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Unified relativistic description of pNN and gpNN

A. N. Kvinikhidze* and B. Blankleider
Department of Physics, The Flinders University of South Australia, Bedford Park, SA 5042, Australia

~Received 12 October 1998!

We present a unified description of the relativisticpNN andgpNN systems where the strong interactions
are described nonperturbatively by four-dimensional integral equations. A feature of our approach is that the
photon is coupled in all possible ways to the strong interaction contributions. Thus the hadronic processes
NN→NN, NN→pd, pd→pd, etc. and corresponding electromagnetic processesNN→gNN, gd→NN,
gd→pd, ed→ed, ed→e8pd, etc., are described simultaneously within the one model of strong interactions.
Our formulation obeys two and three-body unitarity, and as photons are coupled everywhere in the strong
interaction model, gauge invariance is implemented in the way prescribed by quantum field theory. Our
formulation is also free from the overcounting and undercounting problems plaguing four-dimensional descrip-
tions of pNN-like systems. The unified description is achieved through the use of the recently introduced
gauging of equations method.@S0556-2813~99!06702-3#

PACS number~s!: 13.60.2r, 13.75.Cs, 21.45.1v, 25.80.Ls
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I. INTRODUCTION

Recently we have introduced a method for incorporat
an external electromagnetic field into any model of hadr
whose strong interactions are described through the solu
of integral equations@1,2#. The method involves the gaugin
of the integral equations themselves, and results in elec
magnetic amplitudes where an external photon is couple
every part of every strong interaction diagram in the mod
Current conservation is therefore implemented in the th
retically correct fashion, i.e., as prescribed by quantum fi
theory. Initially we applied our gauging procedure to t
relativistic three-nucleon problem whose strong interacti
are described by standard four-dimensional three-body i
gral equations@1,2#. More recently we used the same meth
to gauge the three-dimensional spectator equation for a
tem of three-nucleons@3,4#.

Here we apply our gauging procedure to the more co
plicated case of the relativisticpNN system whose four-
dimensional integral equations have only recently been
rived @6,7#.1 These equations obey both two-body (NN) and
three-body (pNN) unitarity and simultaneously describe a
the strong interaction processes of thepNN system, includ-
ing the reactionsNN→NN, NN→pd, NN→pNN, pd
→pd andpd→pNN. After gauging thesepNN equations
we obtain gauge invariant expressions for all possible e
tromagnetic processes of thepNN system, e.g., pion photo
productiongd→pd andgd→pNN, pion electroproduction
ed→e8pd and ed→e8pNN, and because pion absorptio
is taken into account explicitly, we also obtain gauge inva
ant expressions for processes like deuteron photodisinte
tion gd→NN and BremsstrahlungNN→gNN that are valid
even at energies above pion production threshold. Inclu
in the electromagnetic processes described by our mod

*On leave from The Mathematical Institute of Georgian Acade
of Sciences, Tbilisi, Georgia.

1A summary of the present work was previously reported in
conference proceeding@5#.
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the especially interesting case of elastic electron-deute
scattering. Here the deuteron is described within our mo
as a bound state of thepNN system; thus, after gauging, ou
model provides a rich description of the electromagne
form factors of the deuteron with all possible meson e
change currents taken into account. The four-dimensiona
tegral equations for thepNN system are a good deal mor
complicated than the corresponding equations describin
strictly three-body system like that of three nucleons. Firs
the pNN equations take into account pion absorption
there is coupling to the two-bodyNN channel. A conse-
quence of this in the four-dimensional approach is that c
tain three-body forces must be retained both to avoid
undercounting of diagrams and to ensure that the equat
satisfy two- and three-body unitarity@6#. Also, unlike in the
NNN case, not all three-body reducible diagrams of t
pNN system have unique three-body cuts. This leads to
overcounting of diagrams problem in the formulation
four-dimensionalpNN equations that has only recently bee
solved@6#. One example of the type of overcounting encou
tered is given in Fig. 1. The newly derivedpNN equations
have the feature that their kernels contain explicit subtrac
terms which eliminate all such overcounting.

The presence of pion absorption and the overcoun
problem in thepNN system would normally make the tas
of formulating a description of thegpNN system an espe
cially difficult one. To put this difficulty into perspective, w
recall our experience with gauging the four-dimension
three-nucleon system@1,2#. In this case the strong interactio
integral equations have exactly the same form as the th
body equations of quantum mechanics~QM! ~except of

