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Consistent off-shellpNN vertex and nucleon self-energy

S. Kondratyuk and O. Scholten
Kernfysisch Versneller Instituut, 9747 AA Groningen, The Netherlands

~Received 30 July 1998!

We present a consistent calculation of half-off-shell form factors in the pion-nucleon vertex and the nucleon
self-energy. Numerical results are presented. Near the on-shell point the pion-nucleon vertex is dominated by
the pseudovector coupling, while at large nucleon invariant masses we find a sizable pseudoscalar admixture.
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I. INTRODUCTION

The structure of hadronic vertices, usually parametrize
terms of form factors, is important in much of nuclear phy
ics. The form factors may depend on the different invaria
that can be constructed. In nucleon-meson or nucleon-ph
vertices one often considers only the dependence on the
mentum squared of the meson or photon. In the present p
we will consider so-called off-shell form factors where t
dependence is studied on the momentum squared of on
the nucleons involved.

Off-shell form factors are an ingredient in the descripti
of physical processes. For example, nucleon-photon off-s
form factors have been shown to be important in models
proton-proton bremsstrahlung@1–3# and virtual Compton
scattering@4#. pNN and other nucleon-meson form facto
with an explicit dependence on the momentum of one
both nucleons have been used in models forNN @5# andpN
@6–9# scattering, pion photoproduction@9# and vector meson
production in nucleon-nucleon collisions@10#. In these mod-
els, the form factors have been phenomenologically par
etrized, with the parameters adjusted to fit experimental d

The off-shell structure of the nucleon-photon vertex@11–
13#, and the nucleon-pion vertex@11,14,15# has been studied
before. In particular, dispersion relation techniques are u
in Refs. @11,12,14#, whereas the models of Refs.@13# are
based on a perturbative dressing of the vertex with o
meson loops. In this work we investigate the pion-nucle
coupling in a field-theoretical model which is inherently no
perturbative and is based on the Schwinger-Dyson equa
considering loops to all orders. The nucleon self-energy
the pion-nucleon vertex function are both calculated in
consistent framework.

In general, off-shell form factors and the functions para
etrizing the self-energy are complex functions, where
imaginary parts are related to open multiparticle channel
which the pion-nucleon channel will be the most importa
Our approach is based on the analytic structure@16,11# of the
nucleon self-energy and the off-shellpNN vertex, which is
exploited by the use of dispersion relations. The imagin
parts of the form factors and the self-energy are calcula
from Cutkosky rules@17#. To make this procedure tractabl
we consistently neglect contributions to the imaginary pa
from the multipion thresholds.

For the course of this paper, we are interested in vert
with one off-shell nucleon, which contain two independe
form factors. The convergence of the loop corrections is
PRC 590556-2813/99/59~2!/1070~11!/$15.00
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sured through the introduction of a ‘‘cutoff’’ function~the
initial form factor!. We obtained the interesting result th
the widths of the converged form factors have an up
bound.

Solutions of the Schwinger-Dyson equation have be
presented in the past~see, e.g.,@18,19# and a recent pape
@20#!. There, a usually adopted approximation consists
assuming the same spin structure for the dressed and the
vertex. The dressing of the vertex is thus parametrized
terms of a single form factor. In the present work we ha
released this condition and found a strong dependence o
spin structure of the vertex on the off-shellness involved.

Form factors are usually interpreted as representing
features that are not included explicitly in a particular mod
for a physical process, and as such, should be built con
tently with the kind of models in which they are intended
be used. The form factors considered in the present pape
primarily designed for usage in aK-matrix model for pion-
nucleon scattering, pion photoproduction, and Compton s
tering off the nucleon@21,22#. Since in such a model the
one-pion production channel is included explicitly, only th
real form factor should be used there~at least below the
two-pion threshold!. This aspect is elaborated on in Se
III C.

In any model, treatment of off-shell three-point vertic
should be linked with treatment of higher-point vertices, b
cause a redefinition of the nucleon field can change off-s
dependence of the former in favor of presence of the lat
The observables are oblivious to the representation of fie
~this result is known as the equivalence theorem! @23#, ex-
amples of which can be found, e.g., in Refs.@24–26#. In the
present model, higher-point vertices are excluded at
stages of the calculations, and the discussion is carried
solely in terms of off-shell form factors in thepNN vertex.

The paper is organized as follows. In Sec. II the gene
structure of the off-shellpNN vertex is discussed. Ou
model is described in detail in Sec. III. At present we lim
ourselves to the inclusion of one-pion-nucleon loops on
for which numerical results are presented in Sec. IV.

II. STRUCTURE OF THE pNN VERTEX

The pNN vertex operator is the sum of all connecte
Feynman diagrams with one incoming nucleon~carrying the
momentump), one outgoing nucleon (p8) and one pion (q
5p2p8), with the propagators for the external legs stripp
away. The most general form compatible with Lorentz cov
1070 ©1999 The American Physical Society
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PRC 59 1071CONSISTENT OFF-SHELLpNN VERTEX AND NUCLEON . . .
riance and isospin invariance reads@27#

Ga~p8,p,q!5taS g5G1~p82,p2,q2!1g5
p”2m

m
G2~p82,p2,q2!

1
p” 82m

m
g5G3~p82,p2,q2!

