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Covariant confinement model for the calculation of radial excitations of the pion

L. S. Celenza, Bo Huang, and C. M. Shakin*
Department of Physics and Center for Nuclear Theory, Brooklyn College of the City University of New York, Brooklyn, New York

~Received 29 July 1998!

We describe the mixing ofqq̄ pseudoscalar states with longitudinalqq̄ axial-vector states, making use of a
relativistic quark model that includes a model of confinement.~In the absence of the confinement model, our
model reduces to the Nambu–Jona-Lasinio model.! In addition to the pion, we findJP502 states at 1.18, 1.36,
1.47, 1.63, and 1.68 GeV. The first two of these states are in the region of thep~1300! that is assigned a mass
of 13006100 MeV and a width of 200–600 MeV in the data tables. We provide values of the coupled-channel
qq̄ T matrix, as well as the mixing angle, which is energy-dependent in our analysis. In addition, we describe
a model of confinement for longitudinal axial-vectorqq̄ states that is used in the calculation of vacuum
polarization diagrams.~That analysis supplements our previous study of confinement in the case of pseudo-
scalar mesons.! We show that our confinement model may be made covariant. We use the covariant model to
calculate the decay of the various states,p8, to thep1r andp1s channels at one-loop order. At one-loop
order, it is found that only the nodeless state at 1.18 GeV and the state at 1.36 GeV have significant widths for
p8→p1s. These states have somewhat larger widths for the decayp8→p1r, leading toG tot50.368 GeV
for the state at 1.18 GeV and 0.150 GeV for the state at 1.36 GeV. We note that the state 1.18 GeV is a mixed
pseudoscalar–axial-vector state, while the state at 1.36 GeV is thep(2S) state to a good approximation, since
it has a very small admixture of axial-vector components. There is information concerning the decayp8
→p1(p1p)L50 that is extracted from experimental data for three-body final states. Our~nodeless! state at
1.18 GeV has the correct energy and width to fit that data. However, our widths forp8→p1(p1p)L51 are
larger than those forp8→p1(p1p)L50 . That suggests that final-state interactions are probably quite im-
portant in understanding the branching ratios forp8 decays to states of three pions. Our results also suggest
that, if we were to study thep~1300!, and include final-state interactions, it is necessary to include both the
1.18 GeV and the 1.36 GeV states in the analysis.~On the other hand, since the 1.36 GeV state is a 2S state,
it may be only weakly excited in the reactions used to generate final states of three pions.!
@S0556-2813~99!05802-1#

PACS number~s!: 24.85.1p, 12.39.2x, 14.40.Aq
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I. INTRODUCTION

In a series of papers, we have been developing an ef
tive field theory for quarks based upon the Nambu–Jo
Lasino ~NJL! model @1#, supplemented with a relativisti
model of confinement@2–6#. In previous work we have stud
ied singlet-octet mixing for scalar-isoscalar mesons@3#,
h-h8 mixing andf-v mixing @4#. We have also studied th
spectrum of light and heavy mesons, including charmoni
and bottomonium@5#. In the present work we extend ou
considerations to the mixing between pseudoscalar states
longitudinal axial-vector states, a phenomenon that is usu
called ‘‘p-a1 mixing.’’ A novel feature of the present stud
is that we are able to study this mixing in the energy reg
0<P2<3.0 GeV2. ~The usual discussion is limited to low
energies, in the absence of a model of confinement.! We are
particularly interested in the region where one finds
p~1300!, since little is known concerning that resonance.~In
the data tables one finds that the energy is 13
6100 MeV, while the width is given as 200–600 MeV@7#.!

We find it useful to divide our analysis in two parts. F
the low-energy domain.P2<0.1 GeV2, we neglect confine-
ment, while for 0.1 GeV2<P2<3.0 GeV2 we include our
confinement model. That is done, since pion properties
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very sensitive to violation of chiral symmetry, and while o
Lagrangian respects chiral symmetry in the absence of
rent quark masses, our approximations, in the case
Minkowski-space calculations, violate chiral symmetry
some degree.~A Euclidean-space analysis was presented
Ref. @6#, where we showed that chiral symmetry may
maintained in the calculation, and that the Goldstone th
rem is satisfied.!

In Sec. II of this work we review our treatment of th
vacuum polarization diagrams that play an important role
the NJL model. We also show how the calculation of t
polarization diagrams is modified when we include our co
finement model. The confinement model eliminates cuts
the P2 plane, that would appear when the quark and a
quark both go on mass shell. Therefore, the vacuum po
ization integrals,J(P2), are real, if we do not take into ac
count decay into open channels, such asp1g, r1p, etc.

In Sec. III, we study theqq̄ T matrix that describes the
coupling of theqq̄ pseudoscalar channel to the longitudin
component of theqq̄ axial-vector channel. Singularities o
the T matrix correspond to resonant states of the system

In Sec. IV, we present the results of our analysis forP2

<0.10 GeV2, while in Sec. V, we present results for th
region 0.10 GeV2<P2<3.0 GeV2. It is the ability to treat the
intermediate-energy region that is a novel feature of our
proach. The low-energy region, described in Sec. IV, may
treated by standard methods. However, we include a dis
1041 ©1999 The American Physical Society
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1042 PRC 59L. S. CELENZA, BO HUANG, AND C. M. SHAKIN
sion of that region for the sake of completeness. In Sec. V
present our results for the spectrum of the mixedp-a1 states
and in Sec. VI we begin a discussion of acovariantmodel of
confinement, which is needed for the calculation of the de
of the mixedp-a1 states to the channelsp1r andp1s. In
Sec. VI we describe a vertex function of the confining int
action for pseudoscalar states, while Sec. VII contains a
responding discussion for scalar states. The more com
cated confinement vertex function for vector states is ta
up in Sec. VIII and in the Appendix.

In Sec. IX we describe a covariant calculation of the d
cay amplitudep8→p1r where p8 is any of the states
found in this work, other than thep~138!. Section X contains
a similar discussion of the decay amplitude forp8→p1s.
In Sec. XI we describe the calculation of the decay wid
for each of the states considered here. Finally, Sec. XII
scribes some aspects of the experimental data obtained
the study of the three-pion final states, as well as some
ther discussion.

II. VACUUM-POLARIZATION FUNCTIONS AND A
MODEL OF CONFINEMENT

For the purposes of this work, we consider the Lagrang
with SU~2!-flavor symmetry@1#

L5q̄~ i ]2m0!q1
GS

2
@~ q̄q!21~ q̄ig5tWq!2#

2
GV

2
@~ q̄gmtWq!21~ q̄gmg5tWq!2#1Lconf, ~2.1!

wherem05diag(mu
0,md

0). We use Lorentz-vector confineme
with

Lconf~x!5E d4yq̄~x!gmq~x!Vc~x2y!q̄~y!gmq~y!.

~2.2!

Here,VC(r )5kr exp(2mr), wherek is the ‘‘string tension’’
and m is a small parameter introduced to soften the sin
larities of the Fourier transform ofVC(r ). ~If the parameter
m is small enough, the potential is essentially linear over
range of interaction considered.! We find

VC~kW2kW8!528pkF 1

@~kW2kW8!21m2#2
2

4m2

@~kW2kW8!21m2#3G ,

~2.3!

in the case that we neglect energy transfer via the confin
field. In this work we have takenm50.020 GeV. @This
model may be made covariant by expressingVC in terms of
the square of the difference of two four-vectors, (kc2kc8)

2,

that reduces to2(kW2kW8)2 in the meson rest frame, so th
Eq. ~2.3! is obtained.#

We begin our analysis by defining the polarization in
grals
e

y

-
r-
li-
n

-

s
e-
m
r-

n

-

e

g

-

2 i ĴPP~P!5~21!ncnfTrE d4k

~2p!4

3@ ig5iS~P/21k!ig5iS~2P/21k!#,

~2.4!

