsica-particle energy is223.984 MeV~the Cou-
lomb potential is included!; so 8Be gets bound if the energ
is deeper than247.968 MeV, which occurs foru>0.958.
In the Jp51/22 state thea1a1n system is more deeply
bound than thea1a system foru.1.01. Therefore, the
1/22 state will be unstable to the dissociation into the8Be
1n channel foru<1.01. The analytic continuation is to b
based on bound states, and the quantity to be continued i
square root of the energy with respect to the thresh
reached first from below for decreasingu. The first threshold
one reaches by decreasingu is the 8Be1N threshold for all
cases to be considered. Thus, what we have to continue
lytically is k(u)5AE(9Be)2E(8Be). The resonance energ
obtained is then, of course, that with respect to the energ
8Be. The energyE(8Be) is complex in theu region in which

m

.

FIG. 5. The energy of the 1/22 state of9Be as a function of the
u parameter. The energy of the subsystem8Be is also shown.
TABLE II. EnergiesE and widthsG, given in units of MeV, of 8Be, 9Be, and 9B. ū50.94. The
energy of8Be is counted from the two-body threshold and the energies of9Be and9B from the three-body
threshold.

ACCC CSMa Expt.b

Jp E G E G E G

8Be 01 0.208 0.003 0.09189 6.861.7 eV
21 2.85 1.44 3.13260.03 1.560.02

9Be 3/22 21.501 0 21.431 0 21.5735 0
5/22 0.838 0.001 0.84 0.001 0.855961.3 0.7760.15 keV
1/22 1.17 0.59 1.20 0.46 1.2160.12 1.08060.11

9B 3/22 0.288 0.001 0.30 0.004 0.277 0.5460.21 keV
5/22 2.56 0.05 2.55 0.044 2.63860.005 0.08160.005
1/22 2.66 1.15 2.73 1.0 3.11c 3.1

aReference@11#.
bReference@12#.
cB. Pugh, quoted in Ref.@33#.
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a1a is unbound, i.e., foru,0.958.
The resonance parameters obtained for the 1/22, 3/22,

and 5/22 states of9Be and9B are compared in Table II with
experiment and with the previous CSM calculation of@11#.
The agreement between the ACCC and CSM results is v
good, and the theory reproduces the measured resonanc
ergies remarkably well. The resonance widths are reason
well reproduced. The basis dimension used in the pre
calculation is much larger than that used in Ref.@12#, and
that is why the9Be ground state has a slightly larger bindin
energy now.

The results of the analytic continuation for the 1/21 states
of 9Be and9B are shown in Fig. 6. The9Be trajectory shows
the typical behavior of anS-wave two-body state with an
attractive potential. It is certainly different from the patte
of Fig. 4 expected for a Borromean system. The virtual-s
section is easily understood by recalling that, from the ori
to the point marked withu50.96 ~more precisely,u
50.958), the model subsystema1a is indeed bound. But
the behavior of the curve is similar even beyond that po
which indicates that this state is indeed of the8Be1n struc-
ture. The point corresponding to the physically correct p
tential (ū50.94) is in the region of physical resonances, b
is still close to the borderline of the unphysical region. T
9B trajectory is, on the other hand, reminiscent of eithe
two-body resonance with a barrier, like theBÞ0 case of Fig.
2, or of a true three-body resonance of a Borromean sys
shown in Fig. 4. It is obvious that, owing to the higher Co

FIG. 6. The trajectories of the 1/21 states in9Be and 9B as a
function of theu parameter. Herek is identified with E1/2. The
dotted line marks Imk52Rek.
ry
en-
ly
nt

te
n

t,

-
t

a

m,
-

lomb barrier and the sharp resonance in thea1a system, the
a2a subsystem tends to be formed more dominantly th
the a1p subsystem, but the trajectory alone cannot tell
whether the weight of the8Be1p configuration is large
enough to prevail over thea1a1p three-body structure. In
comparing the motion of the two poles, it is conspicuous t
the rate of change ofk(u) along the trajectory is much large
for 9Be than for 9B.