1
p” 82m

m
g5

p”2m

m
G4~p82,p2,q2! D , ~1!

wherem denotes the nucleon mass andta , a51,2,3, are the
isospin Pauli matrices. The form factorsGi depend on the
three Lorentz scalars,p82, p2, andq2. Usually the situation
is considered in which both nucleons are on the mass s
i.e., p825p25m2, and onlyG1(m2,m2,q2) enters in Eq.~1!.
In this paper we consider a different situation in which t
pion and only one of the nucleons is on the respective m
shell, p825m2 andq25m2, wherem denotes the pion mass
Such a vertex is conventionally called the half-off-sh
pNN vertex, and it contains so-called half-off-shell for
factors.

If the operator of Eq.~1! works on the positive energ
spinor ū(p8) to the left, the last two terms in Eq.~1! vanish
due to the Dirac equation,ū(p8)p” 85ū(p8)m, and the vertex
contains only the form factorsG1(m2,p2,m2) and
G2(m2,p2,m2). Similarly, if the initial nucleon is on-shell
only the form factorsG1(p82,m2,m2) andG3(p82,m2,m2) are
left. Charge-conjugation, space-inversion, and time-reve
symmetries allow us to relate these form factors:

G1~p2,m2,m2!5G1~m2,p2,m2!,

G3~p2,m2,m2!5G2~m2,p2,m2!. ~2!

Hence, one can consider only the vertex with the outgo
on-shell nucleon. Omitting the trivial arguments inGi ,

Ga~m,p,m!5taG~m,p,m!

5tag5S G1~p2!1
p”2m

m
G2~p2! D , ~3!

where the notationGa(m,p,m) implies that q25m2 and
ū(p8)p” 85ū(p8)m in all expressions for this vertex. Alon
with Eq. ~3!, we will use another form for the half-off-she
vertex,

Ga~m,p,m!5tag5S GPS~p2!1
p”1m

2m
GPV~p2! D , ~4!

where

GPS~p2!5G1~p2!22G2~p2!, GPV~p2!52G2~p2!,
~5!

denote the form factors corresponding to the usual pseu
scalar and pseudovector couplings.
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III. DESCRIPTION OF THE MODEL

The model for the form factors is based on a nonpert
bative dressing of the vertex with pion loops as represen
graphically in Fig. 1. The nucleon self-energyS(p) is cal-
culated self-consistently using the Schwinger-Dyson eq
tion @28# with the dressed vertex. This can be expressed
terms of a system of integral equations for the dressedpNN
vertex Ga(p8,p,q) and the dressed nucleon propaga
S(p),

Ga~m,p,m!

5Ga
0~m,p,m!2 i E d4k

~2p!4
@Gb~m,p81k,k!

3S~p81k!Ga~p81k,p1k,m!S~p1k!

3Gb~p1k,p,2k!D~k2!#,

S~p!5S0~p!1S~p!S~p!S0~p!, ~6!

S~p!52 i E d4k

~2p!4
@Ga~p,p1k,k!S~p1k!

3Ga
0~p1k,p,2k!D~k2!#

2~Z221!~p”2m!2Z2dm,

whereD is the pion propagator,S0 is the free propagator o
the nucleon, andGa

0(m,p,m) is the barepNN vertex. The
last two terms in the equation for the self-energy are par
the renormalization procedure and will be discussed la
The dressing is nonperturbative since the dressed vertex
propagator appear also on the right-hand side of the eq
tions. As is well known, such a procedure suffers from
vergences. In addition, we are interested to build a model
half-off-shell vertices while the right-hand sides of Eqs.~6!
include vertices with all external legs off shell. To circum
vent these two problems we have applied a solution pro
dure based on the use of dispersion relations and a reg
ization method as outlined in the following sections.

A. Solution procedure

Hereafter we shall denote half-off-shell vertices asGa(p),
dropping the trivial parameters for brevity. As noted in t

FIG. 1. The graphical representation of the system of Eqs.~6!.
The thin and thick solid lines correspond to the free and dres
propagators of the nucleon, respectively. The dashed line is
propagator of the pion. The circle indicates the dressedpNN ver-
tex, and the square stands for the counterterm contribution to
nucleon self-energy. In the equation for the vertex the propaga
of the external lines are stripped away, as indicated by the da
on these lines.
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FIG. 2. The pole contribution of iterationn11 to the self-energy~the left picture! and the vertex~the right picture!, as expressed by Eqs
~8!–~12!. The notation is as in Fig. 1, with the subscriptR indicating that the vertex and propagator are calculated using only the real
of the form factors and self-energy functions. The crosses on lines indicate that the corresponding particles are put on their mas
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above, Eqs.~6! require the knowledge of the full off-she
vertex. Using the analyticity of the form factors and the se
energy this problem can be bypassed. The imaginary par
the form factors can be obtained by applying Cutkosky ru
to the integrals in Eqs.~6!, and we reconstruct the real par
through the application of dispersion relations implemen
in an iterative procedure.

As stated in the introduction, we have excluded four-
higher-point vertices from our model. Furthermore, in app
ing Cutkosky rules we shall only include the channel w
the lowest threshold, i.e., the one-pion nucleon channel. T
results in the contributions depicted in Fig. 2.

