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The energies and widths of resonance states are determined by the analytic continuation of bound-state
energies as functions of a potential strength paranfétiee coupling constant). Various numerical examples
show the applicability of the method to systems decaying to two- and three-body channels. The examples
include unbound states of the nucRle, 5Li, °Be, and®B, described ine+N and a+ «+N microscopic
cluster models. Some states considered are controversial. Here they are well defined, and their questionable
features are understood to arise from their proximity to the complex-energy region of unphysical resonances
with negative energies and positive widthS0556-28189)00103-X

PACS numbgs): 25.70.Ef, 21.60.Gx, 27.1&h, 27.20+n

[. INTRODUCTION tiparticle system, it is sometimes difficult to find the appro-
priate box sizes. The method turns out to be suitable for
In addition to bound states, nuclei have a large number ofiarrow resonances only. In the second method, called the
discrete unbound statdd]. In standard nuclear structure complex scaling methodCSM) [8], the coordinate is ro-
models square-integrable bases are used, disregarding thresited into the complex plane by the transformatiene'’r,
olds and the decay of some states. The instability of a state ishich transforms the resonance wave function into a square-
often essential. Neglecting it may lead to false conclusionsntegrable function, while leaving the pole position intact.
about other properties as well. The problem is especiallyThe CSM involves the calculation of complex matrix ele-
acute for light nuclei, which often have just one bound statements and the solution of a complex eigenvalue problem. Its
or none. Without consideration of unbound states or disremain difficulty is that the Hamiltonian is non-Hermitian, and
garding their instability, the description is incomplete andthe variational method used does not give an energy mini-
unreliable. mum. Thus it becomes cumbersome to optimize the bases.
In recent years, however, new phenomena discovered ithe CSM has nevertheless proved to be suitable for explor-
the field of unstable nuclei have revived the interest in uning resonances, but not virtual states.
bound states. One of the most prominent phenomena is the A third bound-state-type methd@] is that of the analytic
“Borromean” binding [2]. A system is called Borromean if continuation in a coupling constatACCC). This approach
it is bound but can be decomposed into three subsystemdraws on the intuitive picture that unbound states can be
any two of which cannot form a bound state. Examples areelated to bound states by continuation to weaker binding.
the nuclei ®He and *'Li, composed ofa+n+n and °Li  More precisely, the unbound-state problem is first trans-
+n+n, respectively. formed into a bound-state problem by artificially changing a
Unbound states may be put on the same footing as bourgtrength parameter in the potential. Then the square root of
states by the concept of tf#matrix pole(see, e.g.[3,4]).  the bound-state energy is continued analytically as a function
The pole position in different regions of the complex plane isof the strength parameter to complex values by a Rame
used to characterize the unbound stdtesonances, “virtual proximant. The coefficients of the Padpproximant are de-
states,” etd. The techniques to find the poles of tBenatrix ~ termined by the real eigenvalues of the Hamiltonian for sev-
have been mostly limited to simple interactions and systemseral different potential strengths. Matrix elements of the
For composite nuclear systems one should treat the structukéamiltonian are real and need not be calculated repeatedly,
and the instability simultaneously. Although there existcontrary to the real stabilization method or the CSM.
methods designed for resonance stéseg, e.g., Ref$5,6]), The ACCC method has hitherto been applied only in a
it is desirable to deduce the properties of unbound statefew simple test cases owing probably to the high accuracy
from the eigenvalues and eigenfunctions of suitable Hamilvequired of the solution of the bound-state problem by the
tonians. For that purpose computational methods developg@adeapproximation. The emergence of reliable methods to
for bound states can be used effectively. Two methods of thisolve few-body problems has, however, widened the appli-
type are widely used in atomic and nuclear physics. In theability of the ACCC method. In our previous pagpé&f] we
first method, called the real stabilization methpd, the tested the ACCC method by comparing its performance with
Schralinger equation is solved in a box and the resonancethose of the direct numerical integratid®NI) and of the
are singled out from the continuum by exploiting their sta-CSM. The examples included both two-body and three-body
bility against changes of the box size. In this method one hasesonances. The satisfactory agreement found in these cases
to solve the Schidinger equation with many different box demonstrates that the ACCC method provides an effective
sizes, and with the many-dimensional box to contain a muldescription of nuclear resonances.

