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Semirelativistic resonating group method calculations of pion-pion scattering

R. Ceuleneer and C. Semay
Universitéde Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium

~Received 28 May 1998!

Pion-pion scattering is investigated in the framework of the resonating group method. The wave function of
an isolated pion, described as a quark-antiquark system interacting through a potential composed of a central
and a spin-spin part, is determined using the spinless Salpeter equation. Given these ingredients the kernel of
the integrodifferential equation governing the relative motion of the colliding pions is calculated using rela-
tivistic kinematics. The correspondingS- andD-wave pion-pion phase shifts are compared with their Galilean
counterparts.@S0556-2813~99!01302-3#

PACS number~s!: 13.75.Lb, 12.39.Ki
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I. INTRODUCTION

The resonating group method~RGM! is the natural way to
investigate the scattering of composite particles. This met
has been taken up in multiquark physics, for instance
describe nucleon-nucleon scattering in terms of the unde
ing quark dynamics. For this process it is possible to jus
the use of Galilean kinematics because the constituent q
mass is generally taken equal to about one third of
nucleon mass. For the other systems composed of l
quarks, relativistic kinematics ought to be used. It is th
worth evaluating the effects of relativity in the application
the RGM to multiquark problems. To this purpose pion-pi
scattering appears as the most suitable process in tha
relativistic effects are expected to be especially large; mo
over the pion is the simplest multiquark system presentin
color singlet.

The present work aims at making RGM calculation
pion-pion scattering consistent, to some extent, with the
quirements of special relativity by substituting the nonre
tivistic kinetic energy operator of thei th particle by its rela-
tivistic counterpart. Thus the present calculations rely on
Hamiltonian

H5T11T1̄1T21T2̄1V11̄1V22̄1V12̄1V21̄1V121V1̄2̄
~1!

with

Ti5Am21pW i
22m, m5mu5md , ~2!

and

Vi j 52
3

16
l̃ i•l̃ j~v i j 1wi j sW i•sW j !. ~3!

The matricesl̃ i are the SU~3! color generators of thei th
particle (2l̃ i* for antiparticles!. The dependence ofVi j upon
the interparticle distancer i j is taken of the form

v i j 52
A

r i j
1Bri j 2C, wi j 5Vg expS 2

r i j
2

r 0
2 D . ~4!
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We fully realize that the use of a naive two-body potent
in four-quark systems is questionable. Actually our effo
center on the technical aspects inherent in the handling
relativistic kinetic energy operators in the framework of t
RGM and we believe that, notwithstanding the use of
oversimplified picture of the interaction between the co
stituent quarks, our calculations are capable of yielding
reliable comparison between semirelativistic RGM pha
shifts and their Galilean counterparts.

The method of calculation, namely, the evaluation of t
exchange kernel with regard to the semirelativistic Ham
tonian ~1! and the procedure used to extract the correspo
ing scattering phase shifts, is outlined in Sec. II. Our resu
are discussed in Sec. III. Concluding remarks are prese
in Sec. IV.

II. METHOD OF CALCULATION

The wave function of an isolatedS-wave pion is given by

c~r qq̄!5f~r qq̄!@s1/2~q!s1/2~ q̄!#0@t1/2~q!t1/2~ q̄!#1 ~5!

wheres1/2 and t1/2 denote the spin and isospin wave fun
tions of a single quark or antiquark. The square bracket
Eq. ~5! and in subsequent expressions stand for angular
mentum and isospin coupling. The spatial wave function
approximated by

f~r qq̄!5b23/2S 2

p D 1/4

expS 2
r qq̄

2

4b2D , ~6!

whereb5(mv)21/2 is the oscillator length parameter. Th
value of b and the corresponding theoretical pion mass
obtained by minimizing the expectation value of the relev
spinless Salpeter Hamiltonian@1,2#. Thus

mp5min
b
E

0

`

f~r qq̄!F2Am21pW qq̄
2

1vqq̄2
3

4
wqq̄G

3f~r qq̄!r qq̄
2

drqq̄ ~7!

which in the nonrelativistic limit reduces to
1081 ©1999 The American Physical Society
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1082 PRC 59R. CEULENEER AND C. SEMAY
mp
NR52m1min

b
E

0

`

f~r i j !F2
1

mS d2

drqq̄
2 1

2

r qq̄

d

drqq̄
D

1vqq̄2
3

4
wqq̄Gf~r qq̄!r qq̄

2
drqq̄ . ~8!