2 i Ĵm
PA~P!5~21!ncnfTrE d4k

~2p!4

3@ iS~P/21k!ig5iS~2P/21k!gmg5#,

~2.5!

2 i Ĵm
AP~P!5~21!ncnfTrE d4k

~2p!4

3@ iS~P/21k!gmg5iS~2P/21k!ig5#,

~2.6!

and

2 i Ĵmn
AA~P!5~21!ncnfTrE d4k

~2p!4

3@ iS~P/21k!gmg5iS~2P/21k!gng5#.

~2.7!

~See Fig. 1.! HereS(P)5@P” 2m1 i e#21, with m being the
constituent quark mass. Further, the number of flavors isnf
52 and the number of colors isnc53. We also define

Jm
PA~P!5 iJPA~P2!

Pm

AP2
, ~2.8!

Jm
AP~P!5 iJAP~P2!

Pm

AP2
, ~2.9!

and

Jmn
AA~P!52g̃mn~P!JT

AA~P2!2
PmPn

P2 JL
AA~P2!, ~2.10!

FIG. 1. ~a! The diagram shows the basic vacuum polarizat
diagram of the NJL model in the absence of a confinement mo
~b! The diagram serves to define the tensorJmn(P) in the presence
of a confinement vertex, represented by the shaded triangular
~see Fig. 2!. The right-hand side of the figure shows a perturbat
expansion forJmn(P).
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PRC 59 1043COVARIANT CONFINEMENT MODEL FOR THE . . .
with g̃mn5gmn2PmPn /P2. Note also that JAP(P2)5
2JPA(P2) andPmg̃mn5g̃mnPn50.

The separation of transverse and longitudinal parts of
tensorJmn

AA(P) is appropriate, since the transverse part m
be treated separately. Thus, onlyJPP(P2), JPA(P2),
JAP(P2) and JL

AA(P2) will appear in the coupled equation
that describep-a1 mixing. ~We use the designation ‘‘p-a1
mixing’’ as a simple phrase describing the phenomenon c
sidered here.! Without a model of confinement, the polariz
tion integrals will have unphysical cuts starting atP254m2

that correspond to the quark and antiquark going on th
~positive! mass shells. That feature is eliminated by our co
finement model.

For this calculation, the confining interactionVC(kW2kW8)
is used to define two vertex functions.~See Fig. 2.! Our
treatment of these functions has its origin in the method u
to calculate the vacuum polarization integrals. These are
culated by using the relation

S~P!5
m

E~PW !
F L~1 !~PW !

P02E~PW !1 i e
2

L~2 !~2PW !

P01E~PW !2 i e
G
~2.11!

for each propagator in Eqs.~2.4!–~2.7! and then performing
the integral in the complexk0 plane.

Let us first considerJPP(P2), modified to include the
confining vertexi Ḡ5(P,k), which has a Dirac matrix struc
ture,

2 iJPP~P!5~21!ncnf Tr E d4k

~2p!4 @ ig5iS~P/21k!

3 i Ḡ5~P,k!iS~2P/21k!#. ~2.12!

Use of Eq. ~2.11! in Eq. ~2.12!, with PW 50, shows that
only the elements L (1)(kW )Ḡ5(P,k)L (2)(2kW ) and

FIG. 2. ~a! The equation for the vertex operators,Gm(P,k) is
shown. The vertex is represented by the filled triangular area
the dashed line represents the confining interaction.~b! A perturba-
tive expansion is shown for the equation in~a!. We see that the
vertex serves to sum a ‘‘ladder’’ of confining interactions.
e
y

n-

ir
-

d
l-

L (2)(2kW )Ḡ5(P,k)L (1)(kW ) appear. Therefore, whenPW 50,
it is useful to defineG5

12(P,k),

L~1 !~kW !Ḡ5~P,k!L~2 !~2kW !5G5
12~P,k!L~1 !~ k̄!

3g5L~2 !~2kW !, ~2.13!

andG5
21(P,k)

L~2 !~2kW !Ḡ5~P,k!L~1 !~kW !5G5
21~P,k!L~2 !~2kW !

3g5L~1 !~kW !, ~2.14!

whereG5
12(P,k) andG5

21(P,k) are ordinary functions with
no Dirac matrix structure.

We may obtain equations forG5
12(P,k) and G5

21(P,k)

starting with the equation for the matrixḠ5(P,k),

Ḡ5~P,k!5g52 i E d4k8

~2p!4 @grS~P/21kW8!Ḡ5~P,k8!

3S~2P/21k8!grVC~kW2kW8!#. ~2.15!

We proceed by multiplying this equation byg5L (1)(kW ) on
the left, and byL (2)(2kW ) on the right, and then taking th
trace. We find that if we neglect coupling betweenG5

12 and

G5
21 , we have~for PW 50)

G5
12~P0,ukW u!512E d3k8

~2p!3 Fm222E~kW !E~kW8!

E~kW !E~kW8!
G

3
G5

12~P0,ukW8u!VC~kW2kW8!

P022E~kW8!
. ~2.16!

A similar analysis leads to

G5
21~P0,ukW u!511E d3k8

~2p!3 Fm222E~kW !E~kW8!

E~kW !E~kW8!
G

3
G5

21~P0,ukW8u!VC~kW2kW8!

P012E~kW8!
. ~2.17!

For example, Eq.~2.16! is obtained if we complete the inte
gral in the lower complexk08 plane and pick uponly the pole
where the quark is on its positive mass shell@8#. The other
pole in the lower-halfk08 plane corresponds to the antiqua
being on its negative mass shell.@It plays a role when we
obtain Eq. ~2.17!.# Note that when P022E(kW )50,
G12(P0,ukW u)50. This aspect of the confinement model r
moves the unphysicalqq̄ cuts that would otherwise appear
the vacuum polarization integrals,J(P2). Using these results
we find

d
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JPP~P2!522ncnfE d3k

~2p!3 FG5
12~P0,ukW u!

P022E~kW !

2
G5

21~P0,ukW u!

P012E~kW !
G . ~2.18!

Since the second term is small, except at low energy,
G5

21(P0,ukW u) is fairly close to unity, we will use the approxi
mation

JPP~P2!522ncnfE d3k

~2p!3 FG5
12~P0,ukW u!

P022E~kW !
2

1

P012E~kW !
G

~2.19!

in the intermediate energy region. In the absence of confi
ment (k50) we putG5

12(P0,ukW u)51 in Eq. ~2.19!.
We also need to introduce a longitudinal axial-vector v

tex, ḠL
m , in the calculation ofJmn

AA(P). We write, forPW 50,

L~1 !~kW !GL
m~P,k!L~2 !~2kW !5

Pm

AP2
GL

12~P,k!

3L~1 !~kW !g5L~2 !~2kW !.
~2.20!

Now note that from Eq.~2.10!

P2JL
AA~P2!52PmJmn

AA~P!Pn, ~2.21!

so that, includingḠL
m at one vertex, we have

P2JL
AA~P2!52ncnf i E d4k

~2p!4 Tr@S~P/21k!PmḠm~P,k!

3S~2P/21k!P” g5#. ~2.22!
d

e-

-

Completing the integral in the lowerk0 plane and picking
up the contribution of both poles of the propagators fou
there, we obtain

JL
AA~P2!52ncnfE d3k

~2p!3

m

E~kW !
FGL

12~P0,ukW u!

