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Neutron-electron interaction: Transmission and scattering amplitudes
and interference corrections
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Neutron transmission experiments for neutron-electron interaction are discussed. The contribution of the
coherent elastic scattering cross section to the attenuation cross section is reconsidered. Some uncertainties in
interference correction to the coherent elastic scattering cross section, which leave some room for doubting the
reliability of the number 1.8 102 fm for n-e-scattering amplitude, are pointed out. Some corrections to the
real part of the scattering amplitude, which should be taken into account in measurements of the neutron
polarizability, are found[S0556-281@9)00902-4
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[. INTRODUCTION better conformity with such a model; nevertheless some sci-
entists[8,9] declare that it is the first resylL0] which is the
The problem ofn-e interaction becomes in some respectmost reliable.

irritating. It is based on the two experimental res(i8$ ob- We decided to reconsider the procedureébgf extraction
tained for then-e scattering amplitudeb,,:2 from transmission experiments, in which the transmission
exponent is measured. The exponent contains the coherent
bpe=(1.309£0.024 <102 fm, () elastic scattering cross sectiant®", from which the infor-
5 mation aboutn-e interaction is extracted. However this ex-
bpe=(1.577+0.034x10"° fm. (2 traction is accompanied by subtractions of many so-called

Their difference is considerably larger than the reported un-SOIId state corrections, and reliability bf,. depends on the

certainties, and is essentidd] because it gives a different reliability of knowledge of these corrections.
) ’ o) gIves We investigated here one of them: the interference correc-
sign for neutron charge radigs“). The radius is related to

b... via the expression tion. In the following section we considered the question of
ne P when the attenuation cross section contaifi¥'. We have

342 shown that at low energies and for single crystals the attenu-
(r3y= _J p()r2dr=———(bpe—bg), ®) ation cross section does not contarigfh.
mé” For polycrystals, amorphous substances, and liquids the

attenuation cross section contain§" with an interference
correction, as calculated [A1]. However we found, that for
polycrystals there is an additional term, which was not
pointed out in[11].

where p. is the neutron charge density is the neutron
mass.e is the electron charge, aru is the so-called Foldy
term [6], which is the constantor=1.468<10 2 fm. The

results(1),(2) give positive and negative values f(8), re- In the third section we repeated the consideratiord of

spectively, and the absolute magnitude of the radius in botn] our notations to simplify the comparison of our results
cases £0.1 fm) is considerably smaller than the Compton with those of[11]

wavelength £0.2 fm). The image of the neutron as the pro-
ton surrounded by a cloud of negatively chargednesons
requires the negative sign. Thus the second rdgilts in

In the fourth section we performed an analysis in the
framework of multiple wave scattering theayiVS), and in
the fifth section we discussed some points, which need more
investigations to leave no room for doubting the accepted

_ ) _ ) value ofby..
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we use all the amplitudel with negative sign, thus for most
nuclei Reb>0. The transmissionT, of a sample of thickness is repre-
2In [4] the new result is reported: from experiments witiPb sented as
bpe=(1.33+0.027+0.03)x 10 2 fm, and from experiments with
Bi: bpe=(1.44+0.033+0.06)x 1073 fm. T=exp(—Ngol), (4)

II. DEFINITION OF TRANSMISSION: RELATION
OF TRANSMISSION TO n-e SCATTERING
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wherelL is the sample thickneshl, is its atomic density, and eit's
o is the attenuation cross section, which is usually taken to

be the total scattering cross sectiop, which includes the ©
elastic coherent scattering cross secidfi’=4|b|?, b be- 0 L e

ing the coherent scattering amplitude. The exponent is ob- FIG. 1. Transmission of neutrons through a sample of width
tained because the decrealeof the neutron intensity after ~ With optical potentialu.

transmission through the layer of thickness is governed ) . . .

by the law:d| = —dx Nyol. However this law does not de- _Th|s conS|derat|9n shows that we .must be careful in de-
fine o. It only states thaw includes all the processes that fining the attenuation cross sectien in the transmission
take neutrons away from the direct beam. If it includes theXPonent(4). Quantum mechanics helps us to get this defi-
coherent elastic scattering cross sectidii"=4|b|2, then ~ Mition without contradictions. Let us look at Fig. 1.

it contains information about neutron-electron interaction. According to the Schmiinger equation, if the incident

ike u

k'L gik(z—L)

Indeed, at low energies the amplitubdéncludes the pure
nuclear isotropic coherent amplitude®, and the neutron-

electron amplitudé,,., which is characterized by the point-

like electrostatic interaction

2
Hpe= 47Tbneﬁ[PN_pe]u 5)

wherepy ¢ are the charge distributiofdivided by the elec-

neutron is described by a plane wave éxy( wherek is the
wave number, the wave function inside the medium is

where k'=kZ—u=kn~k(1—u/2k?),
(8)

u=47Nb(gq=0) is the optical potential of the medium,
~1—u/2k? is the refractive index, and in the wave function
(8) we omitted reflection from the interfaces because for all
the neutron energie&>25 meV, considered here, the re-

explik’x),

tronic chargde|) inside the nucleus and the electronic cloudflection amplitude has the magnitud&k?<105.

of the atom, respectively.

Since b(0) in general is complexk’ also contains an

The interaction(5) gives a slightly anisotropic contribu- imaginary part, and the wave function at the exit from the
tion to scattering, thus the total coherent amplitude is represample becomes proportional to expnk’L). Thus the

sented by the expression

b(q):bc+bneZ[FN(Q)_Fe(Q)]a

Fi(Q)=f d®r p(r)exp(iar), (6)

whereq is the momentum transferre, . are the nuclear

and electron form factors, arlis the charge of the atomic

nucleus.
From Eq.(6) it follows that

ool =4m(|b|?)= L {[Reb(Q)]*+[Imb(Q)]*}dQ

=4[ (Reb)?+ (Imbg)?+2 RebZbn(1—(Fe(q)))].
(7)

The last equality is obtained by substitution of E6). under
the integral. HerdF(q)) is the electron form factoF.(q)
averaged over angles, the nuclear form fadiQ(q) is re-
placed by unity, and the term wilthﬁe is neglected.

