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Neutron-electron interaction: Transmission and scattering amplitudes
and interference corrections
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Neutron transmission experiments for neutron-electron interaction are discussed. The contribution of the
coherent elastic scattering cross section to the attenuation cross section is reconsidered. Some uncertainties in
interference correction to the coherent elastic scattering cross section, which leave some room for doubting the
reliability of the number 1.331023 fm for n-e-scattering amplitude, are pointed out. Some corrections to the
real part of the scattering amplitude, which should be taken into account in measurements of the neutron
polarizability, are found.@S0556-2813~99!00902-4#
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I. INTRODUCTION

The problem ofn-e interaction becomes in some respe
irritating. It is based on the two experimental results@3# ob-
tained for then-e scattering amplitude1 bne :2

bne5~1.30960.024!31023 fm, ~1!

bne5~1.57760.034!31023 fm. ~2!

Their difference is considerably larger than the reported
certainties, and is essential@5# because it gives a differen
sign for neutron charge radius^r 2&. The radius is related to
bne via the expression

^r 2&52E rc~r !r 2 d3r 52
3\2

me2
~bne2bF!, ~3!

where rc is the neutron charge density,m is the neutron
mass,e is the electron charge, andbF is the so-called Foldy
term @6#, which is the constant:bF51.46831023 fm. The
results~1!,~2! give positive and negative values for~3!, re-
spectively, and the absolute magnitude of the radius in b
cases ('0.1 fm! is considerably smaller than the Compto
wavelength ('0.2 fm!. The image of the neutron as the pr
ton surrounded by a cloud of negatively chargedp mesons
requires the negative sign. Thus the second result@7# is in

*Electronic address: ignatovi@nf.jinr.ru
†Electronic address: utsuro@rri.kyoto-u.ac.jp
‡Electronic address: phil@femto4.ilc.msu.su
1We use all the amplitudesb with negative sign, thus for mos

nuclei Reb.0.
2In @4# the new result is reported: from experiments with208Pb

bne5(1.3360.02760.03)31023 fm, and from experiments with
Bi: bne5(1.4460.03360.06)31023 fm.
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better conformity with such a model; nevertheless some
entists@8,9# declare that it is the first result@10# which is the
most reliable.

We decided to reconsider the procedure ofbne extraction
from transmission experiments, in which the transmiss
exponent is measured. The exponent contains the cohe
elastic scattering cross section,sel

coh, from which the infor-
mation aboutn-e interaction is extracted. However this ex
traction is accompanied by subtractions of many so-ca
solid state corrections, and reliability ofbne depends on the
reliability of knowledge of these corrections.

We investigated here one of them: the interference cor
tion. In the following section we considered the question
when the attenuation cross section containssel

coh. We have
shown that at low energies and for single crystals the atte
ation cross section does not containsel

coh.
For polycrystals, amorphous substances, and liquids

attenuation cross section containssel
coh with an interference

correction, as calculated in@11#. However we found, that for
polycrystals there is an additional term, which was n
pointed out in@11#.

In the third section we repeated the considerations of@11#
in our notations to simplify the comparison of our resu
with those of@11#.

In the fourth section we performed an analysis in t
framework of multiple wave scattering theory~MVS!, and in
the fifth section we discussed some points, which need m
investigations to leave no room for doubting the accep
value ofbne .

II. DEFINITION OF TRANSMISSION: RELATION
OF TRANSMISSION TO n-e SCATTERING

The transmission,T, of a sample of thicknessL is repre-
sented as

T5exp~2N0sL !, ~4!
1136 ©1999 The American Physical Society
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PRC 59 1137NEUTRON-ELECTRON INTERACTION: TRANSMISSION . . .
whereL is the sample thickness,N0 is its atomic density, and
s is the attenuation cross section, which is usually taken
be the total scattering cross sections t , which includes the
elastic coherent scattering cross sectionsel

coh54pubu2, b be-
ing the coherent scattering amplitude. The exponent is
tained because the decreasedI of the neutron intensityI after
transmission through the layer of thicknessdx is governed
by the law:dI52dx N0sI . However this law does not de
fine s. It only states thats includes all the processes th
take neutrons away from the direct beam. If it includes
coherent elastic scattering cross sectionsel

coh54pubu2, then
it contains information about neutron-electron interaction

Indeed, at low energies the amplitudeb includes the pure
nuclear isotropic coherent amplitudebc

3, and the neutron-
electron amplitudebne , which is characterized by the poin
like electrostatic interaction

Hne54pbne

\2

2m
@rN2re#, ~5!

whererN,e are the charge distribution~divided by the elec-
tronic chargeueu) inside the nucleus and the electronic clo
of the atom, respectively.

The interaction~5! gives a slightly anisotropic contribu
tion to scattering, thus the total coherent amplitude is rep
sented by the expression

b~q!5bc1bneZ@FN~q!2Fe~q!#,

Fi~q!5E d3r r~r!exp~ iqr!, ~6!

whereq is the momentum transferred,FN,e are the nuclear
and electron form factors, andZ is the charge of the atomi
nucleus.

From Eq.~6! it follows that

sel
coh54p^ubu2&5E

4p
$@Reb~V!#21@ Im b~V!#2%dV

54p@~Rebc!
21~ Im bc!

212 RebcZbne„12^Fe~q!&…#.

~7!

The last equality is obtained by substitution of Eq.~6! under
the integral. Herê F(q)& is the electron form factorFe(q)
averaged over angles, the nuclear form factorFN(q) is re-
placed by unity, and the term withbne

2 is neglected.
It is necessary to point out that the suggestions5s t in

some respect seems paradoxical. Indeed, if we cons
transmission of low energy neutrons through a monoatom
monoisotopic, ordered medium at 0 temperature with he
~not moving! nonabsorbing atoms then the attenuation
given by s t[sel

coh, the intensityI decreases, and the que
tion arises: where do the lost neutrons go? Of course, t
can be reflected by the medium, however the reflection
efficient only oscillates with thickness, and does not incre
exponentially with it.

3Both of potential and resonance scattering.
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This consideration shows that we must be careful in
fining the attenuation cross sections in the transmission
exponent~4!. Quantum mechanics helps us to get this de
nition without contradictions. Let us look at Fig. 1.

According to the Schro¨dinger equation, if the inciden
neutron is described by a plane wave exp(ikx), wherek is the
wave number, the wave function inside the medium is

exp~ ik8x!, where k85Ak22u5kn'k~12u/2k2!,
~8!

u54pNb(q50) is the optical potential of the medium,n
'12u/2k2 is the refractive index, and in the wave functio
~8! we omitted reflection from the interfaces because for
the neutron energies,E.25 meV, considered here, the re
flection amplitude has the magnitudeu/4k2!1025.

