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We present a unified description of the relativistiblN and ywNN systems where the strong interactions
are described nonperturbatively by four-dimensional integral equations. A feature of our approach is that the
photon is coupled in all possible ways to the strong interaction contributions. Thus the hadronic processes
NN—NN, NN—=d, md—d, etc. and corresponding electromagnetic procedgs> yNN, yd—NN,
yd —md, ed—ed, ed—e’«d, etc., are described simultaneously within the one model of strong interactions.
Our formulation obeys two and three-body unitarity, and as photons are coupled everywhere in the strong
interaction model, gauge invariance is implemented in the way prescribed by quantum field theory. Our
formulation is also free from the overcounting and undercounting problems plaguing four-dimensional descrip-
tions of #NN-like systems. The unified description is achieved through the use of the recently introduced
gauging of equations method50556-28189)06702-3

PACS numbes): 13.60—r, 13.75.Cs, 21.45.v, 25.80.Ls

[. INTRODUCTION the especially interesting case of elastic electron-deuteron
scattering. Here the deuteron is described within our model
Recently we have introduced a method for incorporatingas a bound state of theNN system; thus, after gauging, our
an external electromagnetic field into any model of hadrongnodel provides a rich description of the electromagnetic
whose strong interactions are described through the solutiolorm factors of the deuteron with all possible meson ex-
of integral equation§l,2]. The method involves the gauging change currents taken into account. The four-dimensional in-
of the integral equations themselves, and results in electrdegral equations for therNN system are a good deal more
magnetic amplitudes where an external photon is coupled toomplicated than the corresponding equations describing a
every part of every strong interaction diagram in the modelstrictly three-body system like that of three nucleons. Firstly
Current conservation is therefore implemented in the theothe w#NN equations take into account pion absorption so
retically correct fashion, i.e., as prescribed by quantum fieldhere is coupling to the two-bodMN channel. A conse-
theory. Initially we applied our gauging procedure to thequence of this in the four-dimensional approach is that cer-
relativistic three-nucleon problem whose strong interactiongain three-body forces must be retained both to avoid the
are described by standard four-dimensional three-body intaindercounting of diagrams and to ensure that the equations
gral equation$1,2]. More recently we used the same methodsatisfy two- and three-body unitarif$]. Also, unlike in the
to gauge the three-dimensional spectator equation for a sy8NN case, not all three-body reducible diagrams of the
tem of three-nucleon3,4]. 7NN system have unique three-body cuts. This leads to an
Here we apply our gauging procedure to the more comevercounting of diagrams problem in the formulation of
plicated case of the relativisti'NN system whose four- four-dimensionalwNN equations that has only recently been
dimensional integral equations have only recently been desolved[6]. One example of the type of overcounting encoun-
rived [6,7].> These equations obey both two-bodyN) and  tered is given in Fig. 1. The newly deriveeNN equations
three-body @NN) unitarity and simultaneously describe all have the feature that their kernels contain explicit subtraction
the strong interaction processes of theN system, includ- terms which eliminate all such overcounting.
ing the reactionsNN—NN, NN—7d, NN— 7NN, 7d The presence of pion absorption and the overcounting
—ad and md— wNN. After gauging theserNN equations problem in thewrNN system would normally make the task
we obtain gauge invariant expressions for all possible elecef formulating a description of theawNN system an espe-
tromagnetic processes of tieNN system, e.g., pion photo- cially difficult one. To put this difficulty into perspective, we
productionyd— 7rd and yd— 7NN, pion electroproduction recall our experience with gauging the four-dimensional
ed—e’wd anded—e’ 7NN, and because pion absorption three-nucleon systeiri,2]. In this case the strong interaction
is taken into account explicitly, we also obtain gauge invari-integral equations have exactly the same form as the three-
ant expressions for processes like deuteron photodisintegrbody equations of quantum mechani@@M) (except of
tion yd— NN and BremsstrahluntfN— yNN that are valid

even at energies above pion production threshold. Includec SRR % —---
in the electromagnetic processes described by our model i{a) _/ ; by _/ ]. () :A

FIG. 1. Example of overcounting iNN—7d. (a) The NN
*On leave from The Mathematical Institute of Georgian Academy— 7d Feynman diagram where dark circles represent all possible

of Sciences, Thilisi, Georgia. contributions.(b) One of the contributions included i@). (c) An-
A summary of the present work was previously reported in aother way of drawing diagranib) showing that this term corre-
conference proceedin]. sponds to an overdressing of the deuteron vertex.
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course that they are four-dimensional rather than threedistinguishable or indistinguishable without affecting the for-
dimensional. Then after applying our gauging procedure wemulation below in any essential way.

