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Anomalous magnetic moment of quarks
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In the case of massless current quarks we find that the breaking of chiral symmetry usually triggers the
generation of an anomalous magnetic moment for the quarks. We show that the kernel of the Ward identity for
the vector vertex yields an important contribution. We compute the anomalous magnetic moment in several
quark models. The results show that it is hard to escape a measurable anomalous magnetic moment for the
quarks in the case of spontaneous chiral symmetry breal8th56-28189)00202-7

PACS numbgs): 12.39.Ki, 12.39.Fe, 24.8%p

I. INTRODUCTION _ ot
j“:equ“UZer{ y"+imqyaf u,
Theoretically, the various hadronic electromagnetic form
factors are usually described in terms of pole dominance to-
gether with contributions arising from virtual mesonic ex- el
change$1]. A third contribution to the electromagnetic form mi=pol€l(1+as),  umoler]= -, (1)

factors should come from the quark microscopic interaction
itself, in close analogy with QED. It is clear that these three

scenarios should not be independent but jUSt three diﬁeremhereaf stands for the anomalous part of the magnetic mo-
aspects of the same model. This desideratum can b@entu; andM is the particle mass. Of course, as usual, for
achieved, at least qualitatively, in terms of a quark fieldneutral charged fermiong is given by uo[ela; where
theory displaying spontaneous breaking of chiral symmetry-e is the electron charge. The magnetic moment of ground
(SxSB). In such a description any hadron, when seen fronstate hadrons is measured experimentally. For instance we
the trivial vacuum Fock space, appears as a collection of ahave for the proton and neutrep=1.79 anda,= —1.91. In
infinite number of quark-antiquark pairs together with thethe constituent quark model for light hadrons we have
appropriate valence quarks. It happens that the contributions
of this quark sea can be summarized in terms of a new set of
valence quasiquarks which now carry the information on the
details of the physical vacuum through a modified propaga-
tor [2]. In this fashion we recover the simplicity of the con-
stituent quark picture. It is the role of the Ward identities to =mu=1.85%u0p, pg=—0.97%0,, (2
ensure charge conservation throughout this process. And this

they do at the expenses of the quark magnetic moment,y the quark magnetic moments are nearly proportional to
which, in gen_eral_, becomes nonzero. As will be shown in thisgpe charges, = 2e, e4=— Le, which suggests that the gy-
paper, to maintain, throughout the process 58, a zero  omagnetic factor 2(& a) is nearly flavor independent. The

anomalous magnetic moment for the quarks constitutes thgantity which can be measured i4/(1+a). For quark
exception rather than the rule and is just the consequence @kvorsu andd we have

particular choices for the Lagrangian. However, the BCS di-

agonalization of the Hamiltoniatmass gap equatiprdoes

not preclude quark pair creation or annihilation processes M ,=(1+a,)338 MeV, My=(1+a4)322 MeV. (3)

from occurring. In fact it sets the strength of mesonic contri-

butions for such physical processes as decay widths and

meson-nucleon interactioi8], among others. The counter-  The constituent quark model can be applied to fit the had-

parts of these processes, when seen from the point of view @bn spectrum, with a confining interaction, a hyperfine inter-

photon coupling, are precisely pole dominance and mesoniaction, and a zero point ener@]. The required parameters

cloud contributions for the electromagnetic form factors. Theare of the order otxg=0.974, M,;=M4=420 MeV which

objective of this paper is to set up the general formalism fomvould suggest a sizabbkeof the order of 0.15-0.3. It is also

the evaluation of electromagnetic form factors in the pres<clear that we will neeéy—a,=0.05 in order to recover the

ence of SB and to use it to evaluate thheandd anomalous  isospin symmetry.

magnetic moments for various models. The remainder of the paper is organized as follows. In
In the Pauli notation for fermions with chargg, the  Sec. Il we develop the full electromagnetic vertEy in

electromagnetic current up to first order in the photon mo-SySB theories, in Sec. lll we apply the formalism to ex-

mentumq,, is amples of quark models, and in Sec. IV we conclude.