The one-channel RGM integro-differential equation go
erning the relative motion of the colliding particles is of th
form

TrWc~rW !1E K~rW,rW8!c~rW8!d3r 85Ec~rW !. ~9!

The RGM wave function describing the two-pion syste
reads

c5F~11̄22̄!2F~12̄21̄! ~10!

with

F~11̄22̄!5 (
L8M8I 8

fL8M8
I 8 ~11̄22̄!

f L8M8
I 8 ~r !

r
, L81I 8 even

~11!

and

FLM
I ~11̄22̄!5C~11̄!C~22̄!f~r 11̄!f~r 22̄!

3S~11̄22̄!I ~11̄22̄!YLM~ r̂ !, ~12!

whereC(11̄) andC(22̄) represent color singlets. The vect
rW is the relative separation of the pions (11)̄ and (22̄)

rW5
1

2
~rW11rW 1̄2rW22rW 2̄!, r[urWu, r̂ 5

rW

r
. ~13!

The total spin and isospin wave functions are given by

S~11̄22̄!5@@s1/2~1!s1/2~ 1̄!#0@s1/2~2!s1/2~ 2̄!#0#0, ~14!

I ~11̄22̄!5@@t1/2~1!t1/2~ 1̄!#1@t1/2~2!t1/2~ 2̄!#1# I . ~15!

The partial wavef LM
I (r ) satisfies the equation

^fLM
I ~11̄22̄!uH2Euc&50, ~16!

in which the integration is carried out over the color, sp
isospin and spatial variables keepingr constant. Using ex-
pression~11! of c this equation splits into a direct and a
exchange term; thus

DLM
I 2ELM

I 50, ~17!

with

DLM
I 5^fLM

I ~11̄22̄!uH2EufLM
I ~11̄22̄!&

f LM
I ~r !

r
, ~18!
-

,

ELM
I 5 (

L8M8I 8
E

0

`

^fLM
I ~11̄22̄!uH

2EufL8M8
I 8 ~12̄21̄!& f L8M8

I 8 ~r 8!r 8dr8. ~19!

The vectorrW8 is of course the relative separation of the pio
(12̄) and (21̄)

rW85
1

2
~rW11rW 2̄2rW22rW 1̄!. ~20!

A. Direct term

Owing to the color dependence of the interparticle int
action, onlyV11̄ andV22̄ contribute to the direct matrix ele
ment. Consequently, in the center-of-mass frame of the t
pion system,DLM

I describes the relative motion of two fre
pions.

Using Galilean kinematics and Eq.~8!, a straightforward
calculation results in

DLM
I ,NR5

1

r S 2
1

2m

d2

dr2 1
L~L11!

2mr2 12mp
NR24m2ED f LM

I ~r !,

~21!

which is inconsistent in that the mass appearing in the kin
energy and the centrifugal terms should be equal tomp

NR

instead of 2m. This defect is especially important for pion
pion scattering as the observed pion mass is equal to 0
GeV whereas, in nonrelativistic quark models, 2m amounts
generally to values as large than 0.6 GeV. It is thus esse
to incorporate relativistic effects in the description of pio
pion scattering. Therefore, we shall assume that, in the c
text of the spinless Salpeter equation,DLM

I is given by

DLM
I 5@2Amp1pW 222mp2E#

f LM
I ~r !

r
,

E5E14m22mp , ~22!

whereE andpW are the relative energy and momentum of t
colliding pions, respectively. Actually, Eq.~22! relies, in ad-
dition to the approximations underlying the spinless Salpe
equation@1,2#, on the assumption that the constituent p
ticles of the two-pion system interact pairwise through t
same scalar potential than the potential used to describ
isolated pion.

B. Exchange term

The color, spin, and isospin matrix elements in the e
change term are given by

^C~11̄!C~22̄!uC~12̄!C~21̄!&5
1

3
, ~23!

^C~11̄!C~22̄!u2
3

16
l̃ i•l̃ j uC~12̄!C~21̄!&5Ci j , ~24!

with
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C11̄5C22̄5C12̄5C21̄52C1252C1̄2̄5
1

3
, ~25!

^S~11̄22̄!uS~12̄21̄!&5H 1
2

1
2 0

1
2

1
2 0

0 0 0
J 5

1

2
, ~26!