P022E~kW !

2
m/E~kW !

P012E~kW !
G . ~2.23!

@See Eq.~2.27!.# Here we have neglected confinement in t
second term of Eq.~2.23!. In the absence of a confineme
model (k50), GL

12(P0,ukW u)5m/E(kW ), so that

JL
AA~P2!52ncnfE d3k

~2p!3 F m

E~kW !
G 2

4E~kW !

~P0!22@2E~kW !#2
,

~2.24!

for P0,2m. Note that in the low-energy regime,P2

<0.10 GeV2, we will use Eq. ~2.24! and for the
intermediate-energy regime, we will use Eq.~2.23! when cal-
culating polarization integrals. As noted above, an import
feature of our confinement vertex functions is that they
zero when the quark and antiquark both go on their~positive!
mass shells. Therefore, expressions such
G5

12(P0,ukW u)/@P022E(kW )# and GL
12(P0,ukW u)/@P022E(kW )#

are finite. Thus, we need not include a term such asi e in the
denominators of these expressions.

An equation for the longitudinal axial-vector vertex is o
tained by starting with

ḠL
m~P,k!5

PmP”

P2 g52 i E d4k8

~2p!4 grS~P/21k8!ḠL
m~P,k8!

3S~2P/21k8!grVC~kW2kW8!, ~2.25!

and using Eq.~2.20!. Thus
Pm

AP2
L~1 !~kW !g5L~2 !~2kW !GL

12~P,k!5
Pm

P2
L~1 !~kW !P” g5L~2 !~2kW !

1
iPm

AP2
E d4k8

~2p!4

L~1 !~kW !grL~1 !~kW8!g5L~2 !~2kW8!grL~2 !~2kW !

F P2

2
1k082E~kW8!1 i eGF2

P0

2
1k081E~kW8!2 i eG

3F m

E~k8!
G 2

VC~kW2kW8!GL
12~P,k8!, ~2.26!
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where, for simplicity we have neglected the coupling ofGL
12

to GL
21 . If we multiply Eq. ~2.26! by g5 and take the trace

we find

GL
12~P0,ukW u!5

m

E~kW !
1E d3k8

~2p!3 F 2E~kW8!E~kW !2m2

E~kW !E~kW8!
G

3
GL

12~P0,ukW8u!

P022E~kW8!
VC~kW2kW8!. ~2.27!

We can also show that

GL
21~P0,ukW u!52

m

E~kW !
2E d3k8

~2p!3 F 2E~kW8!E~kW !2m2

E~kW !E~kW8!
G

3
GL

21~P0,ukW8u!

P012E~kW8!
VC~kW2kW8!. ~2.28!

@Thus, in the absence of confinementGL
12(P0,ukW u)

5m/E(kW ), as note above. Therefore, we obtain Eq.~2.24!
from Eq. ~2.23!, if k50.# Note that Eqs.~2.16! and ~2.27!
are rather similar, with thehomogeneousequations being
identical. Thus,G5

12(P0,ukW u) andGL
12(P0,ukW u) have singu-

larities at the same values ofP0. These singularities corre
spond to bound states in the confining field considered
isolation. ~If we consider only the confining interaction
these bound states appear as doublets.!

Proceeding in an analogous fashion as in our calculat
of JPP(P2) andJAA(P2), we find

JPA~P2!522ncnfE d3k

~2p!3

m

E~kW !

3FG5
12~P0,ukW u!

P022E~kW !
1

1

P012E~kW !
G . ~2.29!

For k50, we see that

JPA~P2!524P0ncnfE d3k

~2p!3 F m

E~kW !
G 1

~P0!22@2E~kW !#2
,

~2.30!

with JPA(0)5JAP(0)50. We will use Eq.~2.30! in the low-
energy domain and Eq.~2.29! in the intermediate-energy do
main, where the second term in Eq.~2.29! is quite small.

As is well known, the integrals defining the vacuum p
larization functions are divergent. Therefore, they are cut
by inserting a theta functionu(L32ukW u). We used L3
50.622 GeV in our earlier work and we continue to use t
value here.~With m50.364 GeV andL350.622 GeV, one
obtains satisfactory values for the vacuum condensates^ūu&
and^d̄d&, and for the pion decay constantf p @1#.! At a later
point in our discussion, we will introduce a covariant versi
of our cutoff function.
in

ns

-
ff

t

III. RESONANCES AND MIXING ANGLES

The resonant states of the coupled pseudoscalar and
gitudinal axial-vector fields may be found by studying theT
matrix for qq̄ scattering, including channel coupling term
In the absence of such coupling@JPA(P2)50# the T matrix
in the pion channel is

Tp~P2!5 ig5TPP~P2!ig5 , ~3.1!

where

Tp
PP~P2!52

GS

12GSJPP~P2!
, ~3.2!

with 12GSJPP(mp
2 )50. If we include channel coupling we

write

T̂5 ig5TPP~P2!ig51 ig5iTPA~P2!
P”

AP2
g5

1
P” g5

AP2
iTAP~P2!ig51

P” g5

AP2
TL

AA~P2!
P” g5

AP2
. ~3.3!

This form serves to define TPP(P2), TPA(P2)5
2TAP(P2), andTAA(P2). It is then useful to organize thes
quantities into a matrix

T~m,n!5S TPP~P2!

iTAP~P2!Pm/AP2
iTPP~P2!Pn/AP2

TL
AA~P2!PmPn/P2D .

~3.4!

In a similar fashion, we may define

J~b,r!5S JPP~P2!

iJAP~P2!Pb/AP2
iJPA~P2!Pr/AP2

2JL
AA~P2!PbPr/P2D

~3.5!

and also define the matrix

G~m,n!5S GS

0
0

2GVgL
mnD , ~3.6!

wheregL
mn5PmPn/P2. Thus, we may write the equation

T~m,n!52G~m,n!1G~m,b!J~b,r!T~r,n!, ~3.7!

where the repeated Lorentz indices are summed.
The resulting equations may be usefully written in t

following matrix form:

S 12GSJPP~P2!

iGVJAP~P2!

2 iGSJPA~P2!

12GVJL
AA~P2! D S TPP~P2!

iTAP~P2!

iTPA~P2!

TL
AA~P2! D

52S GS

0
0

2GV
D . ~3.8!

We can call the first matrix on the left-hand side of Eq.~3.8!
D(P2), with

detD~P2!5@12GSJPP~P2!#@12GVJL
AA~P2!#

1GSGV@JPA~P2!#2, ~3.9!
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where we have used the fact thatJAP(P2)52JPA(P2).
The solution of the matrix equation, Eq.~3.8!, is

TPP~P2!52
GS@12GVJL

AA~P2!#

detD~P2!
, ~3.10!

TPA~P2!5
GVGSJPA~P2!

detD~P2!
, ~3.11!

TAA~P2!5
GV@12GSJPP~P2!#

detD~P2!
, ~3.12!

with TAP(P2)52TPA(P2), Note that bound~or resonant!
states correspond to the zeros of detD(P2).

Now consider theT matrix of Eq.~3.3! in the frame where
PW 50. We may write

T̂5~ ig5 ,g0g5!S TPP~P2!

iTAP~P2!

iTPA~P2!

TL
AA~P2! D S ig5

g0g5
D ,

~3.13!

which may be written asFTT(P2)F. Now we use the ma-
trices

M ~u!5S cosu
i sinu

i sinu
cosu D ~3.14!

and

M 21~u!5S cosu
2 i sinu

2 i sinu
cosu D , ~3.15!

to bring T(P2) of Eq. ~3.13! to diagonal form:

M ~u!T~P2!M 21~u!5S T1~P2!

