PHYSICAL REVIEW C VOLUME 59, NUMBER 2 FEBRUARY 1999

Semirelativistic resonating group method calculations of pion-pion scattering
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Pion-pion scattering is investigated in the framework of the resonating group method. The wave function of
an isolated pion, described as a quark-antiquark system interacting through a potential composed of a central
and a spin-spin part, is determined using the spinless Salpeter equation. Given these ingredients the kernel of
the integrodifferential equation governing the relative motion of the colliding pions is calculated using rela-
tivistic kinematics. The correspondir® and D-wave pion-pion phase shifts are compared with their Galilean
counterparts[ S0556-28189)01302-3

PACS numbgs): 13.75.Lb, 12.39.Ki

I. INTRODUCTION We fully realize that the use of a naive two-body potential
in four-quark systems is questionable. Actually our efforts
The resonating group methd@BGM) is the natural way to  center on the technical aspects inherent in the handling of
investigate the scattering of composite particles. This methotelativistic kinetic energy operators in the framework of the
has been taken up in multiquark physics, for instance, tcRGM and we believe that, notwithstanding the use of an
describe nucleon-nucleon scattering in terms of the underlyeversimplified picture of the interaction between the con-
ing quark dynamics. For this process it is possible to justifystituent quarks, our calculations are capable of yielding a
the use of Galilean kinematics because the constituent quarkliable comparison between semirelativistic RGM phase
mass is generally taken equal to about one third of thehifts and their Galilean counterparts.
nucleon mass. For the other systems composed of light The method of calculation, namely, the evaluation of the
quarks, relativistic kinematics ought to be used. It is thusexchange kernel with regard to the semirelativistic Hamil-
worth evaluating the effects of relativity in the application of tonian (1) and the procedure used to extract the correspond-
the RGM to multiquark problems. To this purpose pion-pioning scattering phase shifts, is outlined in Sec. Il. Our results
scattering appears as the most suitable process in that tlee discussed in Sec. lll. Concluding remarks are presented
relativistic effects are expected to be especially large; morein Sec. IV.
over the pion is the simplest multiquark system presenting a
color singlet.
The present work aims at making RGM calculation of !l METHOD OF CALCULATION
pion-pion scattering consistent, to some extent, with the re- The wave function of an isolateéglwave pion is given by
quirements of special relativity by substituting the nonrela-

tivistic kinetic energy operator of thi¢h particle by its rela- r o= b(r- o sY2a)sY2(a) 197 72 21t (5
tivistic counterpart. Thus the present calculations rely on the U O C EEan C I C U
Hamiltonian 12 2 . . .

wheres™< and 7'~ denote the spin and isospin wave func-

tions of a single quark or antiquark. The square brackets in

H=Tot Tt Tot TotVin Voo tViatVortVipt Vi Eg. (5) and in subsequent expressions stand for angular mo-

@ mentum and isospin coupling. The spatial wave function is
with approximated by
\/ﬁ o\ V4 2
Ti=Vvm+pf—m, m=my=my, (2 ¢(qu)=b_3’2(;) exp(—ﬁ), ©6)
and

whereb=(mw) 2 is the oscillator length parameter. The
_ .. value ofb and the corresponding theoretical pion mass are
i Nj(vij+WijSi-s)). (3 obtained by minimizing the expectation value of the relevant
spinless Salpeter Hamiltonidd,2]. Thus

3
~>2 _ _
2\/m2+ pqa'i— Ugq— Zqu}

X ¢(rqg)r§adrqg )

Vij - — 1_6)\
The matricesxi are the SWB) color generators of théth

particle (—Xi* for antiparticleg. The dependence &f;; upon m,=min f #(rqq)
the interparticle distance; is taken of the form b 70

A rz
vij=—f+Brij—C, Wij=Vgexr<—r—g). (4)

Fij which in the nonrelativistic limit reduces to
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NRZJF'F"S() d2+2d
mYR=2m+ min r =
i b Jo " midr Fqq dfgq
tVqq~ 7 Waa ¢(rqE>f§adqu- (®)

The one-channel RGM integro-differential equation gov-
erning the relative motion of the colliding particles is of the

form

;¢<F>+f K(EP Wi d =By, (9)

The RGM wave function describing the two-pion system

reads
Yy=D(1122)—d(1221) (10)

with

v (1)

®(1122)= D, ¢L,M,(1122)—, L’+1’ even
L'M'I 1)

and

®|1(1122)=C(11)C(22) (1 17) (T 32)