It is necessary to point out that the suggestion oy in

sample transmission is
T=|y(L)|?=exp(—2 ImK'L)
=exp(—4mNg|Im b(0)|L/K), (9)

and the amplitudd,,. is to be extracted from-Im b(0). If
b(q) is theamplitudethen according to the optical theorem

—Imb(0)=ko /4, (10

where g, is the total cross section containing the elastic co-
herent scattering cross sectia@,Oh and then-eamplitudeb,,.
in it. After substitution of Eq(10) into Eq. (9) we get

T=exp(— NgolL). (11)
However, ifb(0) is thescattering lengththen
—Im b(0)=k[ oy— <"/, (12)
and Eq.(9) is
T=exp(—No[oy— ogIL), (13

some respect seems paradoxical. Indeed, if we considefq it contains no information abobt, (6).
transmission of low energy neutrons through a monoatomic, The main question is as follows: what is the magnitude

monoisot(_)pic, ordered n_1edium at 0 temperature With_hea_\/}s(q) that enters Eq(9)? According to[3,12,13 and many
(not moving nonabsorbing atoms then the attenuation isyihers it is the scattering length. Then in Ed@) we have

h

given by =0y, the intensityl decreases, and the ques- _,, b(q=0)=K[ o— c%"/47. However in that case the

tion arises: where do the Io;t neutrons go? Of course, theé(ttenuation(g) cannot be represented in the fofttd), and
can be reflected by the medium, however the reflection cop _cannot be extracted from the transmission experiment.

efficient only oscillates with thickness, and does not increase ", the other hand.

exponentially with it.

3Both of potential and resonance scattering.

ne IS extracted with the help of Eq.
(11), thenb(q) is not thelength but thescattering ampli-
tude

Now we can formulate our results and compare them with
the known ones.
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(1) We found that for low energy neutrofig0) is always N
the scattering length, anetlmb(0) does not contain b(N)IbE1 expigry), (14)
n=

oS, This result is not surprising.

(2) We proved also thab(0) is thelength even at higher \hereq=k,—k is the scattering vectoko,k are the wave
energies, if the sample is a single crystal. This result wagectors of the incident and scattered neutrons, and the nuclei
in some respect obtained by Kagan and Afanasiev irare supposed to be motionless to deal only with the elastic
1965[15,16. They had shown that the widths of nuclear scattering. The cross section attributed to this amplitude is
resonances for neutrons and gamma quanta scattering
decreased when nuclei composed an ideal crystalline U(N):f ’dQ|b(N)|2, (15)
media. The decrease means that the part of resonance
width, which is related to elastic scattering, becomes ex3q the cross section related to a single scatterer is

cluded. Now we see, that this result is a particular case

of the more general theorem.
In [11] it was shown that at high energie$®" con-

tributes to oy, but it contains the factorG=1 _ . _ _ .
— l/a2k2. in which k is the neutron wave numberis  Where the prime at the integral means that in the integration

the interatomic distance, aridis a constant parameter. the forward angle is excluded, because the neutron moving

The factorG implies that the contribution o5 to o along the forward dlrect2|qn i not scattered at all.
: ) The magnitudgb(N)|* is represented in the form
has a correction that decreases with energy decrease.

0'1=J 'dQ|b(N)|N, (16)

In [14] it is even stated that at low energies the cor- _
rection to oS diverges. In terms of the factd® this [b(N)[*= [b|? N+n;m exmqrmn)},
statement can be interpreted as an assertion that at low
enough energyG becomes zero. We have shown that where rpn=rn—"rm. (17

this is correct for polycrystalline and amorphous media.
(3) For polycrystalline samples, we confirmed the result ofThe sum can be replaced by the integral, which gives

[11], however we found that the fact@ contains also

the term of order Ka, which was not pointed out in [b(N)|2=N]|b|?

[11]. This term can be important, because it decreases

with energy slower than the termkEa® found in[11].  \ypere No=1/a® is the atomic density of scatteremsjs in-

Moreover, this term depends on the dimensions of cryseratomic distance, andi(r) is the probability to find a sec-

tallites and should be studied experimentally for betterond nucleus at a point, if the first one is atr=0. The

evaluation ofbye. function w(r) can be represented in the form(r)=1
(4) For amorphous substances we completely reconfirmed- y(r), where the functiony(r) is equal to 1 ar =0, and

the result of{ 11] with no extra term, i.e., we found the goes to 0 at — . For definiteness in the following we shall

correction factorG that at high energies behaves @s  suggesty(r)=exp(—r/s). The parametes is determined by

=1—l/2k?a?, however we also found its behavior in the condition

the full energy range € k<.

We calculated the constahtfor different models of 3, _ 3_

pair correlation function and found that the broad limits Nof HNdr=1=8mNos"=1, 19

of its variation lead to additional uncertainty for the )

magnitude ob,,.. However the recently published result Which givess= 1/_3V877N0=a/23{/;.

[4] is based on the experimentally measured pair corre- F0mM EQ.(18) it follows that

lation function and thus it is free from this uncertainty. It

is necessary to understand why the measurements with |b(N)|?/N=|b|?

liquid and solid[2] samples perfectly match each other.

It is possible that the corrections found for polycrystalstpe integral ovew(r)+ y(r)=1 is omitted because it gives
appear in liquids via small angle scattering. 58(g), i.e., the scattering in the forward direction, which, as
In the next section we rewrite the considerations bywas mentioned above, represents no scattering at all and
Placzeket al.[11] in our notation to facilitate comparison of should be excluded.
our results with those dfi1]. Substitution of Eq(20) into Eq. (16) gives

. (19

1+ Nof w(r)exp(igr)d3r

. (20

1- Nof y(r)exp(igr)d3r

o=0PT1-1/(1+45%k?)]~oSN(1-2,14k%a?),
I1l. COHERENT CROSS SECTION IN THE THEORY (21)

OF PLACZEK et al. . . .
where c$"'=4|b|?, and in the last equalitka>1 is sup-

Placzeket al. [11] use perturbation theory. They express posed.
the scattering amplitude o identical scatterers via the In [11] some more general results were obtained. It was

single atom scatteringmplitude bin the form proved that from Eq(18) for largek it follows
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~o%N(1— 7l/2k2a2), (22)  or, to be precise,

andl <3. This resu_lt was declared_ to be valiq also for crys- by~ o ol2m+ k22, (26)
tals, and the magnitude~2.8 for different lattices was cal-

culated. We shall show that this result for crystals is not ) )
complete. From Eq.(24) it follows that the real part of the amplitude

is
IV. OPTICAL POTENTIAL '

AND SCATTERING AMPLITUDE Reb= o ~Db{(1—2kbg—k?b)?)
(1+kbg)2+k?b)?

