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Consistent off-shellzNN vertex and nucleon self-energy
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We present a consistent calculation of half-off-shell form factors in the pion-nucleon vertex and the nucleon
self-energy. Numerical results are presented. Near the on-shell point the pion-nucleon vertex is dominated by
the pseudovector coupling, while at large nucleon invariant masses we find a sizable pseudoscalar admixture.
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[. INTRODUCTION sured through the introduction of a “cutoff” functiofthe
initial form facton. We obtained the interesting result that
The structure of hadronic vertices, usually parametrized ithe widths of the converged form factors have an upper
terms of form factors, is important in much of nuclear phys-bound.
ics. The form factors may depend on the different invariants Solutions of the Schwinger-Dyson equation have been
that can be constructed. In nucleon-meson or nucleon-photddesented in the passee, e.9.[18,19 and a recent paper
vertices one often considers only the dependence on the mb20]). There, a usually adopted approximation consists in
mentum squared of the meson or photon. In the present pap@psuming the same spin structure for the dressed and the bare
we will consider so-called off-shell form factors where the vertex. The dressing of the vertex is thus parametrized in
dependence is studied on the momentum squared of one &rms of a single form factor. In the present work we have
the nucleons involved. released this condition and found a strong dependence of the
Off-shell form factors are an ingredient in the descriptionspin structure of the vertex on the off-shellness involved.
of physical processes. For example, nucleon-photon off-shell Form factors are usually interpreted as representing the
form factors have been shown to be important in models fofeatures that are not included explicitly ina particular model
proton-proton bremsstrahlungl—3] and virtual Compton for a physical process, and as such, should be built consis-
Scattering[4]_ 7NN and other nucleon-meson form factors tently with the kind of models in which they are intended to
with an explicit dependence on the momentum of one ob€ used. The form factors considered in the present paper are
both nucleons have been used in modelsNdt [5] and=N  Primarily designed for usage in l-matrix model for pion-
[6—9] scattering, pion photoproductid@] and vector meson Nucleon scattering, pion photoproduction, and Compton scat-
production in nucleon-nucleon collisiohs0]. In these mod-  tering off the nucleor{21,22. Since in such a model the
els, the form factors have been phenomenologically paranfne-pion production channel is included explicitly, only the
etrized, with the parameters adjusted to fit experimental datdeal form factor should be used thefat least below the
The off-shell structure of the nucleon-photon verfég—  two-pion thresholdd This aspect is elaborated on in Sec.
13], and the nucleon-pion vert¢g1,14,15 has been studied Il C.
before. In particular, dispersion relation techniques are used In any model, treatment of off-shell three-point vertices
in Refs.[11,12,14, whereas the models of Refgl3] are should be linked with treatment of higher-point vertices, be-
based on a perturbative dressing of the vertex with oneCause a redefinition of the nucleon field can change off-shell
meson loops. In this work we investigate the pion-nucleorflependence of the former in favor of presence of the latter.
coupling in a field-theoretical model which is inherently non- The observables are oblivious to the representation of fields
perturbative and is based on the Schwinger-Dyson equatiofithis result is known as the equivalence theor¢@s], ex-
considering loops to all orders. The nucleon self-energy an@mples of which can be found, e.g., in R¢f24—-24. In the
the pion-nucleon vertex function are both calculated in aPresent model, higher-point vertices are excluded at all
consistent framework. stages of the calculations, and the discussion is carried out
In general, off-shell form factors and the functions param-solely in terms of off-shell form factors in theNN vertex.
etrizing the self-energy are complex functions, where the The paper is organized as follows. In Sec. Il the general
imaginary parts are related to open multiparticle channels ogtructure of the off-shellzZNN vertex is discussed. Our
which the pion-nucleon channel will be the most important_m0d6| is described in detail in Sec. Ill. At present we limit
Our approach is based on the analytic strucfifell] of the ~ ourselves to the inclusion of one-pion-nucleon loops only,
nucleon self-energy and the off-shetNN vertex, which is ~ for which numerical results are presented in Sec. IV.
exploited by the use of dispersion relations. The imaginary
parts of the form factors and the sglf-energy are calculated Il. STRUCTURE OF THE NN VERTEX
from Cutkosky ruleg17]. To make this procedure tractable,
we consistently neglect contributions to the imaginary parts The wNN vertex operator is the sum of all connected
from the multipion thresholds. Feynman diagrams with one incoming nuclgoarrying the
For the course of this paper, we are interested in verticemomentump), one outgoing nucleonp() and one pion ¢
with one off-shell nucleon, which contain two independent=p—p’), with the propagators for the external legs stripped
form factors. The convergence of the loop corrections is inaway. The most general form compatible with Lorentz cova-
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, FIG. 1. The graphical representation of the system of Egjs.

