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Anomalous magnetic moment of quarks

Pedro J. de A. Bicudo, J. Emı´lio F. T. Ribeiro, and Rui Fernandes
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In the case of massless current quarks we find that the breaking of chiral symmetry usually triggers the
generation of an anomalous magnetic moment for the quarks. We show that the kernel of the Ward identity for
the vector vertex yields an important contribution. We compute the anomalous magnetic moment in several
quark models. The results show that it is hard to escape a measurable anomalous magnetic moment for the
quarks in the case of spontaneous chiral symmetry breaking.@S0556-2813~99!00202-2#

PACS number~s!: 12.39.Ki, 12.39.Fe, 24.85.1p
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I. INTRODUCTION

Theoretically, the various hadronic electromagnetic fo
factors are usually described in terms of pole dominance
gether with contributions arising from virtual mesonic e
changes@1#. A third contribution to the electromagnetic form
factors should come from the quark microscopic interact
itself, in close analogy with QED. It is clear that these thr
scenarios should not be independent but just three diffe
aspects of the same model. This desideratum can
achieved, at least qualitatively, in terms of a quark fie
theory displaying spontaneous breaking of chiral symme
(SxSB). In such a description any hadron, when seen fr
the trivial vacuum Fock space, appears as a collection o
infinite number of quark-antiquark pairs together with t
appropriate valence quarks. It happens that the contribut
of this quark sea can be summarized in terms of a new se
valence quasiquarks which now carry the information on
details of the physical vacuum through a modified propa
tor @2#. In this fashion we recover the simplicity of the co
stituent quark picture. It is the role of the Ward identities
ensure charge conservation throughout this process. And
they do at the expenses of the quark magnetic mom
which, in general, becomes nonzero. As will be shown in t
paper, to maintain, throughout the process of SxSB, a zero
anomalous magnetic moment for the quarks constitutes
exception rather than the rule and is just the consequenc
particular choices for the Lagrangian. However, the BCS
agonalization of the Hamiltonian~mass gap equation! does
not preclude quark pair creation or annihilation proces
from occurring. In fact it sets the strength of mesonic con
butions for such physical processes as decay widths
meson-nucleon interactions@3#, among others. The counte
parts of these processes, when seen from the point of vie
photon coupling, are precisely pole dominance and mes
cloud contributions for the electromagnetic form factors. T
objective of this paper is to set up the general formalism
the evaluation of electromagnetic form factors in the pr
ence of SxSB and to use it to evaluate theu andd anomalous
magnetic moments for various models.

In the Pauli notation for fermions with chargeef , the
electromagnetic current up to first order in the photon m
mentumqn is
PRC 590556-2813/99/59~2!/1107~6!/$15.00
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j m5efūGmu5efūFgm1 i
smn

2M
qnaf Gu,

m f5m0@ef #~11af !, m0@ef #5
efh”

2Mc
, ~1!

whereaf stands for the anomalous part of the magnetic m
mentm f andM is the particle mass. Of course, as usual,
neutral charged fermionsm f is given by m0@e#af where
2e is the electron charge. The magnetic moment of grou
state hadrons is measured experimentally. For instance
have for the proton and neutronap51.79 andan521.91. In
the constituent quark model for light hadrons we have

mp5
1

3
~4mu2md!, mn5

1

3
~4md2mu!

⇒mu51.852m0p , md520.972m0p , ~2!

and the quark magnetic moments are nearly proportiona
the chargeseu5 2

3 e, ed52 1
3 e, which suggests that the gy

romagnetic factor 2(11a) is nearly flavor independent. Th
quantity which can be measured isM /(11a). For quark
flavorsu andd we have

Mu.~11au!338 MeV, Md.~11ad!322 MeV. ~3!

The constituent quark model can be applied to fit the h
ron spectrum, with a confining interaction, a hyperfine int
action, and a zero point energy@4#. The required parameter
are of the order ofas50.974, Mu.Md5420 MeV which
would suggest a sizablea of the order of 0.15–0.3. It is also
clear that we will needad2au.0.05 in order to recover the
isospin symmetry.

The remainder of the paper is organized as follows.
Sec. II we develop the full electromagnetic vertexGm in
SxSB theories, in Sec. III we apply the formalism to e
amples of quark models, and in Sec. IV we conclude.
1107 ©1999 The American Physical Society
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1108 PRC 59BICUDO, RIBEIRO, AND FERNANDES
II. FULL ELECTROMAGNETIC VERTEX Gµ IN SxSB
THEORIES

The Ward identity

iqmS~p1q/2!GmS~p2q/2!