The perturbational approach has some deficiency. It is
well applicable to a plane of scatterers, however for three =b{(1— Ko, l2m—k?b}?), (27)
dimensional set of nuclei it does not take into account
screening of atomic planes by each other. This screeninghich shows that at energy 100 eV it contains a correction of
may play a crucial role especially for crystalline arrangementhe order 5< 10 # and at the energy 10 keV the two terms in
of atoms. the brackets give a correction to the real part of the ampli-

We shall follow a different approadii7,18 based on the tude of order of 10%. This correction may not be very im-
multiple wave scatteringMWS) theory. First we consider a portant for extraction ob,., but it can be important for
single scatterer, and define the scattering length and ampléextraction of the neutron polarizability, which will be con-
tude, then we consider a crystalline plane, and find how theidered at the end of this paper.
scattering amplitude is modified. After that we find the If the nucleus can movéor instance, oscillaje—Imb,
propagation of neutrons inside a semi-infinite crystalline mecontains also the inelastic scattering cross seatign Thus,
dium, and show that the coherent elastic scattering cross seffom our definition it follows that—Imb=ko/47, and

tion does not contribute to attenuation. —Imby~k(o4+ o) /4, and
Usually the samples in transmission measurements are not
single crystals, and we consider the transmission through a by

polycrystalline medium. In polycrystais™" will be shown 1+ Kbp) 2+ kb2 5 ~bo(1—2khg—k?bg?)

to contribute to the transmission exponent but the contribu- ( o)

tion contains an additional term not obtained ri]. =by(1— K oa+ oie]/2m—k2b}?). (28)
The next step is a model medium consisting of discrete

atomic planes with disordered distribution inside the planes, |f the nucleus is inside a set of nuclei, the imaginary part

and the last one is the uniform disordered medium. of b changes, because the interference of waves scattered by
different scatterers cancels the scattering in some directions
A. Definition of the scattering amplitude and enhances it in some others.

and length for a single scatterer

The s-scattering by a single nucleus placed at a point 0 is B. The formulation of MWS theory

described by the wave function To find what happens in the collective of nuclei it is nec-
. essary to use the MWS theory. In this thedwe shall fol-
Y= exp(ikr)—bexqukr) , 29 low [18,17) the total wave function is
whereb is by definition the scattering amplitudee define it Y(r)=explikr) = 2 ¢(r“)| | exp(ik|r=ra),
with negative sigh This amplitude is always representable (29
in the form
where ¢(r,) are the so-called “local fields” at points,,
bg which satisfy the system of equations:
b=—7v—, (29
1+ikbg

whereb, (and this is our definitionis the scattering length. ¥lI) = explikry) z AT, )| |exp(|k|rn "iD-
If the nucleus has zero absorption and is motionless then (30
is real, and the expressid24) exactly satisfies the optical
theorem:—Imb=k|b|?=ko 4.

If the nucleus absorbs neutrons, they=bg—ibg is com-
plex and

The solution of this system is difficult, and in general is
impossible. However in some special cases the solution can
be found rigorously or with an arbitrary precision. We shall
start with just such a case: the scattering of neutrons from a
crystalline plane.

0 iz T2
=klb|2+k 2,

—Imb=Kk|b|?+
(1+Kkby )2-1— k2b m C. Crystalline plane

, Let us consider a perfect crystalline plane with a square
thus by~ko/4, (25 elementary cell of sizd. From symmetry considerations it is
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easy to find[18] that a plane wave exil), incident on a
crystalline plane generates the local fields

P(r,)=Cexpikr,)

with the constanC.
Substituting Eq(31) into Eg. (29) we obtain

31

b, :
p(r)=exp(ikr)—CY, exp(i krn)mexp(lkh— ).
(32

If we use the Fourier expansion of the spherical wave,

f e exp(ipr)
p

2—k’—ie

exp(ikr)_ 4
o 2m)8

iy
:Efﬁexp('prﬂmlub, (33

wherep, = k°— p|2‘ is the component of the wave vector
perpendicular to the plane, and use the relation

> fn)=> J f(x)exp(2mmx)dx, (34)
n m
we get the total wave function in the form
. . Kc .
y=explikn)—i >, P exp(ikr), (35
I Il

where
k= (ki ki),
7i=2mn /d,2am,/d), k = \/k2—(k||+ 7,)2, (36)

kjj,ki, are the components of tHéh wave vector parallel
and perpendicular to the crystalline plane, respectively;

ky=k+,
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where k=27mN,yb, and the sum can be extended overlall
for which k7, >0.

From Eq.(37) it follows that C renormalizes the ampli-
tudeb:

b
bC: 0 ’

1+i kolk,
|

where KO:2’7TN2b0. (40)

It is seen that the imaginary part of the amplitude has
changed, and this change has a very clear physical meaning:
the atoms composing the crystalline lattice scatter not isotro-
pically but only in some special diffraction directions, deter-
mined by the vectors;, and the leakage of neutrons into
diffracted waves contributes to attenuation in the forward
direction.

In the case of smak<2#/d we havek? <0 for |I| #0,
all the diffracted waves exponentially decay away from the
plane, and the scattering amplitude becomes

bo
bc(k—0)= m. (41
The total wave function is reduced to the form
. . Ko . .
zp=exp(|kr)—|k+iKO explikjr+ik,|z|), (42

which means that there are only transmitted and reflected
waves with the amplitudes
ti=k, /(k, +ikg),

r=—ikel(k +ikg). (43

D. Semi-infinite ideal crystal

To understand what is thie which enters the refractive
index, it is sufficient to consider a semi-infinite crystalline
medium. For low energy neutrons, when the expreséidh
is satisfied, the calculation is straightforward. The transmis-
sion through one period for normal incidence according to

are the vectors of the reciprocal lattice of the plane, andd. (43 is

n,,m, are integers. The expressi¢d5) means that the total

wave function consists of the incident wave and many dif-
fracted waves. The amplitudes of the diffracted waves are

proportional to

bc=Ch, (37
where N,=1/d? is the two-dimensional density of atoms,
andC is the constant to be determined.