obtained an electromagnetic current that is again just of the Although the derivation of therNN equations given in
same form as the three-nucleon current in QM; namely, &ef.[6] neglected all connected diagrams that are ok
simple sum of one and two-body currents. However, in conand wNN-irreducible in the processeéNN—NN and
trast to the QM case, the two-body current obtained in theNN« 7NN, in our approach these are easily included and
four-dimensional formulation is modified by a subtraction do not complicate the originarNN equations in any essen-
term whose presence is necessary to stop the overcounting ¥l way; for this reason we shall retain all such diagrams
diagrams. Thus the gauging of equations method led us to laere. On the other hand we follow R¢6] and keep only
simple prescription for the electromagnetic current of threeghoseNN- and 7N N-irreducible connected diagrams in the
nucleons. The situation forrNN is quite different as the processtNN— 7NN (the three-body forceghat are neces-
strong interaction equations for this system cannot be casfary to avoid undercounting. The formulation retainiity
into a QM form. Thus there is no corresponding simple prethree-body forces will be given elsewhere.

scription for thewNN electromagnetic current and the gaug- It is easy to rearrange the four-dimensioneMN equa-
ing procedure itself becomes effectively the only way totions of Ref.[6] into a convenient form similar to the one
specify this current. On the other hand, our gauging proceused by Afnan and Blankleidgd5] in a three-dimensional
dure is extremely simple, and by gauging thN equations  formulation of the 7NN system. For the distinguishable
with subtraction terms included, one easily constructs equanucleon case we obtain

tions for theymNN system without encountering any further

difficulties and with all overcounting problems being taken T9=y9+y9giTY, (1)
care of automatically. In this way we obtain a unified de- d g ) )
scription of thewNN and y7NN systems. where7%,V9, andG{ are 4<4 matrices given by
T T8 e[V
Il. FOUR-DIMENSIONAL NN EQUATIONS = , = ,
TNN EQ Td o F Gyl
The first attempts to formulate few-body equations using

relativistic quantum field theory were made already in the g Do 0
early 196048-10|. Both such general formulations and ones Gy= 0 GW°Gy) @

more specific to therNN system have been pursued until

the present timg11-13. Yet all these attempts have had Note that we use a notation where the superscrigenotes
theoretical inconsistencies, including the undercounting anghe distinguishable nucleon case on those symbols that will
overcounting problems discussed above. We have recentlye ysed later without the superscript for indistinguishable
overcome these problems and derived new consistdfl  nycleons. Equatiofil) is a symbolic equation representing a
equations by using a method where in cases like that of Fingethe-SaIpeter integral equation to be solved 78t To

1(b) and ¥c) where the rightmostzNN cut is not unique, clarify its meaning we give the explicit numerical form of
one of the rightmostrNN vertices is “pulled out” furtherto  the equation folNN scattering at the end of this subsection.
the right, in this way defining a uniqueNN cut [6]. The 79 consists of transition amplitude&y, Tyn, Ty, and
samewNN equations were later derived in RgT] where a T,, (A andu are spectator-subsystem channel labtie
method based on Taylor's classification of diagrd®d4] last three being elements of the matricr&gs, T andT¢

was used. In this section we would simply like to restate . . .
these equations but in a form that is particularly convenien[eSpeCtlvely' The physical amplitudes ﬂ?rNHNN’ NN
for gauging. —ad, wd—NN, andwd— 7d are then given by

d d d _7 d
XNN= TNy Xan=@aTans  Xng™ Tnadd
A. Distinguishable nucleon case

Initially we would like to consider the case where the two X§4= taT a3t (©)
nucleons are treated as distinguishable particles. Not only _ ) .
does this avoid taking into account the symmetry factors andeSPectively, wherey, is the deuteron wave function in the
related complications due to the identity of the two nucleonsPréSence of a spectator pion. o
but it is also of practical interest in itself, as for example in 1€ €lements making up the kernef, specified in Eq.
modelling themnp system without using isospin symmetry. (2), consist of the quantitie¥yy, F\, 7\, andZ defined