^S~11̄22̄!usW i•sW j uS~12̄21̄!&5Si j ,

S11̄5S22̄5S12̄5S21̄52S1252S1̄2̄52
3

8
, ~27!

^I ~11̄22̄!uI 8~12̄21̄!&59H 1
2

1
2 1

1
2

1
2 1

1 1 I
J d II 8 . ~28!

Using these results the exchange term can be written

ELM
I 5 (

L8M8
E

0

`

^H2E&LML8M8
I f L8M8

I
~r 8!r 8dr8 ~29!

with

^H2E&LML8M8
I

5
3

2H 1
2

1
2 1

1
2

1
2 1

1 1 I
J K T1v2

3

4
w2EL

LML8M8

~30!

and

^T&LML8M85^T11T1̄1T21T2̄&LML8M8 , ~31!

^v&LML8M85^v11̄1v22̄1v12̄1v21̄2v122v 1̄2̄&LML8M8 ,
~32!

^w&LML8M85^w11̄1w22̄1w12̄1w21̄1w121w1̄2̄&LML8M8 .
~33!

In these equation̂O&LML8M8 , whereO is any spatial opera
tor, denotes the matrix element resulting from the integrat
of the quantity

YLM* ~ r̂ !f~r 11̄!f~r 22̄!Of~r 12̄!f~r 21̄!YL8M8~ r̂ 8! ~34!

over the spatial coordinates keepingr and r 8 constant. Note
that the 9j symbol in Eq.~30! and condition~11! imply I and
L8 even.

1. Energy and potential matrix elements

The calculation of the potential matrix elements obtain
using meson wave functions expanded in arbitrary large
monic oscillator bases has been outlined in Refs.@3,4#. The
0\v results relevant to the present work can be summar
as follows:
n

d
r-

d

K v2
3

4
w2EL

LML8M8

5
4

b3Ap
dLL8dMM8~VL2EdL0!

3expS 2
r 21r 82

2b2 D ~35!

with

VL5
4

b3Ap
dL0E

0

` H @vL~r ,r!1vL~r 8,r!#

2
3

4
@wL~r ,r!1wL~r 8,r!#J r2 expS 2

r2

b2D dr

2FvL~r ,r 8!1
3

4
wL~r ,r 8!G , ~36!

where the vectorrW is the relative separation of the pairs (12
and (1̄2̄)

rW 5
1

2
~rW11rW22rW 1̄2rW 2̄!. ~37!

The functions ofr ,r 8 and r in Eq. ~36! are obtained by
expanding the functionsv i j and wi j in multipoles; for in-
stance,

vL~r ,r!5E
21

1 S 2
A

urW2rW u
1BurW2rW u2CD PL~m!dm,

~38!

wL~r ,r!5VgE
21

1

expS 2
urW2rW u2

r 0
2 D PL~m!dm. ~39!

These integrals, in whichm represents the scalar produ
r̂• r̂ , can be carried out analytically.

2. Kinetic energy matrix element

We have calculated the kinetic matrix elements using
set of dimensionless variables defined by

xW i5
rW i

b
, xW5

rW

b
, yW5

rW8

b
, zW5

rW

b
. ~40!

The intrinsic coordinatesxW ,yW ,zW and the center-of-mass coo
dinate defined by

xW c.m.5
1

2
~xW11xW 1̄1xW21xW 2̄! ~41!

are connected to the particle coordinates by an orthogo
transformation.

In terms of the dimensionless coordinates~40! the quan-
tity ~34! relative to the kinetic energy is given, up to a no
malization factor, by
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YLM* ~ x̂!expS 2
y21z2

2 D ~T11T1̄1T21T2̄!

3expS 2
x21z2

2 DYL8M8~ ŷ! ~42!

with

Ti5mA12~mb!22¹W xW i

2
2m. ~43!

As these operators do not act, in expression~42!, upon func-
tions of xW c.m., the Laplacian operators¹W xW i

2 reduce to

¹W xW1

2
5

1

2
@mb2TNR1¹W xW•¹W yW1¹W xW•¹W zW1¹W yW•¹W zW#, ~44!

¹W xW2

2
5

1

2
@mb2TNR2¹W xW•¹W yW2¹W xW•¹W zW1¹W yW•¹W zW#, ~45!