Substitution of Eq(31) into Eq. (30) gives the equation
for C

KC:27TN2bc,

1-C> rlexmk|rj—rn|+ik[rj—rn]), (39

Zn [rj—rql
from which it follows (for details seg¢17])
1
C: L
1—-ikb+iY, «/k,
]

(39

t=t, exp(ika)= e*a~exp(ik[1— ko/ak?]a)

k+iK0

=exp(ik[1—uy/2k?]a), (44)
wherea is the distance between the planeag=4mNgb,,
No=1/ad? is the atomic density, and the factor eikaj de-
scribes the motion between the crystalline planes. The trans-
mission through the slab of thickneks=Na is

Y(L)=exp(ik[ 1—ug/2k?]L) =exp(ik’L),

u
where k'=nk, n=1-—:. (45)
2k

We see that the optical potentig} contains the scattering
lengthby, and not the scattering amplitudee Thus in this
case the transmission experiments do not contain information
aboutb,.. The damping of the transmitted wave is due only
to absorption, inelastic and incoherent elastic scatte(invg.



PRC 59 NEUTRON-ELECTRON INTERACTION: TRANSMISSIA . . . 1141

do not consider here the case of total reflection, where the E. Small crystallites

wave function is also exponentially decreasing, however the s the ahove is correct for large ideal crystals. The situ-
decrease is governed not by the cross seclidiiss resultis 4o for real mosaic crystals is different because different

not surprising, because it is related to the neutron energigsiocks scatter incoherently. In this case the beam damping
below the Bragg edge. can be described by the exponent exp,o,L), Whereoy,

Nq\i/(v let us cor?siderﬁhigher energies, a#ove Ithe BragQnqn,, are the scattering cross section of a single block, and
edge:k>2m/d, when diffraction on a crystalline plane can o gensity of blocks, respectively. It is important to investi-

take place. In that case the amplitudd) can be represented gate how large is the difference betweegNy, andNoagf’h

in the form where o= 4|b|2.
Der bo 1. The perturbational result
bc—m, Ker=2mNober,  Do=—————

1+i> xo /K ' Let us calculate the scattering on a small crystallite with
7o * the help of perturbation theofj11]. In this theory the scat-
(46)  tering amplitude is

A comparison with Eq(41) shows thab, becomed,; i.e., .

it acuni)res an imagin(lry part because of elastic sC(r:attering in f=bX exp(lqri)=bNoET (2m)*5(a-1),

diffraction directions that become opened in the given geo-

metrical configuration. However it is easy to prove by simpleyhere g=k—k, is the momentum transferred,r

conside_:rations thgt this imagin_ary part does not lead to eX=(27/a)(m,n,l) is the vector of the reciprocal lattictere

ponentially decaying transmission, i.e., we suppose that the crystal has a cubic elementary cell with
parametera), m, nand| are integers, and the sum over

lexp(igL)|?+# exp(—4mNgL|Imby|/k), (47)  scatterers is replaced by the integral over space with the sum

over vectorsr of the reciprocal lattice, in agreement with the

whereq is the Bloch wave number. formula
Indeed, the diffracted waves are coherent and their num-
ber is finite, so they can be rediffracted back into the forward _ .
direction till a stationary distribution is established. The ; G(n)—% fnG(n)dnexp(men). ®D
wave function inside the crystal is a combination of all the

diffracted waves The cross section of this set of scatterers integrated over
the angles of the scattered wave vectoiis

(50

W= Ay(x)expikyr) (48)
" 3= f |f|2dQuc=b|*NG(27m)° f > 5(q=7)8(q—7)d€y.

with k,= (Ko + 7,kn ) being wave vectors of possible dif- (52

fraction directions, the subscripfs and L denoting the ) , ,

vector components parallel and perpendicular to the enIhe 'nondlagonal terms with+# v are equal to zero, because

trance surface of the crystal, respectively, ahg, N this case

= \/koz—(kOHJrq‘)z. The main feature of this expression is

the coefficientsA,(x). They are oscillating with the depth

inside the crystalthe typical example of it is the “pandel-

losung” phenomenon Thus the coefficienf\y(L) for trans-

mitted wave in the forward direction also oscillates wlith

and does not have the exponentially decaying form. If it were

exponentially decaying, the intensity would accumulate in 2:|b|2VN(2)(27r)3f 2 8(gq—1dQ,, (54)

some special directions, which contradicts the principles of T

thermodynamics.

We can conclude that in the case of ideal crystals thevhere we used the relatiod?(p)=V4é(p)/(2)°. Integra-
imaginary part ofo., in Eq. (46) does not contribute to the tion over the angles in Eq54) can be transformed as fol-
exponential decrease of intensity, which means ﬂﬁ’i‘ is  lows:
not contained in the attenuation cross section. In the case of

8(q-7d(q—7)=6(q- 7 é(7—7)=0, (53

and we are left only with the diagonal terms with the same
For diagonal terms we have

single crystals and neutrons of arbitrary energies the trans- 3 5 12
mission coefficient is of the form G(k)dQy= | (2k)d>k 8(k“—k5)G(k), (55
T=Aexp —NoL[o— &), (490  and as a result we obtain
. A . 1
where the preexponential factdrcan be oscillating with., S =~ Noo(27)2N S(Tka— 712 — K2 56
and the exponent contains no information aboy. Ko oo(2) OET (Tko=7] o (5
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whereN=N,V is the total number of particles in the set, and We shall show below that the perturbation theory in fact

oo=4|b|%. Averaging this expression over orientations of describes diffraction only outside of the Darwin plateau, and

the vectorsr, we obtain(3)=No,G, wheré we must use a more rigorous theory to look for corrections
related to the Darwin plateau itself.