We follow the usual convention and refer to the two as follows:
nucleons as particles 1 and 2, and the pion as particle 3. We

also use\=1 or 2 to label the channel where nucleorand Vin=VRRE+VRI+FIG(F1+Fy)
the pion form a two-particle subsystem with the other _ 4. =4 I g
nucleon being a spectator, and=3 to label the channel +(F1+F2)GoFc+BGoB +FcGoFc—A, (4)

where the two nucleons form a subsystem with the pion be- . ]
ing a spectator. Although we are concerned only with thosdvhereV is the nucleon-nucleon one-pion-exchange po-
physical processes having at most one pion in either initial otential, VR® is the 7NN-irreducible part of theNN poten-
final state, we do allow multiple-pion intermediate statestial, Fizfidj’1 wherei,j=1,2 withi#]j, f;, being theN;
These intermediate state pions may be taken to be either 7N; vertex function andd; the Feynman propagator of
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FIG. 2. lllustration of quantities making Wy - (@) VRS, (b)

a CO(?trIbUtIOI’] tov(RY, (c) F,=f,d; 1, (d) B, and(e) a contribution
toF;.

nucleon j, F‘Cj is the simultaneouslyNN- and 7NN-
irreducible connected amplitude faKN— 7NN, B%=B
+PBP whereB=V{k¥d,f, andP is the nucleon exchange
operator, andA is a subtraction term that eliminates over-
counting. Diagrams illustratiny Sk, V{39, F,, B, and
Fg are given in Fig. 2F% is a 3x 1 matrix whose\th row

element is given by

2

f§=i§1 S\Fi+FI-BY, (5)

where 6,;=1—6,;. Note that hereBY plays the role of a
subtraction termF? is the 1x 3 matrix that is the time re-
versed version ofF¢ (similarly for other “barred” quanti-
ties), Gq is the NN propagator, and is the matrix whose
(N, u)th element |§>\ .- Finally the propagator terr@t is a
diagonal matrix consisting of tMgN propagatoD,, and the
3x3 diagonal matrixw® whose diagonal elements are
t,d, 1, t,d;t, andtdd;?, with t, being the two-bodyt-
matrix in channel (for A\=1 or 2, t, is defined to be the
7N t-matrix with the nucleon pole term removed he sub-
traction termA is defined with the help of Fig. 3 as follows:

A=W, + W3 +Wyn+ X+ Y9+ BIGFI+ FIG,BY

+E2wGSWf1f2| ND+f_lf_2GSWF27r| ND »

(6)

d It d It d4k1
TNN(plpZ'plpZ)ZVNN(p1p21p1p2)+f—4
(27)

[ fo(ps,kok3)d (K3)t1(prks,Kiks) — J’
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FIG. 3. Terms making up the subtraction tetm(a) W, ., (b)
W, n, (€) Wy, (d) X, (8 Y, and (f) a contribution toF,... The
dark circles represent the following two-body amplitudéss: full
7 t-matrix, (b) one-nucleon irreduciblerN t-matrix, and (c)
full NN t-matrix minus theN N one-pion-exchange potential.

whereF, . is the simultaneousii{N- and 7N N-irreducible
connected amplitude foKN— 7NN, G237 is the wNN
propagator, \/\/‘,’TN W_y+PW,_ P and Y¢=Y+PYP. The

expressmnf szz”Fzﬂ in Eq. (6) is a subtraction term for

the overcounted contributions nF(+ FZ)GOFS in Eq. (4).
It consists of two types of contributions, one with the two
intermediate state pions crossing, and one with them not
crossing, as illustrated in Fig. 4. As our equations are derived
with the wNN vertex being dressed from the beginnirtg,
terms that contribute to a further dressing of #&N vertex,
like that of Fig. 4b), need to be suppressed. This suppression
is indicated in Eq.(6) by the “no dressing” symbolyp.
Similar comments of course apply to the tefg,G37f,f,
in Eq. (6).