1 1
Mp=§(4uu—ud), Mn:§(4ﬂd_ﬂu)
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Il. FULL ELECTROMAGNETIC VERTEX I', IN SxySB the hadronic size can be put to zero this approximation
THEORIES should be the same as larbye [9].
Therefore we hold the view that such quark models are

The Ward identity appropriate to study electromagnetic properties of hadrons,

; Y even for light quarks, provided we have small enough photon
19, S(p+a/2T"S(p~a/2) momenta and the physics of chiral symmetry breaking is
=S(p+a/2)—S(p—a/2)<q,I'* treated correctly. Therefore, at this stage, rather than focus-
Y Y ing on a specific example of the NJL Lagrangian, we will
=iS"(p+a/l2)—-iS"(p—al2) (4)  study the static electromagnetic properties of a wide class of

. quark effective quartic interactions.

is obeyed both by the bare vertd and by the Bethe- In quark models with dynamicaly&B, the vector vertex
Salpeter verted'* [5]_. We WI|| show that in the limit pf ' is a solution of the Bethe-Salpeter equation

small momentuny, this identity has the following solution
for the vertex:

o d
[H(p,a)=i5-8 Hp) +a, T (p)+o(?),  (9) o VIV
"
. ) o —p+ q .9 s _ / q9 ., _ q
whereq,7*#(p) is defined as the kernel which is not deter- PL=PT o P2=P~ 5 i =P T 2 =P — 5
mined by the Ward identity,

q,[9,7"*(p)]=0. (6) (10

The Ward identity ensures that charge conservation surviveshere the strong interaction, which is described by a dotted
renormalization. However, it does not constrain the kernelline in the diagrams, is iterated to all orders in the Bethe-
which is a signature of the renormalization. In particular theSalpeter equation. As usual the solid circles represent the full
kernel contributes to the anomalous magnetic moment of fervertex and quark propagator. This equation can be written
mions.

This can clearly be seen in QED where the infrared and d4p’
ultraviolet divergences can be removed from the photon F“(p,q)=1"6‘—if ZV(p'—p,p’+p,q)Q,S(p;)
propagator, (2m)

! — ! - | o xXI# p’,g) S(p2)Qa
(p'=p)? (p'=p)?—A2 (p'—p)*—AZ?
—V(q,p" +p,—p'+p)Qy
The vertex is given by , ) )
Xtr{S(p)T*(p",q)S(p2) Qa}, (11
F#=Tkt—ig*3+q,Te* 8

where the—1 factor from the fermion loop was included in

and, up to first order inx, the contributions from the self- the tadpole term. The momentum dependence of the poten-
energy and the kernel to the anomalous magnetic mometial is only assumed to conserve the total momentum, and in
are, respectively, this case it depends on three-momenta. The Dirac, flavor,
and color structure of the interaction is determined by®he
matrices. In order to have dynamicalSB, we require this
structure to be chiral invariant. Substituting the Ward iden-
tity in the ladder Bethe-Salpeter equation for the vertex we
In the case of actual QED, whexe—0,A — o, they are both  get
infrared divergent but their sum is finitez/2.

As for QCD, there has been a considerable effort on hOVYS—l(pl)_iS—l(pz)
to derive quark models by integrating out, under various ap-

1-2n |2 (2gomt ] Y 9
"z |22y on ©)

proximations, the gluonic degrees of freedom. An interesting = ngl(pl) —iSy Y(p,)

and promising approach is provided by the cumulant expan- .

sion of the interaction term of the QCD Lagrangigs]. A dp’ , , ) )
nonlocal Nambu-Jona-LasinigNJL-) type Lagrangian is N (277)4V(p ~P.p"+P,a) Qe[ S(P1) ~S(P2) 12

obtained when we retain only bilocal correlators. This is es-

sentially the same approximation as was used by Cahill and =V(qg,p’ +p,—p' +p)Q.tr{[S(p1) —S(p3) 104}
Roberts[7]. In this approximation one neglects triple and

higher order gluon vertices involving quarks but considers (12
full gluon propagators. A recent work along these lines on
the spectroscopy of heavy-light quark mesonic sector hakor particular cases of the potentl{p;—p;,p;+Pz,P;
just been complete[B]. For those physical processes where—p,) we recover the BCS mass gap equation
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D) =S () — e ety = °L,