X S(1122)1(1122)Y, u(r), (12

whereC(lT) andC(2§) represent color singlets. The vector
r is the relative separation of the pions (14nd (22

r,—rz), r=|r|, (13

-1 - L
r=s(ry+ri—
2(1 1

The total spin and isospin wave functions are given by

S(1122) =[[s"2(1)s"2(1)][s"%(2)s"%(2)1°1°,  (14)

1(1122)=[[ 2(1) 211 72(2) M%(2)1Y]'. (15
The partial wavef | ,,(r) satisfies the equation

($Lm(1122)|H—¢Ely)=0, (16)

in which the integration is carried out over the color, spin,

isospin and spatial variables keepingonstant. Using ex-
pression(11) of ¢ this equation splits into a direct and an
exchange term; thus

D:_M_E:_MZO’ 17
with

LM( )

Lu=(BLu(1122)[H — €| y(1122)) , (18
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L'm"’

8|¢L,M,(1221)> L,M,(r Yyr'dr’.

<¢>Lm(1122)|H

(19

The vectorr’ is of course the relative separation of the pions
(12) and (293

1. - . .
§(r1+r5—r2—rf).

r' (20

A. Direct term

Owing to the color dependence of the interparticle inter-
action, onlyV,7 andV,5 contribute to the direct matrix ele-
ment. Consequently, in the center-of-mass frame of the two-
pion systemD| , describes the relative motion of two free
pions.

Using Galilean kinematics and E(B), a straightforward
calculation results in
DI,NR:E _ i d_2

LM "¢l 2mdr?

L(L+1)
W+2mER_4m_8) f:_M(r),

(21)

which is inconsistent in that the mass appearing in the kinetic
energy and the centrifugal terms should be equamﬁbR
instead of 2n. This defect is especially important for pion-
pion scattering as the observed pion mass is equal to 0.138
GeV whereas, in nonrelativistic quark modelsn 2mounts
generally to values as large than 0.6 GeV. It is thus essential
to incorporate relativistic effects in the description of pion-
pion scattering. Therefore, we shall assume that, in the con-
text of the spinless Salpeter equatidi]LM is given by

- flu(r
D:_M:[z m17+p2_ mﬂT_E] L'\:l,.( ),

E=&+4m—-2m_, (22
whereE andp are the relative energy and momentum of the
colliding pions, respectively. Actually, EG22) relies, in ad-
dition to the approximations underlying the spinless Salpeter
equation[1,2], on the assumption that the constituent par-
ticles of the two-pion system interact pairwise through the
same scalar potential than the potential used to describe an
isolated pion.

B. Exchange term

The color, spin, and isospin matrix elements in the ex-
change term are given by

(C(11)C(22)|C(12)C(2D)) = (23)

(C(11)C(22)| - =X N j[C(12)e(2D)=Cy, (24

with
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Ciim Copm Cigm Crie — Crpe — Ci— 25 3 4
117 C22= b1p= ban= ~h2= ~ 2= 3, (25 v—ZW—é' LML’M,:maLL'ﬁMM’(VL_EéLO)
119 r24r’2
I 2 2 1 xXexp — e (39
(S(1122)|s(1221))=Y § } Of =5, (26
0 00 with
(S(1122)|s;-5;|S(1221)) =S, { ,
V, = P vL(r,p)+oL(r',
L= b3\/_ Lo [oL(r.p)+oL(r’,p)]
3
S$11=55=512=S,1= —Spp=— 12~ " g (27) 3 102
__[WL(r p)+w (r',p)];p?ex bz
22 1 (rr’)+3w(rr’)} (36)
—_— - - v 1 - 1 1
(1(1122)|1'(1221))=9{ L 1 1{ &, . (29 - 4t
1 1 |

where the vectop is the relative separation of the pairs (12)

Using these results the exchange term can be written and (12)
B o | | o ezle - o o
Elv=2> | (H=8&_ uimfLm(rrdr’ (29 p=5(ritra=ri=ry). (37)
L'M’ 0

with The functions ofr,r’ and p in Eq. (36) are obtained by
expanding the functions;; and w;; in multipoles; for in-

1 stance,

| 3
<H_5>|_ML'M':§

= NI N
= NI N

3
AT o
| LML'M’ UL(r’p):f,l = |+B|r_P| P (w)du,
(30 (39
and 1 IF—pl?
WL(r,p)=ng eXP( — 7z |Pu(wdp. (39
(Muimem =(T1+ T+ T+ T mme (31) -1 0

(W)imem =(V1TH V2T V12T VT V1~ V) ML M

These integrals, in whicle represents the scalar product

(32)  p-r, can be carried out analytically.