To illustrate the numerical form of our equations we con-
sider the case of thBIN scattering amplitudé'ﬁN as given
by Eqg.(1) and Eq.(2)

3

TﬁN:VﬂIN+Vﬁ1ND0Tﬂ1N+)\Zl FEGW,GoTiy. (D)

For the purposes of the illustration we may simplify this
equation by neglectin@éj (but notB¢ as it is a subtraction
term). In this case we obtain the following numerical integral
equation forTgy

d*k, d%k,
(2m* (2m?*

f1(p1,Kiks)D n(Kik) VRRTK] P K ko)

+ (5, kjks) D on(kak) VRRAPIKS kika) ] d1<k1>t1<k1ks,k1k3>]

X Go(k1kaoK3) Tin(kiKoK3,p1p2) +

X Go(Kikoks) Tan(kiKoKg,p1p2) +

d%k, d*

(2m)* (27 )

P1+> P2

kika)d;(ky)
DL Py 1(p1 1K3)d1(Ky

|+

d4k”
X t3(kipé1k1k2)_f(2 AN (kip3 K1k} D o(k/l/ké)t3(k,1'k§:k1k2)l

piHDé) @

p1—p2)’
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T modified in order to get the indistinguishable nucleon case.
(a) e (b) ! With this in mind, we introduce identical nucleon transition
—L e —— amplitudes defined in terms of distinguishable nucleon tran-
= sition amplitudes as
FIG. 4. Example of diagrams contributingfpf_ng’TFz,, in Eq. _—d _ _

(6). (a) Contribution with crossed pionéh) contribution with pions Thn INNA’_ Tan IlNA’ Tan=TanA,

not Crossing. TNA:TNI_TNZP’ TNd:TN3A’ TAAlel_lepa

where to save on notation we have suppressed spin and Taa=Tar TeP Tag=TiA Taa=TaA, )

isospin labels and used the symbgw‘lzpz) to indicate a term

derived from the preceding contribution by exchanging theVhere A=1—P is the antisymmetrizing operator. AB1
momenta, spin, and isospin labels of the external nucleons: PTsz and TN3_PTN3P we can alternatively write

In writing Eq. (8) we have used the fact that numeri- Tna=ATni, Tng=ATns, and Tga=ATg. Thus in the
cally f,(p’,pk)=f.(p’,pK), t,(p'k’,pK)=t,(p'k’,pk),  transition to the indistinguishable particle case, the original
and Tin(KoKiks,pop1)=Ton(Kikoks,pips). In Eq. (8) 16 transition amplitudes for distinguishable particles have
D n(kiks)=d;(k;)d, (ks) is themrN propagator, and all un- been reduced to 9 antisymmetric transition amplitudes. By
specified momenta are determined by momentum conservéaking residues of therNN Green function for identical
tion, e.g., in all the above termkg=p;+p,—k;—k,. Equa- hucleons at two-body subsystem poles, one obtains the fol-
tion (8) is illustrated in Fig. 5. In reference to this figure we lowing expressions for the physical amplitudes:

note that despite appearances, all the subtraction terms

(terms entering with a minus sigend on the left in the same Xun=Tnne  Xan=aTan.  Xna=Tnaa.
way, either withB=f,d,VIr- or with PBP=f,d;VQx". _
Also, the last two lines clearly involve the contributidg Xad= ¥aTdata- (10

—V{RDots which may appear incorrect as the term sub-
tracted involves an overcountedN interaction. Yet just
such an overcounted contribution needs to be subtracted
stop overcounting in the overall equations. In this respect it T=V+VG,T (11)
is interesting to note that in the one pion exchange ladder !

approximation td;, the combinatiort;— Vi Dots reduces byt where now?, V, andg, are 3x 3 matrices given by
down simply toVQR©.

Using Egs.(9) in Eqg. (1) it is easy to show that one again
%btains a Bethe-Salpeter equation

Tan Tna Tha

B. Indistinguishable nucleon case T=| Tan Taa Tadl,
In approaches based on second quantization in quantum Tan Taa Ty
mechanics it is usual to obtain the scattering equations for o o
identical particles by explicitly symmetrizing the equations Vﬂ,NA A ;Edl ]3d3A
of the distinguishable particle case. This procedure is not _ d 1 1
justified in the framework of relativistic quantum field v=| FiA =GP GoAl, (12)
theory. Nevertheless, as we have already derivedmtiNél FIA  Gy'A 0
equations taking into account identical particle symmetry
right from the beginnind6], we can formally deduce how ip 0 0
the above distinguishable nuclea™NN equations need to be 270 .
Gi= 0 Gptd;, "Gy 0 ., (13

T 1 _ r " 1 1 - 1 1 1
0 =l - WO, 00 iGetdi’G

r—q 1t 1t ) wheret;=tJA is the t-matrix for two identical nucleons in

. R N 3713
t O - ¥ O s gt O 2 the presence of a spectator pion.