¹W xW3

2
5

1

2
@mb2TNR1¹W xW•¹W yW2¹W xW•¹W zW2¹W yW•¹W zW#, ~46!

¹W xW4

2
5

1

2
@mb2TNR2¹W xW•¹W yW1¹W xW•¹W zW2¹W yW•¹W zW#, ~47!

where

TNR5
1

2mb2 ~¹W xW
2
1¹W yW

2
1¹W zW

2
! ~48!

is the intrinsic kinetic energy operator of the two-pion sy
tem in the nonrelativistic limit.

It is possible to afford a meaning to the unusual opera
~43! through the Fourier transform~FT! of the function on
which is acts; for instance,

A12~mb!22¹W jW
2
f ~jW !

5
1

~2p!3/2E eikW•jWA11~mb!22k2FT@ f ~jW !#d3k

~49!

with

FT@ f ~jW !#5
1

~2p!3/2E e2 ikW•jW8 f ~jW8!d3j8. ~50!

In this respect the harmonic oscillator bases are quite co
nient as the normalized eigenstatesunlm&jW of the three-
dimensional harmonic oscillator satisfy the equation

FT@ unlm&jW] 5~2 i !2n1 l unlm&kW ~51!

which for n5 l 5m50 reduces to the well known result

FTFexpS 2
j2

2 D G5expS 2
k2

2 D . ~52!

Using Eqs.~44!–~47!, ~50!, and ~52! as well as the Her-
mitian property of the kinetic energy operator, the mat
-

r

e-

element ^T1&LML8M8 is equal to the integral ove
x̂,ŷ,zW,kW ,kW8,kW9, andkW- of the quantity

m

64p9 YLM* ~ x̂!YL8M8~ ŷ!$A11~2mb!22K1
221%

3expF i ~kW•xW2kW8•yW1~kW92kW-!•zW !

2
1

2
~k21k821k921k-2!G ~53!

with

KW 15kW1kW81kW9. ~54!

The matrix elements relative to the operatorT1̄ ,T2 , andT2̄
are obtained in the same way with

KW 1̄5kW2kW82kW9, ~55!

KW 25kW1kW82kW9, ~56!

KW 2̄5kW2kW81kW9. ~57!

The integration of expression~53! over x̂,ŷ, andzW is readily
carried out and yields the result

^T1&LML8M8

5
2m

p4 i L2L8E d3kE d3k8I 1~kW ,kW8! j L~kx! j L8~k8y!

3expS 2
k21k82

2 DYLM~ k̂!YL8M8~ k̂8! ~58!

with

I 1~kW ,kW8!5E d3k9$A11~2mb!22K1
221%exp~2k92!.

~59!

This integral can be recast in the form

I 1~kW ,kW8!5exp~2k2!E
0

`

dK1$A11~2mb!22K1
221%K1

2

3exp~2K1
2!E dK̂1 exp~2kW •KW 1! ~60!

in which

kW 5kW1kW8, k5Ak21k8212kk8z, z5 k̂• k̂8. ~61!

The integral overK̂1 yields

E dK̂1 exp~2kW •KW 1!5
2p

kK1
sinh~2kK1!. ~62!

Finally the integration overk̂ and k̂8 in Eq. ~58! can be
carried out through the multipole expansion ofI 1(kW ,kW8) with
regard toz
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I 1~kW ,kW !54p2(
l

I 1
l~k,k8!(

m
Ylm~ k̂!Ylm* ~ k̂8! ~63!

with

I 1
l~k,k8!5

1

2pE21

11

I 1~kW ,kW8!Pl~z!dz. ~64!

In this way we obtain in terms ofr and r 8

^T1&LML8M85
8m

p2b3 dLL8dMM8TL ~65!

with

TL5E
0

`

dkE
0

`

dk8~kk8!2I 1
L~k,k8! j LS kr

b D j LS k8r 8

b D
3expS 2

k21k82

2 D ~66!

in which, according to Eqs.~60!, ~62! and ~64!,

I 1
L~k,k8!5E

21

11

dzPL~z!
exp~2k2!

k

3E
0

`

dK1$A11~2mb!22K1
221%K1

3exp~2K1
2!sinh~2kK1!. ~67!

Note that Eqs.~54!–~57!, ~60!, and~64! imply

I 1
L~k,k8!5I 2

L~k,k8!5~21!LI 1̄
L
~k,k8!5~21!LI 2̄

L
~k,k8!