y

a

FIG. 1. Example of overcounting inNN→pd. ~a! The NN
→pd Feynman diagram where dark circles represent all poss
contributions.~b! One of the contributions included in~a!. ~c! An-
other way of drawing diagram~b! showing that this term corre
sponds to an overdressing of the deuteron vertex.
1263 ©1999 The American Physical Society
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1264 PRC 59A. N. KVINIKHIDZE AND B. BLANKLEIDER
course that they are four-dimensional rather than thr
dimensional!. Then after applying our gauging procedure w
obtained an electromagnetic current that is again just of
same form as the three-nucleon current in QM; namely
simple sum of one and two-body currents. However, in c
trast to the QM case, the two-body current obtained in
four-dimensional formulation is modified by a subtracti
term whose presence is necessary to stop the overcounti
diagrams. Thus the gauging of equations method led us
simple prescription for the electromagnetic current of th
nucleons. The situation forpNN is quite different as the
strong interaction equations for this system cannot be
into a QM form. Thus there is no corresponding simple p
scription for thepNN electromagnetic current and the gau
ing procedure itself becomes effectively the only way
specify this current. On the other hand, our gauging pro
dure is extremely simple, and by gauging thepNN equations
with subtraction terms included, one easily constructs eq
tions for thegpNN system without encountering any furth
difficulties and with all overcounting problems being tak
care of automatically. In this way we obtain a unified d
scription of thepNN andgpNN systems.

II. FOUR-DIMENSIONAL pNN EQUATIONS

The first attempts to formulate few-body equations us
relativistic quantum field theory were made already in
early 1960s@8–10#. Both such general formulations and on
more specific to thepNN system have been pursued un
the present time@11–13#. Yet all these attempts have ha
theoretical inconsistencies, including the undercounting
overcounting problems discussed above. We have rece
overcome these problems and derived new consistentpNN
equations by using a method where in cases like that of F
1~b! and 1~c! where the rightmostpNN cut is not unique,
one of the rightmostpNN vertices is ‘‘pulled out’’ further to
the right, in this way defining a uniquepNN cut @6#. The
samepNN equations were later derived in Ref.@7# where a
method based on Taylor’s classification of diagrams@8,14#
was used. In this section we would simply like to resta
these equations but in a form that is particularly conveni
for gauging.

A. Distinguishable nucleon case

Initially we would like to consider the case where the tw
nucleons are treated as distinguishable particles. Not o
does this avoid taking into account the symmetry factors
related complications due to the identity of the two nucleo
but it is also of practical interest in itself, as for example
modelling thepnp system without using isospin symmetr

We follow the usual convention and refer to the tw
nucleons as particles 1 and 2, and the pion as particle 3.
also usel51 or 2 to label the channel where nucleonl and
the pion form a two-particle subsystem with the oth
nucleon being a spectator, andl53 to label the channe
where the two nucleons form a subsystem with the pion
ing a spectator. Although we are concerned only with th
physical processes having at most one pion in either initia
final state, we do allow multiple-pion intermediate stat
These intermediate state pions may be taken to be e
e-
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distinguishable or indistinguishable without affecting the fo
mulation below in any essential way.

Although the derivation of thepNN equations given in
Ref. @6# neglected all connected diagrams that are bothNN-
and pNN-irreducible in the processesNN→NN and
NN↔pNN, in our approach these are easily included a
do not complicate the originalpNN equations in any essen
tial way; for this reason we shall retain all such diagra
here. On the other hand we follow Ref.@6# and keep only
thoseNN- and pNN-irreducible connected diagrams in th
processpNN→pNN ~the three-body forces! that are neces-
sary to avoid undercounting. The formulation retainingall
three-body forces will be given elsewhere.

It is easy to rearrange the four-dimensionalpNN equa-
tions of Ref.@6# into a convenient form similar to the on
used by Afnan and Blankleider@15# in a three-dimensiona
formulation of the pNN system. For the distinguishabl
nucleon case we obtain

T d5V d1V dG t
dT d, ~1!

whereT d,V d, andG t
d are 434 matrices given by

T d5S TNN
d T̄N

d

TN
d Td D , V d5S VNN

d F̄ d

F d G0
21ID ,

G t
d5S D0 0

0 G0w0G0
D . ~2!

Note that we use a notation where the superscriptd denotes
the distinguishable nucleon case on those symbols that
be used later without the superscript for indistinguisha
nucleons. Equation~1! is a symbolic equation representing
Bethe-Salpeter integral equation to be solved forT d. To
clarify its meaning we give the explicit numerical form o
the equation forNN scattering at the end of this subsectio
T d consists of transition amplitudesTNN

d , TlN , TNm , and
Tlm (l and m are spectator-subsystem channel labels! the
last three being elements of the matricesTN

d , T̄N
d , andTd,

respectively. The physical amplitudes forNN→NN, NN
→pd, pd→NN, andpd→pd are then given by

XNN
d 5TNN

d , XdN
d 5c̄dT3N , XNd

d 5TN3cd ,

Xdd
d 5c̄dT33cd , ~3!

respectively, wherecd is the deuteron wave function in th
presence of a spectator pion.

The elements making up the kernelV d, specified in Eq.
~2!, consist of the quantitiesVNN

d , F l
d , F̄l

d , andI defined
as follows:

VNN
d 5VNN

OPEd1VNN
~1! d1F̄c

dG0~F11F2!