Table III contains the resonance parameters of the 11

states in9Be and9B. As they depend rather strongly on th
u value, which is poorly defined, they are presented fo
range ofu values. Furthermore, to help decide between
different u values, parallel results for8Be and for the 5/21

state of9Be are also shown. From this it appears that, rat
than 0.94, the appropriate value is 0.95; forū50.95, all reso-
nance energies are reasonably well reproduced. But
widths for the 1/21 states of9Be and 9B are much larger
than the empirical values. It is difficult to reconcile the th
oretical result with experiment in this respect. The thre
cluster dynamics is described very accurately in our mo
and any excitation mechanism that would invalidate
model should show up in eithera1a or a1N, but there
seems to be no such effect. A stringent test of the correctn
of our results would be a comparison with experimental d
other than resonance parameters. For example, the rate o
1/21→3/22 transition, which is known experimentally@12#,
could be calculated by an analytic continuation of the cor
sponding matrix elment.

In a recent preprint@34# Efros and Bang have conclude
that the 1/21 state of9Be is a virtual state with an energy o
223.5 keV, and in their model this implies that the anal
state in 9B is a resonance of width 1.5 MeV at 0.6 MeV
They described9Be in a macroscopica1a1n model and
analyzed the photodisintegration of9Be, assuming a8Be
1n two-body final state. The interaction between8Be andn
was represented by a two-body potential, and the 1/21 states
were produced as states in this potential. While it is obvio
that our microscopic three-cluster model, in principle, is
more realistic than a macroscopic two-body potential mod
this two-body model has the advantage that its parame
carry direct empirical information. It is therefore worthwhi
to ponder the relationship between the two results. As
shown in Table III, our model would put the9Be 1/21 state
at 20.0235 MeV with au value slightly larger than 0.97
The sameu value would put the 1/21 resonance of9B at 1.5
TABLE III. Resonance energiesE and widthsG, given in units of MeV, of the 1/21 states of9Be and9B.
The energy is counted from the three-body threshold.

9Be(1/21) 9B(1/21) 8Be(01) 9Be(5/21)

ū E G E G E G E G

0.94 1.02 2.62 2.3 2.7 0.208 0.0026 2.06 0.60
0.95 0.40 2.94 2.1 2.6 0.101 20 eV 1.86 0.52
0.96 20.84 2.41 1.86 2.4 20.020b 1.65 0.45
0.97 20.26c 1.62 2.2 20.153b 1.42 0.37
Expt.a 0.11160.007 0.21760.010 ~1.9! ;0.7 0.09189 6.861.7 eV 1.47660.009 0.28260.011

aReference@12#.
bBound state.
cVirtual state.
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MeV and a width of 2 MeV. This minor inconsistency wit
the prediction of the two-body model is attributed to t
two-body dynamics in that model. The sameu value would
make 8Be bound, which is incorrect, but it would shift th
5/21 state of 9Be close to~but slightly below! its correct
position. This shows thatū depends slightly not only on th
nucleus but also on the state, and if so,ū.0.97 cannot com-
pletely be ruled out for the 1/21 state of thea1a1N sys-
tem. Thus our model does not exclude that the 1/21 state of
9Be is actually a virtual state. Ifu.0.97 were appropriate
for the 1/21 state of thea1a1N system, then a furthe
fine-tuning of the force would be desirable so as to ma
8Be unbound since the binding of8Be distorts the dynamics
of the a1a1N systems.

IV. CONCLUSION

In this paper we have located unbound states by ana
continuation of the momentum as a function of a poten
strength from the bound-state region~using the ACCC
method!. The objective was to study controversial unbou
states of the most typical two-cluster and three-cluster nuc
In this way we tested the applicability of the analytic co
tinuation method, and explored the nature of the states c
sidered. We found some general results and some tha
pertinent to the systems investigated.

The general results are the following. First, we were p
ticularly interested inl 50 states, where the branching-off o
the pole trajectory from the imaginaryk axis is at ana priori
unknown point of the negative imaginaryk axis. We have
demonstrated that a linear extrapolation of the momentum
the vicinity of the branching-off point performs excellent
for l 50 states as well. This makes it possible to locate a
l 50 unbound states: virtual states, unphysical resonance
resonances. Second, we have demonstrated that the t
body resonances of Borromean systems that interact
purely attractive forces behave like two-body resonan
within a potential barrier. In this way we confirmed the a
pearance of an effective three-body barrier. Third, we h
demonstrated that the analytic continuation is feasible
reliable even if the two-body thresholds, as functions of
coupling constant, cross the three-body threshold. This
significant finding because it extends the scope of
method. In fact, in ann-body system (n.2) there may be no
parameter whose change varies then-body binding but
leaves then21,n22, . . . binding energies intact. This im
plies that a variation of any coupling constant will rearran
the binding mechanism, but our result shows that the t
natures of the unbound states can still be explored by a
lytic continuation.