~68!

and, sinceL8, and thereforeL, are restricted to even value

^T&LML8M854^T1&LML8M85
32m

p2b3 dLL8dMM8TL . ~69!

In the nonrelativistic limit, that is to say, when

A11~2mb!22K1
221.

K1
2

8m2b2 , ~70!

the integrals~66! and~67! can be carried out analytically s
that the quantity~66! amounts in this case to

TL5
pAp

16m2b2F15

2
2

1

b2 ~r 21r 82!GexpS 2
r 21r 82

2b2 D dL,0

~71!

in agreement with the results reported in Ref.@4#.

3. Scattering phase shifts

Using the above results Eq.~9! reads
@2Amp
2 1pW 222mp2E#

f L
I ~r !

r

1
1

r E0

`

KL
I ~r ,r 8! f L

I ~r 8!dr850 ~72!

with

KL
I ~r ,r 8!52

48mrr8

p2b3 H 1
2

1
2 1

1
2

1
2 1

1 1 I
J

3FTL1
pAp

8m
~VL2EdL0!expS 2

r 21r 82

2b2 D G ,
~73!

which implies

KL
2~r ,r 8!522KL

0~r ,r 8!. ~74!

According to Eq.~73! it follows also that for non zero value
of L the exchange kernels do not depend uponE and thus,
upon the dipion mass defined by

mpp52mp1E5E14m. ~75!

The application of the operatorAmp
2 1pW 2 upon the terms

of Eq. ~72! leads to the Schro¨dinger-like equation

F2
1

mp

d2

dr2 1
L~L11!

mpr 2 2ES 11
E

4mp
D G f L

I ~r !

1S 11
E

4mp
D E

0

`

KL
I ~r ,r 8! f L

I ~r 8!dr8

1E
0

`

K̃L
I ~r ,r 8! f L

I ~r 8!dr850 ~76!

in which the additional kernelK̃L
I (r ,r 8) is given by

K̃L
I ~r ,r 8!5

r

2
@A12~mpb!22¹W rW

2
21#

KL
I ~r ,r 8!

r
. ~77!

Using Eqs.~49! and ~50!, expression~77! yields, after inte-
gration over the angular variables

K̃L
I ~r ,r 8!5

1

pbE0

`

dkFA11
k2

mp
2 b221G

3sinS kr

b DFT@KL
I ~r ,r 8!# ~78!

with

FT@K~r ,r 8!#5E
0

`

dr9 sinS kr9

b DKL
I ~r 9,r 8!. ~79!

The scattering phase shiftsdL
I as functions of the relative

energy of the colliding pions can be extracted by the us
method which consists in solving Eq.~76! numerically up to
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1086 PRC 59R. CEULENEER AND C. SEMAY
r 5R, with R larger than the range of the exchange kerne
and in fitting the solution obtained in this way to i
asymptotic form

NL sinS ar2
Lp

2
1d L

I D ~80!

with

a5AmpES 11
E

4mp
D . ~81!

III. RESULTS

The parameters of the interquark potential used in
calculations were determined so that the variational bou
of the corresponding spinless Salpeter Hamiltonian obtai
in extended harmonic oscillator bases compare satisfact
with the observed masses of a great variety of mesons
shown in Table I, the potential obtained in this way diffe
significantly from its nonrelativistic counterpart. In partic
lar, the conversion from Galilean to relativistic kinemati
reduces considerably the constituent quark mass.

The variational bounds for the pion mass obtained in v
ous bases, using both relativistic and Galilean kinemat
are presented in Table II together with the correspond
values of the oscillator length parameter and the amplitud
the 0\v component. From these figures it appears that
extension of the harmonic oscillator base, though essenti
improve the theoretical pion mass, has little effect upon
general trend of its wave function and, consequently, u
the RGM exchange kernel associated to pion-pion scatter
as it has been verified explicitly in our nonrelativistic calc
lations@4#. Therefore, a one-Gaussian description of the p
wave function is justified and, accordingly, only theN50
values displayed in Table II will be used in our numeric
calculations.

TABLE I. Parameters of the interparticle potential determin
using relativistic~R! and Galilean~G! kinematics.

A
B

(GeV2)
C

~GeV!
Vg

~GeV!
r 0

(GeV21)
m

~GeV!