Since b(0) in general is complex,k8 also contains an
imaginary part, and the wave function at the exit from t
sample becomes proportional to exp(2Im k8L). Thus the
sample transmission is

T5uc~L !u25exp~22 Imk8L !

5exp„24pN0uIm b~0!uL/k…, ~9!

and the amplitudebne is to be extracted from2Im b(0). If
b(q) is theamplitudethen according to the optical theorem

2Im b~0!5ks t/4p, ~10!

wheres t is the total cross section containing the elastic c
herent scattering cross sectionsel

coh and then-eamplitudebne

in it. After substitution of Eq.~10! into Eq. ~9! we get

T5exp~2N0s tL !. ~11!

However, ifb(0) is thescattering length, then

2Im b~0!5k@s t2sel
coh#/4p, ~12!

and Eq.~9! is

T5exp~2N0@s t2sel
coh#L !, ~13!

and it contains no information aboutbne ~6!.
The main question is as follows: what is the magnitu

b(q) that enters Eq.~9!? According to@3,12,13# and many
others it is the scattering length. Then in Eq.~7! we have
2Im b(q50)5k@s t2sel

coh#/4p. However in that case the
attenuation~9! cannot be represented in the form~11!, and
bne cannot be extracted from the transmission experimen

On the other hand, ifbne is extracted with the help of Eq
~11!, then b(q) is not thelength, but thescattering ampli-
tude.

Now we can formulate our results and compare them w
the known ones.

FIG. 1. Transmission of neutrons through a sample of widthL
with optical potentialu.
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1138 PRC 59IGNATOVICH, UTSURO, AND IGNATOVICH
~1! We found that for low energy neutronsb(0) is always
the scattering length, and2Im b(0) does not contain
sel

coh. This result is not surprising.
~2! We proved also thatb(0) is the length even at higher

energies, if the sample is a single crystal. This result w
in some respect obtained by Kagan and Afanasiev
1965@15,16#. They had shown that the widths of nucle
resonances for neutrons and gamma quanta scatte
decreased when nuclei composed an ideal crysta
media. The decrease means that the part of reson
width, which is related to elastic scattering, becomes
cluded. Now we see, that this result is a particular c
of the more general theorem.

In @11# it was shown that at high energiessel
coh con-

tributes to s t , but it contains the factorG51
2pI /a2k2, in which k is the neutron wave number,a is
the interatomic distance, andI is a constant paramete
The factorG implies that the contribution ofsel

coh to s t

has a correction that decreases with energy decreas
In @14# it is even stated that at low energies the c

rection to sel
coh diverges. In terms of the factorG this

statement can be interpreted as an assertion that at
enough energyG becomes zero. We have shown th
this is correct for polycrystalline and amorphous med

~3! For polycrystalline samples, we confirmed the result
@11#, however we found that the factorG contains also
the term of order 1/ka, which was not pointed out in
@11#. This term can be important, because it decrea
with energy slower than the term 1/k2a2 found in @11#.
Moreover, this term depends on the dimensions of cr
tallites and should be studied experimentally for bet
evaluation ofbne .

~4! For amorphous substances we completely reconfirm
the result of@11# with no extra term, i.e., we found th
correction factorG that at high energies behaves asG
512pI /2k2a2, however we also found its behavior i
the full energy range 0,k2,`.

We calculated the constantI for different models of
pair correlation function and found that the broad lim
of its variation lead to additional uncertainty for th
magnitude ofbne . However the recently published resu
@4# is based on the experimentally measured pair co
lation function and thus it is free from this uncertainty.
is necessary to understand why the measurements
liquid and solid@2# samples perfectly match each othe
It is possible that the corrections found for polycrysta
appear in liquids via small angle scattering.

In the next section we rewrite the considerations
Placzeket al. @11# in our notation to facilitate comparison o
our results with those of@11#.

III. COHERENT CROSS SECTION IN THE THEORY
OF PLACZEK et al.

Placzeket al. @11# use perturbation theory. They expre
the scattering amplitude ofN identical scatterers via th
single atom scatteringamplitude bin the form
s
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b~N!5b(
n51

N

exp~ iqrn!, ~14!

whereq5k02k is the scattering vector,k0 ,k are the wave
vectors of the incident and scattered neutrons, and the nu
are supposed to be motionless to deal only with the ela
scattering. The cross section attributed to this amplitude

s~N!5E 8 dVub~N!u2, ~15!

and the cross section related to a single scatterer is

s15E 8dVub~N!u2/N, ~16!

where the prime at the integral means that in the integra
the forward angle is excluded, because the neutron mov
along the forward direction is not scattered at all.

The magnitudeub(N)u2 is represented in the form

ub~N!u25ubu2FN1 (
nÞm

exp~ iqrmn!G ,
where rmn5rn2rm . ~17!

The sum can be replaced by the integral, which gives

ub~N!u25Nubu2F11N0E w~r!exp~ iqr!d3r G , ~18!

whereN051/a3 is the atomic density of scatterers,a is in-
teratomic distance, andw(r ) is the probability to find a sec
ond nucleus at a pointr, if the first one is atr50. The
function w(r ) can be represented in the formw(r )51
2g(r ), where the functiong(r ) is equal to 1 atr 50, and
goes to 0 atr→`. For definiteness in the following we sha
suggestg(r )5exp(2r/s). The parameters is determined by
the condition

N0E g~r !d3r 51→8pN0s351, ~19!

which givess51/A3 8pN05a/2A3 p.
From Eq.~18! it follows that

ub~N!u2/N5ubu2F12N0E g~r!exp~ iqr!d3r G . ~20!

The integral overw(r )1g(r )51 is omitted because it give
d(q), i.e., the scattering in the forward direction, which,
was mentioned above, represents no scattering at all
should be excluded.

Substitution of Eq.~20! into Eq. ~16! gives

s5sel
coh@121/~114s2k2!#'sel

coh~122,14/k2a2!,
~21!

wheresel
coh54pubu2, and in the last equalityka@1 is sup-

posed.
In @11# some more general results were obtained. It w

proved that from Eq.~18! for largek it follows



s
-
o

t
re
un
in

en

p
th
e
e

s

n
h

bu

et
e

0

le

.

l

of
in
pli-

-

-

art
d by
ions

c-

is
can
all
m a

are
s

PRC 59 1139NEUTRON-ELECTRON INTERACTION: TRANSMISSION . . .
s'sel
coh~12pI /2k2a2!, ~22!

and I ,3. This result was declared to be valid also for cry
tals, and the magnitudeI'2.8 for different lattices was cal
culated. We shall show that this result for crystals is n
complete.