From Eq.(4) it follows that

VﬂNA=V8',f,E+Vﬁ\ll,ll—i-ECGOF?-i-E%GOFC—FE'éWGS”fle
P oo el T e 1

v lﬁi lﬂl YT T,GETFE — WA, —WER —WE,— XR— YR
T T : 1 1 _

+ N - D + 5 (BIR-F)Gy(BYR-Fy), (19

FIG. 5. Graphical representation of the integral equation, Eq. _
(8), for the NN scattering amplitude. The top line involves the Where VRR=VeoREA, VIR =V{A, F.=FIA, F.=FIA,
amplitude TS, the second line involved,y, the third line in- and where we have used a supersdripo indicate thai is
volves T,y , and the last two lines involvésy . acting on the left, and a superscrigtto indicate thatA is
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acting on the right. Note thatW? =wW-_ WR A
=Wy, XR=XL, andFY =F5_. Here we have also used A 7 00
the simple result
7=l 0 1 o|lT|0 1 O (22)
(Bd—Fg)Go(Bd—Fg)Azé(B'—R— Fo)Go(B-R—Fo). 0 00 2
(15
and all but two operator& have been removed form the
The other terms in the kerndl of Eq. (12) are integral equations. There are further forms of #¢N equa-
- tions with operatordA appearing at various other places in
Fi=F,—BY+F%, F4=F,—BY+FY, (16)  the equations, yet there are always at least Awvoperators
present.
Fi=F;+F,—BY+FY, F4=F,+F,—BI+F{.
17 Ill. #NN ELECTROMAGNETIC TRANSITION
CURRENTS

The #NN equations as given by Eqgdll), (12), and(13)
have a form where seven of the eight nonzero elements mak-
ing up the kernel contain the antisymmetrization operator  In this section we shall derive expressions for the various
A. One elementtg) in G, also containsA. The question €lectromagnetic transition currents of théNN system. To
arises if one can remove the operatarfsom these equations do this we utilize the recently introduced gauging of equa-
by analogy with the familiar example of the one-channeltions method1,2]. As the gauging procedure is identical for

A. Gauging the w#NN equations

Bethe-Salpeter equation for two identical nucleons: the distinguishable and indistinguishable particle cases, we
restrict our attention to theNN system where the nucleons
1 are treated as indistinguishable particles.
TIVA( 1+ EGT)' (18) As discussed in the previous section, the strong interac-

tion NN equations can be written in a number of equivalent
Here theNN potentialV is multiplied on the right by, but ~ forms. Choosing the form given by Eqd.), (12), and(13),
asV has the property P=PV and therefore/ A=AV, it is direct gauging of Eq(11) gives

easy to see that we can instead solve the equation TH=VH 4 VUG T+ VGET+ VG, TH (23)
- t t t
T'=V(1+GT'), (19 which can easily be solved faf* giving
whereA has been removed from the equation and where the TH=(1+TG) V*(1+ GT) + TGLT. (24)
NN tmatrix T is obtained by antisymmetrizing the solution:
T=T'A. T* is a matrix of gauged transition amplitud&g,, Tk,

Unfortunately it is not possible to follow a similar proce- TE,, etc. To obtain the physical electromagnetic transition
dure to completely remove the operawrirom Egs.(11),  ¢yprents of therNN system where photons are attached ev-
(12), and(13). The reason is tha£P¢ PVforthe kemelof  orywhere it is not sufficient to just gauge the physie&lN
Eq. (12) (in particular 7P+ PF7). In this respect we note  gmplitudes of Eq(10). Although this would indeed attach
that themNN equations for identical particles given in Ref. photons everywhere inside the strong interaction diagrams, it
[7] are not equivalent to ours as they do not involve thewould miss those contributions to the physical electromag-
operatorA. AlthoughA cannot be removed completely from netic transition currents where the photons are attached to the
the identical particlerNN equations, one can reduce the external(initial and final statg pions and nucleons. In order
number of places whet appears. For example, it is easy t0 to also include these external leg contributions it is useful to
show that Egs(11), (12, and (13) are equivalent to the attach the corresponding propagators to Xkemplitudes of
equations Eq. (10):

T =V'+VGT, (20) Xun=DoXnnDo,  Xan=0,XanDo . (25)
Vi 74 74 Xnog=DoXnadr,  Xgg=d Xqad,. (26)
r_ d _~-1 -1
Vi=| F1A Go P Go™Al, The physical electromagnetic transition currents are then ob-