T p'—m p- mG (p'2p%.9%) 1) The thin and thick solid lines correspond to the free and dressed
m 7 m AP ' propagators of the nucleon, respectively. The dashed line is the

propagator of the pion. The circle indicates the dressBN ver-

wherem denotes the nucleon mass and a=1,2,3, are the tex, and the square stands for the counterterm contribution to the
isospin Pauli matrices. The form facto® depend on the nucleon self-energy. In the equation for the vertex the propagators
three Lorentz scalar$1'2 pz andq2 Usually the situation of the external lines are stripped away, as indicated by the dashes

is considered in which both nucleons are on the mass sheff" these lines.

ie., p =p’=m?, and onlyG,(m*m?,g?) enters in Eq(1). lll. DESCRIPTION OF THE MODEL

In this paper we consider a different situation in which the _

pion and only one of the nucleons is on the respective mass The model for the form factors is based on a nonpertur-
shell,p'=m? andg?=u?, whereu denotes the pion mass. bative dressing of the vertex with pion loops as represented
Such a vertex is conventionally called the half-off-shell 9raphically in Fig. 1. The nucleon self-energy(p) is cal-
7NN vertex, and it contains so-called half-off-shell form culated self-consistently using the Schwinger-Dyson equa-
factors. tion [28] with the dressed vertex. This can be expressed in

If the operator of Eq(1) works on the positive energy terrtns Olia system of ir:jte?r:al %quatiogs for lthe dresshid t
spinoru(p’) to the left, the last two terms in E@l) vanish vertex T'o(p',p,q) an © dressed nucieon propagator

due to the Dirac equatiom(p')p’ =u(p’)m, and the vertex S(p).

contains only the form factorsG;(m?,p%u?) and T, m,p,u)
G,(m?,p?,1?). Similarly, if the initial nucleon is on-shell,

only the form factorss,(p 2m?, u2) andG,(p 2m?, u?) are ~I%mp M)—if
left. Charge-conjugation, space-inversion, and time-reversal o
symmetries allow us to relate these form factors:

4

(ZW)A[Fﬁ(m,p’Jrk,k)

XS(p +K)T o(p' +k,p+k,u)S(p+k)
Gy(p%,m?, u?)=Gy(m?,p?, u?), XT g(p+k,p,—k)D(K?)],
Ga(p2m?,u?) = Gy(m?,p% u?). ) S(p)=S"(p) +S(P)2(P)S(p), (6)
. _ . .
ence o con conr oy e vt i e gy [ K s
T (m,p,u)=7,I'(m,p,u) XT9(p+k,p,—k)D(k?)]
o G+ P e8], @ ~(Zem D(pmm = Zo0m,

whereD is the piog propagatos’ is the free propagator of
. L the nucleon, and’(m,p,u) is the barewNN vertex. The
ﬂhere the_notatpri"a(m,p,M) |.mpI|es th"_’ltqzz'“z and last two terms in the equation for the self-energy are part of
u(p”)p’=u(p’)m in all expressions for this vertex. Along the renormalization procedure and will be discussed later.
with Eq. (3), we will use another form for the half-off-shell The dressing is nonperturbative since the dressed vertex and
vertex, propagator appear also on the right-hand side of the equa-
tions. As is well known, such a procedure suffers from di-
5 5 p+m 5 vergences. In addition, we are interested to build a model for
La(m,p,u)=747"| GpdP)+ 5—Cpu(P?) |, (4 half.off-shell vertices while the right-hand sides of E¢@.
include vertices with all external legs off shell. To circum-
vent these two problems we have applied a solution proce-
dure based on the use of dispersion relations and a regular-
ization method as outlined in the following sections.

where

GpgP?)=G1(p*) —2G,(p?), Gpyu(p®) =2G,(p?),
5
® A. Solution procedure
denote the form factors corresponding to the usual pseudo- Hereafter we shall denote half-off-shell verticedagp),
scalar and pseudovector couplings. dropping the trivial parameters for brevity. As noted in the
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FIG. 2. The pole contribution of iteratiam+ 1 to the self-energythe left picture and the vertexthe right picture, as expressed by Egs.
(8)—(12). The notation is as in Fig. 1, with the subscriptndicating that the vertex and propagator are calculated using only the real parts
of the form factors and self-energy functions. The crosses on lines indicate that the corresponding particles are put on their mass shells.

above, Eqgs(6) require the knowledge of the full off-shell P (o Im A" 1(p’?)
vertex. Using the analyticity of the form factors and the self- ReA""1(p?)= —f ,dp? ————, (10
energy this problem can be bypassed. The imaginary parts of TJ Wi p—p

the form factors can be obtained by applying Cutkosky rules . 2 . . .
to the integrals in Eqg6), and we reconstruct the real parts and similar for R&(p?). Herewy,=(m-+ u) is the one-pion
through the application of dispersion relations implementedréshold, and> denotes the principal value integral.
in an iterative procedure. The pole term in the loop integral for the vertex reads
As stated in the introduction, we have excluded four- or N+l n
higher-point vertices from our model. Furthermore, in apply- Lo (P) = Jpoi P) ¢ r(P) (11)
ing Cutkosky rules we shall only include the channel with,,
the lowest threshold, i.e., the one-pion nucleon channel. This
results in the contributions depicted in Fig. 2. (—1) _
The solution procedure can now be explained best by goJpedP) = — _2J d*kTR(p’ +K)SE H(p’ +K)TR(P’ +k)
ing in some detail through one complete step of the iterative 87

procedure. From thath iteration we have obtained the form X(p+Kk+m) X 8((p+K)2—m2)8(po+ ko)
factorsGQ’z(pZ) which define the vertex through E() and
the self-energy function&"(p?) and B"(p?) which define X 8(K? = u?) 6(—ko), (12

the dressed propagator, ) o
where the integral Eq12) is independent op’, the momen-