0
0

T2~P2! D . ~3.16!

We find aP2-dependent mixing angle,

tan 2u~P2!5
2TPA~P2!

TPP~P2!2TAA~P2!
. ~3.17!

Values for T1(P2), T2(P2), detD(P2), and u(P2) will be
presented in Sec. IV for the low-energy region and in Sec
for the intermediate-energy region.

IV. p-a1 MIXING AT LOW ENERGY

As noted in the Introduction, it is best to neglect confin
ment at low energy in our model, where it represents on
small effect. In this work we neglect confinement forP2

<0.1 GeV2. We showJPP(P2), JPA(P2), and JAA(P2) in
Figs. 3, 4, and 5, respectively. In Fig. 6 we show detD(P2).
We useGV512.50 GeV22, a value that was used in ou
earlier work@4#. We find that the choiceGS511.83 GeV22

yields a pion mass of 138 MeV.~See Fig. 6.!
In Fig. 7, we show the value ofT1(P2). We do not show

T2(P2), since that function is, more or less, constant in
region 0<P2<0.1 GeV2. In Fig. 8 we show the mixing
angle, u(P2), for the low-energy region. We find tha
u(mp

2 )523.39°, which represents a small admixture of t
longitudinal axial-vector state. This admixture has a num
V

-
a

e

r

of interesting physical consequences as described in Ref.@1#.
The introduction of confinement tends to reduce the

larization integrals,J(P2), by about 10% at low energies
We can make the values of detD(P2), T1(P2), andT2(P2)
continuous as we go from belowP250.1 GeV2 to above that
value by increasingGS from 11.83 GeV22 to 12.80 GeV22

when we introduce confinement. We use the latter value
obtain the results reported in Sec. V. While we are not
concerned with the dynamics in the low-energy region in t
work, it may be of interest to consider a smooth turning on
the confining interaction. That may be accomplished by w
ing

k~P2!5k~12e2aP2
!. ~4.1!

We see thatk(0)50 and, if a57.67 GeV2, we have
k(0.3 GeV2)50.9k. The use of this scheme yields the valu
of JPP(P2), JPA(P2), and JAA(P2) shown in Figs. 9, 10,
and 11, respectively, for the region 0<P2<0.3 GeV2. Here,
we usek50.0575 GeV2, the value used in our earlier wor
on light-meson spectroscopy@4,5#. ~We also use m
50.364 GeV andL350.622 GeV, which are also value
used in our earlier work@4,5#.!

The vertical lines in Figs. 9–11 show the positions of t
bound states in the confining field. They represent the sin
larities of the vertex functionsG5

12 and GL
12 . Recall that

G5
12 and GL

12 satisfy inhomogeneous equations and the
functions are singular when the homogeneous equations
solutions.@The homogeneous equation is an equation for
vertex function of the bound states in the field set up by
potentialVC(kW2kW8).#

V. p-a1 MIXING AT INTERMEDIATE ENERGY

In this section we make use of the values ofJPP(P2),
JPA(P2), and JAA(P2) shown in Figs. 9–11. WithGS
512.80 GeV22 andGV512.50 GeV22, we find the values of
detD(P2) shown in Fig. 12. There are zeros of detD(P2) at
P051.18, 1.36, 1.47, 1.63, and 1.68 GeV, in addition to t
zero atP050.138 GeV shown in Fig. 6. We recall that the
are all JP502 states, while the data tables only list th
p~1300! in the energy region considered in this section. O
states appear in eitherT1(P2), shown in Fig. 13, orT2(P2),

FIG. 3. The functionJPP(P2) is shown in the low-energy re
gion. Herem50.364 GeV andL350.622 GeV.
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shown in Fig. 14. Specifically, inT1(P2) we find resonances
at P050.138, 1.18, 1.63, and 1.68 GeV, whileT2(P2) has
such states atP051.36 and 1.47 GeV. Table I gives th
value of the mixing angleu(P2) for the pion and for the five
resonances listed above.~See Fig. 15.! Again, with reference
to Table I, we see that the resonance at 1.63 GeV is in
channelT1(P2). Therefore, we can state that the resona
is ‘‘pionlike,’’ since the mixing angle is very small.

In order to calculate the decay amplitudes of our sta
we will calculate the loop integrals shown in Fig. 16. If w
calculate the quark loop of Fig. 16~a!, we find unphysical
singularities whenqq̄ pairs go on mass shell, as indicated
Figs. 16~b! and 16~c!. One way to deal with this problem i
to include vertex functions of a confining interaction, as
dicated in Fig. 16~d!. As we will see, these vertex function
are equal to zero, when both the quark and antiquark go
their ~positive! mass shells. This feature serves to elimin
the singularities indicated in Figs. 16~b! and 16~c!.

In the next section we will show how the vertex functio
of the confining interaction are calculated, with the aim
the making covariant calculations of the loop diagrams
Fig. 16.

FIG. 4. The functionJPA(P2) is shown in the low-energy re
gion.

FIG. 5. The functionJAA(P2) is shown in the low-energy re
gion.
e
e

s,

-

n
e

f
f

VI. PSEUDOSCALAR VERTEX FUNCTION FOR THE
CONFINING INTERACTION

Vertex functions may be constructed for the calculation
the properties of mesons of various angular momenta.
~inhomogeneous! equation defining the vertex function is de
picted in Fig. 2~a!. ~For example, for the pseudoscalar vert
function, the driving term would beg5ta, whereta is an
isospin matrix.! In Fig. 2~a! VC represents the confining in
teraction, which, in our model, may be expressed in terms
the square of the difference of two four-vectors,VC@(kc

2kc8)
2#, where

kc
m5km2

~k•P!Pm

P2 ~6.1!

and

kc8
m5k8m2

~k8•P!Pm

P2 . ~6.2!

Note that the invariant2kc
2 may be identified as the squar

of the relative three-momentum,kW2, of the quark and anti-
quark in the meson rest frame wherePW 50. ~Later in this

FIG. 6. The function detD(P2) is shown in the low-energy re
gion. Note that detD(mp

2)50. Here GS511.83 GeV22 and GV

512.50 GeV22.

FIG. 7. The functionT1(P2) is shown in the low-energy region
The singularity atP25mp

2 is indicated by the vertical line.
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work we will introduce four-vectorsk̂m and k̂8m that are
defined in the same fashion askc

m and kc8
m . We use the

notationkc
m andkc8

m when we wish to stress the role of the

vectors in providing the value ofkW2 defined above.! In the
meson’s rest frame, we havekc

m5(0,kW ) and kc8
m5(0,kW8).

WhenPW 50, we obtain the Fourier transform ofVC(rW) given
in Eq. ~2.3!, which is a form we have used in earlier wor
„Equation~2.3! provides the Fourier transform of the pote
tial VC(rW)5kr exp@2mr#. While this potential is not abso
lutely confining,m is chosen small enough so that the pote
tial is effectively linear over the region ofurWu relevant to the
problem considered. Effects of barrier penetration are fo
to be negligible.… In this work we use Lorentz-vector con
finement, so that we need to include a Dirac matrix,gr, at
the points where the potential is coupled to a quark or
antiquark.

It is convenient to work in the frame wherePW 50 and
study the equation shown in Fig. 2. Let us consider the ps
doscalar vertex and the scalar functionsG5

12(P,k) and
G5

21(P,k), introduced earlier. When creating a covaria
model, it is useful to writeG5

12(AP2,A2kc
2), etc. For the

covariant model, we define

FIG. 8. The mixing angle,u(P2), is shown in the low-energy
region. Note thatu(mp

2 )523.39°.