]—"g Gyt 0 tained by gauging Eq925) and (26) and “chopping off”
external legs:

Dy 0 0 ~ ~
jty=Dg Xt Dot jh=d X4 Dot 2
gl = 0 GOtldz_lGO 0 ’ 21) INn=Po AnnPo Jan= 0z " AgnPo (27)
0 0 GotgdglGO jﬁd:Daliﬁdd;l1 jdd:d;l’kgdd:rl' (28)

where Using Eqgs.(10) we obtain that
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jfin=Do 'DETun+ TanD4Dg t+ TN, (29 [FIAY [ (Fa-BUHFDA
o L T\ F9A) [ (Fi+F,—BI+FYA
jin=@4DoTantd, " #aGo Tan F,A—BR1F, »
+ pgDoThy+ dpqDoTanDEDG (30 | (Fi+Fy)A—B"R+F,|’ 39
itia=TndDodh + TnaGh dad, F=(AF{ AF9)
-1 — — — — — — —
+TReDodbat Do DG TnaDoa . (31 =[A(F,—BY+FY) A(F,+F,—B%+FY)]
= L — =[(AF,—B'R+F,) (AF;+AF,—B"R+F,)],
4= #4DoTaaDoba+ d,  baDb TaaDoba+ $aDoThqDocba ? ¢ e ° -
+ ¢4DoTaaDh bad, * + ¢aDoTaaDodh (32
P A t,d,* 0
wheregy is the deuteron bound state vertex function defined L= A 0/ t= 0 %tgds—l : (36)

by the relationyy=d d,¢4. The above equations express
the physical electromagnetic transition curreipts, («,S
=N or d) in terms of the half-on-sheltrNN transition am-
plitudesT,;z and the gauged quantitiés;;, (G{).z, and
¢4 . Note thate) consists of contributions where the photon

With the view of gauging Green function versions NN
transition amplitudes, we introduce the Green function ma-
trix appropriate to Eq(33):

is attached everywhere inside the deuteron bound state, and . Gun Gna Gng

is determined by gauging the two-nucleon bound state equa- Gun Gy

tion for ¢bg [1,2]. G= e G- Gan Gan Gag
N

That the above equations are gauge invariant is evident
from the fact that we have formally attached the photon to all _
possible places in the strong interaction model. The gauge ~ [ADo 0 Do O\[Tun Tn|(Do O
invariance of our equations also follows from a strict math- o o + 0 G/l Ty T/10 Go
ematical proof; however, as this proof is essentially identical
to the one given for th&lNN system{2], we shall not repeat (37

it here.
The inhomogeneous term is chosen so g}, corresponds

exactly to the full Green function faX N scattering. Then, as
shown in the Appendixg satisfies the equation
Although the preceding discussion solves the problem of
gauging themNN system, the expression obtained for the AD, O
gauged transition amplitudes, E@4), may not be the most g:( )
convenient for numerical calculations. The disadvantage of 0 LG ;A t
Eq.(24) is that it utilizes a Green functiog, which contains (38
two-body t matrices, while such matrices are already im- o
plicitly present in the adjoining amplitudes @f This makes where A and A are defined by EqsiA12). The essential
the calculation of7* unnecessarily complicated. One could feature of Eq(38) is that it is written in terms of an effective
eliminate this multiplet-dependence in Eq24) by making  “free” Green function matrix
use of Eq.(11); however, this would be a lengthy and awk-
ward procedure. Instead we derive an alternative form of the ADy, O
7NN equations which uses a “free” Green function which o=( 0 LG )
. . . . . 0
contains no two-body interactions and which leads to simpler
expressions for therNN electromagnetic transition currents.
The #NN equations Eq911), (12), and(13), can be writ-
ten in the form

B. Alternative form of the NN equations

FVan— FALGoA  3A
g 1

(39

which does not involve two-body interactions. For this rea-
son Eq.(39) is ideal for the purposes of gauging.

Tan ?N B VN F C. Gauging the alternative form of the #NN equations
T T/ \ F LGyt In terms of the elements &, the Green function versions
of the physical amplitudelgiefined in Eq(26)] are given by
. —
«|14[20 ° (TNN Bk Xn=G Xan= ¢qG
0 GotGO TN T ' NN NN dN d“~PdN

(33 Xna=Gnabd,  Xaa= PdGuada- (40)

whereVyy=Va\A is given by Eq.(14), and After gauging, these equations give



PRC 59

Xiin=Ghin» (41)

Xtin= dhGan+ baGlin. (42)
Xfia=Ghiacba+ Gnadh (43

Xy= bl Gagba+ ¢aGligba+ ¢aGaadh - (44)

The wNN electromagnetic transition current§; are then
determined by Eq927) and Eqs(298).