0556-2813/99/5)/1391(9)/$15.00 PRC 59 1391 ©1999 The American Physical Society



1392 N. TANAKA, Y. SUZUKI, K. VARGA, AND R. G. LOVAS PRC 59

The purpose of this paper is to apply the ACCC method to h2 242
some specific unbound states, which test the analytic con- ER:ﬁ(k%_kF)r I'=——kgk;>0. 2
tinuation technique. One is @wave resonance or a virtual
state, whose trajectory near threshold shows a behavior qui‘
different from resonances in other partial waves. We will
also consider three-body systems, which accommodate bo d widthI". This will only give rise to a resonant structure

well-behaved resonance states and irregular ones. : i, -
The three-body systems to be considered are the Bot- S (k) for real momenta ifl" is sufficiently small. Itk

~ ;
romean system&Be=a + a+n and B=a + a+ p, and the k,, then the real part of the energy becomes negative, and

two-body systems to be considered are their subsysten;[vge “resonance” is said to be “unphysical.” Th& matrix
SHe=a+n and °Li=a+p. They will be described micro- il also have another pole &= kg ik, in the third

. . . : guadrant, which corresponds to a quasistationary state, which
scopically, i.e., as nine- and five-nucleon systems, respe

tively. The terms “three-body” and “two-body” refer to the %s associated with capture, and it is sometimes called an

number of clusters we consider. The structure of the nucle’clmtiresonance.
' The above discussion can be illustrated with a square

Be and”B was recently investigated in a microscopic three well potential [H;=p%/2m,H,=V(r), V(r)=—\Vy(r

cluster model by Arai, Ogawa, and two of the present au- _ . )
. <a), V(r)=0(r=a)]. The Schralinger equation then can
thors (Y.S. and K.V) [11]. They applied the CSM method be solved analytically, which makes it possible to locate the

and found all low-lying resonances except the"1/ates. : : . .
. Smatrix poles easily. The upper panel of Fig. 1 displays
9
The 1/2° state of°Be, known to have an enhanced electric ome of the poles for=0 and 1 for a square well potential.

dipole transition to the ground state, has an energy of 11 h . )
X e parameters are the same as used in Hdf8,1]:
keV above thex+ «a+n threshold and a width of about 220 .2, — \* \1ev fm2, a=2 fm, \=1, andV,=25 MeV for

keV [12]. Its analog state iffB is also of considerable inter- =0 and 12.25 MeV fol =1 There are two bound states

gstt(seg, eag., Ref$113_%3”)’ b_llj%ltsAegeCrgy ha?hngt y?ft beetrk: and one virtual state in th® wave and one bound state and
etermined experimentatly. € method ofters te€,ne virtual state in th@ wave. There are, in addition, some

possibility to study these states. : :
, . poles located in the third and fourth quadrants of the com-
In Sec. Il we outline the ACCC method. As an illustra- plex k plane. The middle panel of Fig. 1 displays the trajec-

tion, a simple two—té)o.dy.model will .be d|§cussed: Some rSO%ries of the poles corresponding to the second bound state
nances of’He and®Li will be examined in the microscopic

i lust dels of+ da+p. Section 1lis devoted and to the virtual state in th& wave and that belonging to
WO-CluSter models nanda-p. section 11S AeVoted o p \yave bound state, as the coupling constanis de-

to three-body systems, and as an application, a few resQ:oased. By decreasiny, the Swave bound-state and

g i i i i - - . .
n;mcies Of?ﬁ ag/dQ BtV\t"” b(asdﬁcussid,l w:thnpartrlcutlje:r v?/rr? inwrtual-state poles approach each other along the imaginary
phasis o € states. some conclusions are dra axis and merge g8=ka= —i. By further decreasing, the

?kR> k,, thenEg>0 and the pole corresponds to an expo-
entially decaying state or “resonance,” with positiéy

Sec. IV. poles move, symmetrically, perpendicular to the imaginary
axis into the fourth and third quadrants, respectively. T8e 1
Il. ANALYTIC CONTINUATION IN pole represents a bound state for 0.890<1. It represents a
COUPLING CONSTANTS virtual state or an unphysical resonance for 0804
=<0.890 and corresponds to a resonanceNsr0.804. The
A. Poles of theS matrix: A simple example nonS-wave poles behave differently. The bound-state

We assume that the Hamiltonian of the system is writterP-wWave pole meets its virtual-state partner at the origin, and
asH(\)=H;+\H,, whereH, is an attractive interaction Doth leave the origin, symmetrically with respect to the
such thatH has a bound state for some values\ofWhen)  imaginary axis and tangentially with respect to the real axis.
is decreased the bound state approaches threshold and nfa€ of the poles corresponds to a resonance for 6210
become a resonance or a virtual state. The valua ér  <0.-806, but by further decreasing it enters the unphysical
which E(\) =0 will be denoted by\. region. The lowest panel shows the real parts of theuid 0