IV. OPTICAL POTENTIAL
AND SCATTERING AMPLITUDE

The perturbational approach has some deficiency. I
well applicable to a plane of scatterers, however for th
dimensional set of nuclei it does not take into acco
screening of atomic planes by each other. This screen
may play a crucial role especially for crystalline arrangem
of atoms.

We shall follow a different approach@17,18# based on the
multiple wave scattering~MWS! theory. First we consider a
single scatterer, and define the scattering length and am
tude, then we consider a crystalline plane, and find how
scattering amplitude is modified. After that we find th
propagation of neutrons inside a semi-infinite crystalline m
dium, and show that the coherent elastic scattering cross
tion does not contribute to attenuation.

Usually the samples in transmission measurements are
single crystals, and we consider the transmission throug
polycrystalline medium. In polycrystalssel

coh will be shown
to contribute to the transmission exponent but the contri
tion contains an additional term not obtained in@11#.

The next step is a model medium consisting of discr
atomic planes with disordered distribution inside the plan
and the last one is the uniform disordered medium.

A. Definition of the scattering amplitude
and length for a single scatterer

The s-scattering by a single nucleus placed at a point
described by the wave function

c5exp~ ikr!2b
exp~ ikr !

r
, ~23!

whereb is by definition the scattering amplitude~we define it
with negative sign!. This amplitude is always representab
in the form

b5
b0

11 ikb0
, ~24!

whereb0 ~and this is our definition! is the scattering length
If the nucleus has zero absorption and is motionless thenb0
is real, and the expression~24! exactly satisfies the optica
theorem:2Im b5kubu25ksel

coh/4p.
If the nucleus absorbs neutrons, thenb05b082 ib09 is com-

plex and

2Im b5kubu21
b09

~11kb09!21k2b08
2

5kubu21k
sa

4p
,

thus b09'ksa/4p, ~25!
-

t
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or, to be precise,

b09'
ksa

4p
@11k2sa/2p1k2b08

2#. ~26!

From Eq.~24! it follows that the real part of the amplitudeb
is

Reb5
b08

~11kb09!21k2b08
2
'b08~122kb092k2b08

2!

5b08~12k2sa/2p2k2b08
2! , ~27!

which shows that at energy 100 eV it contains a correction
the order 531024 and at the energy 10 keV the two terms
the brackets give a correction to the real part of the am
tude of order of 10%. This correction may not be very im
portant for extraction ofbne , but it can be important for
extraction of the neutron polarizability, which will be con
sidered at the end of this paper.

If the nucleus can move~for instance, oscillate! 2Im b0
contains also the inelastic scattering cross sections in . Thus,
from our definition it follows that2Im b5ks t/4p, and
2Im b0'k(sa1s in)/4p, and

Reb5
b08

~11kb09!21k2b08
2
'b08~122kb092k2b08

2!

5b08~12k2@sa1s ie#/2p2k2b08
2!. ~28!

If the nucleus is inside a set of nuclei, the imaginary p
of b changes, because the interference of waves scattere
different scatterers cancels the scattering in some direct
and enhances it in some others.

B. The formulation of MWS theory

To find what happens in the collective of nuclei it is ne
essary to use the MWS theory. In this theory~we shall fol-
low @18,17#! the total wave function is

c~r!5exp~ ikr!2(
n

c~rn!
bn

ur2rnu
exp~ ikur2rnu!,

~29!

where c(rn) are the so-called ‘‘local fields’’ at pointsrn ,
which satisfy the system of equations:

c~rn!5exp~ ikrn!2(
j Þn

c~r j !
bj

urn2r j u
exp~ ikurn2r j u!.

~30!

The solution of this system is difficult, and in general
impossible. However in some special cases the solution
be found rigorously or with an arbitrary precision. We sh
start with just such a case: the scattering of neutrons fro
crystalline plane.

C. Crystalline plane

Let us consider a perfect crystalline plane with a squ
elementary cell of sized. From symmetry considerations it i
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1140 PRC 59IGNATOVICH, UTSURO, AND IGNATOVICH
easy to find@18# that a plane wave exp(ikr), incident on a
crystalline plane generates the local fields

c~rn!5C exp~ ikrn! ~31!

with the constantC.
Substituting Eq.~31! into Eq. ~29! we obtain

c~r!5exp~ ikr!2C(
n

exp~ ikrn!
bn

ur2rnu
exp~ ikur2rnu!.

~32!

If we use the Fourier expansion of the spherical wave,

exp~ ikr !

r
5

4p

~2p!3E d3p
exp~ ipr!

p22k22 i e

5
i

2pE d2pi

p'

exp~ ipri1 ip'ur'u!, ~33!

wherep'5Ak22pi
2 is the component of the wave vectorp

perpendicular to the plane, and use the relation

(
n

f ~n!5(
m

E f ~x!exp~2pmx!dx, ~34!

we get the total wave function in the form

c5exp~ ikr!2 i(
l

kC

kl'
exp~ iklr!, ~35!

where

kl5~kl i ,kl'!, kl i5ki1tl ,

tl5~2pnl /d,2pml /d!, kl'5Ak22~ki1tl !
2, ~36!

kl i ,kl' are the components of thelth wave vector paralle
and perpendicular to the crystalline plane, respectivelytl
are the vectors of the reciprocal lattice of the plane, a
nl ,ml are integers. The expression~35! means that the tota
wave function consists of the incident wave and many d
fracted waves. The amplitudes of the diffracted waves
proportional to

kC52pN2bC , bC5Cb, ~37!

where N251/d2 is the two-dimensional density of atom
andC is the constant to be determined.

Substitution of Eq.~31! into Eq. ~30! gives the equation
for C

C512C(
j Þn

bj

ur j2rnu
exp~ ikur j2rnu1 ik@r j2rn# !, ~38!

from which it follows ~for details see@17#!

C5
1

12 ikb1 i(
l

k/kl'

, ~39!
d

-
re

wherek52pN2b, and the sum can be extended over al
for which kl'

2 .0.
From Eq.~37! it follows that C renormalizes the ampli-

tudeb:

bC5
b0

11 i(
l

k0 /kl'

, where k052pN2b0 . ~40!

It is seen that the imaginary part of the amplitude h
changed, and this change has a very clear physical mean
the atoms composing the crystalline lattice scatter not iso
pically but only in some special diffraction directions, dete
mined by the vectorstl , and the leakage of neutrons int
diffracted waves contributes to attenuation in the forwa
direction.