The solution procedure can now be explained best by
ing in some detail through one complete step of the itera
procedure. From thenth iteration we have obtained the form
factorsG1,2

n (p2) which define the vertex through Eq.~3! and
the self-energy functionsAn(p2) and Bn(p2) which define
the dressed propagator,

„Sn~p!…215Z2~p”2mB!2@An~p2!p”1Bn~p2!m#, ~7!

where the term in square brackets is the loop contribu
SL

n(p) to the self-energy. The parametersZ2 and mB5m
2dm are renormalization constants as defined in Sec. II

The imaginary parts of the form factors and the se
energy functions arise from the pinching-pole term in t
loop integrals which can be evaluated using Cutkosky ru
@17#. This contribution is labeled by the subscriptI. For the
self-energy one has

S I
n11~p!52Ḡa,R

n ~p!I pole~p!Ga,R
n ~p!, ~8!

where the subscriptR denotes the vertex calculated usin
only the real parts of the form factorsG1,2

n . The Dirac con-

jugated vertex is denoted asḠ. The remaining integral can
be written as

I pole~p!5
1

8p2E d4k~p”1k”1m!d„~p1k!22m2
…

3u~p01k0!d~k22m2!u~2k0!. ~9!

The explicit form for I pole(p) is given in Appendix A. The
imaginary parts ofAn11(p2),Bn11(p2) can now readily be
written using Eq.~7!.

The real parts of the self-energy functions are calcula
via the dispersion relations@16#,
-
of
s

d

r
-

is

o-
e

n

.
-

s

d

ReAn11~p2!5
P
pEwth

2

`

dp82
Im An11~p82!

p822p2
, ~10!

and similar for ReB(p2). Herewth[(m1m) is the one-pion
threshold, andP denotes the principal value integral.

The pole term in the loop integral for the vertex reads

Ga,I
n11~p!5Jpole~p!Ga,R

n ~p! ~11!

with

Jpole~p!52
~21!

8p2 E d4kGR
n~p81k!SR

n11~p81k!ḠR
n~p81k!

3~p”1k”1m!3d„~p1k!22m2
…u~p01k0!

3d~k22m2!u~2k0!, ~12!

where the integral Eq.~12! is independent ofp8, the momen-
tum of the outgoing on-shell nucleon, as shown in Appen
B. The factor (21) in Eq. ~12! comes from commuting the
isospin matrices. The propagatorSR

n11 in Eq. ~12! contains
only the real parts ofAn11 andBn11 which have been cal-
culated by virtue of Eqs.~8!,~9!,~10!. CastingGa,I

n11(p) in the
form of Eq. ~3!, the imaginary parts of the form factor
G1,2

n11(p2) are found.
To construct the real parts of the form factors we ta

advantage of their analytical properties@11#,

ReGi
n11~p2!5Gi

0~p2!1
P
pEwth

2

`

dp82
Im Gi

n11~p82!

p822p2
.

~13!

The first term on the right-hand side of Eq.~13! derives from
the equivalent term in Eqs.~6!. We use unsubtracted dispe
sion relations since convergence of the integrals can be g
anteed by the cutoff function introduced in Eq.~18!.

There are a few points that need special stressing her
~i! In calculating the imaginary parts for the (n11)st it-

eration, we retain only the real parts of the form factors a
self-energy functions from thenth iteration, to be consisten
with the use in aK-matrix formalism as explained in Sec
III C.

~ii ! Except the depicted cuts, any other kinematically
lowed cuts of the loop diagrams@cutting through the blobs in
Fig. 2# would correspond to either picking up contribution
of higher thresholds or considering four-point vertices, bo
of which would be inconsistent with the adopted soluti
scheme.
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PRC 59 1073CONSISTENT OFF-SHELLpNN VERTEX AND NUCLEON . . .
~iii ! In cutting the self-energy loop diagram, dressed v
tices at both sides of the cut propagator are taken into
count. Seemingly, this is in conflict with the Schwinge
Dyson equation@see Eqs.~6! and Fig. 1#, where the second
blob would lead to double counting. However, the prese
of the two blobs in thecut diagram is necessary to sum upall
contributions from one-pion-nucleon cuts.

~iv! The present method of solution allows one to avo
dealing with the full off-shell vertices present in Eqs.~6!.
Indeed, as can be seen from Fig. 2, we need only half-
shell vertices throughout the iteration process.

~v! To calculate the pole contributions of the loop int
grals we have applied Cutkosky rules, i.e., put the nucl
and pion lines in the loop integrals on their respective m
shells, as shown in Fig. 2. In the cut propagators, theref
only physical masses appear. In particular, this implies
the dressing of the pion propagator does not have to be
sidered in the present approach.

We takeGa
0(m,p,m) as the zeroth iteration for the verte

@its precise form is specified in Eq.~18!#. At each iteration
step, we utilize the dispersion relations Eqs.~13!,~10!, where
Im G1,2(p2), Im A(p2), and ImB(p2) are calculated using
Cutkosky rules. In this connection, the following remarks a
in order.

Analyticity.In principle, the use of the dispersion relatio
should guarantee that the form factors and the self-ene
functionsA andB be analytic in the complex plane cut from
wth

2 to ` along the real axis. However, the actual imagian
parts calculated in the model contain also ‘‘unphysical’’ s
gularities of the functionG0(p2), see Eq.~18!, regularizing
the dispersion integrals. This, strictly speaking, invalida
the derivation of the dispersion relations. This problem w
be encountered for any nonconstant functionG0(p2) unless
its singularities are located along the cut.