1~ F̄11F̄2!G0Fc
d1B̄dG0Bd1F̄c

dG0Fc
d2D, ~4!

whereVNN
OPEd is the nucleon-nucleon one-pion-exchange p

tential, VNN
(1)d is thepNN-irreducible part of theNN poten-

tial, Fi5 f idj
21 where i , j 51,2 with iÞ j , f i being theNi

→pNi vertex function anddj the Feynman propagator o
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nucleon j , Fc
d is the simultaneouslyNN- and pNN-

irreducible connected amplitude forNN→pNN, Bd5B
1PBP whereB5VNN

OPEdd2f 2 andP is the nucleon exchang
operator, andD is a subtraction term that eliminates ove
counting. Diagrams illustratingVNN

OPEd, VNN
(1)d, F2 , B, and

Fc
d are given in Fig. 2.F d is a 331 matrix whoselth row

element is given by

F l
d5(

i 51

2

d̄l iFi1Fc
d2Bd, ~5!

where d̄l i512dl i . Note that hereBd plays the role of a
subtraction term.F̄d is the 133 matrix that is the time re-
versed version ofF d ~similarly for other ‘‘barred’’ quanti-
ties!, G0 is thepNN propagator, andI is the matrix whose
(l,m)th element isd̄l,m . Finally the propagator termG t

d is a
diagonal matrix consisting of theNN propagatorD0 , and the
333 diagonal matrix w0 whose diagonal elements a
t1d2

21 , t2d1
21 , and t3

dd3
21 , with tl being the two-bodyt-

matrix in channell ~for l51 or 2, tl is defined to be the
pN t-matrix with the nucleon pole term removed!. The sub-
traction termD is defined with the help of Fig. 3 as follows

D5Wpp1WpN
d 1WNN1X1Yd1B̄dG0Fc

d1F̄c
dG0Bd

1F̄2pG0
2p f 1f 2uND1 f̄ 1 f̄ 2G0

2pF2puND , ~6!

FIG. 2. Illustration of quantities making upVNN
d . ~a! VNN

OPEd, ~b!
a contribution toVNN

(1) d, ~c! F25 f 2d1
21 , ~d! B, and~e! a contribution

to Fc
d .
whereF2p is the simultaneouslyNN- andpNN-irreducible
connected amplitude forNN→ppNN, G0

2p is the ppNN
propagator,WpN

d 5WpN1PWpNP and Yd5Y1PY P. The

expressionf̄ 1 f̄ 2G0
2pF2p in Eq. ~6! is a subtraction term for

the overcounted contributions in (F̄11F̄2)G0Fc
d in Eq. ~4!.

It consists of two types of contributions, one with the tw
intermediate state pions crossing, and one with them
crossing, as illustrated in Fig. 4. As our equations are deri
with the pNN vertex being dressed from the beginning@6#,
terms that contribute to a further dressing of thepNN vertex,
like that of Fig. 4~b!, need to be suppressed. This suppress
is indicated in Eq.~6! by the ‘‘no dressing’’ symboluND .
Similar comments of course apply to the termF̄2pG0

2p f 1f 2

in Eq. ~6!.
To illustrate the numerical form of our equations we co

sider the case of theNN scattering amplitudeTNN
d as given

by Eq. ~1! and Eq.~2!

TNN
d 5VNN

d 1VNN
d D0TNN

d 1 (
l51

3

F̄ l
d G0wll

0 G0TlN
d . ~7!

For the purposes of the illustration we may simplify th
equation by neglectingFc

d ~but notBd as it is a subtraction
term!. In this case we obtain the following numerical integr
equation forTNN

d :

FIG. 3. Terms making up the subtraction termD. ~a! Wpp , ~b!
WpN , ~c! WNN , ~d! X, ~e! Y, and ~f! a contribution toF2p . The
dark circles represent the following two-body amplitudes:~a! full
pp t-matrix, ~b! one-nucleon irreduciblepN t-matrix, and ~c!
full NN t-matrix minus theNN one-pion-exchange potential.
TNN
d ~p18p28 ,p1p2!5VNN

d ~p18p28 ,p1p2!1E d4k1

~2p!4
VNN

d ~p18p28 ,k1k2!D0~k1k2!TNN
d ~k1k2 ,p1p2!1E d4k1

~2p!4

d4k2

~2p!4

3H f̄ 2~p28 ,k2k38!dp~k38!t1~p18k38 ,k1k3!2E d4k18

~2p!4
@ f̄ 1~p18 ,k19k38!DpN~k19k38!VNN

OPE~k19p28 ,k18k2!

1 f̄ 2~p28 ,k28k38!DpN~k28k38!VNN
OPE~p18k28 ,k18k2!# d1~k18!t1~k18k38 ,k1k3!J

3G0~k1k2k3!T1N~k1k2k3 ,p1p2!1S p18↔p28

p1↔p2
D 1E d4k1

~2p!4

d4k2

~2p!4
f̄ 1~p18 ,k18k3!d1~k18!