In the case of smallk,2p/d we havekl'
2 ,0 for u luÞ0,

all the diffracted waves exponentially decay away from t
plane, and the scattering amplitude becomes

bC~k→0!5
b0

11 ik0 /k'

. ~41!

The total wave function is reduced to the form

c5exp~ ikr!2 i
k0

k1 ik0
exp~ ikiri1 ik'uzu!, ~42!

which means that there are only transmitted and reflec
waves with the amplitudes

t15k' /~k'1 ik0!, r 152 ik0 /~k'1 ik0!. ~43!

D. Semi-infinite ideal crystal

To understand what is theb which enters the refractive
index, it is sufficient to consider a semi-infinite crystallin
medium. For low energy neutrons, when the expression~41!
is satisfied, the calculation is straightforward. The transm
sion through one period for normal incidence according
Eq. ~43! is

t5t1 exp~ ika!5
k

k1 ik0
eika'exp~ ik@12k0 /ak2#a!

5exp~ ik@12u0/2k2#a!, ~44!

wherea is the distance between the planes,u054pN0b0 ,
N051/ad2 is the atomic density, and the factor exp(ika) de-
scribes the motion between the crystalline planes. The tra
mission through the slab of thicknessL5Na is

c~L !5exp~ ik@12u0/2k2#L !5exp~ ik8L !,

where k85nk, n'12
u0

2k2
. ~45!

We see that the optical potentialu0 contains the scattering
length b0 , and not the scattering amplitudeb. Thus in this
case the transmission experiments do not contain informa
aboutbne . The damping of the transmitted wave is due on
to absorption, inelastic and incoherent elastic scattering.~We
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PRC 59 1141NEUTRON-ELECTRON INTERACTION: TRANSMISSION . . .
do not consider here the case of total reflection, where
wave function is also exponentially decreasing, however
decrease is governed not by the cross sections.! This result is
not surprising, because it is related to the neutron ener
below the Bragg edge.

Now let us consider higher energies, above the Bra
edge:k.2p/d, when diffraction on a crystalline plane ca
take place. In that case the amplitude~41! can be represente
in the form

bC5
bcr

11 ikcr /k'

, kcr52pN2bcr , bcr5
b0

11 i(
lÞ0

k0 /kl'

.

~46!

A comparison with Eq.~41! shows thatb0 becomesbcr ; i.e.,
it acquires an imaginary part because of elastic scatterin
diffraction directions that become opened in the given g
metrical configuration. However it is easy to prove by simp
considerations that this imaginary part does not lead to
ponentially decaying transmission, i.e.,

uexp~ iqL !u2Þexp~24pN0LuIm b1u/k!, ~47!

whereq is the Bloch wave number.
Indeed, the diffracted waves are coherent and their n

ber is finite, so they can be rediffracted back into the forw
direction till a stationary distribution is established. T
wave function inside the crystal is a combination of all t
diffracted waves

C5(
n

An~x!exp~ iknr! ~48!

with kn5(k0i1ti ,kn') being wave vectors of possible di
fraction directions, the subscriptsi and ' denoting the
vector components parallel and perpendicular to the
trance surface of the crystal, respectively, andkn'

5Ak0
22(k0i1ti)

2. The main feature of this expression
the coefficientsAn(x). They are oscillating with the depthx
inside the crystal~the typical example of it is the ‘‘pandel
lösung’’ phenomenon!. Thus the coefficientA0(L) for trans-
mitted wave in the forward direction also oscillates withL,
and does not have the exponentially decaying form. If it w
exponentially decaying, the intensity would accumulate
some special directions, which contradicts the principles
thermodynamics.

We can conclude that in the case of ideal crystals
imaginary part ofbcr in Eq. ~46! does not contribute to the
exponential decrease of intensity, which means thatsel

coh is
not contained in the attenuation cross section. In the cas
single crystals and neutrons of arbitrary energies the tra
mission coefficientT is of the form

T5A exp~2N0L@s t2sel
coh# !, ~49!

where the preexponential factorA can be oscillating withL,
and the exponent contains no information aboutbne .
e
e
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E. Small crystallites

All the above is correct for large ideal crystals. The sit
ation for real mosaic crystals is different because differ
blocks scatter incoherently. In this case the beam damp
can be described by the exponent exp(2NblsblL), wheresbl
andNbl are the scattering cross section of a single block, a
the density of blocks, respectively. It is important to inves
gate how large is the difference betweensblNbl andN0sel

coh

wheresel
coh54pubu2.

1. The perturbational result

Let us calculate the scattering on a small crystallite w
the help of perturbation theory@11#. In this theory the scat-
tering amplitude is

f 5b( exp~ iqri !5bN0(
t

~2p!3d~q2t!, ~50!

where q5k2k0 is the momentum transferred,t
5(2p/a)(m,n,l ) is the vector of the reciprocal lattice~here
we suppose that the crystal has a cubic elementary cell
parametera), m, n and l are integers, and the sum ove
scatterers is replaced by the integral over space with the
over vectorst of the reciprocal lattice, in agreement with th
formula

(
n

G~n!5(
m

E
n
G~n!dn exp~2p imn!. ~51!

The cross section of this set of scatterers integrated o
the angles of the scattered wave vectorsk is

S5E u f u2dVk5ubu2N0
2~2p!6E (

t,t8
d~q2t!d~q2t8!dVk .

~52!

The nondiagonal terms withtÞt8 are equal to zero, becaus
in this case

d~q2t!d~q2t8!5d~q2t!d~t2t8!50, ~53!

and we are left only with the diagonal terms with the samet.
For diagonal terms we have

S5ubu2VN0
2~2p!3E (

t
d~q2t!dVk , ~54!

where we used the relationd2(p)5Vd(p)/(2p)3. Integra-
tion over the angles in Eq.~54! can be transformed as fol
lows:

E G~k!dVk5E ~2/k!d3k d~k22k0
2!G~k!, ~55!

and as a result we obtain

S5
1

k0
Ns0~2p!2N0(

t
d~@k02t#22k0

2!, ~56!
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whereN5N0V is the total number of particles in the set, a
s054pubu2. Averaging this expression over orientations
the vectorst, we obtain^S&5Ns0G, where4

G5
~2p!2N0

k0
E (

t
d~@k02t#22k0

2!Vt/4p

52p2 (
t,2k0

N0/2k0
2t5 (

unu51

M5ka/p
p

2~k0a!2unu
. ~57!

Here unu is An21m21 l 2, and the upper limit of summation
is defined byutu<2k0 .