Unitarity. In applying Cutkosky rules, an important qua
fication is that we neglect the contributions to the imagin
parts that come from the intermediate states including
nucleon and more than one pion. In order that unita
should hold exactly, the imaginary parts must contain
contributions from all multipion thresholds. In the context
the present work, a rigorous account of, e.g., the two-p
threshold would require computing the imaginary parts
two-loop self-energy and vertex diagrams. Analyses of m
sive two-loop Feynman diagrams have appeared in the lit
ture recently, including the dispersion relation approach~see,
e.g.,@29# and references therein!. However, such calculation
are rather complicated, and we found their application in
present model not feasible.

One may argue that the real functionG0, which is used
presently, could be expressed in terms of a dispersion i
gral over a function, sayF0, which would correspond to the
discontinuities of the form factors due to all channels op
ing at higher thresholds not considered explicitly. If th
were the case, the presently adopted procedure would
equivalent to adding an extra contributionF0 to the imagi-
nary parts derived from the loop diagrams. This could p
sibly account for the two problems just mentioned, but
did not pursue this direction.

B. Renormalization and regularization

The renormalized nucleon self-energy in Eqs.~6! or Eq.
~7! can be written as
-
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S~p!5SL~p!2~Z221!~p”2m!2Z2dm. ~14!

The first term in Eq.~14! is the contribution of pion loops
while the last two terms come from the counterterms in
Lagrangian as part of the renormalization procedure.

The construction of the counterterms is based on the u
renormalization procedure@30# as explained by the following
example. The Lagrangian, written in terms of the ‘‘bare
fields, masses and coupling constant, is

L5
1

2
~]nfB]nfB2mB

2fB
2 !1c̄B~ i ]”2mB!cB

2
gB

2mB
c̄Bg5~]”fB!cB . ~15!

Defining the renormalized nucleon fieldc5Z2
21/2cB , the

renormalized nucleon massm5mB1dm and the constan
f /(2m)5gBZ2 /(2mB), Equation~15! can be reformulated
as

L5
1

2
~]nf]nf2m2f2!1c̄~ i ]”2m!c

2S f

2m
c̄g5~]”f!c2Z2dmc̄c2~Z221!c̄~ i ]”2m!c D .

~16!

Because we encounter only cut pion lines during the itera
procedure~see Fig. 2!, we need only the pole contribution o
the pion propagator. Since the pole properties of the ren
malized dressed propagator coincide with those of the
one, the pion field and mass need not be renormalized in
approach,f5fB ,m25mB

2 . From Eqs.~7! and~14! it can be
seen that the renormalization constantsZ2 anddm can also
be interpreted as real constants which can always be ad
when the real part of a function is determined from t
imaginary part via a dispersion relation Eq.~10!.

The coupling strengthf and the renormalization constan
Z2 ,dm are determined by fixingGa(m,m,m) and the pole
structure of the propagatorS(p),

S21~m!50,

Res@S~p!,p”5m#51, ~17!

ū~p8!Ga~m,m,m!u~p!5ū~p8!tag5gu~p!,

where the last equation can be reduced toG1(m2)5g, the
physical pion-nucleon coupling constant~we takeg513.02
@31#!. The left-hand side of this condition is calculated at t
kinematically forbidden point, where all the external legs
the vertex are on-shell. However, this is of no harm for t
renormalization prescription. We could choose any con
nient renormalization point as long as the form factors c
culated at that point are real~see, e.g.,@30#, where the free-
dom of the choice of a renormalization procedure
discussed in general!.

In the context of the iterative procedure described in
previous section, the constantsZ2 and dm are chosen to
provide the correct pole properties of theconvergedpropa-
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1074 PRC 59S. KONDRATYUK AND O. SCHOLTEN
gator. This implies that the pole location and residue of
propagator are off in the course of the first few iterations.
check that this feature is immaterial for the final result,
applied also another solution procedure. Its main differe
from the one outlined above is that the renormalization of
propagator is done at each iteration step, insuring the cor
pole properties at any iteration. We found that both meth
lead to identical results for the converged vertex and pro
gator. The reason for this is that when convergence has b
reached, a nonperturbative solution of Eqs.~6! ~under the
provisions which have been discussed! has been obtained
The intermediate steps in the iteration procedure at this p
are an uninteresting technical detail.

The loop integrals, or rather the dispersion integrals E
~13!,~10!, will diverge unless a regularization is applied. A
part of the regularization procedure, we introduced a fo
factor G0(p2) ~also called the cutoff function! for the bare
pNN vertex,

Ga
0~m,p,m!5tag5

p”1m

2m
G0~p2!, ~18!

in terms of Eq.~4!. The functionG0(p2)[GPV
0 (p2) is nor-

malized tof at p25m2 and must fall off sufficiently fast a
infinity to provide convergence of the integrals. In the n
merical example discussed later we used two different fu
tions G0(p2), see Eqs.~23!,~24!.

The cutoff function is a phenomenological input of th
model. A self-consistent procedure to construct mes
nucleon form factors was presented in Ref.@32#, where both
nucleons in the vertex are on-shell and the meson is off-sh
There, no phenomenological form factor was needed.
were not successful in implementing a similar approach
half-off-shell form factors in the pion-nucleon vertex, no
trivial solutions of the relevant equations for the self-ene
and thepNN vertex did not seem to exist.