R 0.752 0.184 0.455 1.12 3.07 0.171
G 0.583 0.169 0.827 2.82 2.11 0.324

TABLE II. Optimal values of the theoretical pion mass obtain
in variousN\v harmonic oscillator bases together with the cor
sponding values of the oscillator length parameter and the am
tude A0 of the N50 component of the pion wave function usin
relativistic ~R! and Galilean~G! kinematics.

mp (GeV) b (GeV21) A0

N R G R G R G

0 0.217 0.195 1.23 1.60 1.000 1.000
4 0.163 0.146 1.12 1.51 0.982 0.987
8 0.147 0.140 1.04 1.46 0.967 0.980
18 0.138 0.138 1.04 1.46 0.965 0.980
,

r
s
d

ily
s

i-
s,
g
of
e
to
e
n
g,

n

l

We have calculated the contribution of the kinetic ener
to the exchange kernel in theL5I 50 channel, namely, the
quantity obtained by turning ofV0 and E in K0

0(r ,r 8) and
using expression~66! of T0 as well as theR values ofm and
b displayed in Tables I and II. This contribution, terme
RT(r ,r 8), and its Galilean counterpartGT(r ,r 8) calculated
using expression~71! of T0 , and theG values ofm andb are
presented in Figs. 1 and 2. It is seen that these kinetic
change kernels are quite similar: They have practically
same shape and reach their largest value forr located be-
tween 1.0 and 1.6 GeV21. As shown in Figs. 3 and 4, the
same holds true with respect of the potential exchange
nelsRV(r ,r 8) andGV(r ,r 8) obtained by turning ofT0 and
E in K0

0(r ,r 8).
We wish to stress that this striking similarity of theR and

-
li-

FIG. 1. Contribution of the kinetic energy to the semirelativis
exchange kernelK0

0(r ,r 8).

FIG. 2. Contribution of the kinetic energy to the Galilean e
change kernelK0

0(r ,r 8).
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G kernels does not justify the use of Galilean kinemati
Indeed, the relation~70! breaks down in the integral~67!, so
that expression~66! of TL and its nonrelativistic limit~71!
yield quite different results: Takingm50.171 GeV,b
51.23 GeV21, andr 51.1 GeV21 the values ofT0 calcu-
lated using either expression are equal to 0.166 and 0.
respectively. Actually, the great difference between expr
sions ~66! and ~71! of TL is, surprisingly enough, largely
compensated inRT(r ,r 8) and GT(r ,r 8) by the difference
between theR andG values ofm andb. A similar compen-
sation reduces the effect of the difference between theR and
G interparticle interactions inRV(r ,r 8) andGV(r ,r 8).

The numerical calculation of the integrals~66! and~67! is
a computer time consuming task: For given values ofm and
b, the calculation ofTL as a function ofr and r 8 demands

FIG. 3. Contribution of the potential energy to the semirelat
istic exchange kernelK0

0(r ,r 8).

FIG. 4. Contribution of the potential energy to the Galilean e
change kernelK0

0(r ,r 8).
.

7,
s-

about three hours on a Pentium 120 MHz. The extraction
the scattering phase shifts from Eq.~76! requires in addition
the calculation of the kernelK̃L

I (r ,r 8). We have avoided this
last step using a Fourier grid Hamiltonian method to so
Eq. ~72! directly @5,6#. It is nevertheless worth estimating th
relative importance of the kernelsKL

I (r ,r 8) and K̃L
I (r ,r 8)

and, especially, to compare their kinetic energy content.
RT(r ,r 8) is similar toGT(r ,r 8) it is enough to calculate the
integral ~78! usingGT(r ,r 8) as input. In this case the inte
gral overr 9 can be carried out analytically, yielding

GT̃~r ,r 8!5
r 8exp~2r 82/ 2b2!

6pA2mb4 E
0

`FA11
k2

mp
2 b221G

3S 9

2
2

r 82

b2 1k2D sinS kr

b DexpS 2
k2

2 D kdk.

~82!