13

provided that either the rainbow diagram vanishes, or if it

does not, then we must have

V(p'—p,p’+p,q)=V(p'—p,p’ +p,0), (14

and that either the tadpole diagram vanishes, or if it does not,

then we must have

V(q,p'+p,—p'+p)=V(Op'+p,—p'+p). (19
Equation(13) can be written
iS™Y(p)=iS;'(p)
Jd4p, V(p' "+p,0)Q,S(p")Q
(2m) p'—p,p'+p,0)Q2.S(p")Q,
=V(0,p +p,—p' +p)Qtr{S(p")Qa}.
(16)

Now we insert the expressiofb) for I'* in the Bethe-
Salpeter equatioiill), in order to find the kernetj7 and
expand it up to first order ig. The equation for the tensar
which is antisymmetric, is then

d*p

TVM:TéM_ij (2m)*

VQ(1-tr){ST"*SQ,},

- LIV visg)
=3 wV a(1=tN{T"*Q4},

T"H=03"(S)S™Lo#(S)— a*(S)S 1a"(9). (17
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Up too(g?) the electromagnetic current of the quark is, then,

e p* . p* F

J“=EU[7“— FM—(p—M)FEJrFqVT’” u

_&(1-M) PN it
—TU yrra Imqv u,
M +4M3F (2t +t
ae (. 1 2), 2
1-M

where the mass shell conditipr= M was used together with
the Gordon identities. The anomalous magnetic monaent

turns out to be independent of and F. However, the de-
pendence orM is crucial in models wher¢; andt, are
finite. In those modelsa can be thought as a measure of

SxSB. The quark condensatqq) is also a functional of the
dynamically generated mass,

=~ &= et S0)

(22

where the trace sums colors with=3, but the flavor is kept
fixed. Thus, at the onset of the spontanegu&B, we will

obtain an implicit relation betweea, (qq), and the con-
stituent quark mass, which were simultaneously vanishing
before the occurrence of this phase transition and now be-
come nonzero.

Ill. APPLICATION TO QUARK MODELS

We will now computeF, M, a, and{qq) in particular
models which are paradigmatic cases of chiral symmetry
breaking and comply with the constraints of the Ward iden-
tity. The first two models, model | and model Il, are simple
models just used to introduce and exemplify the application

This is a self-consistent forced linear integral equation. Leof the formalism and to visualize properties of the main ge-
us consider a general quark propagator, solution of the mageric contributions to the quark anomalous magnetic mo-

gap equation, of the form

iF(p)
p—M(p)’

wherep=p*p,. The integrand7"* is, then,

S(p*) = (18)

1
J"=—i E{b,[*y”,v"]}ﬂLM[af”,y“]

(p?—M?)?

: 19

M
- F(p”[lé,v“]— P“[B.v"])
where the overdot denote#dp. In general, we find

T H=t(pH{B.[y", v* 1} + t2(P)M[¥", ¥*] +t3(p)

X(p[B, v*1—p“[B,v"]. (20

ment. Their results are unphysical. Finally we will consider
in model 1l a more elaborate case, already containing some
physical features to be expected from QCD.

A. Simple models

Model | is the first original NJL moddll0]. The Lagrang-

ian of model I is
£,=qiéq+G[(aa)*~(a7sa)°], (23

where £, is specific to the case of one flavor, but its results
are similar to the ones of flavor-symmetrig W) extended
NJL models. The equations will be solved in the momentum
representation. As usual the integrals are done in Euclidean
space. A momentum cutofk is included in order that the
integral in the loop momentum is finite. Since the cutoff
cannot be ascribed to the potential which has to be constant
in momentum space, it must be included in the propagator,
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iF(p) nf-1
- s ' — 1=2|2
S(p) p_ M+i 67 F(p) ®Euclldea|(A p)- (24) n¢

—1+4nin,|GIy(M,A), (29)

With a constant potential and this momentum cutoff, thewheren; andn stand, respectively, for the number of fla-
loops turn out to be constant, independent of the externalors and colors. The rainbow diagram contributes in this

momentump. It is convenient to evaluate the integrals, case. The tadpole diagram contribution also changes. The
preferred values for the parameters and G are A
dp 1= 1 [ A2 =1.65 GeV and G=1.23 GeV? which yield M
I1=—J pi M) 16 2{Az—l\/lzllﬂ 1+ 5] =0.33 GeV, (qg)=—(0.25 GeV}, and f,=0.09 GeV.
(2m)" (p ) ™ As in model I, the tadpole diagram will not contribute to the

antisymmetric tensor which will be again of the type,
f dp F T"H=t,[ y”,¥*]. The first order term is a function of