3F t3~k18p28 ,k1k2!2E d4k19

~2p!4
VNN

OPE~k18p28 ,k19k28!D0~k19k28!t3~k19k28 ,k1k2!G
3 G0~k1k2k3!T3N~k1k2k3 ,p1p2!1S p18↔p28

p1↔p2
D , ~8!
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1266 PRC 59A. N. KVINIKHIDZE AND B. BLANKLEIDER
where to save on notation we have suppressed spin

isospin labels and used the symbol (
p1↔p2

p18↔p28) to indicate a term

derived from the preceding contribution by exchanging
momenta, spin, and isospin labels of the external nucle
In writing Eq. ~8! we have used the fact that nume
cally f̄ 1(p8,pk)5 f̄ 2(p8,pk), t1(p8k8,pk)5t2(p8k8,pk),
and T1N(k2k1k3 ,p2p1)5T2N(k1k2k3 ,p1p2). In Eq. ~8!
DpN(k1k3)5d1(k1)dp(k3) is thepN propagator, and all un
specified momenta are determined by momentum conse
tion, e.g., in all the above termsk35p11p22k12k2 . Equa-
tion ~8! is illustrated in Fig. 5. In reference to this figure w
note that despite appearances, all the subtraction te
~terms entering with a minus sign! end on the left in the sam
way, either with B̄5 f̄ 2d2VNN

OPE or with PB̄P5 f̄ 1d1VNN
OPE.

Also, the last two lines clearly involve the contributiont3

2VNN
OPED0t3 which may appear incorrect as the term su

tracted involves an overcountedNN interaction. Yet just
such an overcounted contribution needs to be subtracte
stop overcounting in the overall equations. In this respec
is interesting to note that in the one pion exchange lad
approximation tot3 , the combinationt32VNN

OPED0t3 reduces
down simply toVNN

OPE.

B. Indistinguishable nucleon case

In approaches based on second quantization in quan
mechanics it is usual to obtain the scattering equations
identical particles by explicitly symmetrizing the equatio
of the distinguishable particle case. This procedure is
justified in the framework of relativistic quantum fiel
theory. Nevertheless, as we have already derived thepNN
equations taking into account identical particle symme
right from the beginning@6#, we can formally deduce how
the above distinguishable nucleonpNN equations need to b

FIG. 4. Example of diagrams contributing tof̄ 1 f̄ 2G0
2pF2p in Eq.

~6!. ~a! Contribution with crossed pions,~b! contribution with pions
not crossing.

FIG. 5. Graphical representation of the integral equation,
~8!, for the NN scattering amplitude. The top line involves th
amplitudeTNN

d , the second line involvesT1N , the third line in-
volvesT2N , and the last two lines involveT3N .
nd
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modified in order to get the indistinguishable nucleon ca
With this in mind, we introduce identical nucleon transitio
amplitudes defined in terms of distinguishable nucleon tr
sition amplitudes as

TNN5TNN
d A, TDN5T1NA, TdN5T3NA,

TND5T̄N12T̄N2P, TNd5T̄N3A, TDD5T112T12P,

TdD5T312T32P, TDd5T13A, Tdd5T33A,
~9!

where A512P is the antisymmetrizing operator. AsT̄N1

5PT̄N2P and T̄N35PT̄N3P, we can alternatively write
TND5AT̄N1 , TNd5AT̄N3 , and TdD5AT̄31. Thus in the
transition to the indistinguishable particle case, the origi
16 transition amplitudes for distinguishable particles ha
been reduced to 9 antisymmetric transition amplitudes.
taking residues of thepNN Green function for identical
nucleons at two-body subsystem poles, one obtains the
lowing expressions for the physical amplitudes:

XNN5TNN , XdN5c̄dTdN , XNd5TNdcd ,

Xdd5c̄dTddcd . ~10!

Using Eqs.~9! in Eq. ~1! it is easy to show that one agai
obtains a Bethe-Salpeter equation

T5V1VGtT ~11!

but where nowT, V, andGt are 333 matrices given by

T5S TNN TND TNd

TDN TDD TDd

TdN TdD Tdd

D ,

V5S VNN
d A AF̄ 1

d F̄ 3
d A

F 1
dA 2G0

21P G0
21A

F 3
dA G0

21A 0
D , ~12!

Gt5S 1
2 D0 0 0

0 G0t1d2
21G0 0

0 0 1
4 G0t3d3

21G0

D , ~13!

where t35t3
dA is the t-matrix for two identical nucleons in

the presence of a spectator pion.
From Eq.~4! it follows that

VNN
d A5VNN

OPE1VNN
~1!1F̄cG0F1

R1F̄1
LG0Fc1F̄2p

L G0
2p f 1f 2

1 f̄ 1 f̄ 2G0
2pF2p

R 2Wpp
R 2WpN

LR2WNN
R 2XR2YLR

1
1

2
~B̄LR2F̄c!G0~BLR2Fc!, ~14!

where VNN
OPE5VNN

OPEdA, VNN
(1)5VNN

(1)dA, Fc5Fc
dA, F̄c5F̄c

dA,
and where we have used a superscriptL to indicate thatA is
acting on the left, and a superscriptR to indicate thatA is

.
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acting on the right. Note that Wpp
R 5Wpp

L , WNN
R

5WNN
L , XR5XL, andF2p

R 5F2p
L . Here we have also use

the simple result

~B̄d2F̄c
d!G0~Bd2Fc

d!A5
1

2
~B̄LR2F̄c!G0~BLR2Fc!.