(2m)*Ng 5 12 Let us consider Bragg diffraction on a single small crystal
G= Ko f ET ([ko=7]"— ko) J4m with thicknesd. and surface are@ The reflection amplitude
rois[17]
M=ka/m o
=272 > Ny/2Kir= ; — . (57) 1—exp(2iql
<2k, O i 2(kea)?n| r.=R 5 K q ) , (61)
1-R°exp2iqlL)
Here|n| is VnZ+m?+12, and the upper limit of summation , _ _ o _
is defined byl 7/< 2k, . whereR is tr_le reflection amplitude for.an. mﬂmtely thick
The sum in Eq(57) can be approximated by the integral. ¢yStal andq is the Bloch wave number inside it.
For the one-dimensional sum we use the approximdtioh If the component of the incident neutron wave vector per-

pendicular to the reflecting atomic planes has value in the
b b 1 interval 7/2<k, <7/2+ul7 where 7/2 is the Bragg wave
E f(n)=f f(n)dn+ E[f(a)+f(b)] number 7/2=7zn/a, n is the integer anda is the distance
n=a a between the reflecting planes, thBr= exp(—2i¢) with real

1 phase¢, g=7+i68q, and the expressiof6l) for sufficiently
- 1—2[f’(a)+f’(b)]+---, (58) small L looks like
where f'(x)=df(x)/dx. In our three-dimensional case we r.=R 1-exp—2oqL) =250l R . (62
use the following approximation: 1-R%exp(—248qL) 1-R?

In|<M M 6 1 The intervalsk, =u/ 7 is known as the Darwin plateau. The
; f(|n|)=j f(|n|)d3n+ Ef(l)—l—zf’(l)Jr---, PT cannot give exponentially decaying waves. For suffi-
In[=1 1 ciently thick crystalsqL>1 the reflection at the Darwin
(59 plateau is the total, thus, |2=1.

If the reflection and transmission of a single crystalline

wheren is a vector with components=(n,m,l), n, m, and . ) )
P ( ) layer of a period thickness areandt, respectively, then

| being integers, and for largd the magnitudeg(M) and
f’(M) are negligible.

N (1-r)* -t

The calculation gives = , (63)
VA+1)2=t2+J(1-r)%—t2
G=1-=l/2k?a?, where |~27—3—-0.25~3,
(60) _ 1+t)%—r?—(1-t)?—r?
R )2 i V( )2 . 60
which is in good agreement with the result obtained by VA+)2=r2+J(1-t)?=r
Placzeket al. [11]. We did not have a goal to get the result . . .
with the same precision as [iL1]. We are quite satisfied to O & cubic monoatomic lattice we hajaee Eq.(46)]
obtain a resulf60) very close to that of11] but in a differ- ik K
ent way. It proves the reliability of our method. = el = ” = e2Y p=k, al2,
In the above considerations the nuclei were considered to Lt LK
be infinitely heavy. For finite masses it is necessary to take K=Ky =27N,by, 65)

into account the Debye-Waller factor that diminishes the am-

plitude b and gives a weightv(|n|)<1 to each term in the 54 k,
sum(57). Calculations with this factor will certainly lead to
a lower value of the facto® and therefore to a higher coef-

is the normal component of the incident wave vector
with respect to the crystalline planes. Substituting Rtave

obtain
ficient | in Eq. (60), which should increase with increasing
temperature. vk, +rtang—k, —«cote
2. More rigorous theory vk, + ktang+ Kk, — x cote
The perturbation theor§PT) has a deficiency. It gives the Jtang—\tan ¢ — a)

correct positions of the Bragg peaks, however it does not = ,
give the widths of the peaks. For large crystallites the width Vtang+\tan ¢ — a)
of a peak is infinitesimal, while from dynamical diffraction (66)
theory it is found to have a finite magnitude known as the

Darwin plateau. The same substitution into E¢G4) for g gives

iqa 1+iJtang tan¢— )
glda= .
“In notations off14] G=S2.,. 1—iytang tan(¢— )

where a=arctarix/k, ).

(67)
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The sign before the square root is defined by the condition:

g=kL if «=0.

The Bragg reflection takes place whérand¢— « are on
opposite sides of pointa#/2 (integern), because in that
case the reflection amplitud®becomes modulo 1. Indeed, at
¢— a<mm/2< ¢ with evenm we have

e JVtang—ivtan a— ¢)

- R|=1.
Jtang+itana—¢) IRl (68
From Eq.(68) it follows
R tang+tana— ¢)
1-R? 4i\tangtana— )
~ - (69)
" 4iJ(p—mml2)(mal2—dta)’
and Eq.(67) gives
50~ g« d—mw/2)(mm/2— ¢+ a). (70)

Substituting into Eq(62) we obtain that the cross section of
a crystallite for the given reflectioffor the givenr) can be
represented as

IR
> ,=Scosd|r |?=4V cosd| 5q|°’L ———
I o0l
VL u?
=c030—2a =VLc030—2,
a 4k;

(71)

whereV is the crystallite’s volume, and=47Ngb,,. We

must average over orientations of the crystallite, which is th
same as averaging over direction of the incident neutron. Th

averaging gives2 ,)=NoG,, whereN is the total number
of atoms in the crystalliteg=4|b,]|?, and

f147TNOL
G.=
0 4k?

L

dQ
I PIA<K® < 7214+ 2u)cost—
(72)

is the correction factor for the given reflectidthe given
vector 7 of the reciprocal lattice Here 7/2= 7rn/a with in-

tegern, 6 is the angle between the wave vector of the inci-
dent neutron and the normal to the Bragg planes, and we

introduced the functior}(x), which is equal to unity when

inequality of its argument is satisfied, and zero in the oppo

site case.
A change of variables cas=k /k, dcosf=dk /k
~ul2kk, gives

4mN,L
T 7_2

u

2k?’

(73

For arbitrary position of the Bragg plane$ should be rep-
resented as
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(74)

Summation over all the Bragg reflections, and approxima-
tion of the sum by the integral, as shown in E§9), gives

M=ka/m

NoLbga 1
G=> G,=2 =
ET (ka)? »n% In|?
LNgb
P Kalm—1)+4]
(ka)?
_8 Lby 1—2.14k 7
" ka a a( 14ka). (79

We see that the correction to elastic scattering due to diffrac-
tions at the Darwin plateau contains terms of ordér)/E
with a little known parametet, which characterizes the
dimensions of crystallites.

If we shall take into account thermal vibrations of the
nuclei, we should renormalize the scattering amplitude
by the Debye-Waller factor b—b exp:—TZW(T)/k%]
=bexp:—72W(T)/k%], where at high temperatufe we have
[14] Woe(m/M)T/Tp, M is nuclear massT, is the Debye
temperature:TD=ﬁ2k%/2ka, and kg is the Boltzmann
constant. In that case the summation in Eg5) will be
modified as follows:

G_E G _ZNOLbcraMzka/Tr qu_|n|2/n'2I')
T (ka)? Iél n|?
L by ng
=8A— — , 76
a a (ka)? (76)

Wvhere n3oc (kpa/m)?(M/m)Tp /T, and the constam is of

rder 1. We see that in this case the dependence ofthe
actor becomes of1/k?, though linear dependence on the
unknown parametel is preserved.