= Gt (-
A2
e
In order to evaluate the higher order terms, we calculate
where the solid angle 22 is included. The mass gap equa-

d*p
1 [ a2 | Grar=—Miy e

= - +In
16m2| A%+ M?2

: (29

tion is d*p
f 2 SM[y",¥#18=—=iM?,q,M[y",¥*]. (30)
p—M=p 2Gf dp _IF )
(2m)* (p?=M?) In this case we have two flavors with two different charges

2 1

X[(P+M) = ys(P+M)ys—tr{p+M}], (26) :u—g, e4=—3, and two anomalous magnetic moments
fi

with the solutionsM =0 or 1=8n.Gl,(M,A). The param-

eters A and G are determined once the quark dynamical

mass and the quark condensate are fixed. We now study the

kernel in model I. Because the integrals are constant, the

antisymmetric tensof is independent op. Thus7”# has to (u—d). (3D

be of thet, type, proportional td y”, v*]. Including the

structure factord), we find that the tadpolelike term van- The natural parameter iSGM2I,(A,M)=0.004. Inverting

ishes sincer”* and o"*ys have a null trace. In this case of g equation we find the solution

model | the rainbow diagram also cancels since the structure

1®1- ys® v projects on the terms with an odd number of

€ €
eutu=c3|2{o(5”—|v|2eutu +(—2)(§—M2edtd”

€4

Dirac vy matrices, of typet; but [y”, y*] is even. Thus a,=—2(2GM?1,)—=0.004 = M,=339 MeV,
model | produces no kernel for the vector vertex and no €u
anomalous magnetic moment for the quptk].
Model Il is the second original NJL modgl2]. The La- 5 Cu B
grangian is aqg=—2(2GM |2)e_d_0'016 = My=327 MeV.

_ _ _ (32)
L£y=qibq+G[(qa)*~(qysa)?], (27)

Although this effect is small, it has the right sign to correct
where £, is used for two flavoras and d. It only has an the M, andMg inversion. If the tadpole term was removed
SU(2), symmetry and breaks U(})from the onset. Its re- from the mass gap equation, then the-a, would be big-
sults are similar to those of flavor-symmetric §d;) ex-  ger. This is possible, for instance, when the potential has a
tended NJL models. The anzats for the propagator is that gf . x dependence\ being the Gell-Mann matrices. This will
Eqg. (18), and model Il only differs from model | in the alge- now be considered.
bra. The mass gap equation is changed since=3 in the

fermion line. We get B. QCD-inspired nonlocal NJL model

Model 11l is the simplest QCD-inspired model. The La-

d*p iF o
—M=rp— - grangian is
p-M=p 2GJ(ZW)“(DZ—I\AZ) 1 .
_ X
nf—1 Ly () =0(X)idg(x) +50(X) y* 5 q(X)
x| (B M) =2 (B M) 35 " 277 2

_ X
de4yV(X_Y)Q(Y)7aEQ(Y)- (33

—tr{p+M}|=M=0 or
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In the case of model Ill, the Dirac structurg“®vy,, is
Ua(ng) chiral invariant. ForV(p) we will choose a color 14
confining square well potential because of its calculational 312'_
simplicity: ’
! ! 1.0
V(p _p):_G®Euclidear(A_|p _p|)- (34 |
The mass gap equation is 08F
p—M 4 d%p’ —2p' +4M o8
—F =bh— 3 V(P —P)F——,
F 3J (2m) "2_M 0.4}
(35 I
02}
which includes the color factor of. We now calculate the
kernel. The first order term for the kernel is a functional of 0.0
y
YTy, % (36) FIG. 1. The anomalous magnetic momentsolid line) as a
(p=—M") function of the adimensional couplir@for model Ill. The adimen-

sional (in units of A) quantities, quark dynamical mabs (dashed

The terms with two gamma matrices, of the fort”, are jine) and quark condensatelotted Iing, are also shown.

now canceled by the“® vy, of the interaction, and only the

t;-type term remains. Therefore this model differs from thegnd the nonlinear integral mass gap equationfand M,

previous ones insofar it covers the form factor The self-  the integral fort,, the linear integral equation faf, and the
consistent equation for the antisymmetric tengawill also integral for(qq) can be solved simultaneously:

close,
s ’ 14 -1
F2(p2+ _ J1s(p’,p) p )
YSIB.LY" V1 SYe= m{lﬂ v ale Fp) 1+fodp 672p p’2+M2(p’)F(p) ’
(37
B = la(p’,p) P'°F(p") ,
We get M) =F(p) [ = i M)

TH=Hp,y" y1}

8 [ d*’ p'-p
t(p)=to—§|J V(p’—p)?