The Smatrix formulation provides a unified description P energies Eg) as functions of\. The two curves behave
of discrete and continuum states. The discrete states are a&ry differently near threshold. By decreasikgthe S-state
sociated with the poles of the scattering masjkk), where ~ €nergy touches thBz=0 axis, and turns negative again—
| is the orbital angular momentum. The matgixk), defined ~ reflecting the fact that the pole moves, through the origin, to
originally for positive real wave numbég can be continued the negative imaginark axis—and it shows a kink where
analytically to the complex plane. As is well knowri3,4],  Rek becomes nonzero. On the other hand, the passage of the
the poles on the positive imaginakyaxis belong to bound P-wave state through the threshold is smooth.
states, while the poles on the negative imaginary axis also
imply negative energies, but the corresponding wave func- B. Analytic continuation of the square root of the energy

tions diverge exponentially at large distances. Such “states In Refs. [9,1] it has been shown that, for a two-body

are called virtual or antibound states. If a pole is located in . . . . :
the fourth quadrant of the compléxplane, i.e., system interacting with an attractive short-range potential,

the wave numbek; behaves near the threshold kg\)

k=kg—ik,, kg>0, k>0, (1) ~iyA—Ng for >0 andkg(N) ~i(A—X\g) for I=0. Itis thus
convenient to introduce the variable

then its complex energy iE=#%k?/2m=Eg—iI'/2, where x=vA—\g, With k(\g)=0, ©)
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4T ' ' : ' ' ] where), is defined byko(\o) = —ikg. Since the continua-
; g‘"a"e tion is problematic at the kink, the variabeshould be cho-
2k = sen to be zero at the kink. The definition fn Eq. (4) is
=% 0 ¢ therefore replaced by
E B -
2F * " o ooe x=VA—Ng With Ko(hg)=—iro. 6)
-4 | | | | e ] The (M +N+1) coefficients of thg N,M] Padeapprox-

imant (4) are calculated in the bound-state region and they

are therefore real. Ik <\, (or A), thenx will be imaginary
and k;(x) may become complex. To determine the coeffi-
cientsc; andd;, we solve the bound-state problem for vari-
ous values of the coupling constang>\,) and try to find

the threshold valua or the kink valuex,. To have a reli-
able approximation, one has to know tbeand d; values
accurately, and for that, one has to solve the bound-state
problem to high accuracytypically four or more digits
especially near the threshold. To solve the bound-state prob-
- lem, we use the stochastic variational method with correlated
Gaussian bas€d 7,18. A point to be emphasized here is
that one must accurately and consistently calculate a range of
states with deep to weak binding up through the threshold,
and that is a challenge for a variational calculation.

It was shown in Ref[1] that both thel=0 andl=1
trajectories in Fig. 1 can be well reproduced by using the

[5,5] Padeapproximant. FoSwaves,\ is determined itera-
tively by searching for the value that produces the most
stable trajectory, independently of the choice of the set of the
bound-state energies which are used to determine;thed

d; values. If an incorrect value were used fof, then the
trajectory would be very unstable and would strongly depend

-1.5 T T T T 1 on the choice of the energy set as well as on the degree

A The threshold behavior of the pole trajectories shows to
FIG. 1. Smatrix poles in a square well potential of radmand ~ What extent the potential can confine a particle in an un-

depth—\V,. Uppermost panelS- and P-wave poles in the com- Pound state, and that, in turn, depends primarily on the pen-
plex B=ka plane, wherek is the wave numben,=1. The dotted ~ €trability of its surface. It is well known that there is no
lines mark ImB=+ReB. Middle panel:S- and P-wave pole tra- Proper resonance without a barrier. To elucidate the depen-
jectories in theB plane, with somex values displayed. The dotted dence of the threshold behavior on barrier penetrability, we
line as above. Lowest pandteal parts of the energies of thed  use a two-particle model with a two-range Gaussian potential
and OP states as a function of.

0.5

0.0

-0.5 5

Eg[MeV]

-1.0 5

V(r)=—8\exp—(r/2.5)2}+Bexp[—(r/5)%, (7)

and continuek,(x), which is an analytic function in the
bound-state regiom.>\,, to the unbound regiom <X\g. where we use units df=c=m=1 (mis the particle mags
The threshold behavior df(x) allows one to perform the The second term produces a potential barrier. This simple
analytic continuation with a Padspproximant of the form problem can easily be solved by DINL9]. The trajectories

of the Swave resonances obtained by the ACCC method and
Cot CyX+CoX2+ - - - +cpyxM by DNI are compared in Fig. 2 for five barrier heigtis
1 dpxF (4)  (includingB=0). We see that the trajectories B 1.0 and

2.0 leave the imaginari axis near the origirii.e., xg=~0),
entering almost immediately the resonance region in a way
reminiscent of the trajectories of higher partial waves. The

. ) . o . ajectory passes fairly close to the real axis, implying small
the pole trajectory from the imaginakyaxis (with the coin- . resonance widths. As the barrier height decreases, the trajec-
cidence of the two polégakes place below zero at a certain tory tends to be similar to that of aBwave pole in the
—iko(ko=0), with the behavior at the kink similar to that purely attractive potentialFig. 1): it follows the negative

for 1>0: imaginary axis for a while, and the corresponding state is

virtual; then it leaves the axis at a certain poiﬁ,(> 0) into
KoM\ +ikg~iVA—Ng for A=\, (5)  the unphysical region before it enters the resonance region.