(W)L = W1+ Wzt Wao+ Wor+ Wipt Wio) L mL v - 2. Kinetic energy matrix element

33 We have calculated the kinetic matrix elements using a

) . ) set of dimensionless variables defined by
In these equatioO) y. v+, WhereO is any spatial opera-

tor, denotes the matrix element resulting from the integration ; ; ; >
of the quantity v S = o
Xi=p X=p Y=p T (40

Yim(N (1D ¢(r0)Ob(r2) p(rz) Y (r') (34 .
The intrinsic coordinates %,Y,z and the center-of-mass coor-
over the spatial coordinates keepingndr’ constant. Note dinate defined by
that the 9§ symbol in Eq.(30) and condition(11) imply | and
L' even. - 1. - - .
:E(X1+XT+X2+XE) (41)

Xc.m.
1. Energy and potential matrix elements

The calculation of the potential matrix elements obtainedare connected to the particle coordinates by an orthogonal
using meson wave functions expanded in arbitrary large hatransformation.
monic oscillator bases has been outlined in REs4]. The In terms of the dimensionless coordinatd§) the quan-
0% w results relevant to the present work can be summarizetity (34) relative to the kinetic energy is given, up to a nor-
as follows: malization factor, by
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.- y2+ 72 B B ?I€nlept_)<-[l>LML’l\4’ is equal to the integral over
tn(x)expg — 2 (Ty+ T+ T+ To) x,¥,z,k,k’,k”, andk” of the quantity
X2+ 22 . M e % NIy —2K2
X ex - 2 YL’M’(Y) (42) mYLM(X)YL’M’(y){ l+(2mb) Kl_l}
T
with ><exp[i(|2->2— K'-y+(K"—Kk")-2)
Ti=my/1—(mb) 2V —m. (43) L
_ —(k2+ k/2+ k"2+ ka) (53)
As these operators do not act, in expresgi®), upon func- 2
tions of X, ., the Laplacian operatofé- reduce to with
K,=k+k'+K". (54)

1
=2 — - - - - =
V= E[mszNRJr Vi Vy+ Vi Vi+ VeV, (44)
The matrix elements relative to the operalqr,T,, and T3
are obtained in the same way with

V)%Z:E[meTNR—V,;Vy‘—V;~VZ‘+V§~Vi], (45 R,
Ki=k—k'—K", (55
V5= IMEPTNR V¥ Vi Vi Vi Vi, (49) Ko=ktk' =K', 9
Ky=k—k'+K". (57)

-, 1 NR .. e e = e

Ve —E[msz ~Vi Vy+ Vi Vi=Ve-Vi],  (47) o R
4 The integration of expressia®3) overx,y, andz is readily

carried out and yields the result

where
1 5 p o (Tomim
NR__ = /(v2 =2 = 2
T _2mb2(VX+Vy+VZ) (48 om L[ . L _
S [ ok [ e ®RDiL0i L (k'y)
is the intrinsic kinetic energy operator of the two-pion sys-
tem in the nonrelativistic limit. 24+k'? . .
It is possible to afford a meaning to the unusual operator xexp — —— | Yum(K)Yirmo (k) (58
(43) through the Fourier transforFT) of the function on
which is acts; for instance, with

—2v 2,2
V1= (mb) V() (KK = [ dkeg T 2mb) K- e~k
= | I (MB ACETA(E1% 9

(49

with 11(k,K)=exp(— Kz)f dK {1+ (2mb) 2K2-1}K2
0

This integral can be recast in the form

1 o
FW“%)FW/?J e Ef(&)d3e. (50) xexq—Kf)f dK, exp(2k-Ky) (60)

In this respect the harmonic oscillator bases are quite conven which
nient as the normalized eigenstatgdm); of the three-

dimensional harmonic oscillator satisfy the equation k=k+k', w=Vk*+k'2+2kk'¢, ¢=k-k'. (6D
FTLInim)g] = (=" nim)g (5D The integral oveK ; yields

which for n=1=m=0 reduces to the well known result

52 k2
ex;{ - ?> = ex;{ - ?> . (52)
Finally the integration ovek and k’ in Eq. (58 can be