5S~p1q/2!2S~p2q/2!⇔qmGm

5 iS21~p1q/2!2 iS21~p2q/2! ~4!

is obeyed both by the bare vertexG0
m and by the Bethe-

Salpeter vertexGm @5#. We will show that in the limit of
small momentumq, this identity has the following solution
for the vertex:

Gm~p,q!5 i
]

]pm
S21~p!1qnT nm~p!1o~q2!, ~5!

whereqnT nm(p) is defined as the kernel which is not dete
mined by the Ward identity,

qm@qnT nm~p!#50. ~6!

The Ward identity ensures that charge conservation surv
renormalization. However, it does not constrain the kern
which is a signature of the renormalization. In particular t
kernel contributes to the anomalous magnetic moment of
mions.

This can clearly be seen in QED where the infrared a
ultraviolet divergences can be removed from the pho
propagator,

i

~p82p!2
→

i

~p82p!22l2
2

i

~p82p!22L2
. ~7!

The vertex is given by

Gm5Go
m2 i ]mS1qnT o

nm ~8!

and, up to first order ina, the contributions from the self
energy and the kernel to the anomalous magnetic mom
are, respectively,

S 2122ln
l

M D a

2p
, S 212ln

l

M D a

2p
. ~9!

In the case of actual QED, wherel→0,L→`, they are both
infrared divergent but their sum is finite:a/2p.

As for QCD, there has been a considerable effort on h
to derive quark models by integrating out, under various
proximations, the gluonic degrees of freedom. An interest
and promising approach is provided by the cumulant exp
sion of the interaction term of the QCD Lagrangian@6#. A
nonlocal Nambu–Jona-Lasinio-~NJL-! type Lagrangian is
obtained when we retain only bilocal correlators. This is
sentially the same approximation as was used by Cahill
Roberts@7#. In this approximation one neglects triple an
higher order gluon vertices involving quarks but consid
full gluon propagators. A recent work along these lines
the spectroscopy of heavy-light quark mesonic sector
just been completed@8#. For those physical processes whe
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the hadronic size can be put to zero this approximat
should be the same as largeNc @9#.

Therefore we hold the view that such quark models
appropriate to study electromagnetic properties of hadro
even for light quarks, provided we have small enough pho
momenta and the physics of chiral symmetry breaking
treated correctly. Therefore, at this stage, rather than foc
ing on a specific example of the NJL Lagrangian, we w
study the static electromagnetic properties of a wide clas
quark effective quartic interactions.

In quark models with dynamical SxSB, the vector vertex
Gm is a solution of the Bethe-Salpeter equation

~10!

where the strong interaction, which is described by a dot
line in the diagrams, is iterated to all orders in the Beth
Salpeter equation. As usual the solid circles represent the
vertex and quark propagator. This equation can be writte

Gm~p,q!5G0
m2 i E d4p8

~2p!4
V~p82p,p81p,q!VaS~p18!

3GmS p8,
q

2DS~p28!Va

2V~q,p81p,2p81p!Va

3tr$S~p18!Gm~p8,q!S~p28!Va%, ~11!

where the21 factor from the fermion loop was included i
the tadpole term. The momentum dependence of the po
tial is only assumed to conserve the total momentum, an
this case it depends on three-momenta. The Dirac, fla
and color structure of the interaction is determined by theVa
matrices. In order to have dynamical SxSB, we require this
structure to be chiral invariant. Substituting the Ward ide
tity in the ladder Bethe-Salpeter equation for the vertex
get

iS21~p1!2 iS21~p2!

5 iS0
21~p1!2 iS0

21~p2!

2E d4p8

~2p!4
V~p82p,p81p,q!Va@S~p18!2S~p28!#Va

2V~q,p81p,2p81p!Vatr$@S~p18!2S~p28!#Va%.

~12!

For particular cases of the potentialV(p182p1 ,p181p2 ,p18
2p28) we recover the BCS mass gap equation
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~13!

provided that either the rainbow diagram vanishes, or i
does not, then we must have

V~p82p,p81p,q!5V~p82p,p81p,0!, ~14!

and that either the tadpole diagram vanishes, or if it does
then we must have

V~q,p81p,2p81p!5V~0,p81p,2p81p!. ~15!

Equation~13! can be written

iS21~p!5 iS0
21~p!

2E d4p8

~2p!4
V~p82p,p81p,0!VaS~p8!Va

2V~0,p81p,2p81p!Vatr$S~p8!Va%.
~16!