(S"(p)) t=Z,(p—mg)—[AN(p?)p+B"(p>)m], (7)  tum of the outgoing on-shell nucleon, as shown in Appendix
B. The factor (1) in Eqg.(12) comes from commuting the

where the term in square brackets is the loop contributiodSOSPin matrices. The propagats* in Eq. (12) contains

3'(p) to the self-energy. The parametefs and mg=m only the real parts oA"*! andB"** which have been cal-

— 5m are renormalization constants as defined in Sec. |1l Beulated by virtue of Eqg8),(9),(10). Castingl'; | *(p) in the
The imaginary parts of the form factors and the self-form of Eq. (3), the imaginary parts of the form factors

energy functions arise from the pinching-pole term in theGi5'(p?) are found.

loop integrals which can be evaluated using Cutkosky rules To construct the real parts of the form factors we take

[17]. This contribution is labeled by the subscriptFor the — advantage of their analytical propertigisl],

self-energy one has

7) . Im G!’H—l(p/Z)
ReG! " (p?)=G(p?)+ = | ,dp*———

S P)=—T0 a(P)pod P)T R(P), ®) 7w, p'2—p?
(13

where the subscripR denotes the vertex calculated using The first term on the right-hand side of EG3) derives from
only the real parts of the form factof3] ,. The Dirac con-  the equivalent term in Eq¢6). We use unsubtracted disper-
jugated vertex is denoted &5 The remaining integral can sion relations since convergence of the integrals can be guar-
be written as anteed by the cutoff function introduced in E48).
There are a few points that need special stressing here.
1 (i) In calculating the imaginary parts for the{ 1)st it-
| poid P) = _zj d*k(p+Kk+m)S((p+k)2—m?) eration, we retain only the real parts (_)f the form factprs and
8 self-energy functions from theth iteration, to be consistent
X B(po-+ ko) S(K2— 112) 6(— k). ) mt(h:,the use in aK-matrix formalism as explained in Sec.
(ii) Except the depicted cuts, any other kinematically al-
The explicit form forl,,{p) is given in Appendix A. The lowed cuts of the loop diagranfsutting through the blobs in
imaginary parts ofA"*(p?),B"*1(p?) can now readily be Fig. 2] would correspond to either picking up contributions
written using Eq.(7). of higher thresholds or considering four-point vertices, both
The real parts of the self-energy functions are calculatedf which would be inconsistent with the adopted solution
via the dispersion relatior{46], scheme.
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(iii) In cutting the self-energy loop diagram, dressed ver- 2(p)=2L(p)—(Zy=1)(p—m)—Z,om. (14)
tices at both sides of the cut propagator are taken into ac-
count. Seemingly, this is in conflict with the Schwinger- The first term in Eq.(14) is the contribution of pion loops
Dyson equatiorjsee Eqs(6) and Fig. 1, where the second while the last two terms come from the counterterms in the
blob would lead to double counting. However, the presencg agrangian as part of the renormalization procedure.
of the two blobs in theutdiagram is necessary to sum aib The construction of the counterterms is based on the usual
contributions from one-pion-nucleon cuts. renormalization proceduf@0] as explained by the following

(iv) The present method of solution allows one to avoideyample. The Lagrangian, written in terms of the “bare”
dealing with the full off-shell vertices present in EJS). fields, masses and coupling constant, is

Indeed, as can be seen from Fig. 2, we need only half-off-

shell vertices throughout the iteration process. 1 .
(v) To calculate the pole contributions of the loop inte- L= 5(&V¢Ba”¢3—,ué¢§)+ W(ib—mg) g

grals we have applied Cutkosky rules, i.e., put the nucleon

and pion lines in the loop integrals on their respective mass 95 —

shells, as shown in Fig. 2. In the cut propagators, therefore, - ﬁ'/’s?’s(ﬁ(ﬁs)l/fs- (15)

only physical masses appear. In particular, this implies that

the dressing of the pion propagator does not have to be con-

sidered in t%e presef)nt agprgagh. Defining the renormalized nucleon fielgi= Z;llzl/fs, the
We takng(m,p,,u) as the zeroth iteration for the vertex fenormalized nucleon maga=mg+ ém and the constant

[its precise form is specified in E418)]. At each iteration f/(2m)=gsZ,/(2mg), Equation(15) can be reformulated

step, we utilize the dispersion relations E(f3),(10), where &S

Im G; Ap?), ImA(p?), and ImB(p?) are calculated using L

i(;u;l:g:l:y rules. In this connection, the following remarks are £=§((9V¢(9V¢—,u2¢2)+ W(id—m)y
Analyticity.In principle, the use of the dispersion relations

should guarantee that the form factors and the self-energy L— 5 _ — o aNTia
functionsA andB be analytic in the complex plane cut from ZmlM (0§) = Zo0mipp—(Zp= 1) (i d=m) ) |.
w4 to = along the real axis. However, the actual imagianary (16)