~15!

The other terms in the kernelV of Eq. ~12! are

F 1
d5F22Bd1Fc

d , F̄ 1
d 5F̄22B̄d1F̄c

d , ~16!

F 3
d5F11F22Bd1Fc

d , F̄ 3
d 5F̄11F̄22B̄d1F̄c

d .
~17!

ThepNN equations as given by Eqs.~11!, ~12!, and~13!
have a form where seven of the eight nonzero elements m
ing up the kernelV contain the antisymmetrization operat
A. One element (t3) in Gt also containsA. The question
arises if one can remove the operatorsA from these equations
by analogy with the familiar example of the one-chann
Bethe-Salpeter equation for two identical nucleons:

T5VAS 11
1

2
GTD . ~18!

Here theNN potentialV is multiplied on the right byA, but
asV has the propertyVP5PV and thereforeVA5AV, it is
easy to see that we can instead solve the equation

T85V~11GT8!, ~19!

whereA has been removed from the equation and where
NN t-matrix T is obtained by antisymmetrizing the solutio
T5T8A.

Unfortunately it is not possible to follow a similar proce
dure to completely remove the operatorA from Eqs. ~11!,
~12!, and~13!. The reason is thatVPÞPV for the kernelV of
Eq. ~12! ~in particularF 1

dPÞPF 1
d). In this respect we note

that thepNN equations for identical particles given in Re
@7# are not equivalent to ours as they do not involve
operatorA. AlthoughA cannot be removed completely from
the identical particlepNN equations, one can reduce th
number of places whereA appears. For example, it is easy
show that Eqs.~11!, ~12!, and ~13! are equivalent to the
equations

T 85V81V8Gt8T 8; ~20!

V85S VNN
d F̄ 1

d F̄ 3
d

F 1
dA 2G0

21P G0
21A

F 3
d G0

21 0
D ,

Gt85S D0 0 0

0 G0t1d2
21G0 0

0 0 G0t3
dd3

21G0

D , ~21!

where
k-

l

e

e

T5S A 0 0

0 1 0

0 0 A
D T8S A

2
0 0

0 1 0

0 0
A

2

D ~22!

and all but two operatorsA have been removed form th
integral equations. There are further forms of thepNN equa-
tions with operatorsA appearing at various other places
the equations, yet there are always at least twoA operators
present.

III. pNN ELECTROMAGNETIC TRANSITION
CURRENTS

A. Gauging the pNN equations

In this section we shall derive expressions for the vario
electromagnetic transition currents of thepNN system. To
do this we utilize the recently introduced gauging of equ
tions method@1,2#. As the gauging procedure is identical fo
the distinguishable and indistinguishable particle cases,
restrict our attention to thepNN system where the nucleon
are treated as indistinguishable particles.

As discussed in the previous section, the strong inter
tion pNN equations can be written in a number of equivale
forms. Choosing the form given by Eqs.~11!, ~12!, and~13!,
direct gauging of Eq.~11! gives

T m5V m1V mGtT1VG t
mT1VGtT m ~23!

which can easily be solved forT m giving

T m5~11TGt!V m~11GtT!1TG t
mT. ~24!

T m is a matrix of gauged transition amplitudesTNN
m , TND

m ,
TNd

m , etc. To obtain the physical electromagnetic transit
currents of thepNN system where photons are attached e
erywhere it is not sufficient to just gauge the physicalpNN
amplitudes of Eq.~10!. Although this would indeed attach
photons everywhere inside the strong interaction diagram
would miss those contributions to the physical electrom
netic transition currents where the photons are attached to
external~initial and final state! pions and nucleons. In orde
to also include these external leg contributions it is usefu
attach the corresponding propagators to theX-amplitudes of
Eq. ~10!:

X̃NN5D0XNND0 , X̃dN5dpXdND0 , ~25!

X̃Nd5D0XNd dp , X̃dd5dpXdd dp . ~26!

The physical electromagnetic transition currents are then
tained by gauging Eqs.~25! and ~26! and ‘‘chopping off’’
external legs:

j NN
m 5D0

21X̃NN
m D0

21, j dN
m 5dp

21X̃dN
m D0

21 , ~27!

j Nd
m 5D0

21X̃Nd
m dp

21 , j dd
m 5dp

21X̃dd
m dp

21 . ~28!