To determine the quantitie@’a‘ﬁ in Egs. (41)—(44) we
need to derive the expression fG¢ by gauging Eq.(38).
Defining

iVan— 3ALGoA  FA
Vt: 1 ’ (45)
s A t
Eq. (38) can be written as
g: go"’ QOVtg. (46)
Gauging this equation and solving fgr gives
gr=(1+9nGH(1+V9)+gVig. (47)

To simplify this equation we cannot use Eg6) to write 1
+V,6=G, G and 1+ GV,= GG, * sinceL is singular so that

the inverseg, * does not exist. Instead we use the fact that

L=LQL, where

1+P 1
0 2 2
= 1 1 (48)
2 4
which allows us to write
Go=GoM*Gy, (49
where
3Dy 'DAD,? 0
M= 2Yo Yolo B L. (50)
0 OG,1GEG,

Using Eq.(49) in Eqg. (47) allows us to write a compact

expression foG#:
Gr=G(M*+V{)G. (51)

Comparing this expression with the one of E24), we see
that both involve the gauged two-botiynatrix t#; however,

in contrast to Eq(24), the above expression does not contain
adjoining strong interactioh matrices and may therefore be

preferable for numerical calculations.
As D§=(d.d,)*=d{d,+d,;dy and G§=(d.d,d3)*
=df{d,d;+d,d4d;+d,d,d4, we obtain

D, 'D4Dy  =T4d, ' +d 1T, (52)
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FIG. 6. Graphical representation @) M # and(b) V# which
enter into the expression for the gauged Green function mégtfix
of Eq. (51). Constant factors and effects of operatcand matrix()
have been ignored in this illustration.

G, 'G4Gy '=T4d, 'd3 *+d; 'Thdy ' +d; *d, 'Th 9

where

r“=d td*d* (54)
is the electromagnetic vertex function of particl&’he term
M* of Eq. (51 thus corresponds to photon coupling in the
impulse approximation. The gauged matiX corresponds
to the interaction currents and consists of the elemégfits
=(VNyn—ALGoA)#, A#, A* and t*. It is important to
note that the diagonal elements of matrixare both of the
form

(tidy Hr=tid; tt(dy HA=tPd -1, (55)
where the last equality follows from the fact thatj_(ldj)”“

=0. Thus the diagonal elements @f involve new subtrac-
tion termst;I'{* whose origin does not lie in the subtraction
terms of the strong interactiomN N equations, but rather in
the gauging procedure itself. Analogous subtraction terms
arise in the three-nucleon problem whose strong interaction
equations have no subtraction terfids2]. Similar subtrac-

tion terms will arise in the gauging &f, andF, contained in
A and A respectively. The graphical representationief*
andV{ is given in Fig. 6.

Equation(51) can be used to determine all the possible
electromagnetic transition current of theNN system. For
example, currenfyy for the electromagnetic transitiadN
—NN is given by

jkn=Dg "'GfinDo * (56)

=2, D 'Ga(M#+ V) 4G Do
ap

:aEB (Aot TnaD ) (MHA+VE) g

X (AdgntDgTpn), (57)
wherea,8=N,A,d, andDy=D,,D,=D4=G,.

An especially interesting use of E(1) is to study the
electromagnetic properties of bound states of #tN sys-
tem. It is certainly expected that the strong interactdN
model under discussion admits a bound state corresponding
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to the physical deuteron. In this case a solution will exist todimensional descriptions afNN-like systemg6].
the homogeneous version of Eg.1): The expressions we have derived can be used directly to
make four-dimensional calculations of all the reactions in-
P=VG®, (58) duced in thewNN system by an external electromagnetic
probe. However, in view of the practical difficulty of solving
four-dimensional integral equations, it may also be useful to
N have a gauge invariant three-dimensional description of the
| o same processes. In that case our four-dimensional expres-
= Al (59 sions can be used to provide the starting point for a three-
Dy dimensional reduction. One such three-dimensional reduc-
) ) . tion scheme that preserves gauge invariance and is easily
Here® is the usual deuteron vertex function describing theapplied to our four-dimensional expressions was discussed in
d—NN transition, while®, and®4 are somewhat unusual Ref, [3].
in that they describe transitions to clusteretiN states:d Although we have specifically gauged th&IN system, it
—(#N)N_and d—(NN), respectively. Comparing EQ. should be noted that the derived expressions apply equally
(37) and Eq.(38) it is seen thatj has a pole at the deuteron wel| to other systems consisting of two fermions and one