Ki(x)=1i

For the Swave pole, however, more careful consider-
ations are necessary. As shown in Fig. 1 the sharp off-turn
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TABLE I. Resonance energi&and widthsl", given in units of
S MeV, of °He and®Li. u=0.98. The energy is counted from the
. L
) . % q012 =015 two-body threshold.
003‘. ., ﬂo'os\ R b N = o007 . b
023003 N g N 0.04 LNy ACCC S matrix, RGM?  Expt.
) N By 1001 ~ . .
\é/ 0.01% \ ~ ~ J E T Ug E r E r
*. [o1] [025 1.0 B=2.0
= 0.4 SHe 3/2° 0.77 0.64 1.10415 0.76 0.63 0.89 0.60
0.1 1/2° 198 54 16775 189 520 51 4*1
el o SSICC /2% 12 190 2.2261
ST = SLi 3/2~ 1.63 1.25 1.20588 1.67 133 19%~15
T T | — T T T 1/2= 3.0 6.4 1.800653 2.70 6.25 712 5*2
Re (k) )

. o . . %Referencd21].
FIG. 2. Pole trajectories in the two-range Gaussian potential OBReferenczﬂ%

Eq. (7). ACCC results are compared with DNI results. The trajec-
tories are obtained by varying, and the points marked belong to e consideredi itself as the variable. To facilitate the ana-

equidistant. The dotted line marks Irk=—Rek. lytic continuation, the bound-state calculation was performed
o ) for a set ofu values.
C. Application to °He and °Li Although the bound-state problem must be solved many

As an application of the ACCC method to a two-body times, the ACCC method does not require a large amount of
system, we calculate the resonance parameteRHefand ~ COmMputer time. Since the Hamiltonian is linear in the cou-
5_i. These have been determined Bymatrix analysegsee, pling constant, its matrix elements must be evaluated only
e.g.,[20]) and have also been calculated by a microscopi@nce- The diagonalization of the Hamiltonian, which must be
cluster mode[the resonating-group modéRGM): see, e.g., '€Peated many times, is not very time consuming.

[21]]. The 3/2 and 1/Z resonances have been identified 'he calculation was done fa3”=3/2"(1=1), 1/Z°(
experimentally[12], though the width of the latter is very =1), and 1/2(1=0). The resonance parameters predicted
large and its energy is uncertain. The existence of & 1/2 by the ACCC method fou=0.98 are listed in Table |. The
resonance is even more controvergia?]. A recent shell- values corresponding to the thresholdg, are also listed in
model calculatior{23] puts it at 3—-4 MeV for°He. If the  the table. Sincel, is close tou=0.98 for the 3/2 state, the
state were predominantly of single-particle nature as is foundnalytic continuation is very stable. For the 1/@ate, theu,

in Ref.[23], its existence would be a great surprise. value is fairly far fromu, yet the analytic continuation in-
We assume that the resonances inAle5 systems have g yes little uncertainty.
the two-cluster structure af+ N. The wave function of the The RGM results of21] were obtained by performing
a particle, ®,, is approximated by a @* harmonic-  scattering calculations for complex energies. Table | shows
oscillator configuration(the center-of-mass motion elimi- that our results are consistent with them. The two models are
nated with size parameter=ma/2/i=0.26 fm 2. ItiSt00  pot exactly the same, and so small differences are natural.
difficult to use a more sophisticated wave function, espeéyyhenever one energy is smaller than the other, the corre-
cially in three-cluster model calculations. The trial wave sponding widths behave similarly, which indicates a consis-

function is then given by tent shift specific to each partial wave. The RGM of Ref.
- [21] reproduces the experimental phase shifts excellently,
W=A{®F (DY) X X1l ami ®  but the resonance parameters agree with the empirical pa-