parts calculated in the model contain also “unphysical” sin-
gularities of the functiorG°(p?), see Eq(18), regularizing  Because we encounter only cut pion lines during the iteration
the dispersion integrals. This, strictly speaking, invalidatesroceduresee Fig. 2, we need only the pole contribution of
the derivation of the dispersion relations. This problem willthe pion propagator. Since the pole properties of the renor-
be encountered for any nonconstant funct®¥(p?) unless malized dressed propagator coincide with those of the free
its singularities are located along the cut. one, the pion field and mass need not be renormalized in our
Unitarity. In applying Cutkosky rules, an important quali- approachg= ¢g ,MZZILLé_ From Eqs(7) and(14) it can be
fication is that we neglect the contributions to the imaginaryseen that the renormalization constafi(sand Sm can also
parts that come from the intermediate states including onge interpreted as real constants which can always be added
nucleon and more than one pion. In order that unitarityyhen the real part of a function is determined from the
should hold exactly, the imaginary parts must contain tthaginary part via a dispersion relation HG0).
contributions from all multipion thresholds. In the context of  The coupling strengthand the renormalization constants

the present work, a rigorous account of, e.g., the two—piorzzl(gm are determined by fixind" ,(m,m, ) and the pole
threshold would require computing the imaginary parts ofstrycture of the propagat@(p),

two-loop self-energy and vertex diagrams. Analyses of mas-

sive two-loop Feynman diagrams have appeared in the litera- S (m)=0,

ture recently, including the dispersion relation approaete,

e.g.,[29] and references thergirHowever, such calculations Res[S(p),p=m]=1, a7
are rather complicated, and we found their application in the

present model not feasible. U(p’)l“a(m,m,,u)u(p) =U(p’)7-ay5g u(p),

One may argue that the real functi@f, which is used

presently, could be expressed in terms of a dispersion intgyhere the last equation can be reducedstdm?) =g, the
gral over a function, saFO, which would Correspond to the physical pion-nucleon coupling constamie takeg=13.02
discontinuities of the form factors due to all channels open{31]). The left-hand side of this condition is calculated at the
ing at higher thresholds not considered explicitly. If this kinematically forbidden point, where all the external legs of
were the case, the presently adopted procedure would Bfie vertex are on-shell. However, this is of no harm for the
equivalent to adding an extra contributi&i! to the imagi-  renormalization prescription. We could choose any conve-
nary parts derived from the loop diagrams. This could posnjent renormalization point as long as the form factors cal-
sibly account for the two problems just mentioned, but wecylated at that point are re@ee, e.g.[30], where the free-
did not pursue this direction. dom of the choice of a renormalization procedure is
discussed in genepal

In the context of the iterative procedure described in the

The renormalized nucleon self-energy in E(. or Eq.  previous section, the constanfs and ém are chosen to
(7) can be written as provide the correct pole properties of thenvergedpropa-

B. Renormalization and regularization
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gator. This implies that the pole location and residue of the G=GP+is, (20)
propagator are off in the course of the first few iterations. To

check that this feature is immaterial for the final result, wewhere ¢ implies that the corresponding intermediate nucleon
applied also another solution procedure. Its main differenc@nd pion are taken on their respective mass shells. KThe
from the one outlined above is that the renormalization of thedperator is introduced by the equation

propagator is done at each iteration step, insuring the correct P

pole properties at any iteration. We found that both methods K=V+VGK. (21
lead to identical results for the converged vertex and prop
gator. The reason for this is that when convergence has b
reached, a nonperturbative solution of E¢®). (under the

eaCombining the last three equations yields thenatrix ex-
%r;'essed in terms of thi€ matrix,

provisions which have been discusséths been obtained. T=K +KisT. (22)
The intermediate steps in the iteration procedure at this point
are an uninteresting technical detail. This is the central equation used irKamatrix approach and

The loop integrals, or rather the dispersion integrals Eqscan schematically be written &= K/(1—iK). If K is Her-
(13),(10), will diverge unless a regularization is applied. As mitian, the scattering operat&= 1+ 2i 7 will be unitary.
part of the regularization procedure, we introduced a form We consider a simplified version of thi€-matrix ap-
factor G%(p?) (also called the cutoff functigrfor the bare  proach containing only nucleons and pions, with the kevhel
7NN vertex, chosen as the sum of tiseandu-channel tree diagrams. One
way to construct th& operator is to seK=V [22], thereby
0 Hrm_ o assumingg =0, see Eq(21). Then, by Eq(22), the 7 ma-
Fa(m,p, ) =7,y" 5 =G (p7), (18 trix will contain the loop diagrams in which only the cut
nucleon and pion propagators will enter. Only by using
dressed vertices and propagators may one tak timatrix
equal to the sum of skeleton diagrams solely. As implied by
Eq. (22), the form factors in these dressed vertices take into
account real contributions due to the principal valg@.
tions G%(p?), see Eqs(23),(24) “These are the real parts of the form factors discussed in the
: e previous sections. If we kept both the real and imaginary

The cutoff function is a phenomenological input of the fthe f f dth if f . i E
model. A self-consistent procedure to construct meson-partso the form factors and the seli-energy functions in Egs.

nucleon form factors was presented in H8R], where both (8),(1D,(12), it yvould he inconsistent Wi.th thg—matrix ap-
nucleons in the vertex are on-shell and the meson is off-shel ;';l(zgr?hi.nltg F;?:rct:lglljur:?rt,v;?cee Ofg'rszsgfosm?g“:rix?; Id fne
There, no phenomenological form factor was needed. We . everyN propagators/.