(2m)*
’ p/2+M2 ’
X F%(p )(p’Z——MZ)Zt(p ),
2 (d%’  pp F(p)
to(pP) = 'J(z i V(p'—p) 02 (p—M2)?

(38)

For the Euclidean integration it is convenient to evaluate the

angular integrals,

l3(p’,p)= Gf dwe(A —p'?+p?—2wp’p)

=G(1+16)0(1—1g)0(1+16)+2G6(1g—1)>0,
+1
I4(p’,|o)=Gf_1 dwwo(A —p'?+p?—2wp’p)
1-13
=G—5—6(1~15)8(1+16)>0,
A2_ 12_ 12
-0 P P (39

2p'p

s(p’,p)  p"F(p’)
24m%p [p'2+M3(p")]?’

to(p)—f P

(P =to- [ ap 2 ;’)

><|0"‘F(|0’)2[|o’2 2(p")]
[p'2+M2(p")]?

t(p’),

— (=, 3 pF(pM(p)
(qo)= fodeWz o2 MZ(p) (40)

The mass term has a trivial solutioh=0 and another so-
lution which breaks spontaneously chiral symmetry. A di-
mensional simplification occurs if we work in units of

=1. In this case the only parameterGswhich is now adi-
mensional. We find a critical valu&.=132 above which
chiral symmetry occurs. In Fig. 1 we depict the valued/bf
(qq), anda. We solve the integral equations numerically for
F, M, andt with the Gauss iterative method and using the
Gauss integratiofi13]. We find that atp?= — 1 these func-
tions decrease by a factor of just 8:9.7. Since we cannot

continue analytically the numerical solution, we use the ap-

proximation of nearly constaft, M, andt and compute the
mass and the anomalous magnetic momentpfer0. The

literature prefers a(Eq)=—(0.25 GeVy. A dynamical
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quark mass M=0.33 GeV would correspond toG large due to a correspondingly large degeneracy factor
=2450"2, A=0.74 GeV, anda=0.15. If we now con- (g=three colorsx flavors X two sping. This is a general
sider aM =(1+a)0.33 GeV, then the lowest possible con- feature and not model dependent. This lowers the value of

= . In models where this contribution is abseflue, for in-
densate is(qq)=—(0.28 GeV} which corresponds t& i g -
—300A-2, A=0.69 GeV, M=0.42 GeV, anda=0.28: stance, to the traceless Gell-Mann matrjdéss possible to

Fig. 1 have a significant. This is precisely the case of model I
see Fg. L. where a largen is derived, compatible with the nonrelativ-
istic constituent quark models. We also find th&ta, and

(qq) are functions of G—G,) with critical exponents which
are, respectively, 1, 2, and 1. The results &oobtained in

NJL models | and Il are the simplest models with chiral these three models hint at a strong dependence of the quark
symmetry breaking. In NJL model | the anomalous magneti@anomalous magnetic moment on the details of the interaction
momenta vanishes. In model Il the U(1) breaking interac- and therefore calculation of the quark anomalous magnetic
tion yields a too smalla, which nevertheless provides an moment should constitute another stringent test for the real-
example of an isospin dependence &oand, therefore, con- istic effective models of hadronic processes. The present
tributes to thau—d mass inversion. The reason for the small-work constitutes a first step in a more elaborate model uni-
ness of the anomalous magnetic moment stems from thiying hadronic spectroscopgincluding decay widths and
presence of tadpole contributions, and were it not for thighe electromagnetic form factors which have been shown to
contribution, we would have obtained a much largeifThe  be consistent with the simple quark constituent picture pre-
tadpole contribution tdM, if allowed, turns out to be very cisely because of ZSB.

IV. CONCLUSIONS
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