The sum in Eq.~57! can be approximated by the integra
For the one-dimensional sum we use the approximation@19#

(
n5a

b

f ~n!5E
a

b

f ~n!dn1
1

2
@ f ~a!1 f ~b!#

2
1

12
@ f 8~a!1 f 8~b!#1¯, ~58!

where f 8(x)5d f(x)/dx. In our three-dimensional case w
use the following approximation:

(
unu51

unu<M

f ~ unu!5E
1

M

f ~ unu!d3n1
6

2
f ~1!2

1

12
f 8~1!1¯,

~59!

wheren is a vector with componentsn5(n,m,l ), n, m, and
l being integers, and for largeM the magnitudesf (M ) and
f 8(M ) are negligible.

The calculation gives

G512pI /2k2a2, where I'2p2320.25'3,
~60!

which is in good agreement with the result obtained
Placzeket al. @11#. We did not have a goal to get the resu
with the same precision as in@11#. We are quite satisfied to
obtain a result~60! very close to that of@11# but in a differ-
ent way. It proves the reliability of our method.

In the above considerations the nuclei were considere
be infinitely heavy. For finite masses it is necessary to t
into account the Debye-Waller factor that diminishes the a
plitude b and gives a weightw(unu),1 to each term in the
sum ~57!. Calculations with this factor will certainly lead t
a lower value of the factorG and therefore to a higher coe
ficient I in Eq. ~60!, which should increase with increasin
temperature.

2. More rigorous theory

The perturbation theory~PT! has a deficiency. It gives th
correct positions of the Bragg peaks, however it does
give the widths of the peaks. For large crystallites the wi
of a peak is infinitesimal, while from dynamical diffractio
theory it is found to have a finite magnitude known as
Darwin plateau.

4In notations of@14# G5Scoh
el .
f

y

to
e
-

ot
h

e

We shall show below that the perturbation theory in fa
describes diffraction only outside of the Darwin plateau, a
we must use a more rigorous theory to look for correctio
related to the Darwin plateau itself.

Let us consider Bragg diffraction on a single small crys
with thicknessL and surface areaS. The reflection amplitude
r L is @17#

r L5R
12exp~2iqL !

12R2 exp~2iqL !
, ~61!

where R is the reflection amplitude for an infinitely thic
crystal andq is the Bloch wave number inside it.

If the component of the incident neutron wave vector p
pendicular to the reflecting atomic planes has value in
interval t/2,k',t/21u/t where t/2 is the Bragg wave
numbert/25pn/a, n is the integer anda is the distance
between the reflecting planes, thenR5exp(22ij) with real
phasej, q5t1 i dq, and the expression~61! for sufficiently
small L looks like

r L5R
12exp~22dqL!

12R2 exp~22dqL!
52dqL

R

12R2
. ~62!

The intervaldk'5u/t is known as the Darwin plateau. Th
PT cannot give exponentially decaying waves. For su
ciently thick crystaldqL@1 the reflection at the Darwin
plateau is the total, thusur Lu251.

If the reflection and transmission of a single crystalli
layer of a period thickness arer and t, respectively, then

R5
A~11r !22t22A~12r !22t2

A~11r !22t21A~12r !22t2
, ~63!

eiqa5
A~11t !22r 22A~12t !22r 2

A~11t !22r 21A~12t !22r 2
. ~64!

For a cubic monoatomic lattice we have@see Eq.~46!#

r 5
2 ik

k'1 ik
e2if, t5

k'

k'1 ik
e2if, f5k'a/2,

k[kcr52pN2bcr , ~65!

andk' is the normal component of the incident wave vec
with respect to the crystalline planes. Substituting intoR, we
obtain

R5
Ak'1k tanf2Ak'2k cotf

Ak'1k tanf1Ak'2k cotf

5
Atanf2Atan~f2a!

Atanf1Atan~f2a!
, where a5arctan~k/k'!.

~66!

The same substitution into Eq.~64! for q gives

eiqa5
11 iAtanf tan~f2a!

12 iAtanf tan~f2a!
. ~67!



io

t
at

of

th
Th

ci
w

po

a-

ac-

e
de

e
e

e

ed

PRC 59 1143NEUTRON-ELECTRON INTERACTION: TRANSMISSION . . .
The sign before the square root is defined by the condit
q5k' if a50.

The Bragg reflection takes place whenf andf2a are on
opposite sides of pointsnp/2 ~integer n), because in tha
case the reflection amplitudeR becomes modulo 1. Indeed,
f2a<mp/2<f with evenm we have

R5
Atanf2 iAtan~a2f!

Atanf1 iAtan~a2f!
, uRu51. ~68!

From Eq.~68! it follows

R

12R2
5

tanf1tan~a2f!

4iAtanf tan~a2f!

'
a

4iA~f2mp/2!~mp/22f1a!
, ~69!

and Eq.~67! gives

dq'
2

a
A~f2mp/2!~mp/22f1a!. ~70!

Substituting into Eq.~62! we obtain that the cross section
a crystallite for the given reflection~for the givent) can be
represented as

St5Scosuur Lu254V cosuudqu2L
uRu2

u12R2u2

5cosu
VL

a2
a25VL cosu

u2

4k'
2

, ~71!

whereV is the crystallite’s volume, andu54pN0bcr . We
must average over orientations of the crystallite, which is
same as averaging over direction of the incident neutron.
averaging giveŝSt&5NsGt , whereN is the total number
of atoms in the crystallite,s54pubcru2, and

Gt5E
0

14pN0L

4k'
2

q~t2/4,k'
2 ,t2/412u!cosu

dV

p

~72!

is the correction factor for the given reflection~the given
vector t of the reciprocal lattice!. Heret/25pn/a with in-
tegern, u is the angle between the wave vector of the in
dent neutron and the normal to the Bragg planes, and
introduced the functionq(x), which is equal to unity when
inequality of its argument is satisfied, and zero in the op
site case.

A change of variables cosu5k' /k, d cosu5dk' /k
'u/2kk' gives

Gt'
4pN0L

t2

u

2k2
. ~73!

For arbitrary position of the Bragg planest2 should be rep-
resented as
n:

e
e

-
e

-

t25
4p2

a2
n2. ~74!

Summation over all the Bragg reflections, and approxim
tion of the sum by the integral, as shown in Eq.~59!, gives

G5(
t

Gt52
N0Lbcra

~ka!2 (
unu51

M5ka/p
1

unu2

'2
LN0bcra

~ka!2
@4p~ka/p21!14#

5
8

ka

L

a

bcr

a
~122.14/ka!. ~75!

We see that the correction to elastic scattering due to diffr
tions at the Darwin plateau contains terms of orderI (L)/AE
with a little known parameterL, which characterizes the
dimensions of crystallites.