rameters for only the 3/2 states. The discrepancy in the
where A is the antisymmetrizer ang,, is the spin function position of the 1/2 state is caused by the fact that the pa-
of the nucleon. Our model is rather similar to that used inrameters of a broad resonance are poorly defined empirically.
[21]. The radiala-N relative wave functiorF(r) is deter- ~ The unique definition is that based on tBenatrix pole, and
mined variationally by minimizing the energy. It was ex- if that definition is used in the analys¢g5], there is no
pressed as a combination of Gaussians with different falloffliscrepancy.
parameters. Since the wave function of thgarticle is ap- More interesting is the 1/2 state. Figure 3 displays the
proximated by the simplest shell-model configuration, weanalytic continuation from the bound-state region by varying
have to use such an effective two-nucleon potential that red. In this case the distance between the physical value,
produces reasonably well the binding energy of th@ar-  =0.98, andu, is extremely large and this makes the analytic
ticle with that configuration as well as two-nucleon scatter-continuation rather unstable. The trajectory for fitée sys-
ing data at low energies. As such a potential we used théem passes through the virtual-state region and the unphysi-
Minnesota two-nucleon potentif24]. Its central term con- cal region of the fourth quadrant and finally shows up in the
tains an exchange parameterwhich determines the poten- ppysical region before reaching=0.98. This trajectory is
tial strength in odd partial waves. The appropriatealueu reminiscent of theS'wave trajectory in a potential problem
depends somewhat on the system. Since the energy of th no barrier(see Fig. 2 The pointu=0.98 is very close to
only composite subsystem, the particle, does not depend the porderline separating the physical region from the un-
on u, it is convenient to choose=u/u, but for simplicity,  physical region. The energy of the state is therefore predicted
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0 would be convenient to think in terms of an “effective”
5 n two-body picture, but to set up such a picture is nontrivial.
ooy — Jed2) An example of a nontrivial three-body effect is the Efimov
*& oo Lid2z) effect[32]: the three-body system will have an infinite num-
ber of bound states if none of the two-body subsystems has a
bound state but all hav8 states sharp at zero energy. Thus
one can expect that the behavior of the three-body state de-
pends crucially on whether the subsystems have bound states
. 0.98 or not.
The physical system we shall study is Borromean, with or
Moo without two-body(Coulomb barriers. To get a feeling for
i é J the_behavior of the trajectory in these cases, we now consider
Re(k) [MeV”Z] a S|rr_1ple Borromean system of thrge spmless bc_Jsons of mass
m, with #2/m=41.47 MeV fnf, which interact via the po-
FIG. 3. The trajectories of the 1/2states in®He and®Li as a  tential

function of theu parameter. Herd is identified with EY¥2 The ) )
dotted line marks Ink=— Rek. V(r)=—80N exp{—r“}+Bexp{—(r/3)%}. 9

)
>
]
/
4
/1‘

Tm(k) [MeV 4

'
[«
|

to be much smaller than the width. Such a state does nothe energies and lengths are in units of MeV and fm, respec-
show up in the phase shift, and so it cannot be called &vely. Note that there are no two-body bound statesNor
proper resonance. The casef is similar to that of5He, < 1.5. Thus, if there is a resonancexat 1, it will decay into
except that the trajectory resembles the pattern of the finite¢three-body channels. We were interested in zero-angular-
barrier case of Fig. 2. Because of the instability of the anamomentum states. These can be constructed with great accu-
lytic continuation, the 1/2 resonance parameters in Table | racy out of basis states in which the angular momentum be-
are rather uncertain. Nevertheless, the shape of the trajectbveen any two particles as well as that between the center of
ries is likely to be qualitatively correct; so the 1/xtates mass of these two and the third particle is zero.

must lie close to the borderline between physical and un- We compare the results of the ACCC method with those
physical resonances. The present model could, of course, 188 the CSM. The three-body bound-state problem was solved
improved, but that would not help since this model repro-by the stochastic variational meth¢dg]. The ACCC and
duces the experimental phase shifts, and so any improvemefM trajectories obtained by varyingare shown in Fig. 4
should be accompanied by a rescaling of the parameters. Fir B=0 andB=1 MeV. The two methods give the same
example, the distortion of the particle would increase the pole positions for a wide range of the potential strength. The
binding for all states. For tha=6 nuclei this effect is of the branching-off point is(close t9 the origin, irrespective of
order of 1 MeV[26]. This is an overall shift, which has to be Whether the potential has a barrier or not. Thus the behavior
compensated for by a changeufo restore the agreement in of the Borromean system for tifgwave is similar to a two-
other observables. Therefore, the resonance parameters phf)dy case with finite barrier. This is consistent with the well-
duced by our model are very likely realistic. We thus think it known interpretation that the three-body system has an ef-
is fair to say that our results rule out the existence of dective barrier against disintegration even for zero orbital

low-lying 1/2" resonance irrHe and°®Li. angular momentum.
IIl. RESONANCES IN THREE-BODY SYSTEMS B. Application to the resonances in°Be and °B
A. Resonance of a Borromean system The a+a+N type microscopic three-cluster model we

_ _use for °Be and®B is a straightforward extension of the
_ _The resonances of three-body systems ha_ve physical sig- N model used in Sec. 11 C fotHe and®Li. The model has
nificance in various problems. It is of great interest t0 seg)een detailed in Ref11], where it has been shown to repro-

whether there are resonances in the three-nucleon system Qfice a number of properties 8Be and®B successfully. The
in the three-baryon systems ANN andXNN, and whether  tia wave function is chosen as

the so-called dibaryon resonance exists in #i¢N system.
The Smatrix pole trajectories have been studied for three-

body systems interacting via schematic potentjais—29. =2 | IE ) A D R L(rrh)