FIG. 9. The functionJPP(P2) is shown for 0<P2<3.0 GeV2.

Herek50.0575 GeV2 andm50.364 GeV. A cutoffu(L32ukW u) is
used, withL350.622 GeV.
-

d

n

u-

t

Ḡ5~P,k!5g5@b0~AP2,A2kc
2!1P” b1~AP2,A2kc

2!#.
~6.3!

It is not difficult to see that, whenPW 50,

G5
12~AP2,A2kc

2!5b0~AP2,A2kc
2!

2
mP0

E~kW !
b1~AP2,A2kc

2! ~6.4!

and

G5
21~AP2,A2kc

2!5b0~AP2,A2kc
2!

1
mP0

E~kW !
b1~AP2,A2kc

2!. ~6.5!

We can solve these equations for the Lorentz scalars,b0 and
b1 , onceG12 and G21 are calculated in the frame wher
PW 50. This procedure yields thecovariantform for Ḡ5(P,k)
given in Eq.~6.3!, which can be used for finite values ofPW .
Note that, forPW 50,

b0~AP2,kon!22mb1~AP2,kon!50, ~6.6!

FIG. 10. The function JPA(P2) is shown for 0<P2

<3.0 GeV2.

FIG. 11. The function JAA(P2) is shown for 0.10<P2

<3.0 GeV2.
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whenkon
2 5(P0)2/42m2. At that point,P052E(kW ). @See Eq.

~6.4!.# It is the zero value given in Eq.~6.6! that serves to
remove unphysical singularities from the various amplitud
we calculate. Equations forG5

12(P0,ukW u) and G5
21(P0,ukW u)

were given previously.@See Eqs.~2.16! and ~2.17!.# Note
that G12(P0,ukW u)/@P022E(kW )# is finite, so that one doe
not need to write ani e in the denominator.†It is convenient
to solve Eqs. ~2.16! and ~2.17! for C(P0,ukW u)
5G12(P0,ukW u)/@P022E(kW )# and then obtainG12(P0,ukW u)
from C(P0,ukW u) by multiplying by P022E(kW ).‡

The coupling betweenG5
12 and G5

21 gives rise to ‘‘Z
graphs,’’ which we neglect. While such coupling may
taken into account for scalar, vector, and axial-vector ve
ces, in the case of the pseudoscalar vertex the coupling
large as to preclude the solution of thecoupledequations for
G5

12 and G5
21 . Therefore, our analysis is based upon t

use of Eqs.~2.16! and ~2.17!.
We now introduce functionsd0 andd1 :

ḠL~P,k!5
P”

AP2
g5@d0~AP2,A2kc

2!1P” d1~AP2,A2kc
2!#.

~6.7!

In the rest frame (PW 50), the last equation reads

FIG. 13. The functionT1(P2) is shown. The vertical lines indi-
cate the positions of the singularities of this function.

FIG. 12. The function detD(P2) is shown. Here GS

512.80 GeV22, GV512.50 GeV2, andk50.0575 GeV2.
s

i-
so

ḠL~P0,ukW u!5g0g5@d0~P0,ukW u!1g0P0d1~P0,ukW u!#.
~6.8!

Therefore

ḠL
12~P0,ukW u!5

m

E~k!
d0~P0,ukW u!2P0d1~P0,ukW u! ~6.9!

and

ḠL
21~P0,ukW u!52

m

E~k!
d0~P0,ukW u!2P0d1~P0,ukW u!.

~6.10!

Thus,

d0~P0,ukW u!5
E~k!

2m
@GL

12~P0,ukW u!2GL
21~P0,ukW u!#,

~6.11!

d1~P0,ukW u!52
1

2P0 @GL
12~P0,ukW u!1GL

21~P0,ukW u!#.

~6.12!

With these definitions, we can show how the vertex fun
tions that appear in theT matrix are modified by the confin
ing interaction. We recall that

FIG. 14. The functionT2(P2) is shown.~See caption to Fig.
13.!

TABLE I. Values of the mixing angle for various bound o
resonant states. For a resonance in theT2 channel, we may use the
formalism for a resonance in theT1 channel, if we add 90° to the
angle given in the table. Thus the 1.36 GeV state and the 1.47 G
state would be assigned the valuesu52.2° andu5122°, respec-
tively.

Energy~GeV! Channel u ~radians! u ~degrees!

0.138 T1 20.059 23.39°
1.18 T1 2.20 126°
1.36 T2 21.52 287.8°
1.47 T2 0.55 31.8°
1.63 T1 0.047 2.68°
1.68 T1 2.06 118°



is

am

r
op-

ar
at
ow

ell

tes

s
l

1050 PRC 59L. S. CELENZA, BO HUANG, AND C. M. SHAKIN
M S ig5

g0g5
D5S i cosug51 i sinug0g5

2sinug51cosug0g5
D . ~6.13!

The upper line provides the vertex for resonances inT1 and
the lower line provides the vertex for resonances inT2 .

If we sum an infinite ‘‘ladder’’ of confining interactions
the right-hand side of Eq.~6.13! is replaced by

Fc5S i cosug5~b01g0P0b1!1 i sinug0g5~d01g0P0d1!

2sinug5~b01g0P0b1!1cosug0g5~d01g0P0d1! D
~6.14!

with a straightforward generalization to the case withPW Þ0,

Fc5S i cosug5~b01P” b1!1 i sinu
P”

AP2
g5~d01P” d1!

2sinug5~b01P” b1!1cosu
P”

AP2
g5~d01P” d1!

D .

~6.15!

VII. SCALAR VERTEX FOR THE CONFINING
INTERACTION

The scalar vertex for a confining interaction was d
cussed in the first paper listed in Ref.@2#. We may write, in
the case that our model has zero energy transfer in the fr
with PW 50,

ḠS~P,k!5c0~P,k!1k”̂ c1~P,k!, ~7.1!

with k̂m5km2(k•P)Pm/P2. We define

L~1 !~kW !ḠS~P,k!L~2 !~2kW !5GS
12~P,k!L~1 !~kW !L~2 !~2kW !

~7.2!

and

FIG. 15. The energies of the doublets in the confining field
shown in the left-hand side of the figure. The energies of the st
obtained when the short-range NJL interaction is added are sh
on the right-hand side of the figure.
-

e

L~2 !~2kW !ḠS~P,k!L~1 !~kW !5GS
21~P,k!L~2 !~2kW !L~1 !~kW !.

~7.3!

The relations betweenGS
12 andGS

21 andc0 andc1 are

GS
12~P,k!5c0~P,k!1mc1~P,k!, ~7.4!

and

GS
11~P,k!5c0~P,k!2

kW2

m
c1~P,k!. ~7.5!

The formalism is made covariant by using Eq.~7.1! and the
procedure described in Sec. VI.

Equations forGS
12 andGS

21 were given in the first pape
of Ref. @2#. We repeat those equations here, taking the
portunity to correct two misprinted signs. Withk5ukW u and
k85ukW8u, we have

e
es

n

FIG. 16. ~a! The decay of ap8 to ap and ar meson at one-loop
order is shown.~b! Quarks or antiquarks on their positive mass sh
are denoted by crosses. In this case the decay of thep8 to aqq̄ pair
gives rise to a singularity of the amplitude. The dotted line indica
the origin the singularity.~c! Similar caption to~b!, except thatr
decay is responsible for singularities of the amplitude.~d! The am-
plitude of ~a! is modified by including confinement vertex function
for the p8 and ther. ~See Fig. 2.! Confinement is only a smal
effect in thep~138! vertex and is neglected in this work.
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GS
12~P0,ukW u!5124pE k82dk8

~2p!3 F28k82

E~kW8!
G

3
V0

C~k,k8!1~m2/2kk8!V1
C~k,k8!