If we shall take into account thermal vibrations of th
nuclei, we should renormalize the scattering amplitu
by the Debye-Waller factor b→b exp@2t2W(T)/kD

2 #
5bexp@2t2W(T)/kD

2 #, where at high temperatureT we have
@14# W}(m/M )T/TD , M is nuclear mass,TD is the Debye
temperature:TD5\2kD

2 /2mkB , and kB is the Boltzmann
constant. In that case the summation in Eq.~75! will be
modified as follows:

G5(
t

Gt52
N0Lbcra

~ka!2 (
unu51

M5ka/p exp~2unu2/nT
2!

unu2

58A
L

a

bcr

a

nT

~ka!2
, ~76!

wherenT
2}(kDa/p)2(M /m)TD /T, and the constantA is of

order 1. We see that in this case the dependence of thG
factor becomes of}1/k2, though linear dependence on th
unknown parameterL is preserved.

Outside of the Bragg peaks

Now let us calculate the probability of reflection outsid
of the Darwin plateau, i.e., whenuk'

2 2t2/4u.u. In that case
the reflection amplitudeR in Eq. ~61! as it follows from Eq.
~66! is approximated by

R5
sina

„Asinf cos~f2a!1Acosf sin~f2a!…2
'

ua

2tusinju
,

~77!

wherej5(k'2t/2)a. The scattering cross section averag
over incidence angles can be represented as follows:

S5E
0

1

4SuRu2 sin2~jL/a!cosu
dV

4p

5SE dj

4k2a2

u2a3

t Usin~jL/a!

sinj U2

5pS
L

a

u2a3

8k2a2t
5NsGt ,

~78!
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where

Gt5
p

2

1

~ka!2

1

unu
, ~79!

and the ratio usin(jL/a)/sinju2 was approximated a
p(L/a)d(j). Summation over allt gives the same expres
sion ~57!, as in perturbation theory, and the final result co
cides with Eq.~60!, or more precisely, with the result ob
tained by Placzeket al. @11#. However, if we shall take into
account the Debye-Waller factor, then

G5(t Gt5
p

2

1

~ka!2(t

exp~2unu2/nT
2!

unu

'
p2nT

2

~ka!2
exp~21/nT

2!, ~80!

where the upper limit of the integral was extended to infini

F. A layered media with disordered atomic planes

Again we split the substance into thin separate layers,
use the MWS equations for the amplitudescn of the waves
illuminating nuclei at the pointsr n in a single layer:

cn5exp~ ikrn!2b (
mÞn

cm

exp~ ikr mn!

r mn
. ~81!

In the first approximation the solution can be suggested
the formcn5C exp(ikrn). After substitution in Eq.~81! we
obtain the equation forC:

C512bC(
mÞn

exp~ ik@rm2rn# !
exp~ ikr mn!

r mn
. ~82!

The sum on the right-hand side can be approximated by
integral

(
mÞn

exp~ ik@rm2rn# !
exp~ ikr mn!

r mn

5E w~r !N2 d2r exp~ ikri!
exp~ ikr !

r
, ~83!

where w(r ) is the pair correlation function, showing th
probability to find a nucleus at the pointr if there is a
nucleus at the pointr 50. The functionw(r ) should be cho-
sen in such a way as to exclude the second atom from b
at the point r 50. We suggest the formw(r )51
2exp(2r/s). The parameters is defined by the condition

N2ER

w~r !d2r 5N2~pR222ps2!5N21, 2pN2s251,

~84!

which means that the integral over all the particles sho
give the number of particles except the one which is at
origin. For simplicity in the following we shall suppose th
the neutron enters the bulk matter normally to the surface
ki50.
-

.

d
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e
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d
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The integral in Eq.~83! is now easily calculated:

I 5E @12e2r /s#N2 d2r
exp~ ikr !

r
52pN2S i

k
2

s

12 iksD .

~85!

Taking into account Eq.~84! we obtain

C512CF ik

k
2

ibk

11k2s2
2

ks

11s2k2G , k52pN2b.

~86!

The solution of this equation is

C51/@11 ik/k2 ibk/~11s2k2!2ks/~11s2k2!#.
~87!

Thus, again, the constantC renormalizes the amplitudeb,
transforming it into

bC5bC5b0 /@11 ikb01 ik0 /k2 ib0k/~11s2k2!

2k0s/~11s2k2!#, ~88!

wherek052pN3b0 . After some evident algebraic manipu
lations it is reduced to the form

bC5
br

11 ik r /k
, where k r52pN2br , ~89!

br5
b08

11 ikb08@121/~11k2s2!#
, b085

b0

12k0s/~11s2k2!
.

~90!

Here b08 is a renormalized lengthb0 . Renormalization in-
creases it by the amount'1024 even for zero energy, so i
can be neglected, and in the following we will takeb08
5b0 .

At low energies

br5
b0

11 ikb0@121/~11s2k2!#
'H b0 for k→0

b for k→`.
~91!

The transmission of an atomic plane is determined by
amplitude of the plane wave in the function:

C~r!5exp~ ikr!2b(
m

cm

exp~ ikr mn!

r mn

5~12 ikC /k!exp~ ikr!5
k

k1 ik r
exp~ ikr!, ~92!

wherekC52pN2bC , andk r52pN2br . Thus the transmis-
sion ofn planes with the gaps between them~their thickness
ai can be different! leads to the wave function

C~r!5exp~ ikr @12ur /2k2# !5exp~ ik8r !,

where ur52nk rY (
i 51

n

ai52k r /^a&, ~93!
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and ^a& is the average distance between atomic planes
follows thatur54pN0br .

In the considered model the positions of atoms in nei
boring planes are not correlated, and we can suppose
every one layer scatters independently. Then the imagin
part ofbr ~90! should be considered on an equal footing w
the one created by other scattering processes, and we
conclude that it is thescattering amplitude~especially for
high energies, wherebr'b) which enters the refractive in
dex. Its imaginary part contains the coherent elastic sca
ing cross section

sel
coh54p~b821b92!, ~94!

and of courseb95ks t/4p, as it follows from the optical
theorem.

However at intermediate energies the coherent cross
tion has the correction factor:G5121/s2k25122pN2 /k2

[12pI /2k2a2, whereI 54, and the expression fors2 from
Eq. ~84! was used. The correction has the same form 1/k2 as
in calculations by Placzeket al. @11#. However the magni-
tude of the constantI 54 is larger than 2.8 by 43%. And i
the new magnitude ofI is used the amplitudeubneu of n-e
interaction obtained would be larger than 1.33 nearly
10%.