In these works the Faddeev formalism was used for the roe

three-body dynamics, and tf#matrix poles were obtained XILY, (P4 XY (P9 10X X1l st (10)
1 2 !

by analytic continuation of the solution of the eigenvalue

equation of the Faddeev kernel. Recently, three-nucleon .
resonances were searched for by the O3B, where p stands for either of the two cluster arrangements

As our variational method provides extremely accuratel@N)a@ and (@@)N, andry andr denote the Jacobi coor-
bound-state solutions for three particles or even mordlinates belonging to the arrangement The variable func-
[18,31, we can extend our studies to three-body systemdions Ff ;| (rf,r5) are constructed by expansions in terms
From the behavior of the two-body pole trajectories one canef Gaussians. In Ref11] the resonances were treated by the
not tell a priori whether the three-body trajectories behave inCSM, and they showed good correspondence with experi-
the same way. To conjecture their qualitative behavior, itment. The only exception is that the CSM was unable to
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0.0 475
NH "«.,...
>> Ol4 ™ -48.0 =
© -0.2 ...
2, 03 = -48.5 *Be (07) S,
@ -0.4 ., ’ S 490
0.5
= "-..,..\ 1.00 = 495
0.6 | | I | 1 9Be (1/2‘)
0.0 0.2 0.4 0.6 0.8 1.0 5001
Re(k) [MeV'4]
-50.5 1 1 1 1 1
0.96 0.98 1.00 1.02 1.04
0.0
— u
& ]
> 0.4+ FIG. 5. The energy of the 17/2state of°Be as a function of the
é" 7 u parameter. The energy of the subsystéBe is also shown.
E’ 12 are Borromean, and so in the neighborhoodi dhe lowest-
o lying threshold is the three-body threshold, but that is not the
T ] case for largeu values that make the three-cluster states of

1.I0 1.I5 2.I0 2.5 3.0
Re(k) [MeV'4]

our interest bound. In the procedure of analytic continuation
this requires subtle considerations.
Figure 5 displays the bound-state energy of the lgtate

=
o
=]
W

FIG. 4. The trajectories of the resonance of a Borromean systerin °Be as a function ofi. The energy of the corresponding
a+a model of ®Be is also shown. The calculated value of

interacting via the two-range Gaussian potential of 8d). The

value B, given in MeV, denotes the strength of the repulsive part.the intrinsic a-particle energy is—23.984 MeV (the Cou-
lomb potential is includexl so ®Be gets bound if the energy

The ACCC trajectory as a function of the coupling constans

compared with the CSM result. Hekeis identified withE/2,

tally near threshold for both nuclei. In the microscopic

+ a+N model, the Minnesota force was adopted.

the literature is around 0.94; this mak&Be in the consistent
a+ a model slightly unbound as it should be, and bétte

energy of thew particle is unaffected by the value aof but
since both ther+ « and thea+ N energies depend an the
two-body thresholds do also depend wrBoth °Be and°B

TABLE Il. EnergiesE and widthsI', given in units of MeV, of®Be, °Be, and°B.

is deeper than-47.968 MeV, which occurs fou=0.958.
In the J7=1/2" state thea+ a+n system is more deeply
produce a 1/2 resonance, which was identified experimen-bound than thew+ « system foru>1.01. Therefore, the

1/2~ state will be unstable to the dissociation into tfige

+n channel foru=1.01. The analytic continuation is to be
The coupling constank has again been chosen to be based on bound states, and the quantity to be continued is the

proportional tou. The appropriatel value recommended in square root of the energy with respect to the threshold

reached first from below for decreasingThe first threshold

one reaches by decreasings the 8Be+ N threshold for all

and °Li are also unbound. As was mentioned in Sec. Il C, thecases to be considered. Thus, what we have to continue ana-
lytically is k(u) = VE(°Be)— E(®Be). The resonance energy
obtained is then, of course, that with respect to the energy of
8Be. The energf (®Be) is complex in thai region in which

u=0.94. The

energy of®Be is counted from the two-body threshold and the energie®Befand®B from the three-body

threshold.
ACCC csm? Expt.?
J7 E r E r E r
8Be o+ 0.208 0.003 0.09189 6:81.7 eV
2+ 2.85 1.44 3.1320.03 1.5-0.02
°Be 312 —1.501 0 —1.431 0 —1.5735 0
5/2~ 0.838 0.001 0.84 0.001 0.8559.3 0.770.15 keV
1/27 1.17 0.59 1.20 0.46 1.240.12 1.08:0.11
°B 3/27 0.288 0.001 0.30 0.004 0.277 050.21 keV
512~ 2.56 0.05 2.55 0.044 2.638).005 0.081 0.005
1/27 2.66 1.15 2.73 1.0 3.f1 3.1
%Referencd 11].
PReferenced 12].