Turning to more specific results, we mention that seve
comparisons were made between the ACCC method and
CSM and a scattering-wave method. Whenever results
tained with these other methods are available, good ag
ment has been found, which is a confirmation of the valid
of all these methods. In particular, the position of the 1/2

resonance of thea1N system has been confirmed to b
much lower than obtained in conventional phenomenolog
analyses. This is not a discrepancy between theory and
e

ic
l

i.

n-
re

-

in

y
or
ee-
ia
s

-
e
d

e
a
e

e
e
a-

l
he
b-
e-

y

al
x-

periment but rather a failure of the conventionalR-matrix
parametrization.

There are cases in which no resonances have been f
with any other method, despite physical indications for th
existence. With the ACCC method the poles have been s
cessfully located even in these cases. Their absence in
CSM is now understood and discussed by the close vici
of the unphysical region in thek plane. The borderline is
given by Imk52Rek or by thek phase2p/4. To find poles
with such phases by the CSM requires a rotation anglu
'p/4, with which the CSM is bound to become very u
stable. For the 1/21 states of5He and5Li, the long-standing
contradiction @22# between bound-state and unbound-st
methods is now resolved. The latter failed to find these 11

states because they lie very far from where they were p
dicted to be by bound-state methods, at the borderline of
unphysical resonance region. There can be no doubt in
correctness of the cluster-model predictions since theS-wave
phase shifts are excellently reproduced. The fact that bou
state methods incorrectly predict the 1/21 states to be so low
in energy is a warning that one should not take quite s
ously the correspondence between the energies of s
found in the shell model or any other method and the en
gies of unbound states. At the same time, this warn
should be taken as a stimulation to use them in analytic
continued form; after all, there is no essential difference
tween the cluster model and the shell model in this resp

The preeminence of the ACCC method becomes appa
for three-body resonances, for which scattering-state m
ods are useless and the CSM is unstable. The 1/21 states of
9Be and9B have been found. From the pole trajectories it
apparent that a8Be1N structure is more prominent in9Be
than in 9B. In comparing the results with experiment, on
should keep in mind that the widths of the resonant sta
change together with their positions~as functions of any pa-
rameter of the model!, and they change very rapidly below
the Coulomb barrier. In view of this, the agreement w
experiment is very satisfactory apart from the widths of t
1/21 states.

In conclusion, we can state that the ACCC method h
been found to be unique among the techniques of localiz
unbound states of composite systems. It performs unifor
well, irrespective of the decay mode and of the location
the unbound state in the complexk plane. It has proved to be
a useful theoretical tool that broadens the scope of conv
tional nuclear structure models by incorporating t
unbound-state region of the nuclear spectrum.
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@6# A. Csótó, R. G. Lovas, and A. T. Kruppa, Phys. Rev. Lett.70,
1389 ~1993!.

@7# A. U. Hazi and H. S. Taylor, Phys. Rev. A1, 1109~1970!.
@8# Y. K. Ho, Phys. Rep.99, 1 ~1983!.
@9# V. I. Kukulin and V. M. Krasnopol’sky, J. Phys. A10, 33

~1977!; V. I. Kukulin, V. M. Krasnopol’sky, and M. Miselkhi,
Sov. J. Nucl. Phys.29, 421 ~1979!.

@10# N. Tanaka, Y. Suzuki, and K. Varga, Phys. Rev. C56, 562
~1997!.

@11# K. Arai, Y. Ogawa, Y. Suzuki, and K. Varga, Phys. Rev. C54,
132 ~1996!.

@12# F. Ajzenberg-Selove, Nucl. Phys.A490, 1 ~1988!.
@13# M. A. Tiede et al., Phys. Rev. C52, 1315~1995!.
@14# F. C. Barker, Phys. Rev. C53, 2539~1996!.
@15# R. Sherr and G. Bertsch, Phys. Rev. C32, 1809~1985!.
@16# H. M. Nussenzweig, Nucl. Phys.11, 499 ~1959!; Causality

and Dispersion Relations~Academic Press, New York, 1972!,
p. 221.
@17# V. I. Kukulin and V. M. Krasnopol’sky, J. Phys. G3, 795
~1977!.

@18# K. Varga and Y. Suzuki, Phys. Rev. C52, 2885~1995!.
@19# T. Vertse, K. F. Pa´l, and Z. Balogh, Comput. Phys. Commu

27, 309 ~1982!.
@20# C. L. Woods, F. C. Barker, W. N. Catford, L. K. Fifield, an

N. A. Orr, Aust. J. Phys.41, 525 ~1988!.
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