Now we insert the expression~5! for Gm in the Bethe-
Salpeter equation~11!, in order to find the kernelqT and
expand it up to first order inq. The equation for the tensorT,
which is antisymmetric, is then

T nm5T 0
nm2 i E d4p

~2p!4
VVa~12tr!$ST nmSVa%,

T 0
nm52

1

2E d4p

~2p!4
VVa~12tr!$J nmVa%,

J nm5]n~S!S21]m~S!2]m~S!S21]n~S!. ~17!

This is a self-consistent forced linear integral equation.
us consider a general quark propagator, solution of the m
gap equation, of the form

S~pm!5
iF ~p!

p”2M ~p!
, ~18!

wherep5Apmpm. The integrandJ nm is, then,

J nm52 i
F

~p22M2!2 F1

2
$p” ,@gn,gm#%1M @gn,gm#

2
Ṁ

p
~pn@p” ,gm#2pm@p” ,gn#!G , ~19!

where the overdot denotesd/dp. In general, we find

T nm5t1~p!$p” ,@gn,gm#%1t2~p!M @gn,gm#1t3~p!

3~pn@p” ,gm#2pm@p” ,gn#!. ~20!
it

t,

t
ss

Up to o(q2) the electromagnetic current of the quark is, the

j m5
ef

F
ūFgm2

pm

p
Ṁ2~p”2M !

pm

p

Ḟ

F
1FqnTnmGu

5
ef~12Ṁ !

F
ūFgm1aS i

smn

2M
qnD Gu,

a5
Ṁ14M2F~2t11t2!

12Ṁ
, ~21!

where the mass shell conditionp5M was used together with
the Gordon identities. The anomalous magnetic momena

turns out to be independent oft3 and Ḟ. However, the de-
pendence onM is crucial in models wheret1 and t2 are
finite. In those modelsa can be thought as a measure
SxSB. The quark condensate^q̄q& is also a functional of the
dynamically generated mass,

~22!

where the trace sums colors withnc53, but the flavor is kept
fixed. Thus, at the onset of the spontaneousxSB, we will
obtain an implicit relation betweena, ^q̄q&, and the con-
stituent quark mass, which were simultaneously vanish
before the occurrence of this phase transition and now
come nonzero.

III. APPLICATION TO QUARK MODELS

We will now computeF, M , a, and^q̄q& in particular
models which are paradigmatic cases of chiral symme
breaking and comply with the constraints of the Ward ide
tity. The first two models, model I and model II, are simp
models just used to introduce and exemplify the applicat
of the formalism and to visualize properties of the main g
neric contributions to the quark anomalous magnetic m
ment. Their results are unphysical. Finally we will consid
in model III a more elaborate case, already containing so
physical features to be expected from QCD.

A. Simple models

Model I is the first original NJL model@10#. The Lagrang-
ian of model I is

LI5q̄i ]”q1G@~ q̄q!22~ q̄g5q!2#, ~23!

whereLI is specific to the case of one flavor, but its resu
are similar to the ones of flavor-symmetric UA(nf) extended
NJL models. The equations will be solved in the moment
representation. As usual the integrals are done in Euclid
space. A momentum cutoffL is included in order that the
integral in the loop momentum is finite. Since the cuto
cannot be ascribed to the potential which has to be cons
in momentum space, it must be included in the propagat
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1110 PRC 59BICUDO, RIBEIRO, AND FERNANDES
S~p!5
iF ~p!

p”2M1 i e
, F~p!→QEuclidean~L2p!. ~24!

With a constant potential and this momentum cutoff, t
loops turn out to be constant, independent of the exte
momentump. It is convenient to evaluate the integrals,

I 152E d4p

~2p!4

iF

~p22M2!
5

1

16p2FL22M2lnS 11
L2

M2D G ,

I 25 i E d4p

~2p!4

F

~p22M2!2

5
1

16p2F2
L2

L21M2
1 lnS 11

L2

M2D G , ~25!

where the solid angle 2p2 is included. The mass gap equ
tion is

p”2M5p”22GE d4p

~2p!4

iF

~p22M2!