Using Eqs.~10! we obtain that
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j NN
m 5D0

21D0
mTNN1TNND0

mD0
211TNN

m , ~29!

j dN
m 5f̄d

mD0TdN1dp
21f̄dG0

mTdN

1f̄dD0TdN
m 1f̄dD0TdND0

mD0
21 , ~30!

j Nd
m 5TNdD0fd

m1TNdG0
mfddp

21

1TNd
m D0fd1D0

21D0
mTNdD0fd , ~31!

j dd
m 5f̄d

mD0TddD0fd1dp
21f̄dD0

mTddD0fd1f̄dD0Tdd
m D0fd

1f̄dD0TddD0
mfddp

211f̄dD0TddD0fd
m , ~32!

wherefd is the deuteron bound state vertex function defin
by the relationcd5d1d2fd . The above equations expre
the physical electromagnetic transition currentsj ab

m (a,b
5N or d) in terms of the half-on-shellpNN transition am-
plitudesTab and the gauged quantitiesVab

m , (G t
m)ab , and

fd
m . Note thatfd

m consists of contributions where the photo
is attached everywhere inside the deuteron bound state,
is determined by gauging the two-nucleon bound state eq
tion for fd @1,2#.

That the above equations are gauge invariant is evid
from the fact that we have formally attached the photon to
possible places in the strong interaction model. The ga
invariance of our equations also follows from a strict ma
ematical proof; however, as this proof is essentially identi
to the one given for theNNN system@2#, we shall not repea
it here.

B. Alternative form of the pNN equations

Although the preceding discussion solves the problem
gauging thepNN system, the expression obtained for t
gauged transition amplitudes, Eq.~24!, may not be the mos
convenient for numerical calculations. The disadvantage
Eq. ~24! is that it utilizes a Green functionGt which contains
two-body t matrices, while sucht matrices are already im
plicitly present in the adjoining amplitudes ofT. This makes
the calculation ofT m unnecessarily complicated. One cou
eliminate this multiplet-dependence in Eq.~24! by making
use of Eq.~11!; however, this would be a lengthy and aw
ward procedure. Instead we derive an alternative form of
pNN equations which uses a ‘‘free’’ Green function whic
contains no two-body interactions and which leads to simp
expressions for thepNN electromagnetic transition current

ThepNN equations Eqs.~11!, ~12!, and~13!, can be writ-
ten in the form

S TNN T̄N

TN T
D 5S VNN F̄

F LG0
21D

3F11S 1
2 D0 0

0 G0tG0
D S TNN T̄N

TN T
D G ,

~33!

whereVNN5VNN
d A is given by Eq.~14!, and
d

nd
a-

nt
ll
e

-
l

f

of

e

r

F5SF 1
dA

F 3
dA

D 5F ~F22Bd1Fc
d!A

~F11F22Bd1Fc
d!A

G
5F F2A2BLR1Fc

~F11F2!A2BLR1Fc
G , ~34!

F̄5~AF̄1
d AF̄3

d!

5@A~ F̄22B̄d1F̄c
d! A~ F̄11F̄22B̄d1F̄c

d!#

5@~AF̄22B̄LR1F̄c! ~AF̄11AF̄22B̄LR1F̄c!#,

~35!

L5S 2P A

A 0 D , t5S t1d2
21 0

0 1
4 t3d3

21D . ~36!

With the view of gauging Green function versions ofpNN
transition amplitudes, we introduce the Green function m
trix appropriate to Eq.~33!:

G5S GNN ḠN

GN G
D [S GNN GND GNd

GDN GDD GDd

GdN GdD Gdd

D
5S AD0 0

0 0D 1S D0 0

0 G0
D S TNN T̄N

TN T
D S D0 0

0 G0
D .

~37!

The inhomogeneous term is chosen so thatGNN corresponds
exactly to the full Green function forNN scattering. Then, as
shown in the Appendix,G satisfies the equation

G5S AD0 0

0 LG0
D F11S 1

4 VNN2 1
4 L̄LG0L 1

2 L̄

1
2 L t

D GG ,

~38!

where L and L̄ are defined by Eqs.~A12!. The essential
feature of Eq.~38! is that it is written in terms of an effective
‘‘free’’ Green function matrix

G05S AD0 0

0 LG0
D ~39!

which does not involve two-body interactions. For this re
son Eq.~38! is ideal for the purposes of gauging.

C. Gauging the alternative form of the pNN equations

In terms of the elements ofG, the Green function version
of the physical amplitudes@defined in Eq.~26!# are given by

X̃NN5GNN , X̃dN5f̄dGdN ,

X̃Nd5GNdfd , X̃dd5f̄dGddfd . ~40!

After gauging, these equations give
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X̃NN
m 5GNN

m , ~41!

X̃dN
m 5f̄d

mGdN1f̄dGdN
m , ~42!

X̃Nd
m 5GNd

m fd1GNdfd
m , ~43!

X̃dd
m 5f̄d

mGddfd1f̄dGdd
m fd1f̄dGddfd

m . ~44!