~P0!22@2E~kW8!#2

3GS
12~P0,k8! ~7.6!

and

GS
11~P0,ukW u!5124pE k82dk8

~2p!3 F28k82

E~kW8!
G

3
V0

C~k,k8!2~k/2k8!V1
C~k,k8!

~P0!22@2E~kW8!#2
GS

12~P0,k8!.

~7.7!

In these equations

Vl
C~k,k8!5

1

2 E21

1

dxPl~x!VC~kW2kW8!. ~7.8!

Coupled equations forc0(P,k) andc1(P,k) are

c0~P,k!5124pE k82dk8

~2p!3 F28k82

E~kW8!
G

3
V0

C~k,k8!@c0~P,k8!1mc1~P,k8!#

~P0!22@2E~kW8!#2
~7.9!

and

c1~P,k!54pE k82dk8

~2p!3 F4mk8/k

E~k8!
G

3
V1

C~k,k8!@c0~P,k8!1mc1~P,k8!#

~P0!22@2E~kW8!#2
,

~7.10!

where we have again corrected two misprinted signs
appear in the first paper of Ref.@2#.

VIII. VECTOR VERTEX FUNCTION FOR THE
CONFINING INTERACTION

In this section we introduce a vector vertex functi
Gm(P,k) that sums a ladder of confining interactions. W
express this function in terms of four Lorentz scalars a
again use the four-vector

k̂m~P!5km2
~k•P!Pm

P2 . ~8.1!

@Recall that, in the frame wherePW 50, km5(0,kW ).# We also
introduce the Dirac matrix
at

d

ĝm5gm2
P” Pm

P2 , ~8.2!

with the propertyĝ•P50. In terms of that quantity, we de
fine

g',k
m 5ĝm2

k”̂ k̂m

k̂2
, ~8.3!

such thatk̂•g',k50. In Eq. ~8.3! we have writtenk̂m for
k̂m(P) for simplicity. With that simplified notation, we now
define

GV
m~P,k!5

k̂m

uk̂2u1/2F a0~P,k!1
k”̂

uk̂2u1/2
a1~P,k!G

1g',k
m a2~P,k!1 i emnrs

g5gnPrk̂sa3~P,k!

uP2u1/2uk̂2u1/2
.

~8.4!

In the frame wherePW 50, we have

GW ~P0,ukW u!5 k̂@a02g• k̂a1#1g',ka21 ig5~g3 k̂!a3 .
~8.5!

@In this case we can writea0(P0,ukW u), etc.# In Eq. ~8.5!, k̂ is
a unit vector along the direction ofkW .

It is also useful to introduce eight scalar functions:

L~1 !~ k̂!GW L~2 !~2kW !5G1
12~P0,ukW u!k̂L~1 !~kW !L~2 !~2kW !

1G2
12~P0,ukW u!L~1 !~kW !

3g',kL
~2 !~2kW !, ~8.6!

L~2 !~2kW !GW L~1 !~kW !5G1
21~P0,ukW u!k̂L~2 !~2kW !L~1 !~kW !

1G2
21~P0,ukW u!L~2 !~2kW !

3g',kL
~1 !~kW !, ~8.7!

L~1 !~kW !GW L~1 !~kW !5G1
11~P0,ukW u!k̂L~1 !~kW !L~1 !~kW !

1G2
11~P0,ukW u!L~1 !~kW !g',kL

~1 !~kW !,

~8.8!

and

L~2 !~2kW !GW L~2 !~2kW !5G1
22~P0,ukW u!k̂L~2 !~2kW !

3L~2 !~2kW !1G2
22~P0,ukW u!

3L~2 !~kW !g',kL
~2 !~2kW !.

~8.9!

Upon using Eq.~8.5!, we find withk5ukW u,

G1
125a01

m

k
a1 , ~8.10!
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G2
125a22

k

E~k!
a3 , ~8.11!

G1
215G1

12 , ~8.12!

G2
215a21

k

E~k!
a3 , ~8.13!

G1
115a02

k

m
a1 , ~8.14!

G2
115a3 , ~8.15!

G1
225a01

k

m
a1 , ~8.16!

and

G2
225a3 . ~8.17!

In addition, it is useful to define a series of functions th
go to 1 for largeukW u. These areg1

125(2k/m)G1
12 , g2

12

5G2
12 , g1

215(2k/m)G1
21 , g2

215G2
21 , g1

11

5(m/k)G1
11 . We also define g2

115G2
11 , g1

22

5(m/k)G1
22 , and g2

225G2
22 . The equations that ar

solved to obtain the variousg i are presented in the Appen
dix. Once the g i are calculated, we obtaina0(P0,ukW u),
a1(P0,ukW u), etc. The model is then made covariant by defi
ing
t

-

ai~AP2,A2kc
2!5ai~P0,ukW u!, ~8.18!

for i 50,1,2,3. Thus, for finite PW , we may calculate
@2kc

2#1/2 and use Eq.~8.18! to obtain the numerical value o
the ai(AP2,A2kc

2). In the next section we show how thi
procedure leads to covariant calculations of a quark-loop
grams describing meson decay which would have unphys
singularities in the absence of a confinement model.@We
have also shown that this model provides a covariant re
for vacuum polarization diagrams, if we replace the cut
function u(L3

22kW2) by u„L3
21kc

2(P)…, with kc
m5km

2(k•P)Pm/P2.#

IX. COVARIANT CALCULATION OF THE AMPLITUDE
FOR THE DECAY p8˜p1r

With reference to Fig. 16, we assign the four-moment
P to thep8 andP8 to ther. Thus the momentum of the fina
pion is P2P8. ~If the p8 is at rest,PW 50, and, if ther is at
rest,PW 850.) With i,j,k denoting the isospin indices, we de
fine the amplitude

Mi jk
m ~P,P8!5ncnf i e

i jk S Pm2
~P•P8!P8m

P82 D
3M ~P2,P82,P•P8!. ~9.1!

For simplicity, we do not include a confinement model f
the final-state pion. There is no singularity to be removed
the pion vertex and confinement is only a small effect in t
case. Thus, withb5P22(P•P8)2/P82, we have
M ~P2,P82,P•P8!5
i

b E d4k

~2p!4 Tr$@GV~P8,k!•P#S~k1P8!g5S~k1P!Ḡ5~P,k!S~k!% ~9.2!

5
i

b E d4k

~2p!4

Tr$@GV~P8,k!•P#T%

~k22m2!„~k1p!22m2
…„~k1P8!22m2

…

, ~9.3!

with

T5@~m1k” 1P8!„m2~k” 1P” !…~b01P” b1!~m1k” !#. ~9.4!

There is another diagram, with ther emitted first, that yields

M 8~P2,P82,P•P8!52
i

b E d4k

~2p!4

Tr$@GV~P8,2k!•P#T8%

~k22m2!„~k1P!22m2
…„~k1P8!22m2

…

. ~9.5!
nc-
We found it convenient to sendkm into 2km in the evalua-
tion of this term.@The minus sign in Eq.~9.5! arises from the
isospin trace.# In Eq. ~9.5!,

T85@~m2k” !~b02P” b1!~m1k” 1P” !~m2~k” 1P” 8!#.
~9.6!