Using Eqgs.(44)—(47), (50), and (52) as well as the Her- carried out through the multipole expansionl 9@2,12') with
mitian property of the kinetic energy operator, the matrixregard to

- - - 2m

f dK; exp2k-Ky)=—>-sinh(2«K,). (62
KK]_

FT
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(kK =472 13k k) 2 (YR, (k) (63
M
with
N 1 r+1
|1(k.k’)=2—f I1(k,k")Py\()d{. (64)
T)-1
In this way we obtain in terms af andr’
8m
<T1>LML’M’:_7T2b3 O Oum T (65)
with
o % - C(kry [K'r!
= [ ok awontorond i 5
0 0 b b
k?+k'?
Xexp — (66)
2
in which, according to Eqg60), (62) and (64),
D( K?)
(k)= [ aepu T
xf dK{V1+(2mb) 2K{—1}K,
0
X exp(— K2)sinh 2«K ;). (67)

Note that Eqs(54)—(57), (60), and(64) imply

15(k,k) =15k k)= (= D3k K) = (= 1) 15k, k')
(68)

and, sincd_’, and thereford., are restricted to even values
32m
<T>LML’M’:4<T1>LML’M’:W5LL’5MM’TL- (69)
In the nonrelativistic limit, that is to say, when
—— Ki
\/1+(2mb) Kl—lzm, (70)

the integralg66) and(67) can be carried out analytically so
that the quantity66) amounts in this case to

T mym [15 L 202 |ex A
LT1em?b? 2 b? S 2p% )OO

(71
in agreement with the results reported in Héf.

3. Scattering phase shifts
Using the above results E¢P) reads
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7= fL(n)
[2VmZ+p2—2m,—E] .
1(= | |
+Ff Ki(r,rH)f (r")dr'=0 (72
0
with
I
| , 48mrr’ L
Kirr=-—z31% 3 1
1 1 1
77\/; r24r’?
X| T+ W(VL—(‘:&_O)GX[{—W },
(73
which implies
K2(r,r')y=—=2K(r,r". (74)

According to Eq(73) it follows also that for non zero values
of L the exchange kernels do not depend ugoand thus,
upon the dipion mass defined by

m,,=2m_+E=+4m. (75

The application of the operatafmfgr 52 upon the terms
of Eq. (72) leads to the Schobnger-like equation

1 d?> L(L+1) E N
T m,drZ mpr? +4m,T L(r)
+| 1+ £ me'(rr’)f'(r’)dr’
4m77 0 L L

+f°°'R'L(r,r')f'L(r')dr'=o (76)
0

in which the additional kernek| (r,r’) is given by

~ e
RLrrn) = 2= (m,b) 2~ 112 7

Using Eqgs.(49) and (50), expression(77) yields, after inte-
gration over the angular variables

k2
\/1+ W—l}

)FT[KL(r r']

Kl(r r')=ifwdk
LA b 0

X sin| (78)

with

oo krII

FT[K(r,r’)]:J dr” sin| T)K'L(r”,r’). (79
0

The scattering phase shif@ as functions of the relative

energy of the colliding pions can be extracted by the usual
method which consists in solving E(.6) numerically up to



1086 R. CEULENEER AND C. SEMAY PRC 59

TABLE |. Parameters of the interparticle potential determined
using relativistic(R) and Galilean(G) kinematics.

B C Vy o m
A (GeV®) (GeV) (GeV) (GeV'l) (Gev)
R 0.752 0.184 0.455 1.12 3.07 0.171
G 0.583 0.169 0.827 2.82 2.11 0324
a
o
=
r=R, with R larger than the range of the exchange kernels, <
and in fitting the solution obtained in this way to its f:
asymptotic form w
N, sin ar—7+ o, (80
with
E
a=\/m_E| 1+ . (81)
4m, FIG. 1. Contribution of the kinetic energy to the semirelativistic
exchange kernek3(r,r').
Ill. RESULTS