G. Amorphous substance

In the case of amorphous media the atoms are distrib
uniformly, and we cannot split the medium into we
separated atomic planes. Of course, we always can sp
into arbitrary layers; however the approach used ab
shows that the result becomes nonunique. It depends on
thickness of layers. For that reason we use here a diffe
approach. However we can foresee the result. It will be
the type ~91!, and in agreement with the one obtained
Placzeket al. @11#.

1. Refraction in amorphous matter

We start with the MWS equations~29! and~30! for the set
of nuclei in a semi-infinite amorphous medium (z.0). The
wave function inside the medium is suggested to bec(r)
5A exp(ikri1 ik'8 z), where A is a constant, andk'8 Þk' .
Then the local fields in Eq.~30! are

c~rn!5AC~z!exp~ ikri1 ik'8 zn!, ~95!

whereC(z) is an unknown function ofz. Substitution of Eq.
~95! in Eq. ~29! gives the first equation forA andC(z):

A exp~ ik8z!5eik'z2AbN0E C~z8!
d3r 8 exp~ ikur82ru!

ur82ru

3exp„ik~r82r! i1 ik'8 z8). ~96!

Substitution of Eq.~95! into Eq. ~30! gives the second equa
tion for A andC(z):
It
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AC~z!eik8z5eikz2AbN0

3E C~z8!d3r 8
exp~ ikur82ru!

ur82ru
w~r2r8!

3exp„ik~r82r! i1 ik'8 z8…, ~97!

wherew(r2r8) is the pair correlation function. If we replac
it with 12g(uru/s), where s is the range of the function
which is of the order of interatomic distance, and use E
~96!, we reduce Eq.~97! to the form

C~z!215bN0E C~z8!d3r 8
exp~ ikur82ru!

ur82ru
g~ ur2r8u/s!

3exp„ik~r82r! i1 ik'8 ~z82z!…. ~98!

In the first approximation we can takeC to be a constantC0 .
Substitution into Eq.~96! gives

Aeik8z5eik'z2
iAuC

2k'
Feik'8 z2eik'z

i ~k'8 2k'!
2

eik'8 z

i ~k'8 1k'!
G ,

~99!

where we used the Fourier representation for spherical w
and have introduced the potentialuC54pN0bC with the
renormalized amplitudebC5bC0 .

From Eq.~99! it follows

k825k22uC , and A52k/~k1k8!. ~100!

We see the expected result. The coefficientA plays the role
of the transmission amplitude through the interface for
plane wave exp(ikz) incident on the medium with the optica
potentialuC .

To find C0 we substitute it forC(z) in Eq. ~98!, and
obtain

C05
1

12bJ
, ~101!

where

J5J81 iJ95E N0d3r 8
exp~ ikur8u!

ur8u
g~ ur8u/s!

3exp~ ikri81 ik'8 r 8 cosu!q~r 8 cosu.2z!. ~102!

q is the step function equal to 1 or 0 when inequality
satisfied or not.

Now for simplicity we limit ourselves to the case of th
normal incidence of neutrons on the interface:ki50. Then
the integral~102! becomes
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J52pbN0E r 8dr8d cosu exp~ ikr 81 ik8r 8 cosu!

3q~r 8 cosu.2z!g~r 8/s!

5
2pbN0

ik8
E

0

`

dr8 exp~ ikr 8!@eik8r 82e2 ik8r 8q~r 8,z!

2e2 ik8zq~r 8.z!#g~r 8/s!, ~103!

which can be represented as

J5
2pbN0

ik8
E

0

`

dr8 exp~ ikr 8!@eik8r 82e2 ik8r 8#g~r 8/s!

1z~z!5J01z~z!, ~104!

where

z~z!5
2pbN0

ik8
E

0

`

dr8eikr 81 i ~k2k8!z@e2 ik8r 821#

3g~@r 81z#/s!. ~105!

We see, that forz@s the termz(z) is negligible, the integral
J5J0 is constant, andC051/(12bJ0).

Now we shall consider several models for theg function.

No correlation, g50

In that caseJ50, C051 andb is the scatteringamplitude,
i.e., 2Im b5kubu2.

Exponential

g~r /s!5exp~2r /s!. ~106!

Since integration*w(r )N0d3r should giveN21, whereN is
the total number of particles, the integral*g(r /s)N0d3r
should give 1. Thus

E N0g~r /s!d3r 51, 8pN0s351, s5a/2p1/3.

~107!

Substitution of Eq.~106! into Eq. ~104! gives

J05
2pN0

ik8
F 1

1/s2 ik2 ik8
2

1

1/s2 ik1 ik8
G

5
4pN0

~1/s2 ik !21k82
5

4pN0

~1/s2 ik !21k22C0u
. ~108!

Substitution in Eq.~101! gives

C05
~1/s2 ik !21k22C0u

~1/s2 ik !21k22C0u2u
. ~109!

Now, for x[C0 we have the equation

x2u2ax1a50, ~110!
where u54pN0b and a5(122iks)/s2. The solution of
this equation is

x5Aa

u

Aa12Aua2Aa22Aua

Aa12Aua1Aa22Aua

5
2

11A124us2/~122iks!
'

1

12us2/~122iks!
.

~111!

Thus

bC5bC0'
b0

11 ikb0@121/~114k2s2!#

35
b0

114ib0k3s2
for k→0

b0

11 ikb0~121/4k2s2!
for k→`.

~112!

Accounting for the relation~107! we get for largek

bC5
b0

11 ikb0~12Ip/2a2k2!
, where I 52/p1/351.37.

~113!

Similar considerations for other functionsg(r /s) give

Lorentz-like dependence

g~r !5
1

~11r 2/s2!2
, I 5p1/351.46. ~114!

Gaussian

g~r /s!5exp~2r 2/s2!, I 52. ~115!

Constant

g~r !5q~r ,s!, I 54s/a54~3/4p!1/352.48.
~116!

We see that for more or less realistic correlations the c
stant I varies from 1.4 up to 2.5, and this range appro
mately shows the precision with which the interference c
rection tosel

coh in amorphous and liquid substances can
estimated.

V. EXTRACTION OF n-e AMPLITUDE
FROM THE TRANSMISSION

We shall consider three papers@1,2,4#, dealing with the
measurement of the scattering amplitude. The solid state
fects were considered in@11,14,20,21#.

The experimental values were fitted to the expression
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TABLE I. The magnitude of the form factor used in@1,2#.

Energy~eV! 0.1 1.26 2.0 5.19 18.6 100 128

Pb form factor
@2# 0.545 0.1802 0.144 0.0934 0.0476 0.0205 0.01
@1# 0.488 0.134 0.0122
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coh1sss54p~Reb!2@12KF~E!2zE0 /E#

~117!

with E05\2/2ma2'0.009 meV,z5pI /2 was calculated,
and K52(bne /b)Z was the fitting parameter. Forbne
51.3231023 the magnitude ofK is 0.0228.