°B. Pugh, quoted in Ref33].
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0.0 — lomb barrier and the sharp resonance indhea system, the
02 M ."'*\\ a— a subsystem tends to be formed more dominantly than
— S, T the a+p subsystem, but the trajectory alone cannot tell us
>> 044 ) By whether the weight of thé’Be+p configuration is large
§ 061 X /’* enough to prevail over the+ o+ p three-body structure. In
5 08 0.94 comparing the motion of the two poles, it is conspicuous that
~ the rate of change df(u) along the trajectory is much larger
& 1o 0.96 o [— B aph for °Be than for°B.
a4 s °Be(1/21) Table 1l contains the resonance parameters of thé 1/2
14 . . . . states in°Be and®B. As they depend rather strongly on the

00 02 04 06 08 10 12 14 16 u value, which is poorly defined, they are presented for a
Re (k) [MeV'?] range ofu values. Furthermore, to help decide between the

. . - . differentu values, parallel results fotBe and for the 5/2
FIG. 6. The trajectories of the 172states in°Be and’B as a  state of°Be are also shown. From this it appears that, rather

function of theu parz{meter. Herd is identified with E¥2 The than 0.94, the appropriate value is 0.95: Gor 0.95, all reso-
dotted line marks Ink= — Rek. .
nance energies are reasonably well reproduced. But the
widths for the 1/2 states of°Be and °B are much larger
@+ a is unbound, i.e., fou<0.958. than the empirical values. It is difficult to reconcile the the-

The resonance parameters obtained for the 1@&2°,  oretical result with experiment in this respect. The three-
and 5/2 states of’Be and®B are compared in Table Il with cluster dynamics is described very accurately in our model
experiment and with the previous CSM calculation[dt].  and any excitation mechanism that would invalidate the
The agreement between the ACCC and CSM results is verghodel should show up in eithet+a or a+N, but there
good, and the theory reproduces the measured resonance @@ems to be no such effect. A stringent test of the correctness
ergies remarkably well. The resonance widths are reasonabbf our results would be a comparison with experimental data
well reproduced. The basis dimension used in the presemjther than resonance parameters. For example, the rate of the
calculation is much larger than that used in RéfR2], and  1/2*—3/2" transition, which is known experimentall§2],
that is why the®Be ground state has a slightly larger binding could be calculated by an analytic continuation of the corre-
energy now. sponding matrix elment.

The results of the analytic continuation for the L/&ates In a recent preprinf34] Efros and Bang have concluded
of °Be and’B are shown in Fig. 6. ThéBe trajectory shows that the 1/2 state of°Be is a virtual state with an energy of
the typical behavior of arfBwave two-body state with an —23.5 keV, and in their model this implies that the analog
attractive potential. It is certainly different from the pattern state in °B is a resonance of width 1.5 MeV at 0.6 MeV.
of Fig. 4 expected for a Borromean system. The virtual-staterhey described®Be in a macroscopie + a+n model and
section is easily understood by recalling that, from the originanalyzed the photodisintegration 88e, assuming &Be
to the point marked withu=0.96 (more precisely,u  +n two-body final state. The interaction betwe&Be andn
=0.958), the model subsystem+ « is indeed bound. But was represented by a two-body potential, and the Htates
the behavior of the curve is similar even beyond that pointyere produced as states in this potential. While it is obvious
which indicates that this state is indeed of fge+n struc-  that our microscopic three-cluster model, in principle, is far
ture. The point corresponding to the physically correct pomore realistic than a macroscopic two-body potential model,
tential (u=0.94) is in the region of physical resonances, butthis two-body model has the advantage that its parameters
is still close to the borderline of the unphysical region. Thecarry direct empirical information. It is therefore worthwhile
°B trajectory is, on the other hand, reminiscent of either @0 ponder the relationship between the two results. As is
two-body resonance with a barrier, like tBe- 0 case of Fig.  shown in Table Ill, our model would put théBe 1/2" state
2, or of a true three-body resonance of a Borromean systemat —0.0235 MeV with au value slightly larger than 0.97.
shown in Fig. 4. It is obvious that, owing to the higher Cou- The samau value would put the 1/2 resonance ofB at 1.5

TABLE Ill. Resonance energigsand widthsl", given in units of MeV, of the 1/2 states of’Be and®B.
The energy is counted from the three-body threshold.