Outside of the Bragg peaks

Now let us calculate the probability of reflection outside
of the Darwin plateau, i.e., whdik® — 72/4/>u. In that case
the reflection amplitud® in Eqg. (61) as it follows from Eq.
(66) is approximated by

sina ua

(\Sind coS ¢ —a) + Jcosp S G—a))? _ 27Ising|’
(77)

whereé=(k, — 7/2)a. The scattering cross section averaged
over incidence angles can be represented as follows:

R=

1 _ dQ
E=f 49|R|? sirf(éL/a)cosd—
0 47
L u?a®
s

o =
agk?a’r

dé u2a3|sin(§L/a)‘2_

Ak2a? sing | NoG

= 7-‘ .

(78



1144 IGNATOVICH, UTSURO, AND IGNATOVICH PRC 59

where The integral in Eq(83) is now easily calculated:
1 1 J’ o , exp(ikr) [ s )
=_ = I=[[1-e "INy dr ———=2aNy| - — ——|.
¢~3 (ka)? Inl” 9 [ IN: r 2k 1-iks
(85
and the ratio |sin(L/a)/sing?> was approximated as Lo .
m(L/a)8(£). Summation over all gives the same expres- Taking into account Eq84) we obtain
sion (57), as in perturbation theory, and the final result coin- ik ibk S
cides with Eq.(60), or more precisely, with the result ob- C=1-C|—— — . k=2mNyb.
tained by Placzelet al.[11]. However, if we shall take into K 14+k%?  1+5%k2
account the Debye-Waller factor, then (86)
T exp — |n|2/n$) The solution of this equation is
G=2>,G=7 > : : 21,2 21,2
2 (ka)?= In| C=11+ix/k—ibk/(1+s?k?)— ks/(1+s%k?)].
(87)
w2n2
~ > exp(—l/n%), (80)  Thus, again, the constas renormalizes the amplitude,
) transforming it into
where the upper limit of the integral was extended to infinity. be=bC=bo/[1+ikbg+irg/k—ibok/(1+s2k?)
F. A layered media with disordered atomic planes — koSl (1+5%k?)], (88)

Again we split the substance into thin separate layers, anfjnere x,= 2wN;b,. After some evident algebraic manipu-
use the MWS equations for the amplitudgs of the waves  |ations it is reduced to the form

illuminating nuclei at the points,, in a single layer:

b,
explikr be=——, where =2mNyb,, 89
In=expliky) b, gy B gy T Itk Ik m2mab (89
m#n rmn
In the first approximation the solution can be suggested in,y _ b b’ = bo
the form ¢,,= C exp(kr,,). After substitution in Eq(81) we C 14k [1-1/(1+Kk22)] 01— kos/(1+%K2)
obtain the equation fo€: (90
] explikr,p) Here b; is a renormalized length,. Renormalization in-
C=l—bCr§n exp(ik[rm=ral) e (82 creases it by the amount10~“ even for zero energy, so it

can be neglected, and in the following we will takg
The sum on the right-hand side can be approximated by the by.

integral At low energies
explikr b, for k—0
S, explik{ry-r,]) SR b= o {70
mzn F'mn 1+ikbo[1—1/(1+s%k?)] (b for k—ce.
_f o e EXPIKD) - (91)
= | W(N2 d%r explikr) r ’ The transmission of an atomic plane is determined by the
amplitude of the plane wave in the function:
where w(r) is the pair correlation function, showing the
probability to find a nucleus at the poimtif there is a ] exp(ikrmn)
nucleus at the point=0. The functiorw(r) should be cho- \If(r)zexmkr)—b% Pm o
sen in such a way as to exclude the second atom from being
at the point r=0. We suggest the formw(r)=1 ] ] k .
—exp(—r/s). The parametes is defined by the condition =(1—-ixkc/k)yexplikr)= Kin, exp(ikr), (92)

R .
N w(r erZN R2—2 S2 :N_l, 24N 52:1, V\{herEKCZZWsz-C, andKrZZWszr. Thus the tr.ansmls-
ZJ ") 2 ) ™2 sion of n planes with the gaps between thétheir thickness
(84 a can be differentleads to the wave function

which means that the integral over all the particles should

give the number of particles except the one which is at the

origin. For simplicity in the following we shall suppose that n

Lhe geutron enters the bulk matter normally to the surface, so where ur=2nf<r/ 2 ai=2x,1(a), (93)
=Y. =1

W (r)=exp(ikr[1—u,/2k?]) =exp(ik 1),
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and(a) is the average distance between atomic planes. It AC(z)eK'2=elkz— ADN,
follows thatu,=4m7Ngb, .

In the considered model the positions of atoms in neigh- exp(ik|r'—r|)
boring planes are not correlated, and we can suppose that Xf C(z)dr ' ————w(r—r’)
every one layer scatters independently. Then the imaginary [r=1]
part ofb, (90) should be considered on an equal footing with X explik(r' =)+ ik/z"), 97)

the one created by other scattering processes, and we may
conclude that it is thescattering amplitudgespecially for . _ _ _
high energies, wherb,~b) which enters the refractive in- Wherew(r—r’) is the pair correlation function. If we replace

dex. Its imaginary part contains the coherent elastic scatteft With 1—y(|r|/s), wheres is the range of the function,
ing cross section which is of the order of interatomic distance, and use Eq.