In @2# the analytical expression forF(E) @8# was used:

F~E!5
1

A113E/E1

, where E150.127 eV.

~118!

This expression was obtained from x-ray data. The appr
mation ~118! is valid up toE516E152.032 eV.

In @1# numerical experimental data from x-ray scatteri
is used. We can compare the numerical value ofF(E) for
several energies used by@1# and@2#. The data are represente
in Table I.

We see that there is always a difference at least of
order 10%. It means that the extracted@2# amplitudebne has
an uncertainty at least of the same order.

If we shall take into account the correction~75! for the
elastic scattering cross section in transmission through p
crystalline samples, the relation~118! should look as fol-
lows:

sel
coh5s0@11z1AE0 /E2KAE1/3E2zE0 /E#, ~119!

where

z154
L

a

b

a
. ~120!

Because the constantK in Eq. ~119! is determined by fitting
to an experimental curve, this fitting determines the mag
tude

K85K2z1A3E0 /E15K24
L

a

b

a
A3E0 /E1, ~121!

thusK is the sumK5K814(Lb/a2)A3E0 /E1, which leads
to an increase of the scattering amplitudebne . How large
this increase is depends on the dimensionL of the crystal-
lites; however it is important to point out that the two term
at the right hand side of Eq.~121! are of the same order whe
L/a'200.

After correcting for the Debye-Waller factor the corre
tion ~75! becomes of the type~76!, which means that it doe
not contribute toz1 , but can considerably~it depends onL)
change the coefficientz. With this term the fitting procedure
would lead to a larger value ofbne .

In the most recent paper@4# the measurements were pe
formed with liquid Pb and Bi, and the experimental data
i-

e

y-

i-

r

pair correlation function were used. For these measurem
there are no polycrystalline corrections and pair correlat
uncertainties. However in liquids there is multiple sm
angle scattering on fluctuations, and this scattering could
important in the range of energy up to several eV.

It is also necessary to estimate inelastic scattering.
@8,14,20,21# the inelastic scattering was calculated in t
framework of the Debye model, which can be used for e
mation purposes only. For a reliable extraction ofbne it is
necessary to perform measurements of the inelastic sca
ing in liquid Pb or Bi. If there is some collective excitatio
with energy of order 1 eV the cross section of inelastic sc
tering in the vicinity of incident neutrons energy near 1 e
will be of the type 1/AE. Accounting for this effect will also
increase the absolute value ofbne .

A. A remark on polarizability

The polarizability of the neutronan gives the additional
contributionbpg(E) to the real part of the coherent scatte
ing amplitude@22#, wherebp}an is the scattering length a
low energy due to the neutron polarizability, andg(E) is the
form factor created by the electric field of the nucleus.
find an it is possible to use the same procedure as the
used for the extraction ofbne . We write the coherent cros
section in the form

scoh54p~Reb!2@11K$12F~E!%

2zE0 /E12~bp /b0!g~E!#14p~ Im b!2.

~122!

Here it is not correct to neglect~Im b)2 because for polariz-
ability measurements the energies above 10 keV are im
tant, and here this term gives a considerable contribution

In many papers~see, for instance,@3,22#! the magnitudeb
is supposed to be the scattering length and2Im b is taken to
be ksa/4p. However, as it follows from above, at high en
ergies and in disordered substances the refractive index
tains theamplitude, so2Im b5ks t/4p. Thus (Imb)2 gives
the contribution (k2s t

2/4p) which is of the order 1022s0 at
10 keV, wheres054p(Reb)2. It means that for extraction
of the neutron polarizability it is necessary to subtra
(Im b)25k2s t

2/4p, as was correctly pointed out in@23#, i.e.,
to fit the experimental data to the expression

s t2k2s t
2/4p2sother54p~Reb!2@11K$12F~E!%

2zE0 /E12~bp /Reb!g~E!#.

~123!

For higher precision it might be necessary to take in
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account also the corrections to Reb shown in Eq. ~28!,
which have the same behavior at high energies as the p
izability amplitude.

VI. CONCLUSION

We can summarize our results as follows.

~1! We have found a method to calculate the interfere
correction to the coherent elastic scattering cross sec
sel

coh for all neutron energies. This method shows wh
sel

coh contributes to the attenuation cross section of
transmission exponent and when it does not. It cont
utes when the refractive index contains the scatter
amplitudeb, and does not, when the refractive ind
contains the scattering lengthb0 .

~2! In the case of ideal crystals and in the case of sl
neutrons the transmission exponent does not con
sel

coh.
~3! In the case of polycrystals and amorphous substan

transmission exponent containssel
coh with the correction

factorG512aE0 /E2bAE0 /E, where the term witha
coincides with that found by perturbational method
@11#, while the term withb results from dynamical dif-
fraction theory and cannot be found with the perturb
tional approach.

~4! In the case of amorphous substances the correction fa
G512aE0 /E coincides with that found in@11#. The
magnitude of the coefficienta is sensitive to the mode
of pair correlation function and can vary in range of t
order of 100%. However this uncertainty may be r
duced if the correction is calculated for experimenta
measured structure factor, as is done in@4#. It was shown
there that the hard-core model describes well the exp
mental data on static structure factor, which means
this model should be used for calculation ofa. However
for liquid samples the multiple small angle scattering
fluctuations should be additionally investigated.
v
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~5! We have proven that for extraction of neutron polar
ability at high energy the correct definition of2Im b is
2Im b5ks t/4p with the total cross sections t , as was
correctly shown in@23#, instead of the absorption cros
sectionsa which was used, for instance, in@3#.

~6! It was also shown, that Reb has the correction

d Reb

Reb0
52

k2@sa1s ie#

2p
1k2b0

2, ~124!

which can be important in the energy range above
keV.

~7! It was pointed out that it is desirable to measure inela
scattering in liquid Pb and Bi to be sure that there is
appreciable amount of inelastic scattering on collect
excitations with energy of the order 1 eV, because
present, it can give a contribution to the correction fac
of the type 1/AE. Moreover, the liquids give small angl
scattering, which can lead to corrections of the sa
order of magnitude as those obtained for polycrystals

It seems that some room for doubts about reliability of t
result ~1! or even 1.33, found in@4#, is left, and it is neces-
sary to look how well the transmissions of solid and liqu
Pb are matched considering the new interference correct
found here.

We are going to investigate also the corrections on ine
tic scattering, and to analyze uncertainties in the diffract
result ~2!.
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