C. Consistency with aK-matrix approach

One motivation for the present model is the construct
of form factors and self-energies which can be applied i
K-matrix approach topN scattering@21,22#. We outline the
K-matrix method~details can be found in@21#! and in par-
ticular address the double-counting issue: by conside
only the real part of the form factors and the self-ene
functions on the right-hand side of Eqs.~8!,~11!,~12!, we
avoid double counting when the calculated vertex and pro
gator are used in theK-matrix approach. It should be emph
sized that only the one-pion threshold discontinuities
taken into account in both theK-matrix approach in question
and the present model.

The Bethe-Salpeter equation for thepN scattering ampli-
tudeT can be written in the operator form

T5V1VGT. ~19!

Here,V is the sum of all irreducible diagrams describing t
scattering, andG is the freepN propagator.G can be decom-
posed as the sum of the on-shell contributionid which is
imaginary ~according to Cutkosky rules!, and the off-shell
partG P which is real,
e
o

e
e
ct
s
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-
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-

ll.
e
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n
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g
y

a-

e

G5G P1 id, ~20!

whered implies that the corresponding intermediate nucle
and pion are taken on their respective mass shells. ThK
operator is introduced by the equation

K5V1VG PK. ~21!

Combining the last three equations yields theT matrix ex-
pressed in terms of theK matrix,

T5K1KidT. ~22!

This is the central equation used in aK-matrix approach and
can schematically be written asT5K/(12 iK ). If K is Her-
mitian, the scattering operatorS5112iT will be unitary.

We consider a simplified version of theK-matrix ap-
proach containing only nucleons and pions, with the kerneV
chosen as the sum of thes- andu-channel tree diagrams. On
way to construct theK operator is to setK5V @22#, thereby
assumingG P50, see Eq.~21!. Then, by Eq.~22!, theT ma-
trix will contain the loop diagrams in which only the cu
nucleon and pion propagators will enter. Only by usi
dressed vertices and propagators may one take theK matrix
equal to the sum of skeleton diagrams solely. As implied
Eq. ~21!, the form factors in these dressed vertices take i
account real contributions due to the principal valueG P.
These are the real parts of the form factors discussed in
previous sections. If we kept both the real and imagin
parts of the form factors and the self-energy functions in E
~8!,~11!,~12!, it would be inconsistent with theK-matrix ap-
proach. In particlular, the on-shell contributionsid would be
taken into account twice for everypN propagatorG. An
exception are some one-particle irreducible diagrams c
tributing to theT matrix.

It is known that the nucleon and pion degrees of freed
are not enough for a realistic description ofpN scattering
~for example, the role of both theD resonance and ther
meson is indispensable! @6–9,21,22#. Since in our model we
confine ourselves to the pion and the nucleon, no calc
tions for thepN scattering observables will be presented
this paper.

IV. NUMERICAL RESULTS

Two sets of calculations were done, corresponding to
two following cutoff functionG0(p2), Eq. ~18!:

GI
0~p2!5 f F ~l22m2!2

~l22m2!21~p22m2!2G 2

~23!

and

GII
0 ~p2!5 f e2~p22m2!2/2dm4

. ~24!

The functional dependence ofGI
0(p2) is taken from Ref.@6#,

where it was used as an off-shell form factor in thepNN
vertex. We define a parameterL25p0.5

2 2m2, wherep0.5
2 is

the point at whichG0(p2) reduces by a factor of 2 compa
ing to its maximum valuef ~here p0.5

2 .m2). Then, for the
calculations with the functions Eq.~23! and Eq.~24!, L2

equals
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L I
2~l!5A~l22m2!2

A0.5
2~l22m2!2 ~25!

and

L II
2 ~d!5A22dm4 ln 0.5, ~26!

respectively. We find that the iteration procedure descri
above convergesonly if l<lc'1.7 GeV forGI

0(p2), and if
d<dc'1.65 forGII

0 (p2). The corresponding ‘‘critical’’ val-
ues for the half-widths can be inferred from Eqs.~25! and
~26!: L I

2(lc)51.28 GeV2 and L II
2 (dc)51.33 GeV2. Re-

sults of calculations are presented below for the follow
two cases:

Case~I!. Calculations with the cutoff function Eq.~23!,
wherel5lc51.7 GeV;

Case~II !. Calculations with the cutoff function Eq.~24!,
whered5dc51.65.

As stated above, the constantsf , Z2 , anddm are chosen
to satisfy Eqs.~17!. The values of these constants for cas
~I! and ~II ! are given in Table I.

The convergence was considered achieved at iteratiom
if all the results of iterationsm11, . . . ,m120 were identi-
cal to those of iteration m up to six significant digits. W
could impose a very strong convergence criterion since
computer program uses little CPU time. With this criterio
convergence was reached after about 100 iterations.
mention that, for example, the self-energy after ten iterati
differs still quite noticably from the converged result.

A comparison of results obtained with the two differe
cutoff functions show how these reflect in the final resu
The nonperturbative aspects are stressed by comparing
results of the first iteration~basically a one-loop calculation!
with those of the converged calculation.