3@~p”1M !2g5~p”1M !g52tr$p”1M %#, ~26!

with the solutionsM50 or 158ncGI1(M ,L). The param-
eters L and G are determined once the quark dynamic
mass and the quark condensate are fixed. We now study
kernel in model I. Because the integrals are constant,
antisymmetric tensorT is independent ofp. ThusT nm has to
be of the t2 type, proportional to@gn, gm#. Including the
structure factorsVa we find that the tadpolelike term van
ishes sincesnm andsnmg5 have a null trace. In this case o
model I the rainbow diagram also cancels since the struc
1^ 12g5^ g5 projects on the terms with an odd number
Dirac g matrices, of typet1 but @gn, gm# is even. Thus
model I produces no kernel for the vector vertex and
anomalous magnetic moment for the quark@11#.

Model II is the second original NJL model@12#. The La-
grangian is

LII5q̄i ]”q1G@~ q̄q!22~ q̄g5tWq!2#, ~27!

whereLII is used for two flavorsu and d. It only has an
SU(2)A symmetry and breaks U(1)A from the onset. Its re-
sults are similar to those of flavor-symmetric SUA(nf) ex-
tended NJL models. The anzats for the propagator is tha
Eq. ~18!, and model II only differs from model I in the alge
bra. The mass gap equation is changed sincetW•tW53 in the
fermion line. We get

p”2M5p”22GE d4p

~2p!4

iF

~p22M2!

3F ~p”1M !22
nf

221

nf
g5~p”1M !g5

2tr$p”1M %G⇒M50 or
e
al

l
the
e

re

o

of

152S 2
nf

221

nf
2114nfncDGI1~M ,L!, ~28!

wherenf and nc stand, respectively, for the number of fla
vors and colors. The rainbow diagram contributes in t
case. The tadpole diagram contribution also changes.
preferred values for the parametersL and G are L
51.65 GeV and G51.23 GeV22 which yield M

50.33 GeV, ^q̄q&52(0.25 GeV)3, and f p50.09 GeV.
As in model I, the tadpole diagram will not contribute to th
antisymmetric tensor which will be again of thet2 type,
T nm5t2@gn,gm#. The first order term is a function of

E d4p

~2p!4
J nm52I 2M @gn,gm#. ~29!

In order to evaluate the higher order terms, we calculate

E d4p

~2p!4
SM@gn,gm#S52 iM 2I 2qnM @gn,gm#. ~30!

In this case we have two flavors with two different charg
eu5 2

3 , ed52 1
3 , and two anomalous magnetic momen

af ,

eutu5GI2F0S eu

2
2M2eutuD1~22!S ed

2
2M2edtdD G
~u↔d!. ~31!

The natural parameter is 2GM2I 2(L,M )50.004. Inverting
this equation we find the solution

au.22~2GM2I 2!
ed

eu
50.004 ⇒ Mu5339 MeV,

ad.22~2GM2I 2!
eu

ed
50.016 ⇒ Md5327 MeV.

~32!

Although this effect is small, it has the right sign to corre
the Mu and Md inversion. If the tadpole term was remove
from the mass gap equation, then thead2au would be big-
ger. This is possible, for instance, when the potential ha
lW •lW dependence,l being the Gell-Mann matrices. This wil
now be considered.

B. QCD-inspired nonlocal NJL model

Model III is the simplest QCD-inspired model. The La
grangian is

LIII ~x!5q̄~x!i ]”q~x!1
1

2
q̄~x!ga

lW

2
q~x!

3E d4yV~x2y!q̄~y!ga

lW

2
q~y!. ~33!
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In the case of model III, the Dirac structuregm
^ gm is

UA(nf) chiral invariant. ForV(p) we will choose a color
confining square well potential because of its calculatio
simplicity:

V~p82p!52GQEuclidean~L2up82pu!. ~34!

The mass gap equation is

p”2M

F
5p”2

4i

3 E d4p8

~2p!4
V~p82p!F

22p” 814M

p822M2
,

~35!

which includes the color factor of43 . We now calculate the
kernel. The first order term for the kernel is a functional

gaJ nmga5 iF
$p” ,@gn,gm#%

~p22M2!2
. ~36!

The terms with two gamma matrices, of the formsmn, are
now canceled by thega

^ ga of the interaction, and only the
t1-type term remains. Therefore this model differs from t
previous ones insofar it covers the form factort1 . The self-
consistent equation for the antisymmetric tensorT will also
close,

gaS$p” ,@gn,gm#%Sga5
F2~p21M2!
1
2 ~p22M2!2

$p” ,@gn,gm#%.

~37!

We get

T nm5t$p” ,@gn,gm#%

t~p!5t02
8

3
i E d4p8

~2p!4
V~p82p!

p8•p

p2

3 F2~p8!
p821M2

~p822M2!2
t~p8!,

t0~p!52
2

3
i E d4p8

~2p!4
V~p82p!

p8•p

p2

F~p8!