We remark that, if the finalp andr are on mass shell,M is
only a function ofP2 and, if thep8 is also on mass shell,M
is a constant. In evaluating the integrals in Eqs.~9.3! and
~9.5! we include a cutoff function,u„L3

21kc
2(P)…u„L3

2

1kc
2(P8)… which we do not exhibit for simplicity of nota-

tion. @Note that calculations may be made for the wave fu
tions of Eqs.~6.14! or ~6.15! by using effective values ofb0
andb1 in Eq. ~6.3!.#

CombiningM and M 8, a lengthy calculation ofMT5M

5 1M 8 yields
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MT~P2,P82,P•P8!5
i

b E d4k

~2p!4

( i 50
3 ai~kc8!zi~P,P8,k!

D~k!D~k1P!D~k1P8!
,

~9.7!

with D(k)5(k22m2), etc. Here we have used a simplifie
notation for theai of Eq. ~9.4!, with

kc8
m5km2

~k•P8!P8m

mr
2 ~9.8!

defined at ther vertex. We also use the notation

k̂m~P8!5km2
~k•P8!P8m

P82 , ~9.9!

and

k̂m~P!5km2
~k•P!Pm

P2 . ~9.10!

@Equation~9.10! was first introduced as Eq.~4.1!.# In terms
of these quantities we have

z0~k,P,P8!5
k̂~P8!•P

uk̂2~P8!u1/2
Tr~T1T8! ~9.11!

with

Tr~T1T8!

58$mb0@m22k222k•P2P•P8#1b1@~k•P!

3@m22~k1P8!•~k1P!#1P•~P2P8!

1~k1P8!•P~k1P!•k2~k1P8!•k~k1P!•P#%.

~9.12!

Also,

z1~k,P,P8!5
k̂~P8!•P

uk̂2~P8!u1/2
„k̂2~P8!zk1 k̂~P8!•Pzp…,

~9.13!

with

zk58$b0@m22~k1P8!•~k1P!1k•~P82P!#

12mb1P•~P82P!% ~9.14!
and

zp58$b0@~k1P8!•k2m2#1mb1@m22~k212k•P8!#%.
~9.15!

In addition,

z2~k,P,P8!5F P22
~P•P8!

P82
2

„k̂~P8!•P…2

k̂2~P8!
Gzp

~9.16!

and

z3~k,P,P8!58$@P2P822~P•P8!2# k̂2~P!

2P2
„k̂~P!•P8…2%

2mb12b0

@P2#1/2uk̂2~P8!u1/2
.

~9.17!

As a next step, we complete thek0 integral in the complexk0

plane to find

MT~P2,P82,P•P8!52
1

2b
E k2dkE

0

p

sinu du

3(
j 51

3 G~kW ,kj
0!

D j~kW ,P,P8!
, ~9.18!

where

G~kW ,kj
0!5

1

2p2 (
i 50

3

ai~kc8!zi~P2,P82,P•P8,kW ,kj
0!.

~9.19!

The G(kW ,kj
0) are the residues at the poles, with

k1
05E~kW !, ~9.20!

k2
05E~kW1PW !2P0, ~9.21!

k3
05E~kW1PW 8!2P80. ~9.22!

The denominators are
D1~kW ,PW ,PW 8,P0,P80!52Eq~kW !@„E~kW !1P0
…

22E2~kW1PW !#@„E~kW !1P80
…

22E2~kW1PW 8!#, ~9.23!

D2~kW ,PW ,PW 8,P0,P80!52Eq~kW1PW !@„E~kW1PW !2P0
…

22E2~kW !#@„E~kW1PW !1P802P0
…

22E2~kW1PW 8!#, ~9.24!

and

D3~kW ,PW ,PW 8,P0,P80!52E~kW1PW 8!@„E~kW1PW 8!2P80
…

22E2~kW !#@„E~kW1PW 8!2P801P0
…

22E2~kW1PW !#. ~9.25!
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Consider the evaluation of Eq.~9.18!. If we put PW 50, u is
the angle betweenkW andPW 8, while, if PW 850, u is the angle
betweenkW andPW . For example, ifPW 850, the value ofuPW u is
fixed by energy conservation. We exhibit the positions of
zeros ofD2 andD3 for this case in Fig. 18. Note thatD3 is
zero whenukW u5kon

(r)5(mr
2/42m2)1/2, if the r is at rest.~See

the dashed line in Fig. 17.! Further,D2 is zero when values
of u andukW u lie on the curve in Fig. 18~solid line!. ~The zeros
of D3 correspond tor decay into aqq̄ pair, while the zeros
of D2 correspond to thep8 decay into aqq̄ pair.!

X. CALCULATION OF THE AMPLITUDE FOR THE
DECAY p8˜p1s

The analysis is similar to that of the last section, exc
that the final stater is replaced by as. ~Here the decay to

FIG. 17. The values of cosu and ukW u that yield zeros of the
denominatorD3 , when ther is taken at rest, are shown as a dash

line, drawn atukW u5kon
(r)5@mr

2/42m2#1/2. The solid line shows the

zeros ofD2 that arise whenEp8(PW )5E(kW1PW )1E(kW ). Here u is

the angle betweenkW andPW .

FIG. 18. ~a! A contribution to the self-energy of aqq̄ pseudo-
scalar excitation due to coupling to thep1r channel is shown. The
shaded areas denote the confinement vertex.@We neglect confine-
ment for thep~138!.# This diagram serves to define the functio
2 iK pr(P2). ~b! The imaginary part ofKpr(P2) may be obtained
from the discontinuity ofKpr(P2) across thep1r cut, when thep
andr are on their~positive! mass shells. Note that we neglectp-r
rescattering in the calculation ofKpr(P2).
e

t

p1s is meant to approximate three-pion decay, with two
the pions in a relativeS state.! The analysis of experimenta
data for three-pion states is usually based upon this mod
conjunction with thep1r model of the last section. If the
final pion has momentumP2P8 and thes has momentum
P8, we have the amplitude

Mi j 522d i j ncE d4k

~2p!4 Tr@Ḡs~P8,k!S~P81k!g5

3S~P1k!Ḡ5~P,k!S~k!#, ~10.1!

wherei,j are isospin indices. In Eq.~10.1! we have taken the
final state pion to be emitted first. Also, in Eq.~10.1!,
Ḡs(P8,k)5c0(P8,k)1k”̂ (P8)c1(P8,k) and Ḡ5(P,k)
5g5@b0(P,k)1P” b1(P,k)#. When thes is emitted first, the
amplitude is

Mi j8 522d i j ncE d4k

~2p!4 Tr@Ḡs~P8,k!S~k!

3Ḡ5~P,k!S~k2P!g5S~k2P8!#. ~10.2!

It is useful to writeMi j8 as

Mi j8 ~P,P8!522d i j ncE d4k

~2p!4 Tr@Ḡs~P8,k!S~k!

3Ĝ5~P,k!S„2~k1P!…S~k1P8!#,

~10.3!

where we have introduced the notationḠ5(P,k)
5g5Ĝ5(P,k). We proceed to calculate

Mi j , tot~P,P8!5Mi j ~P,P8!1Mi j8 ~P,P8! ~10.4!

and defineMi j , tot(P,P8)5d i j Mps(P,P8). We find

Mps~P,P8!52ncnfE d4k

~2p!4

T~k,P,P8!

D~k!D~k1P!D~k1P8!
,

~10.5!

with D(k)5(k22m21 i e), etc. The functionT(k,P,P8) is
given by the following expressions:

T~k,P,P8!54@c0~P8,k!z0~k,P,P8!

1c1~P8,k!z1~k,P,P8!#, ~10.6!

with

z0~k,P,P8!5b0~P,k!B0
~0!~k,P,P8!1b1~P,k!B1

~0!~k,P,P8!
~10.7!

and

z1~k,P,P8!5b0~P,k!B0
~1!(k,P,P8)1b1~P,k!B1

~1!(k,P,P8).