®Be(1/2") 9B(1/2") 8Be(0") °Be(5/2")
u E r E r E r E r
0.94 1.02 2.62 2.3 2.7 0.208 0.0026 2.06 0.60
0.95 0.40 2.94 2.1 2.6 0.101 20 eV 1.86 0.52
0.96 —-0.84 2.41 1.86 24 -—0.020° 1.65 0.45
0.97 —0.26° 1.62 22 -0.153° 1.42 0.37

Expt.? 0.111-0.007 0.21%0.010 (1.9 ~0.7 0.09189 6.81.7 eV 1.476:0.009 0.282-0.011

%Referencd 12].
bBound state.
%Virtual state.
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MeV and a width of 2 MeV. This minor inconsistency with periment but rather a failure of the conventioimatrix

the prediction of the two-body model is attributed to the parametrization.

two-body dynamics in that model. The samealue would There are cases in which no resonances have been found
make 8Be bound, which is incorrect, but it would shift the with any other method, despite physical indications for their
5/2" state of °Be close to(but slightly below its correct  existence. With the ACCC method the poles have been suc-
position. This shows that depends slightly not only on the cessfully located even in these cases. Their absence in the
nucleus but also on the state, and if 80;0.97 cannot com- CSM is now upderstopd a_nd discussed by the cIosc_—z vicinity
pletely be ruled out for the 172state of thea+ a+N sys- OT the unphysical region in thi plane. The bor_derllne IS
tem. Thus our model does not exclude that the' l3zate of ~ 91V€N by Imk=—Rek or by thek phase— /4. To find poles

°Be is actually a virtual state. Ifi>0.97 were appropriate with such phas_;es by the CS.M requires a rotation angle
for the 1/2° state of thea+a+N system, then a further ~ /4, with which the CS'\],{'., IS b°“2d. to become very un-
fine-tuning of the force would be desirable so as to makeStable' For the 1/2 states ofHe and°Li, the long-standing

8 . L . .. contradiction[22] between bound-state and unbound-state
o?&é”;bfirfl\Sllgggtg:r?sbmdmg 8Be distorts the dynamics methods is now resolved. The latter failed to find thesé 1/2

states because they lie very far from where they were pre-
dicted to be by bound-state methods, at the borderline of the
unphysical resonance region. There can be no doubt in the

In this paper we have located unbound states by analytigorrectness of the cluster-model predictions sinceSthave
continuation of the momentum as a function of a potentialPhase shifts are excellently reproduced. The fact that bound-
strength from the bound-state regidosing the ACCC state methods incorrectly predict the 1/¢tates to be so low
method. The objective was to study controversial unboundin energy is a warning that one should not take quite seri-
states of the most typical two-cluster and three-cluster nucleRusly the correspondence between the energies of states
In this way we tested the applicability of the analytic con-found in the shell model or any other method and the ener-
tinuation method, and explored the nature of the states corgies of unbound states. At the same time, this warning
sidered. We found some general results and some that af@ould be taken as a stimulation to use them in analytically
pertinent to the systems investigated. continued form; after all, there is no essential difference be-

The genera] results are the f0||owing_ First, we were parlween the cluster model and the shell model in this respect.
ticularly interested in=0 states, where the branching-off of ~ The preeminence of the ACCC method becomes apparent
the pole trajectory from the imaginakyaxis is at ara priori for three-body resonances, for which scattering-state meth-
unknown point of the negative imaginakyaxis. We have 0ds are useless and the CSM is unstable. Thé $fates of
demonstrated that a linear extrapolation of the momentum i Be and®B have been found. From the pole trajectories it is
the vicinity of the branching-off point performs excellently apparent that #Be-+N structure is more prominent ifBe
for =0 states as well. This makes it possible to locate anghan in °B. In comparing the results with experiment, one
| =0 unbound states: virtual states, unphysical resonances, 8hould keep in mind that the widths of the resonant states
resonances. Second, we have demonstrated that the thré&&ange together with their positiofias functions of any pa-
body resonances of Borromean systems that interact vieameter of the modgland they change very rapidly below
purely attractive forces behave like two-body resonanceghe Coulomb barrier. In view of this, the agreement with
within a potential barrier. In this way we confirmed the ap-€xperiment is very satisfactory apart from the widths of the
pearance of an effective three-body barrier. Third, we havd/2" states.
demonstrated that the analytic continuation is feasible and In conclusion, we can state that the ACCC method has
reliable even if the two-body thresholds, as functions of thedeen found to be unique among the techniques of localizing
coupling constant, cross the three-body threshold. This is Hnbound states of composite systems. It performs uniformly
significant finding because it extends the scope of thavell, irespective of the decay mode and of the location of
method. In fact, in am-body systemi§>2) there may be no the unbound state in the complkyplane. It has proved to be
parameter whose change varies thdody binding but @ useful theoretical tool that broadens the scope of conven-
leaves then—1,n—2, ... binding energies intact. This im- tional nuclear structure models by incorporating the
plies that a variation of any coupling constant will rearrangeunbound-state region of the nuclear spectrum.
the binding mechanism, but our result shows that the true
natures qf thg unbound states can still be explored by ana- ACKNOWLEDGMENTS
lytic continuation.
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