A. Results for the half-off-shell form factors

The imaginary parts of the form factorsGPV(p2) and
GPS(p2) are shown in Fig. 3. The results of calculations f
the two cutoff functions introduced in Eqs.~23! and~24! are
shown next to each other. For case~II ! the tails of the form
factors at large off-shellness are suppressed due to the e
nential in the cutoff function. Independent of the choice
the cutoff function there is a marked difference in the resu
of the first iteration~dotted curve! and the converged result
for the pseudovector form factor. The reason for this diff
ence is the~small! pseudoscalar component of the final for
factor. The converged and first iteration results for the ps
doscalar form factor differ much less, as can be seen f
the bottom panels of Fig. 3.

The real parts of the form factors are shown in Fig. 4. T
top panels show the pseudovector form factorGPV(p2) ~the

TABLE I. Values of the renormalization constantsf , Z2 , and
dm for the two choices for the functionG0(p2), Eq. ~23! and Eq.
~24!.

Case f Z2 dm (MeV)

~I! 12.42 0.848 257.4
~II ! 12.43 0.848 255.5
d

s

e
,
e
s

.
the

po-
f
s

-

u-
m

e

solid line! together with the zeroth iteration form facto
GPV

0 (p2) ~the dotted line! which equals the cutoff functions
Eq. ~23! ~left! and Eq.~24! ~right!. It is seen that the bulk of
GPV(p2) is contained already inGPV

0 (p2), and only a small
part comes from the loop corrections. This manifests its
also in the small difference between the constantf and the
physical coupling constantg, as can be read from Table
We conclude that, in the present model, the shape of
converged form factorGPV depends strongly on the phenom
enologically introduced cutoff function. The middle pane
of Fig. 4 give more insight in the role of the pion dressin
There, the real part of the pseudoscalar form factorGPS(p2)
of the first iteration~the dashed line! is shown together with
the converged result~the solid line!. Since the zeroth itera
tion vertex is chosen purely as a pseudovector@Eq. ~18!#,
GPS(p2) appears solely due to the dressing. Also shown
the difference Re@GPV(p2)2GPV

0 (p2)# which is the dressing
contribution to the real part of the pseudovector form fac
~the dash-dotted and dotted lines for the first iteration and
converged result, respectively!. Note that the deviation of the
nonperturbative result form that of the first iteration is co
siderable for this quantity. The ratio of the real parts of t
GPS(p2) – andGPV(p2) – form factors is given in the bottom
panel of Fig. 4. It is small below the pion threshold@e.g.,
GPS(wth

2 )/g is about 2.1% for both cases~I! and ~II !#, but
becomes larger at higherp2. Note thatGPV(p2) decreases
for case~II ! faster than for case~I!, whereas the behavior o
GPS(p2) for the two cases is comparable. This explains w
the absolute value of„ReGPS(p2)…/„ReGPV(p2)… grows
faster for case~II ! than for case~I!.

FIG. 3. The imaginary parts of the pseudovector and pseu
scalarpNN form factors as functions of the momentum squared
the off-shell nucleon, defined in Eq.~4!. The calculations corre-
spond to the two cutoff functions, Eq.~23! ~the left panels! and Eq.
~24! ~the right panels!. The solid~respective dotted! curves show
the converged~respective first iteration! results.
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We remark that admixtures of the pseudovector and ps
doscalar pion-nucleon couplings have been studied in
past in connection with theNN andpN scattering processes
where the vertex has been determined by adjusting phen
enological parameters to fit data~see discussions in
@5–7,21#!. In those calculations the admixture is assumed
be constant. Instead, the present results indicate that the
is strongly dependent on the momentum of the off-sh
nucleon. Evidence for large pseudoscalar admixtures for
off-shell momenta has also been observed in calculation
pion photoproduction@33#.

B. Results for the self-energy

The imaginary and real parts of the functionsA(P2) and
B(P2) are shown in Figs. 5 and 6, respectively. The so
~dotted! lines are the converged~first iteration! results. One
can see that these functions approach zero faster for cas~II !

FIG. 4. The real parts of the pseudovector and pseudosc
pNN form factors as functions of the momentum squared of
off-shell nucleon, defined in Eq.~4!. The calculations correspond t
the two cutoff functions Eq.~23! ~the left panels! and Eq.~24! ~the
right panels!. In the top panels the zeroth iteration and the co
verged form factors are given by the dotted and solid lines, res
tively. In the middle panels the converged results and those of
first iteration are shown for the pseudoscalar form factor and
loop contribution to the pseudovector form factor. The bottom p
els show the ratio of the pseudoscalar and pseudovector form
tors, where the solid~respective dashed! curves correspond to th
converged~respective first iteration! results.
u-
e

m-

o
tio
ll
ar
of

than for case~I!. Of course, this is entailed by the softe
behavior ofGPV

0 (p2) for case~II ! as opposed to case~I! ~see
Fig. 4!. The difference between the converged results a
those of the first iteration is substantial, especially for t
function B(p2). The on-shell valueSL(m)5m@A(m2)
1B(m2)#5Z2dm is negative and equals248.8 MeV for
case~I! and 247.2 MeV for case~II !, see Table I. Please
note that if we had chosen smaller values for the cutoff, th
self-energy corrections would have been less. For comp
son, we mention that the contribution to the nucleon m
shift from one-pion loop calculated in baryon chiral pertu
bation theory yields a nucleon mass shift of abo
215 MeV @34#.

lar
e

-
c-
e
e
-
c-

FIG. 5. The imaginary parts of the self-energy functionsA(p2)
andB(p2), as defined in Eq.~7!. The calculations correspond to th
two cutoff functions Eq.~23! ~the left panels! and Eq.~24! ~the right
panels!. The solid~respective dotted! curves are the converged~re-
spective first iteration! results.