(96), we reduce EQq(97) to the form

og"=4m(b'?+b"?), (94)
exp(ik|r’ —r|) )
C(z)—1=bN0f C(z)d¥r'—————y(|r—r|/s)
and of courseb”=ko /4w, as it follows from the optical r'—r]
theorem.
However at intermediate energies the coherent cross sec- X explik(r’ —r)H+iki(z’ ~2)). (98)

tion has the correction facto®=1—1/s’k?=1— 2N, /k?
=1-—7l/2k?a?, wherel =4, and the expression fa? from
Eq. (84) was used. The correction has the same forkd &6  In the first approximation we can tak&to be a constan€,.
in calculations by Placzekt al. [11]. However the magni- Substitution into Eq(96) gives

tude of the constarit=4 is larger than 2.8 by 43%. And if

the new magnitude of is used the amplitudéb,, of n-e _ Wy ik "

i i - , . iAuc | ei?—e1? e'u?
interaction obtained would be larger than 1.33 nearly by Aek'z=gikiz_ c _

10%. 2k | ikl —k,) ikl +k)]

(99

G. Amorphous substance

In the case of amorphous media the atoms are distribute here we used the Fourier representation for spherical wave
. P : . ) nd have introduced the potential=47Ngobc with the
uniformly, and we cannot split the medium into well- ; . "
rtenormallzed amplitudec=bC,.

§eparat§d atomic plelmes. Of course, we always can split | From Eq.(99) it follows
into arbitrary layers; however the approach used above
shows that the result becomes nonunique. It depends on the
thickness of layers. For that reason we use here a different k'?=k?-uc, and A=2k/(k+Kk"). (100
approach. However we can foresee the result. It will be of

the type(91), and in agreement with the one obtained by

Placzeket al. [11]. We see the expected result. The coefficiamilays the role

of the transmission amplitude through the interface for the
plane wave ex2) incident on the medium with the optical
potentialuc .

We start with the MWS equatior(29) and(30) for the set To find C, we substitute it forC(z) in Eq. (98), and
of nuclei in a semi-infinite amorphous medium>0). The  gbtain

wave function inside the medium is suggested toyfe)
=Aexp(krj+ik{z), whereA is a constant, and] #k .

1. Refraction in amorphous matter

Then the local fields in Eq30) are Com 1b (10
1-bJ’
P(rn)=AC(z)exp(ikr +ik] z,), (95
where
whereC(z) is an unknown function of. Substitution of Eq.
i i i i : exp(ik|r’
(95) in Eqg. (29) gives the first equation foA and C(z): J:J’+iJ”:f Nod?r’ I0(| || ) wWr'lis)
r!
_ d3r’ exp(ik|r'—r er! il ' _
Aexp(ik’z)ze"‘LZ—AbNof cz) |l?( || ) xexplikrj +ik;r’ cos6)d(r' cos#>—2z). (102
r'—r
X explik(r' =) +ik|z'). (96) ¥ is the step function equal to 1 or 0 when inequality is

satisfied or not.
Now for simplicity we limit ourselves to the case of the
Substitution of Eq(95) into Eq. (30) gives the second equa- normal incidence of neutrons on the interfake=0. Then
tion for A andC(z): the integral(102) becomes
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J=27TbN0f r'dr’d cosé explikr’ +ik’r’ cos@)
X 9(r' cosf>—2z)y(r'ls)

. 2’JTbN0J1OO
ik" Jo

dr’ exp(ikr)[e*' " —e KT (1’ <2)

—e *29(r'>2)1y(r'ls), (103

which can be represented as

2mbNo = TN TR ' A P T ,
J= o dr’ exp(ikrH)[e™* " —e Ty(r'ls)
+{(2)=J9+{(2), (104
where
27bNy (= S , -
f(Z): Tk’ Ojo dr/elkr +i(k—k )Z[e—lk r _1]
X y([r'+2z]ls). (105

We see, that for>s the term{(z) is negligible, the integral

J=J, is constant, an€Cy=1/(1—bJy).

Now we shall consider several models for théunction.

No correlation, y=0

In that case)=0, Cy=1 andb is the scatteringmplitude
i.e., —Imb=k|b|2.

Exponential
y(ris)y=exp —rls). (106)
Since integratiorf w(r)Nod®r should giveN—1, whereN is

the total number of particles, the integrfily(r/s)Nyd>r
should give 1. Thus

JNOY(F/S)d3T=1, 8mNys=1, s=a/27'3

(107
Substitution of Eq(106) into Eq. (104 gives
27Ny 1 1
O ik |ls—ik—ik! Ls—ik+ik’
47TNO 47TNO
= - = - . (108
(1/s—ik)?+k'? (1/s—ik)2+k®—Cqu
Substitution in Eq(101) gives
(1/s—ik)?+k?—Cyu
0~ 5 . (109
(1/s—ik)?+k?*—Cou—u
Now, for x=C, we have the equation
X2u—ax+a=0, (110
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where u=47Ngb and a=(1—2iks)/s?. The solution of
this equation is

_ z\/a+2\/£— \/a—Z@
u \/a+2\/£+ \/a—Z\/E

2 1

s Ji1-4us2i(1-2iks) 1-us¥(1-2iks)

(111
Thus
bo
bc=bCy~ ;
1+ikbo[1—1/(1+4k?s?)]
b
0 for k—0
1+ 4ibk3s?
X A (112
0 for k—oo.

1+ikbg(1—1/4k?s?)
Accounting for the relatiori107) we get for largek

1+ikbg(1—17/2a%k?)’

bc where 1=2/73=1.37.
(113
Similar considerations for other functiongr/s) give

Lorentz-like dependence

N=———, |=7"=1.46. 114

7 (1+r2/s?)? " (119
Gaussian

y(ris)y=exp(—r?/s?), 1=2. (115

Constant

| =4s/a=4(3/4m)3=2.48.
(116

y(r)=39(r<s),

We see that for more or less realistic correlations the con-
stant| varies from 1.4 up to 2.5, and this range approxi-
mately shows the precision with which the interference cor-
rection to ™" in amorphous and liquid substances can be

estimated.

V. EXTRACTION OF n-e AMPLITUDE
FROM THE TRANSMISSION

We shall consider three papdrk,2,4], dealing with the
measurement of the scattering amplitude. The solid state ef-
fects were considered ii1,14,20,2]

The experimental values were fitted to the expression
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TABLE I. The magnitude of the form factor used [ib,2].