~p822M2!2
.

~38!

For the Euclidean integration it is convenient to evaluate
angular integrals,

I 3~p8,p!5GE
21

11

dwu~L2Ap821p222wp8p!

5G~11I 6!u~12I 6!u~11I 6!12Gu~ I 621!.0,

I 4~p8,p!5GE
21

11

dwwu~L2Ap821p222wp8p!

5G
12I 6

2

2
u~12I 6!u~11I 6!.0,

I 55
L22p822p2

2p8p
, ~39!
l

e

and the nonlinear integral mass gap equation forF and M,
the integral fort0 , the linear integral equation forT, and the
integral for ^q̄q& can be solved simultaneously:

F~p!5F11E
0

`

dp8
I 5~p8,p!

6p2p

p84

p821M2~p8!
F~p8!G21

,

M ~p!5F~p!E
0

`

dp8
I 4~p8,p!

3p2

p83F~p8!

p821M2~p8!
M ~p8!,

t0~p!5E
0

`

dp8
I 5~p8,p!

24p2p

p84F~p8!

@p821M2~p8!#2
,

t~p!5t02E dp8
I 5~p8,p!

6p2p

3
p84F~p8!2@p822M2~p8!#

@p821M2~p8!#2
t~p8!,

^q̄q&52E
0

`

dp
3

2p2

p3F~p!M ~p!

p21M2~p!
. ~40!

The mass term has a trivial solutionM50 and another so-
lution which breaks spontaneously chiral symmetry. A
mensional simplification occurs if we work in units ofL
51. In this case the only parameter isG which is now adi-
mensional. We find a critical valueGc5132 above which
chiral symmetry occurs. In Fig. 1 we depict the values ofM,

^q̄q&, anda. We solve the integral equations numerically f
F, M , and t with the Gauss iterative method and using t
Gauss integration@13#. We find that atp2521 these func-
tions decrease by a factor of just 0.9→0.7. Since we canno
continue analytically the numerical solution, we use the
proximation of nearly constantF, M , andt and compute the
mass and the anomalous magnetic moment forp50. The
literature prefers a^q̄q&52(0.25 GeV)3. A dynamical

FIG. 1. The anomalous magnetic momenta ~solid line! as a
function of the adimensional couplingG for model III. The adimen-
sional ~in units of L) quantities, quark dynamical massM ~dashed
line! and quark condensate~dotted line!, are also shown.
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1112 PRC 59BICUDO, RIBEIRO, AND FERNANDES
quark mass M50.33 GeV would correspond toG
5245L22, L50.74 GeV, anda50.15. If we now con-
sider aM5(11a)0.33 GeV, then the lowest possible co
densate iŝ q̄q&52(0.28 GeV)3 which corresponds toG
5300L22, L50.69 GeV, M50.42 GeV, anda50.28;
see Fig. 1.

IV. CONCLUSIONS

NJL models I and II are the simplest models with chi
symmetry breaking. In NJL model I the anomalous magne
momenta vanishes. In model II the U(1) breaking intera
tion yields a too smalla, which nevertheless provides a
example of an isospin dependence fora and, therefore, con
tributes to theu2d mass inversion. The reason for the sma
ness of the anomalous magnetic moment stems from
presence of tadpole contributions, and were it not for t
contribution, we would have obtained a much largera. The
tadpole contribution toM, if allowed, turns out to be very
ys
.

l
ic

-
he
s

large due to a correspondingly large degeneracy fa
(g5three colors3 flavors 3 two spins!. This is a general
feature and not model dependent. This lowers the value oa.
In models where this contribution is absent~due, for in-
stance, to the traceless Gell-Mann matrices! it is possible to
have a significanta. This is precisely the case of model I
where a largera is derived, compatible with the nonrelativ
istic constituent quark models. We also find thatM, a, and

^q̄q& are functions of (G2Gc) with critical exponents which
are, respectively, 1, 2, and 1. The results fora obtained in
these three models hint at a strong dependence of the q
anomalous magnetic moment on the details of the interac
and therefore calculation of the quark anomalous magn
moment should constitute another stringent test for the r
istic effective models of hadronic processes. The pres
work constitutes a first step in a more elaborate model u
fying hadronic spectroscopy~including decay widths! and
the electromagnetic form factors which have been shown
be consistent with the simple quark constituent picture p
cisely because of SxSB.
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