This kernel is displayed in Fig. 5. Note its slight asymmet
GT̃(r ,r 8) reaches its maximum value forr 51.16 GeV21

and r 851.41 GeV21. This value amounts to 0.319 GeV2,
that is to say about twice the maximum value ofGT(r ,r 8),
which reflects the inadequacy of Galilean kinematics ir
spective of the value of the relative energy of the collidi
pions. The magnitude of the additional kernelK̃L

I (r ,r 8) in
Eq. ~76! is thus closely connected to the relativistic nature
the isolated pions. In this respect it is worth noting tha
similar RGM calculation of deuteron-deuteron scatteri
leads to a ratio of max$GT̃(r ,r 8)% to max$GT(r ,r 8)% equal
roughly to 1022.

We present in Fig. 6 theS-wave phase shifts extracte
from Eqs.~72! and~73!. These results are obtained using t
N50 theoretical pion mass of 0.217 GeV. The substitut
of this mass by the observed value of 0.138 GeV has v
little effect upon these phase shifts, which is another ar
ment justifying theN50 approximation of the pion wave
functions. When the calculations are carried out using G
ilean kinematics as well for the relative motion of the pio
than for the exchange kernels as in our earlier calculati
@3,4#, the trend of these phase shifts as functions of
dipion mass is completely modified. In particular, the iso
calar relativistic shifts increase smoothly with increasi
mpp whereas their Galilean counterparts present an unde
able bump around 0.5 GeV. It is worth noting that theI 52
phase shifts obtained using relativistic kinematics are
agreement with the available experimental data@7# contrary
to the calculatedI 50 shifts which are much too small. Thi

-

-

FIG. 5. Additional exchange kernelGT̃(r ,r 8) ~see text!.
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1088 PRC 59R. CEULENEER AND C. SEMAY
feature might originate from the annihilation process
which are not incorporated in the present model. Indeed,
description of such processes through isospin-dependen
terquark potentials derived from instanton effects@8# sug-
gests that such processes are effective mainly in theI 50
channel.

As illustrated in Figs. 7 and 8 both semirelativistic a
Galilean exchange kernels are considerably smaller foL
52 than for L50. Accordingly, the corresponding phas
shifts are extremely small: Up toE51 GeV they do not

FIG. 6. I 50 and 2S-wave pion-pion phase shifts as functions
mpp calculated using~a! relativistic kinematics for both the ex
change kernel and thep-p relative motion withmp50.217 GeV
~solid lines! andmp50.138 GeV~dotted lines!. ~b! Galilean kine-
matics for both the exchange kernel and thep-p relative motion
with mp50.195 GeV~dashed lines!.

FIG. 7. Exchange kernel inL52, I 50 channel obtained using
relativistic kinematics.
s
e

in-

exceed a few degrees, which compares satisfactorily w
experiment.

IV. CONCLUDING REMARKS

We have presented a method to incorporate relativi
kinematics in the RGM treatment of pion-pion scatterin
Both the description of the individual pions and their scatt
ing rely on the assumptions underlying the spinless Salp
equation. We found that the relativistic and Galilean e
change kernels of the RGM integrodifferential equation
quite similar, which indicates that the relativistic effects a
to a large extent taken into account, in the Galilean kern
through the constituent quark mass and the parameters d
ing the interquark potential. Furthermore, our calculatio
show that these kernels bear closely upon the relativistic
ture of the pion, as revealed by the magnitude of the ad
tional kernel K̃L

I (r ,r 8) appearing in the Schro¨dinger-like
equation ~76! deduced from the semirelativistic equatio
~72!. Consequently, the large relativistic effects exhibited
the corresponding phase shifts originate not only from
relative motion of the colliding pions but also from the rel
tivistic dynamics governing their internal structure.

A real understanding of pion-pion scattering requires o
viously elaborate interparticle interactions. For instance,
tice calculations indicate that in multiquark systems the
teractions cannot be reduced to pairwise potentials. In
context, it is worth noting that, though it is hard to brin
multiquark potentials into play in RGM calculations, this e
fort does not concern the kinetic energy part of the to
Hamiltonian and, accordingly, the procedure proposed
make such calculations consistent with the requirement
the special relativity remains applicable. On the other ha
the description of the annihilation processes and the coup
of the pion-pion system to other sectors require the exten
of this procedure to coupled channel calculations and
handling of a semirelativistic four-body Hamiltonian fo

FIG. 8. Same as Fig. 7 but using Galilean kinematics.
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quarks of unequal masses. The semirelativistic calculat
outlined in the present work might be a useful step towa
the achievement of these improvements which are esse
to make RGM calculations of pion-pion scattering reliabl
l
um
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