FIG. 6. The same as in Fig. 5, but for the real parts ofA(p2) and
B(p2).
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Having obtainedA(p2) andB(p2), one can find the spec
tral function of the self-energyT(v) from Eq.~A9!. Figure 7
shows the spectral function for the two cases~the upper and
lower panels!. The dotted and solid lines are, respective
the first iteration and the converged spectral function fou
in our model. In spite of the fact that ImB1(p2) differs
considerably from ImB(p2), having the opposite sign a
some momenta squared~see Fig. 5!, the spectral function
remains positive for all iterations~as it should!.

The spectral function of the nucleon propagator was
cently considered in Ref.@20# whose approach is, howeve
different from the present work. In particular, there the v
tex was not calculated consistently with the nucleon pro
gator.

V. CONCLUSIONS

We have presented a solution procedure for
Schwinger-Dyson equation to obtain consistently
nucleon self-energy and the half-off-shell pion-nucleon v
tex. Retaining the nonperturbative aspects of the equation
important. We observe a large difference between the sim
one-loop results and those of the converged procedure
part of the regularization procedure, we have introduce
cutoff function. We found that in our model there exists
critical half-width, of the order of 1.3 GeV2, below which a
nonperturbative solution can be obtained. Particularly no
worthy is that even though the dressed vertex near thres
is largely pseudovector in nature, we find sizable admixtu
of pseudoscalar coupling at large off-shell nucleon mome

It is important to realize that off-shell from factors an
self-energies cannot be directly measured. The observa
in quantum field theory are obtained from theS matrix, not
the Green’s functions. The latter will depend on the rep
sentation of the fields in the Lagrangian of the theo
whereas the former do not. In principle, observables sho
not depend on the regularization and renormalization pro

FIG. 7. The self-energy spectral functionT(v) as function of
invariant mass of the nucleon. The upper~respective lower! panel
corresponds to the calculations with the cutoff function Eq.~23!
@respective Eq.~24!#. The solid~respective dashed! curves are the
converged~respective first iteration! results.
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dures chosen. This, however, does not apply to the Gre
functions. To draw quantitative conclusions about physi
processes, one should treat all off-shell ingredients o
model consistently, calculating them with the same Lagra
ian and adhering to the same model assumptions. For
ample, the present model for the pion-nucleon off-shell fo
factors and the nucleon self-energy can be consistently
lized in aK-matrix approach topN scattering, as shown in
Sec. III C.

Although the present work deals withpNN vertices
where one of the nucleons is off-shell, we mention here t
there exists a large amount of work on the form fac
G1(m2,m2,q2) @see Eq.~1!# for on-shell nucleons and a
off-shell pion ~see, e.g.,@32,35,36# and references therein!.
In particular, in Ref.@32# a system ofN, p, D, r, e, andv
hadrons is considered in a consistent field-theoretical fra
work. The approach of Ref.@35# is based on a meson
exchange model forpN scattering, where, apart from th
nucleon and the pion, alsoD isobar and correlatedpp ex-
change contributions are included. As mentioned before,
D resonance and ther meson are important ingredients in
quantitative description ofpN scattering and pion photopro
duction. Therefore, one should expect these degrees of
dom to play a prominent role in a realistic model for pio
nucleon form factors. In the present work, only nucleon a
pion fields are included, and only discontinuities associa
with the one-pion threshold are taken into account. In t
simplified model we focus on nonperturbative aspects of
consistent dressing of the pion-nucleon vertex and
nucleon self-energy. Contributions to the imaginary pa
from higher thresholds can be included in our model eit
explicitly, by allowing intermediate states with two or mo
pions, or effectively, by considering baryon and meson re
nances~for example,D andr). This extension of the mode
is in progress.
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APPENDIX A: THE SELF-ENERGY

Here some details on the evaluation of the imaginary p
of the nucleon self-energy are given. To calculate the ima
nary parts of the self-energy functions, we need to evalu
the pole contributionI pole(p) as given in Eq.~9!. In general
the integral can be expressed asI pole(p)5gm Ĩ 1

m(p)1 Ĩ 2(p),

where Ĩ 1
m and Ĩ 2 are scalars in spinor space. Since the o

Lorentz vector in the problem ispm, Ĩ 1
m must be proportional

to it, Ĩ 1
m(p)5@( Ĩ 1•p)/p2#pm. Hence, one may write

I pole(p)5p” I 1(p2)1I 2(p2), where I 1(p2)5( Ĩ 1•p)/p2 and
I 2(p2)5 Ĩ 2(p2) are Lorentz scalars. They equal
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I 1~p2!5
p21m22m2

32pp4
r ~p2!u„p22~m1m!2

…, ~A1!