We have calculated the contribution of the kinetic energy
The parameters of the interquark potential used in outo the exchange kernel in the=1=0 channel, namely, the
calculations were determined so that the variational boundguantity obtained by turning 0¥, and £ in K5(r,r’) and
of the corresponding spinless Salpeter Hamiltonian obtainedsing expressiok66) of T, as well as theR values ofm and
in extended harmonic oscillator bases compare satisfactorily displayed in Tables | and Il. This contribution, termed
with the observed masses of a great variety of mesons. ART(r,r’), and its Galilean counterpa@T(r,r’) calculated
shown in Table I, the potential obtained in this way differs using expressiofi71) of T, and theG values ofm andb are
significantly from its nonrelativistic counterpart. In particu- presented in Figs. 1 and 2. It is seen that these kinetic ex-
lar, the conversion from Galilean to relativistic kinematics change kernels are quite similar: They have practically the
reduces considerably the constituent quark mass. same shape and reach their largest valuer ftocated be-
The variational bounds for the pion mass obtained in varitween 1.0 and 1.6 Ge\t. As shown in Figs. 3 and 4, the

ous bases, using both relativistic and Galilean kinematicssame holds true with respect of the potential exchange ker-
are presented in Table Il together with the correspondingielsR\(r,r’) andGV(r,r’) obtained by turning of, and
values of the oscillator length parameter and the amplitude of jn K3(r,r").
the 0w component. From these figures it appears that the e wish to stress that this striking similarity of tReand
extension of the harmonic oscillator base, though essential to
improve the theoretical pion mass, has little effect upon the
general trend of its wave function and, consequently, upon
the RGM exchange kernel associated to pion-pion scattering
as it has been verified explicitly in our nonrelativistic calcu-
lations[4]. Therefore, a one-Gaussian description of the pion
wave function is justified and, accordingly, only the=0
values displayed in Table Il will be used in our numerical
calculations.

TABLE Il. Optimal values of the theoretical pion mass obtained
in variousN7% w harmonic oscillator bases together with the corre-
sponding values of the oscillator length parameter and the ampli-
tude A, of the N=0 component of the pion wave function using
relativistic (R) and Galilean(G) kinematics.

GT(rr) (GeV?)

m, (GeV) b (Gev'l) Ag
N R G R G R G
0 0.217 0.195 1.23 1.60 1.000 1.000
4 0.163 0.146 1.12 151 0.982 0.987
8 0.147 0.140 1.04 1.46 0.967 0.980
18 0.138 0.138 1.04 1.46 0.965 0.980 FIG. 2. Contribution of the kinetic energy to the Galilean ex-

change kerneK(r,r’).
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FIG. 3. Contribution of the potential energy to the semirelativ-

istic exchange kernd(g(r,r’).

G kernels does not justify the use of Galilean kinematics.

Indeed, the relatioli70) breaks down in the integr&b7), so
that expressioni66) of T, and its nonrelativistic limit(71)
yield quite different results: Takingm=0.171 GeVb
=1.23 GeV'l, andr=1.1 GeV ! the values ofT, calcu-

lated using either expression are equal to 0.166 and 0.627,
respectively. Actually, the great difference between expres-

sions (66) and (71) of T, is, surprisingly enough, largely
compensated iRT(r,r’) and GT(r,r") by the difference
between thek and G values ofm andb. A similar compen-
sation reduces the effect of the difference betweerRthad
G interparticle interactions iRV(r,r’) andGV(r,r").

The numerical calculation of the integrdB6) and(67) is
a computer time consuming task: For given valuesaind
b, the calculation ofT| as a function ofr andr’ demands

0.05
0.00
-0.05
-0.10

-0.15

GV () (GeV?)

-0.20

-0.25

-0.30
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FIG. 5. Additional exchange kern&T(r,r’) (see text

about three hours on a Pentium 120 MHz. The extraction of
the scattering phase shifts from E@6) requires in addition
the calculation of the kernd| (r,r’). We have avoided this
last step using a Fourier grid Hamiltonian method to solve
Eq. (72) directly[5,6]. It is nevertheless worth estimating the
relative importance of the kernel§| (r,r’) and K| (r,r’)

and, especially, to compare their kinetic energy content. As
RT(r,r") is similar toGT(r,r") it is enough to calculate the
integral (78) using GT(r,r') as input. In this case the inte-
gral overr” can be carried out analytically, yielding

r'exp(—r'?/2b?) (=

~— k2
GT(r,r')= V1t =1
r.r) 6m2mb*  Jo mZb? }
X o’ k? | si kr i kdk.

E F-i‘ Sin F ex ?