The pNN electromagnetic transition currentsj ab
m are then

determined by Eqs.~27! and Eqs.~28!.
To determine the quantitiesGab

m in Eqs. ~41!–~44! we
need to derive the expression forG m by gauging Eq.~38!.
Defining

Vt5S 1
4 VNN2 1

4 L̄LG0L 1
2 L̄

1
2 L t

D , ~45!

Eq. ~38! can be written as

G5G01G0VtG. ~46!

Gauging this equation and solving forG m gives

G m5~11GVt!G 0
m~11VtG!1GV t

mG. ~47!

To simplify this equation we cannot use Eq.~46! to write 1
1VtG5G 0

21G and 11GVt5GG 0
21 sinceL is singular so that

the inverseG 0
21 does not exist. Instead we use the fact th

L5LVL, where

V5S 2
11P

2

1

2

1

2
2

1

4

D ~48!

which allows us to write

G 0
m5G0M mG0 , ~49!

where

M m5S 1
2 D0

21D0
mD0

21 0

0 VG0
21G0

mG0
21D . ~50!

Using Eq. ~49! in Eq. ~47! allows us to write a compac
expression forG m:

G m5G~M m1V t
m!G. ~51!

Comparing this expression with the one of Eq.~24!, we see
that both involve the gauged two-bodyt-matrix tm; however,
in contrast to Eq.~24!, the above expression does not conta
adjoining strong interactiont matrices and may therefore b
preferable for numerical calculations.

As D0
m5(d1d2)m5d1

md21d1d2
m and G0

m5(d1d2d3)m

5d1
md2d31d1d2

md31d1d2d3
m , we obtain

D0
21D0

mD0
215G1

md2
211d1

21G2
m , ~52!
t

G0
21G0

mG0
215G1

md2
21d3

211d1
21G2

md3
211d1

21d2
21G3

m ,
~53!

where

G i
m5di

21di
mdi

21 ~54!

is the electromagnetic vertex function of particlei. The term
M m of Eq. ~51! thus corresponds to photon coupling in th
impulse approximation. The gauged matrixV t

m corresponds
to the interaction currents and consists of the elementsVm

5(VNN2L̄LG0L)m, L̄m, Lm and tm. It is important to
note that the diagonal elements of matrixtm are both of the
form

~ t idj
21!m5t i

mdj
211t i~dj

21!m5t i
mdj

212t iG j
m , ~55!

where the last equality follows from the fact that (dj
21dj )

m

50. Thus the diagonal elements oftm involve new subtrac-
tion termst iG j

m whose origin does not lie in the subtractio
terms of the strong interactionpNN equations, but rather in
the gauging procedure itself. Analogous subtraction ter
arise in the three-nucleon problem whose strong interac
equations have no subtraction terms@1,2#. Similar subtrac-
tion terms will arise in the gauging ofF1 andF̄1 contained in
L and L̄ respectively. The graphical representation ofM m

andV t
m is given in Fig. 6.

Equation~51! can be used to determine all the possib
electromagnetic transition current of thepNN system. For
example, currentj NN

m for the electromagnetic transitionNN
→NN is given by

j NN
m 5D0

21GNN
m D0

21 ~56!

5(
ab

D0
21GNa~M m1V t

m!abGbND0
21

5(
ab

~AdNa1TNaDa!~M m1V t
m!ab

3~AdbN1DbTbN!, ~57!

wherea,b5N,D,d, andDN[D0 ,DD5Dd[G0 .
An especially interesting use of Eq.~51! is to study the

electromagnetic properties of bound states of thepNN sys-
tem. It is certainly expected that the strong interactionpNN
model under discussion admits a bound state correspon

FIG. 6. Graphical representation of~a! M m and ~b! V t
m which

enter into the expression for the gauged Green function matrixG m

of Eq. ~51!. Constant factors and effects of operatorA and matrixV
have been ignored in this illustration.
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to the physical deuteron. In this case a solution will exist
the homogeneous version of Eq.~11!:

F5VGtF, ~58!

whereF is a matrix of deuteron vertex functions

F5S FN

FD

Fd

D . ~59!

HereFN is the usual deuteron vertex function describing
d→NN transition, whileFD andFd are somewhat unusua
in that they describe transitions to clusteredpNN states:d
→(pN)N and d→(NN)p, respectively. Comparing Eq
~37! and Eq.~38! it is seen thatG has a pole at the deutero
massMd :

G; i
CC̄

P22Md
2

as P2→Md
2 , ~60!

where P is the total four-momentum of the system, a
whereC satisfies the equation

C5G0VtC. ~61!