- . o exception are some one-particle irreducible diagrams con-
were not successful in implementing a similar approach for{ributin 10 theT matrix
half-off-shell form factors in the pion-nucleon vertex, non- 9 '

trivial solutions of the relevant equations for the self—energyarelt r:ztkgz\gg tﬁig:hg ?:;2?32 gggcrr)ilOtri]oiegir\leesf::tft:r?r?dom
and thewrNN vertex did not seem to exist. 9 P 9

(for example, the role of both thA resonance and thg
meson is indispensablg6—9,21,22. Since in our model we
C. Consistency with aK-matrix approach confine ourselves to the pion and the nucleon, no calcula-
One motivation for the present model is the constructiorfions for thewN scattering observables will be presented in
of form factors and self-energies which can be applied in ghis paper.
K-matrix approach tarN scattering21,22. We outline the
K-matrix method(details can be found ifi21]) and in par- IV. NUMERICAL RESULTS

ticular address the double-counting issue: by considering Two sets of calculations were done. corresponding to the
only the real part of the form factors and the self-energy ’ P 9

H § 0/ n2 .
functions on the right-hand side of Eg8),(11),(12), we two following cutoff functionG™(p%), Eq. (18):
avoid double counting when the calculated vertex and propa-

in terms of Eq.(4). The functionG°(p?)=G32,(p?) is nor-

malized tof at p?=m? and must fall off sufficiently fast at
infinity to provide convergence of the integrals. In the nu-
merical example discussed later we used two different fun

()\z_mz)z 2

gator are used in thi€-matrix approach. It should be empha- G?(pz):f (23)
sized that only the one-pion threshold discontinuities are (N2—m?)%+ (p?—m?)?
taken into account in both th€&-matrix approach in question
and the present model. and
The Bethe-Salpeter equation for thél scattering ampli- 2 22 4
tude 7 can be written in the operator form G (p?)=fe (P m)72dm’, (24)
T=V+VGT. (190  The functional dependence Gf(p?) is taken from Ref[6],

where it was used as an off-shell form factor in th&lN
Here,V is the sum of all irreducible diagrams describing thevertex. We define a parametdf=pjs—m?, wherep3 s is
scattering, and is the freewN propagatorg can be decom- the point at whichG°(p?) reduces by a factor of 2 compar-
posed as the sum of the on-shell contributighwhich is  ing to its maximum valud (here p§_5> m?). Then, for the
imaginary (according to Cutkosky rulgsand the off-shell calculations with the functions Ed23) and Eq.(24), A2
part GP which is real, equals
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TABLE I. Values of the renormalization constarfts Z,, and 12F
&m for the two choices for the functio&°(p?), Eq. (23) and Eq.
(24). Lor
08

CASE (1) | CASE (II) ]

— Im GYV

Case f Z, om (MeV)
06|

0 12.42 0.848 ~-57.4

an 12.43 0.848 ~55.5 04

02}

2_ m2\2 oor
M= eem? (29

J0.5

Form factors

and

AZ(d)y=+y-2dm*In 0.5, (26)

respectively. We find that the iteration procedure described
above convergesnlyif \<\.~1.7 GeV forG’(p?), and if
d=<d,~1.65 forG{(p?). The corresponding “critical” val-
ues for the half-widths can be inferred from E¢85) and h 5 3 . " 5 3 . S
(26): A%(\;)=1.28 GeV and A7(d.)=1.33 Ge\t. Re-

2 2
sults of calculations are presented below for the following P (GeV)
two cases: ' ' ] FIG. 3. The imaginary parts of the pseudovector and pseudo-
Case(l). Calculations with the cutoff function E423),  scalarmNN form factors as functions of the momentum squared of
whereh=A.=1.7 GeV, the off-shell nucleon, defined in E¢4). The calculations corre-
Case(ll). Calculations with the cutoff function Eq24), spond to the two cutoff functions, E?3) (the left panelsand Eq.
whered=d.=1.65. (24) (the right panels The solid(respective dottedcurves show

As stated above, the constatfitsZ,, and §m are chosen the convergedrespective first iterationresults.
to satisfy Eqs(17). The values of these constants for cases
(1) and(Il) are given in Table I.