where® is a matrix of deuteron vertex functions

massMg: boson which can be absorbed by the fermions. For example
— one could apply our expressions to the quark-antiquark-
a4 2 2 gluon system in order to calculate the meson spectrum in-
~i as P“—My, (60) . . i
p2_ M(Z, cluding its electromagnetic properties.

It is also worth noting that our derivation of the gauged
where P is the total four-momentum of the system, and wNN equations only assumed that the external field couples

whereV satisfies the equation to hadrons only to first order in the field-hadron coupling
constant, but otherwise does not depend on the nature of the
V=GV ¥. (61)  external field. Thus, for example, our expressions can be

Clearly ¥ is related tod by the equation used directly to determine the weak interaction transition
currents of therNN system.
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determineW¥. Taking the left and right residues at the deu-
teron bound state poles of E.1) we obtain the bound state
electromagnetic current APPENDIX

In this appendix we derive E@38). Writing Eq. (33) as

jHr=P (M VY, (63  7=V+VG,Tand Eq.(37) asG=G,+gTg where
which describes the electromagnetic properties of the deu- AD, O D,y O
teron whose internal structure is described by the present u:( , g= ) (A1)
7NN model. Eq.(63) provides a very rich description of the U 0 Go
internal electromagnetic structure of the deuteron with all — L
possible meson exchange currents being taken into account u VN F G 3 Do 0 (A2)
in a gauge invariant way. In view of the accuracy of this S\ r LGyt oo GotGo)

model which is based on meson and baryon degrees of free-

dom, a comparison of the deuteron electromagnetic form facwe have that

tors (easily extracted fromj#) with those extracted from

experiment should prove to be most interesting. G=0,+979=G,+9Vg+gVG7g

= 71 -
V. CONCLUSIONS GutoVg+gVe, g~ (G-Gu)  (A3)

or

We have derived gauge invariant expressions for the elec-
tromagnetic transition currents of theN N system where the G=G,+9Vg—G9 'G)+gVG.9 16 (A4)
strong interactions are described by four-dimensional inte- . - . :
gral equations. The feature of our approach is that the exteHSlrlg the explicit matrix forms fog.“’ g, v, andg; given
nal photon is coupled everywhere in the strong interactior!” Eq. (A1) and Eq.(A2), the equation fog takes the form
model, in this way giving a unified description of thkeNN — 1 —
and ywNN systems. This unified approach to th&N sys- _ ADo DoFGo n 2DoVin Do/ Got
tem and its electromagnetic currents has been made possible 0 LGy 1 GoF LGt
by the recent introduction of the gauging of equations (A5)
method[1,2]. The use of this method has also enabled us to
avoid all the overcounting problems that are inherent in four-Multiplying this equation from the left by the matrix
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1 — Don This equation may be written in the form
= , (A6)
0 ZL
1+P A 0 LGo 3A t) ]
- = 7 10 (A11)
7= A so that ZL=LZ= Al,
4 ) 2 where
(A7)
we obtain [[Fl_ %(Bd_Fg)]A]
L ~Do7Z g:(ADO 0} [Po O ~ 1(B-FY)
0 ZL 0 LGy 0 LG
1 1~
1 1 0 — — — — - —
o YT 2FBEE B e A={A[F;- }(BY-FY] - 3(B-FI}. (AL2)
izF t
Transferring the off-diagonal term-DyFZ from the left- ~ We note that the presence of the antisymmetrization operator
hand side to the right and recognizing that A'in the termAD, of Eq. (A11) allows one to eliminate the
1 0 antisymmetrization operators Myy and A by making the
_ replacements
( 0 LZ)Q g, (A9)
Eq. (A8) becomes Van—2Van and
g:<ADo 0 HDO 0 ) AF1— (B9~ FO))—2[F;~ } (B'~FD)]
0 LGq 0 LG (A13)

LV $FGoZF Fz
) g. (A10) ] ]
52ZF t in Eq. (A11) and Eq.(A12), respectively.
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