Energy(eV) 0.1 1.26 2.0 5.19 18.6 100 128
Pb form factor
2] 0.545 0.1802 0.144 0.0934 0.0476 0.0205 0.0196
[1] 0.488 0.134 0.0122
o, = Ug?h+ os=4m(Reb)[1—KF(E)— (Ey/E] pair correlation function were used. For these measurements

(117  there are no polycrystalline corrections and pair correlation
uncertainties. However in liquids there is multiple small
with Eo=7%2/2ma®~0.009 meV,{=l/2 was calculated, angle scattering on fluctuations, and this scattering could be
and K=2(b,./b)Z was the fitting parameter. Fob,. important in the range of energy up to several eV.
=1.32x 10" the magnitude oK is 0.0228. It is also necessary to estimate inelastic scattering. In
In [2] the analytical expression fdt(E) [8] was used: [8,14,20,2] the inelastic scattering was calculated in the
framework of the Debye model, which can be used for esti-
mation purposes only. For a reliable extractionbgf, it is
it 3EE, where E;=0.127 eV. necessary to perform measurements of the inelastic scatter-
(118 ing in liquid Pb or Bi. If there is some collective excitation
with energy of order 1 eV the cross section of inelastic scat-
This expression was obtained from x-ray data. The approxitering in the vicinity of incident neutrons energy near 1 eV
mation (118) is valid up toE=16E,;=2.032 eV. will be of the type 14/E. Accounting for this effect will also

In [1] numerical experimental data from x-ray scatteringincrease the absolute value lof. .
is used. We can compare the numerical valud-0E) for
several energies used ] and[2]. The data are represented
in Table I.

We see that there is always a difference at least of the The polarizability of the neutrom, gives the additional
order 10%. It means that the extracf@d amplitudeb,, has  contributionb,g(E) to the real part of the coherent scatter-
an uncertainty at least of the same order. ing amplitude[22], whereb,= a, is the scattering length at

If we shall take into account the correcti¢5) for the  low energy due to the neutron polarizability, ag(E) is the
elastic scattering cross section in transmission through polyform factor created by the electric field of the nucleus. To
crystalline samples, the relatiofi18 should look as fol- find a, it is possible to use the same procedure as the one
lows: used for the extraction df,.. We write the coherent cross

section in the form

F(E)=

A. A remark on polarizability

coh_ 11 Eo/E—K\E,/3E—(Ey/E], (119
o =00l +§1\/ 0 \/ 1 {Eo/E], (119 O'COh:47T(REb)2[1+K{l_F(E)}

where —(Eg/E+2(b,/bg)g(E)]+4m(Imb)2.

(122

L1=4 (120

|
oo

Here it is not correct to negle¢tm b)? because for polariz-
Because the constaKtin Eq. (119 is determined by fitting  ability measurements the energies above 10 keV are impor-
to an experimental curve, this fitting determines the magnitant, and here this term gives a considerable contribution.
tude In many paperssee, for instancg33,22]) the magnitudé
Lb is supposed to be the scattering length arich b is taken to
r_ RE B — RE B, be ko ,/4m. However, as it follows from above, at high en-
K'=K={1V3B /By =K—4 aa 3Eo/E, (121 ergiesaand in disordered substances the refractive ir?dex con-
_ _ tains theamplitude so —Im b=kao /4. Thus (Imb)? gives
thusK is the sumK =K' +4(Lb/a?) V3Eo/E,, which leads  the contribution k2o/4) which is of the order 1020 at
to an increase of the scattering amplitudlg.. How large 19 kev, wheres,=4m(Reb)?2. It means that for extraction

this increase is depends on the dimendioof the crystal-  of the neutron polarizability it is necessary to subtract
lites; however it is important to point out that the two terms |, b)2=kzaf/4w as was correctly pointed out 23], i.e.

at the right hand side of E¢121) are of the same order when , i the experimental data to the expression
L/a~200.
After correcting for the Debye-Waller factor the correc-

2 2 _ 2
tion (75) becomes of the typ€r6), which means that it does oy~ K o{/Am— o opner=4m(Reb) T1+K{1—F(E)}

not contribute taZ;,, but can considerablgit depends orl.) — (Eo/E+2(b,/Reb)g(E)].
change the coefficiernt With this term the fitting procedure 0 P
would lead to a larger value df,. (123

In the most recent pap¢d] the measurements were per-
formed with liquid Pb and Bi, and the experimental data for For higher precision it might be necessary to take into
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account also the corrections to Reshown in Eq.(28),

©)

which have the same behavior at high energies as the polar-
izability amplitude.

1)

(2

3

(4)

VI. CONCLUSION
(6)

We can summarize our results as follows.

We have found a method to calculate the interference
correction to the coherent elastic scattering cross section
ag?h for all neutron energies. This method shows when
oM contributes to the attenuation cross section of the
transmission exponent and when it does not. It contrib{7)
utes when the refractive index contains the scattering
amplitudeb, and does not, when the refractive index
contains the scattering lengh .

In the case of ideal crystals and in the case of slow

neutrons the transmission exponent does not contain
coh

Og| -

In the case of polycrystals and amorphous substances

transmission exponent containg’" with the correction

factorG=1—-aEy,/E— BVE(/E, where the term witha
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We have proven that for extraction of neutron polariz-
ability at high energy the correct definition eflmb is
—Im b=Kko/47 with the total cross sectioa;, as was
correctly shown il 23], instead of the absorption cross
sectiono, which was used, for instance, j8].

It was also shown, that Rehas the correction

SReb Kot 0]
Reb, 27

which can be important in the energy range above 10
keV.

It was pointed out that it is desirable to measure inelastic
scattering in liquid Pb and Bi to be sure that there is no
appreciable amount of inelastic scattering on collective
excitations with energy of the order 1 eV, because, if
present, it can give a contribution to the correction factor
of the type 1{E. Moreover, the liquids give small angle
scattering, which can lead to corrections of the same
order of magnitude as those obtained for polycrystals.

+k?b3, (124

It seems that some room for doubts about reliability of the

coincides with that found by perturbational method inegylit(1) or even 1.33, found if4], is left, and it is neces-

[11], while the term withg results from dynamical dif-

sary to look how well the transmissions of solid and liquid

fraction theory and cannot be found with the perturba-pp are matched considering the new interference corrections

tional approach.

found here.

In the case of amorphous substances the correction factor We are going to investigate also the corrections on inelas-

G=1-aEy/E coincides with that found if11]. The
magnitude of the coefficient is sensitive to the model
of pair correlation function and can vary in range of the
order of 100%. However this uncertainty may be re-
duced if the correction is calculated for experimentally
measured structure factor, as is dongdih It was shown

tic scattering, and to analyze uncertainties in the diffraction
result(2).
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