The convergence was considered achieved at iteration
if all the results of iterationsn+1, ... m+20 were identi-

solid line) together with the zeroth iteration form factor
G(F’,V(pz) (the dotted ling¢ which equals the cutoff functions

cal to those of iteration m up to six significant digits. We Eq. (23) (left) and Eq.(24) (right). Itis seen that the bulk of

could impose a very strong convergence criterion since th@rv(p?) is contained already |Gg\{(p2), and only a small
computer program uses little CPU time. With this criterion, Part comes from the loop corrections. This manifests itself
convergence was reached after about 100 iterations. WeISO in the small difference between the constaand the
mention that, for example, the self-energy after ten iterationghysical coupling constarg, as can be read from Table I.
differs still quite noticably from the converged result. We conclude that, in the present model, the shape of the
A comparison of results obtained with the two different converged form factoGp, depends strongly on the phenom-
cutoff functions show how these reflect in the final results.enologically introduced cutoff function. The middle panels
The nonperturbative aspects are stressed by comparing tleé Fig. 4 give more insight in the role of the pion dressing.
results of the first iteratiofbasically a one-loop calculatipn  There, the real part of the pseudoscalar form faGpg p?)

with those of the converged calculation. of the first iteration(the dashed lineis shown together with
the converged resulthe solid ling. Since the zeroth itera-
A. Results for the half-off-shell form factors tion vertex is chosen purely as a pseudove¢tey. (18)],

Gpg p?) appears solely due to the dressing. Also shown is

The imaginary parts of the form factoGp(p?) and
gmaty p Pv(P) the difference ReGpy(p?) — G2\(p?)] which is the dressing

Gpg p?) are shown in Fig. 3. The results of calculations for e
the two cutoff functions introduced in Eq@3) and(24) are contribution to the real part of the pseudovector form factor
shown next to each other. For ca$B the tails of the form (the dash-dotted and dotted lines for the first iteration and the

factors at large off-shellness are suppressed due to the expgRnverged result, respectivelNote that the deviation of the
nential in the cutoff function. Independent of the choice of"OnpPerturbative result form that of the first iteration is con-
the cutoff function there is a marked difference in the resultss'der"",f’Ie for this quantity. The ratio of the real parts of the
of the first iteration(dotted curvi and the converged results Gps(P?)— andGep(p®) - form factors is given in the bottom
for the pseudovector form factor. The reason for this differ-Panel 2°f Fig. 4. It is small below the pion threshdlelg.,
ence is thesmal) pseudoscalar component of the final form Gp(Wi)/d is about 2.1% for both case$) and (Il)], but
factor. The converged and first iteration results for the pseubecomes larger at highgr®. Note thatGp\(p?) decreases
doscalar form factor differ much less, as can be seen fronfPr case(ll) faster than for casé), whereas the behavior of
the bottom panels of Fig. 3. Gpgp?) for the two cases is comparable. This explains why

The real parts of the form factors are shown in Fig. 4. Thethe absolute value of(ReGpgp?))/(ReGpy(p?)) grows
top panels show the pseudovector form fadkex,(p?) (the faster for caséll) than for casdl).



1076 S. KONDRATYUK AND O. SCHOLTEN PRC 59
T T T T T T T 0'0
12 K CASE (I) [/ CASE (II) |
i — Re Gpy
~ ReGpy .05
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. -0.1
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e 015 i
2 CASE ()
3F > } } t
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os — ReGy 1 | A
ReGrs 0.0 b
....... Re (GTV _ GO PV) ] N
2 oal 4 AT Re(Gpv-Gpv) | '.-’:
8 L -0.03
Q
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o} 3
N ey P> (GeV?h)
04
FIG. 5. The imaginary parts of the self-energy functié(®?)
. . . . . . . andB(p?), as defined in Eq(7). The calculations correspond to the
00 ' : ' ' ' ' ' | two cutoff functions Eq(23) (the left panelsand Eq.(24) (the right
’ panel$. The solid(respective dottedcurves are the convergére-
02 _ spective first iterationresults.
04 . than for caseg(l). Of course, this is entailed by the softer
0L ReGpolReGry) | behavior ongV(pz) for case(ll) as opposed to cagb (see
P ReGpReGpy) . Fig. 4). The difference between the converged results and

1 2 3

4

P’ (GeV?)

those of the first iteration is substantial, especially for the
function B(p?). The on-shell value3, (m)=m[A(m?)
+B(m?)]=2Z,6m is negative and equals 48.8 MeV for

FIG. 4. The real parts of the pseudovector and pseudoscalatase(l) and —47.2 MeV for cas€ll), see Table I. Please
7NN form factors as functions of the momentum squared of thenote that if we had chosen smaller values for the cutoff, these
off-shell nucleon, defined in E¢4). The calculations correspond to self-energy corrections would have been less. For compari-

the two cutoff functions Eq(23) (the left panelsand Eq.(24) (the

son, we mention that the contribution to the nucleon mass

right panel$. In the top panels the zeroth iteration and the con-ghift from one-pion loop calculated in baryon chiral pertur-
verged form factors are given by the dotted and solid lines, respegyation theory vyields a nucleon mass shift of about
tively. In the middle panels the converged results and those of the_15 pev [34].

first iteration are shown for the pseudoscalar form factor and the
loop contribution to the pseudovector form factor. The bottom pan-
els show the ratio of the pseudoscalar and pseudovector form fac-
tors, where the solidrespective dashédurves correspond to the
convergedrespective first iterationresults.

We remark that admixtures of the pseudovector and pseu-
doscalar pion-nucleon couplings have been studied in the
past in connection with thlN and 7N scattering processes,
where the vertex has been determined by adjusting phenom-
enological parameters to fit datésee discussions in
[5-7,27)). In those calculations the admixture is assumed to
be constant. Instead, the present results indicate that the ratio
is strongly dependent on the momentum of the off-shell
nucleon. Evidence for large pseudoscalar admixtures for far
off-shell momenta has also been observed in calculations of
pion photoproductiof33].