(82

This kernel is displayed in Fig. 5. Note its slight asymmetry:
GT(r,r') reaches its maximum value for=1.16 GeV'!
andr’'=1.41 GeV!. This value amounts to 0.319 G&V
that is to say about twice the maximum value®T(r,r’),
which reflects the inadequacy of Galilean kinematics irre-
spective of the value of the relative energy of the colliding

pions. The magnitude of the additional kerriql(r,r’) in

Eq. (76) is thus closely connected to the relativistic nature of
the isolated pions. In this respect it is worth noting that a
similar RGM calculation of deuteron-deuteron scattering
leads to a ratio of mgGT(r,r')} to maXGT(r,r’)} equal
roughly to 102

We present in Fig. 6 th&wave phase shifts extracted

from Egs.(72) and(73). These results are obtained using the
N=0 theoretical pion mass of 0.217 GeV. The substitution
of this mass by the observed value of 0.138 GeV has very
little effect upon these phase shifts, which is another argu-
ment justifying theN=0 approximation of the pion wave
functions. When the calculations are carried out using Gal-
ilean kinematics as well for the relative motion of the pions
than for the exchange kernels as in our earlier calculations
[3,4], the trend of these phase shifts as functions of the
dipion mass is completely modified. In particular, the isos-
calar relativistic shifts increase smoothly with increasing
m,_.. whereas their Galilean counterparts present an undesir-
able bump around 0.5 GeV. It is worth noting that the2
phase shifts obtained using relativistic kinematics are in

FIG. 4. Contribution of the potential energy to the Galilean ex-agreement with the available experimental dathcontrary

change kerneK(r,r’).

to the calculated =0 shifts which are much too small. This
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20 A

3 (degrees)
Kr.r) (GeV?)

-20 4

60 . . . ; ; ™(Gey-
0.4 0.6 0.8 1.0 1.2

m__ (GeV) FIG. 8. Same as Fig. 7 but using Galilean kinematics.

)

FIG. 6.1 =0 and 2S-wave pion-pion phase shifts as functions of
m,, calculated usinga) relativistic kinematics for both the ex- exceed a few degrees, which compares Satisfactor"y with
change kernel and the- relative motion withm,=0.217 GeV  experiment.

(solid lineg andm_=0.138 GeV(dotted line$. (b) Galilean kine-
matics for both the exchange kernel and ther relative motion
with m,=0.195 GeV(dashed lines

IV. CONCLUDING REMARKS
feature might originate from the annihilation processes . L
which are not incorporated in the present model. Indeed, the. We havg presented a method to mporpo_rate relat|\{|st|c
description of such processes through isospin-dependent i%nematlcs In .th? RGM "Fr‘atf“.e”t of.p|on-p|on sc;attermg.
terquark potentials derived from instanton effef83 sug- | oth the description of t_he |nd|V|duaI_p|ons anq their scatter-
gests that such processes are effective mainly inithe@ N9 re_ly on the assumptions underlylr_lg_the spmles_s Salpeter
channel. equation. We found that thg relat|V|.st|c aqd Gallle_an ex-

As illustrated in Figs. 7 and 8 both semirelativistic and chgngg k_ernels ‘.Jf the RGM |ntegrod|fferer_1t|_allequatlon are
Galilean exchange kernels are considerably smallerLfor quite similar, which |nd|9ates that the'relatlwstlc. effects are
=2 than forL=0. Accordingly, the corresponding phase to a large extent taken into account, in the Galilean kernel,
shifts are extremely small: Up t&=1 GeV they do not f[hrough Fhe constltuentqu_ark mass and the parameters _def|n-

ing the interquark potential. Furthermore, our calculations
show that these kernels bear closely upon the relativistic na-
ture of the pion, as revealed by the magnitude of the addi-
tional kernelR{_(r,r’) appearing in the Schdinger-like
equation (76) deduced from the semirelativistic equation
(72). Consequently, the large relativistic effects exhibited by
the corresponding phase shifts originate not only from the
relative motion of the colliding pions but also from the rela-
tivistic dynamics governing their internal structure.

A real understanding of pion-pion scattering requires ob-
viously elaborate interparticle interactions. For instance, lat-
tice calculations indicate that in multiquark systems the in-
teractions cannot be reduced to pairwise potentials. In this
context, it is worth noting that, though it is hard to bring
multiquark potentials into play in RGM calculations, this ef-
fort does not concern the kinetic energy part of the total
Hamiltonian and, accordingly, the procedure proposed to
make such calculations consistent with the requirements of

0 the special relativity remains applicable. On the other hand,
r (Gev-l) the description of the annihilation processes and the coupling
of the pion-pion system to other sectors require the extension

FIG. 7. Exchange kernel ih=2, 1=0 channel obtained using Of this procedure to coupled channel calculations and the
relativistic kinematics. handling of a semirelativistic four-body Hamiltonian for

K(r,r') (Gevl)
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