Clearly C is related toF by the equation

C5S D0 0

0 G0
DF ~62!

so that either of the equations~59! or ~62! can be used to
determineC. Taking the left and right residues at the de
teron bound state poles of Eq.~51! we obtain the bound stat
electromagnetic current

j m5C̄~M m1V t
m!C, ~63!

which describes the electromagnetic properties of the d
teron whose internal structure is described by the pre
pNN model. Eq.~63! provides a very rich description of th
internal electromagnetic structure of the deuteron with
possible meson exchange currents being taken into acc
in a gauge invariant way. In view of the accuracy of th
model which is based on meson and baryon degrees of
dom, a comparison of the deuteron electromagnetic form
tors ~easily extracted fromj m) with those extracted from
experiment should prove to be most interesting.

IV. CONCLUSIONS

We have derived gauge invariant expressions for the e
tromagnetic transition currents of thepNN system where the
strong interactions are described by four-dimensional in
gral equations. The feature of our approach is that the ex
nal photon is coupled everywhere in the strong interact
model, in this way giving a unified description of thepNN
andgpNN systems. This unified approach to thepNN sys-
tem and its electromagnetic currents has been made pos
by the recent introduction of the gauging of equatio
method@1,2#. The use of this method has also enabled us
avoid all the overcounting problems that are inherent in fo
o

e

-

u-
nt

ll
nt

e-
c-

c-

-
r-
n

ble
s
o
-

dimensional descriptions ofpNN-like systems@6#.
The expressions we have derived can be used directl

make four-dimensional calculations of all the reactions
duced in thepNN system by an external electromagne
probe. However, in view of the practical difficulty of solvin
four-dimensional integral equations, it may also be usefu
have a gauge invariant three-dimensional description of
same processes. In that case our four-dimensional exp
sions can be used to provide the starting point for a thr
dimensional reduction. One such three-dimensional red
tion scheme that preserves gauge invariance and is e
applied to our four-dimensional expressions was discusse
Ref. @3#.

Although we have specifically gauged thepNN system, it
should be noted that the derived expressions apply equ
well to other systems consisting of two fermions and o
boson which can be absorbed by the fermions. For exam
one could apply our expressions to the quark-antiqua
gluon system in order to calculate the meson spectrum
cluding its electromagnetic properties.

It is also worth noting that our derivation of the gaug
pNN equations only assumed that the external field coup
to hadrons only to first order in the field-hadron coupli
constant, but otherwise does not depend on the nature o
external field. Thus, for example, our expressions can
used directly to determine the weak interaction transit
currents of thepNN system.
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APPENDIX

In this appendix we derive Eq.~38!. Writing Eq. ~33! as
T5V1VGtT and Eq.~37! asG5Gu1gTg where

Gu5S AD0 0

0 0D , g5S D0 0

0 G0
D , ~A1!

V5S VNN F̄
F LG0

21D , Gt5S 1
2 D0 0

0 G0tG0
D , ~A2!

we have that

G5Gu1gTg5Gu1gVg1gVGtTg

5Gu1gVg1gVG tg
21~G2Gu! ~A3!

or

G5Gu1gV~g2G tg
21Gu!1gVG tg

21G. ~A4!

Using the explicit matrix forms forGu , g, V, andGt given
in Eq. ~A1! and Eq.~A2!, the equation forG takes the form

G5S AD0 D0F̄G0

0 LG0
D 1S 1

2 D0VNN D0F̄G0t

1
2 G0F LG0t

D G.
~A5!

Multiplying this equation from the left by the matrix
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R5S 1 2D0F̄Z

0 ZL
D , ~A6!

where

Z5S 2
11P

2

A

4

A

4
2

A

8

D so that ZL5LZ5S 1 0

0
A

2
D ,

~A7!

we obtain

S 1 2D0F̄Z

0 ZL
D G5S AD0 0

0 LG0
D 1S D0 0

0 LG0
D

3S 1
2 VNN2 1

2 F̄G0ZF 0

1
2 ZF t

D G. ~A8!

Transferring the off-diagonal term2D0F̄Z from the left-
hand side to the right and recognizing that

S 1 0

0 LZDG5G, ~A9!

Eq. ~A8! becomes

G5S AD0 0

0 LG0
D 1S D0 0

0 LG0
D

3S 1
2 VNN2 1

2 F̄G0ZF F̄Z

1
2 ZF t

D G. ~A10!
o
ali

r-

;

.

This equation may be written in the form

G5S AD0 0

0 LG0
D F11S 1

4 VNN2 1
4 L̄LG0L 1

2 L̄

1
2 L t

D GG ,

~A11!

where

L5H @F12 1
2 ~Bd2Fc

d!#A

2 1
2 ~Bd2Fc

d!
J ,

L̄5$A@ F̄12 1
2 ~B̄d2F̄c

d!# 2 1
2 ~B̄d2F̄c

d!%. ~A12!

We note that the presence of the antisymmetrization oper
A in the termAD0 of Eq. ~A11! allows one to eliminate the
antisymmetrization operators inVNN and L̄ by making the
replacements

VNN→2VNN
d and

A@ F̄12 1
2 ~B̄d2F̄c

d!#→2@ F̄12 1
2 ~B̄d2F̄c

d!#

~A13!

in Eq. ~A11! and Eq.~A12!, respectively.
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