B. Results for the self-energy

The imaginary and real parts of the functiohgP?) and
B(P?) are shown in Figs. 5 and 6, respectively. The solid
(dotted lines are the converge(dirst iteratior) results. One

can see that these functions approach zero faster for(tase B(p?).

0.1

0.05

0.0

-0.03

é 0.05 /
8 ol — Re Al 1
2 01 F NS ReA

2 CASE (I) CASE ()
Z } } t } }

S — ReB

§ 0o “ReB'T

[

53

w

3 4 1

P’ (GeV?)

FIG. 6. The same as in Fig. 5, but for the real part&.g§%) and
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80

T T T dures chosen. This, however, does not apply to the Green’s

- o CASE @ functions. To draw quantitative conclusions about physical
z  6of A ] processes, one should treat all off-shell ingredients of a
E; ol ] model consistently, calculating them with the same Lagrang-
2 ian and adhering to the same model assumptions. For ex-
5 ample, the present model for the pion-nucleon off-shell form
% or ] factors and the nucleon self-energy can be consistently uti-
§ 0 : 5 lized in aK-matrix approach tarN scattering, as shown in
£ el _ Although the present work deals withrNN vertices
S where one of the nucleons is off-shell, we mention here that
:’ w0l _ there exists a large amount of work on the form factor
g G,(m?,m?,g?) [see Eq.(1)] for on-shell nucleons and an
2 0r . off-shell pion (see, e.g.[32,35,34 and references thergin
& In particular, in Ref[32] a system ofN, 7, A, p, € andw

0 ' : hadrons is considered in a consistent field-theoretical frame-

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

work. The approach of Refl35] is based on a meson-
exchange model forrN scattering, where, apart from the
FIG. 7. The self-energy spectral functidi{w) as function of ~Nucleon and the pion, alst isobar and correlatee m ex-

invariant mass of the nucleon. The upgegspective lowerpanel Change contributions are included. As mentioned before, the
corresponds to the calculations with the cutoff function E2p) A resonance and the meson are important ingredients in a
[respective Eq(24)]. The solid(respective dashegdurves are the quantitative description ofrN scattering and pion photopro-
convergedrespective first iterationresults. duction. Therefore, one should expect these degrees of free-
dom to play a prominent role in a realistic model for pion-
nucleon form factors. In the present work, only nucleon and

shows the spectral function for the two cagtie upper and pi_on fields are.included, and only disco_ntinuities associatgd
lower panels The dotted and solid lines are, respectively,wIth t_he one-pion threshold are taken mtq account. In this
the first iteration and the converged spectral function founos'mp!'f'ed model we focus on npnperturbatlve aspects of the
in our model. In spite of the fact that IB(p?) differs consistent dressing of the_ p|_on-nucleon _verte_x and the
considerably from ImB(p?), having the opposite sign at nucleo_n self-energy. Contrlbutl_ons to the imaginary parts
some momenta squargdee Fig. 5, the spectral function from_ hlgher thresh_old_s can be_lncluded in our model either
remains positive for all iteration@s it shouldl. explicitly, by allowing intermediate states with two or more
The spectral function of the nucleon propagator was repions, or effectively, by considering baryon and meson reso-
cently considered in Ref20] whose approach is, however, Nancedfor exampleA andp). This extension of the model
different from the present work. In particular, there the ver-!S In Progress.
tex was not calculated consistently with the nucleon propa-
gator.

w (GeV)

Having obtained\(p?) andB(p?), one can find the spec-
tral function of the self-energy(w) from Eq.(A9). Figure 7
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one-loop results and those of the converged procedure. As
part of the regularization procedure, we have introduced a
cutoff function. We found that in our model there exists a APPENDIX A: THE SELF-ENERGY
critical half-width, of the order of 1.3 Gé below which a : . . .
nonperturbative solution can be obtained. Particularly note- Here some detalils on the eva_luatlon of the Imaginary pa.rt
worthy is that even though the dressed vertex near threshof&f the nucleon self-energy are given. To calculate the imagi-
is largely pseudovector in nature, we find sizable admixture?hary parts of t.he §elf-energy f“f.‘C“O’?S- we need to evaluate
of pseudoscalar coupling at large off-shell nucleon momenta. e pole contributiont ,¢(p) as given in Eq59). In g~eneral

It is important to realize that off-shell from factors and the integral can be expressedIgsdp) = v,.17(p) +12(p),
self-energies cannot be directly measured. The observableghereT# and, are scalars in spinor space. Since the only
in quantum field theory are obtained from tBematrix, not | grentz vector in the problem i*, T# must be proportional
the Green’s functions. The latter will depend on the repres Te(p)=[(T,-p)/p?]p*. Hence, one may write
sentation of the fields in the Lagrangian of the theory, » 1P ) P 2p P o~ g
whereas the former do not. In principle, observables shouldipoielP) = Pl1(P%) +12(p°), where I;(p%)=(l1-p)/p and
not depend on the regularization and renormalization procd—z(p2)= I,(p?) are Lorentz scalars. They equal
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, p2+m2— p2 , , , where r(p?) = VA (p?,m? x?), with the Kdlén function
l(p%)= 32mp* r(p9) 0P —(m+u)9), (Al)  defined as A(x,y,2)=(x—y—2)2—4yz. Using these
expressions and introducing the shorthand notation,
g, =Re G} (p?), the imaginary parts of the self-energy
PO (mew?). (A I ReCd |
167p functions can be determined from E¢g),(8),(3),

1,(p?) =

12(p%) 5 P?11(P?)