I 2~p2!5
m

16pp2
r ~p2!u„p22~m1m!2

…. ~A2!
pl

l

-

n

ed

th
e

where r (p2)5Al(p2,m2,m2), with the Källén function

defined as l(x,y,z)[(x2y2z)224yz. Using these

expressions and introducing the shorthand notati

g1,2[Re G1,2
n (p2), the imaginary parts of the self-energ

functions can be determined from Eqs.~7!,~8!,~3!,
Im An11~p2!53S 2~g12g2!2I 1~p2!12~g12g2!g2

I 2~p2!

m
2g2

2 p2I 1~p2!

m2 D
52

3

32pp2
r ~p2!u„p22~m1m!2

…H p21m22m2

p2
g1

21S 5p21m22m2

p2
1

p21m22m2

m2 D g2
2

22
3p21m22m2

p2
g1g2J , ~A3!

Im Bn11~p2!53S ~g12g2!2
I 2~p2!

m
22~g12g2!g2

p2I 1~p2!

m2 1g2
2 p2I 2~p2!

m3 D5
3

16pp2
r ~p2!u„p22~m1m!2

…

3H g1
21

2p212m22m2

m2
g2

22
p213m22m2

m2
g1g2J , ~A4!
rs
rals
on

,
ince

s

the factor 3 in the above equations results from the multi
cation of the isospin matrices,tata53, and the minus sign
in front of I 1(p2) from commuting theg5 matrices. The rea
parts ofAn11(p2) andBn11(p2) are found by applying dis-
persion relations Eq.~10!, where all integrals are done nu
merically.

For later use, the dressed nucleon propagator is writte

„S~p!…215Z2~p”2mB!2@Re A~p2!p”1Re B~p2!m#

5a~p2!@p”2j~p2!#, ~A5!

where

a~p2!5Z22Re A~p2!,

j~p2!5
Z2~m2dm!1ReB~p2!m

a~p2!
. ~A6!

The spectral function of the self-energy is introduc
through

SL~p!5z~v!L1~p” !1z~2v!L2~p” !, ~A7!

where L6(p” )5(6p”1v)/(2v) are the projectors on
positive- and negative-energy states of the nucleon with
invariant massv5Ap2.0. The spectral function can now b
defined as@16#

T~6v!57
1

p
Im z~6v!. ~A8!
i-

as

e

Equating the right-hand side of Eq.~A7! and the form of
SL(p) from Eq. ~7! yields

T~6v!52
1

p
@v Im A~p2!6m Im B~p2!#. ~A9!

APPENDIX B: THE FORM FACTORS

The calculation of the imaginary parts of the form facto
can be reduced to computing one-dimensional integ
which are done numerically. First consider the integral
the right-hand side of Eq.~12!. Jpole can be split asJpole

5gmJ̃1
m1 J̃2 , where J̃1

m and J̃2 are scalars in spinor space
and a possible rank-2 tensor structure vanishes s
ū(p8)p” 85ū(p8)m. For the same reasonJ̃1

m is proportional
to only the vectorpm. Following the same argumentation a
used in Appendix A, we can write

Jpole5p” J11J2 , ~B1!

where we have introduced the Lorentz scalarsJ1 andJ2 . To
write down expressions forJ1 andJ2 , we define the follow-
ing functionals:

K1@ f #[E
21

1

dx
f ~w82!

a~w82!
, ~B2!

K2@ f #[E
21

1

dxx
f ~w82!

a~w82!
, ~B3!
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K3@ f #[E
21

1

dx
f ~w82!

a~w82!@w822j2~w82!#
, ~B4!

K4@ f #[E
21

1

dxx
f ~w82!

a~w82!@w822j2~w82!#
, ~B5!

wheref is any function for which the integrals exist,a andj
are given by Eq.~A6! for the (n11)st iteration, and

w825~p81k!25m21m22
p42~m22m2!2

2p2
2

r ~p2!2

2p2
x,

~B6!

with x being the cosine of the polar angle between the th
vectorspW 8 andkW . Now J1 andJ2 can be written as

J1[J1~p2!52H ~K12K2!F p21m22m2

2p2

3S g1g21
j24m

2m
g2

2D1
g2

2

2 G1~K32K4!

3F S p21m22m2

p2

j

4m
2

m22m2

2p2 D
3@mg11~j2m!g2#2G J r ~p2!

16pp2
u„p22~m1m!2

…

~B7!

and
B

B

. C

. C

d
-

ur
e

J2[J2~p2!

52H ~K11K2!F S j24m

2m
1

p21m22m2

4m2 D g2
21g1g2G

1~K31K4!F S j22m

2m
1

p21m22m2

4m2 D
3@mg11~j2m!g2#2G J r ~p2!

16pp2
u„p22~m1m!2

….

~B8!

Since for a givenf in Eqs.~B2!–~B5! theKi are functions of
p2 only, Eqs.~B7!,~B8!,~B1! show thatJpole depends only on
the Lorentz vectorp and does not depend onp8 as it might
appear from the right-hand side of Eq.~12!.

Using Eqs.~B1!,~11!,~3!, one obtains for the imaginary
parts of the form factors:

Im G1
n11~p2!5g1J2~p2!1S m22p2

m2
g22g1D J1~p2!

~B9!

and

Im G2
n11~p2!5g2J2~p2!1~g22g1!J1~p2!, ~B10!

whereJ1 and J2 are given by Eqs.~B7! and ~B8!. Finally,
Eq. ~13! is applied to obtain the real parts of the (n11)st
iteration for the form factors.
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