Im A””(pz)=3( —(9292)11(p*) + 2(91-92)92

m 2 m2
3 p2+m2—,u2 5p2+m2—,u2 p2+m2_M2
=— r(p?) 6(p?—(m+pu)? 24 + 2
3200 (P9 6(p™—(M+p) )[ o2 01 02 e 93
3p2+m?— u?
—2————— 010, (A3)
P
12(p?) P?11(p?)  ,P%1a(p?) 3
Im B"“(|02)=3((@11—@12)2 20179207+ 03— 5| = l%pzr(pz)ﬁ(pz—(mmz)

1 2 2 2 (A4)

, 2p*+2mP—p? , p?+3mP—p?
X101+ - 91921,
m m

the factor 3 in the above equations results from the multipli-Equating the right-hand side of E¢A7) and the form of
cation of the isospin matrices, 7,=3, and the minus sign 3, (p) from Eq.(7) yields
in front of 1,(p?) from commuting they® matrices. The real
parts of A"*1(p?) andB""1(p?) are found by applying dis- 1
persion relations Eq(10), where all integrals are done nu- T(xo)=-—[wIm A(p>)=mImB(p?)].  (A9)
merically.

For later use, the dressed nucleon propagator is written as

APPENDIX B: THE FORM FACTORS

-1_ _ _ 2y + 2
(S(p) Zo(p—mg) ~[ReA(p")p+Re B(p")m] The calculation of the imaginary parts of the form factors

=a(p?)[p—&(p?)], (A5) can be reduced to computing one-dimensional integrals
which are done numerically. First consider the integral on
where the right-hand side of Eq(12). Jyge Can be split aslyg.e
=y,3%+73,, whereJ{ andJ, are scalars in spinor space,
a(p?)=Z,—ReA(p?), and a possible rank-2 tensor structure vanishes since
u(p’)p’=u(p’)m. For the same reasait is proportional
Z,(m—&m)+ReB(p?)m to only the vectop”. Following the same argumentation as
&(p?)= ) : (A6)  used in Appendix A, we can write
The spectral function of the self-energy is introduced Jpole=BJ1+Ja, (BD)
through

where we have introduced the Lorentz scaliraindJ,. To
SUP) =L @)AT(P)+L(—w)A™(P), (A7)  Write down expressions fa; andJ,, we define the follow-
ing functionals:

where A*(p)=(=p+w)/(2w) are the projectors on

positive- and negative-energy states of the nucleon with the e f(w'?)
invariant masso = \/p?>0. The spectral function can now be Kilf]= _1dxa(W12) ' (B2)
defined ag16]
! kdfi=" d fw? ®3)
+w)=F— + = XX————,
T(*w) +ﬂ_|m§(_w). (A8) 2 . a(w'?)
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<f) fl ] f(w'?) ® J,=3,(p%)
sLT= X ;
-1 a’(W,Z)[W'Z—gz(W,Z)] §_4m p2+m2—M2 ,
=7 (Kt Ko | = A’ 9210102
1 f(W,Z)
K4[f]EJ’ dxx—— ; ——, (BY E-2m  p?+m?—pu?
1 a(w )W = (w2 +(Ke+Ky)| | 5 e
wheref is any function for which the integrals exigt,and & ) r(p?) ) )
are given by Eq(A6) for the (n+ 1)st iteration, and X[mg,+(£—m)gs] L6mp? O(p=—(m+pu))
(B8)

pi—(m?-u?)? r(p??
2p? 2p?

W/2:(p/+k)2:m2+ﬂ2_

3

(B6) Since for a giverf in Egs.(B2)—(B5) the K; are functions of
p? only, Egs.(B7),(B8),(B1) show that) e depends only on

with x being the cosine of the polar angle between the threg]peplégrref:gfn\ﬁzor%ﬁg ﬁ acri]%e; g g tofeé‘()(fzr;d @i as it might

vectorsp’ andk. Now J; andJ, can be written as Using Egs.(B1),(11),(3), one obtains for the imaginary
parts of the form factors:

p2+m2_,u2

J1=3:(p?)=— [ (K1—K3y)

2p? m2— p2
, Im GTl(pz):glJz(sz(—ngz—gl)Jl(pz)
§&—4m .\ 0 m
X1 09192+ Wgz)‘F? +(K3—=Ky) (B9)
2 2_ 2 2_ 2
X(p+m poE mMop and
p2 4m 2p2
2
Mt (6 mIgsl? } (P2 e (s Im GY(p?) = 0205(p)+ (2~ 02)0x(p?),  (B10)
16mp?
(B7) , .
whereJ; andJ, are given by Eqs(B7) and (B8). Finally,
Eq. (13) is applied to obtain the real parts of the+1)st
and iteration for the form factors.
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