~10.8!

Further,

B0
~0!~k,P,P8!52m@m22~k1P!21P•~P2P8!#,

~10.9!

d
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TABLE II. Meson-quark coupling constants used in this work:gpqq , gsqq , grqq .

g fp ~MeV! Source

p~138! 3.93 92.6 Calculation withm050 in the NJL model
without confinement

s~600! 3.00a Ref. @3#

r~770! 3.93 Ref.@4#

aSee the discussion in Sec. XI.
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B1
~0!~k,P,P8!52@~k21m2!P•~P82P!1~m22k2!P•k

22~k•P!~k•P8!2P2k•P8#, ~10.10!

B0
~1!~k,P,P8!52@ k̂2~P8!„m22~k1P!21P•~P2P8!…

1 k̂~P8!•P~k21k•P82m2!#, ~10.11!

and

B1
~1!~k,P,P8!52m@2k̂2~P8!P•~P82P!1 k̂~P8!•P~m22k2

22k•P8!#. ~10.12!

We now complete the integral in the complexk08 plane to
obtain

Mps~P,P8!5ncnf~2 i !E dkW

~2p!3 FT1~k,P,P8!

D1

1
T2~k,P,P8!

D2
1

T3~k,P,P8!

D3
G ,

~10.13!

where T1(k,P,P8) is T(k,P,P8) evaluated with k(1)
0

5E(kW ), T2(k,P,P8) is T(k,P,P8) evaluated with k(2)
0

5E(kW1PW 8)2P80 andT3(k,P,P8) is T(k,P,P8) evaluated
with k(3)

0 5E(kW1PW )2P0. ~Note that P805@PW 821ms
2 #1/2

andP05@PW 21mp8
2

#1/2.) In Eq. ~10.13!, the various denomi-
nators are

D152E~kW !@„E~kW !1P0
…

22E2~kW1PW !#@„E~kW !1P80
…

2

2E2~kW1PW 8!#, ~10.14!

D252E~kW1PW 8!@„E~kW1PW 8!2P80
…

22E2~kW !#

3@„E~kW1PW 8!2P802P0
…

22E2~kW1PW !#,

~10.15!

and

D352E~kW !@„E~kW1PW !2P0
…

22E2~kW !#

3@„E~kW1PW !2P01P80
…

22E2~kW1PW 8!#.

~10.16!
XI. CALCULATION OF THE WIDTHS

In this section we introduce the contribution to the se
energy ofqq̄ isovector pseudoscalar states due to the c
pling to thep1r or the s1p channel.~See Fig. 18.! We
define a scalar function corresponding to the diagram sho
in Fig. 18:

Kpr~P2!5gpqq
2 grqq

2 2nf
2nc

2i E d4P8

~2p!4

3
MT

2~P2,P82,P•P8!@P22~P•P8!2/P82#

@~P2P8!22mp
2 1 i e#@P822mr

21 i e#
.

~11.1!

We may obtain ImKpr(P
2) by calculating the discontinuity

across thep1r cut,

Im Kpr~P2!5
1

2
discKpr~P2!, ~11.2!

and find, withs5P2, P825mr
2, and (P2P8)25mp

2 that

Im Kpr~s!5
1

64p
gpqq

2 grqq
2

2nf
2nc

2

mr
2s

MT
2~s!$@s2~mr2mp!2#

3@s2~mr1mp!2#%3/2. ~11.3!

If our states,p8, are given a nonrelativistic normalization

^p8,PW 8up8,PW &5(2p)3d(PW 2PW 8), the relation between the
width and ImKpr is Gpr52 ImKpr .

Our result is obviously sensitive to the choice ofgpqq and
grqq . We usemq50.364 GeV and obtain a value forgpqq by
working in the chiral limit. We findgpqq53.93 and f p

50.0926 GeV, so that the Goldberger-Treiman relation,mq
5gpqqf p , is exactly satisfied.~For the final state pion, we
use the physical mass of 138 MeV in the various kinemat
relations.! Since, in our analysis,grqq is momentum-
dependent, we may writegrqq(P2), with the relevant value
for on-mass-shellr mesons beinggrqq(mr

2). In this work we
usegrqq(mr

2)53.93 which is the value we have calculate
for Lorentz-vector confinement withk50.0575 GeV2. ~See
Table II.!

A low-energys is often used in nuclear physics to repr
sent correlated two-pion exchange. Also, three-pion fi
states are often represented byp1r and p1s configura-
tions ~Fig. 10!. If we accept thep1s model for the three-
pion final state with one pion pair coupled toL50, we need
to calculate Kps(P2), which is the analog ofKpr(P2)
shown in Fig. 18.

For thep1s intermediate state in Fig. 18, we find
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Im Kps~s!5
gsqq

2 gpqq
2

16ps

3A„s2~ms2mp!2
…„s2~ms1mp!2

…

3uMsp~s!u2 ~11.4!

with Gsp/25Im Kps(mp8
2 ), if the p8 state is given a nonrel

ativistic normalization,̂ p8,PW 8up8,PW &5(2p)3d (3)(PW 2PW 8).
Here we need to make a choice forgsqq(ms

2). We have
made an extensive study of scalar-isoscalarqq̄ states in Ref.
@3#, where we also included singlet-octet mixing. In Ref.@3#,
a study of the quark-quark interaction led to the estim
gsqq(0)53.32. That value was generally in accord with
quark model we developed for the description of sca
isoscalar exchange in the one-boson exchange model o
nucleon-nucleon force.~See the first item in Ref.@2# and Ref.
@3#.! Since we expect some variation as we go fromgsqq(0)
to gsqq(ms

2), we takegsqq(ms
2)53.00. There is, at least,

10% theoretical uncertainty in this value, beyond whate
limitation exists for thep1s description of the final three
pion state.

The widths calculated with the parameters mention
above are given in Table III. The results given there are u
to generate the solid curves in Figs. 19 and 20. To const
Figs. 19 and 20, we have used only the state at 1.18 G

FIG. 19. Data taken from Ref.@8# are shown. The figure show
the member of events~taken in 40 MeV intervals! corresponding to
the decayp8→p1(p1p)L50 . The various data sets shown co
respond to the different theoretical schemes used to analyze
data. The solid line shows the squaredT matrix of our state at 1.18
GeV ~in arbitrary units!.

TABLE III. Calculated widths of pseudoscalar states for dec
into the p1s and p1r channels are given. The states at 1.4
1.63, and 1.68 GeV have very small widths and are not listed.

Energy~GeV! Gps ~MeV! Gpr ~MeV! G tot ~MeV!

1.18 58 310 368
1.36 31 119 150
e

-
the

r

d
d
ct
V.

Here we have assumed that the state at 1.36 GeV is
weakly excited in the reaction that creates the three-pion
nal state.

XII. DISCUSSION AND CONCLUSIONS

We may consider the following interpretation of our r
sults. We start with the observation that, ifGS5GV50, the
potential VC(kW2kW8) acts and provides doublets atP0

51.20, 1.49, and 1.69 GeV. These states give rise to
singularities ofG5

12 andGL
12 seen in the values ofJPP(P2),

JPA(P2), and JAA(P2). ~See Figs. 9–11.! One member of
the doublet is a pseudoscalar state and the other is a~longi-
tudinal! axial-vector state. When we turn on the NJL inte
action, the degeneracy is lifted. In large part, the 1S pseudo-
scalar state becomes the pion, moving down over 1 G
from P051.20 GeV to P050.138 GeV. The axial-vecto
state is mixed with the pseudoscalar state and the mixed
is at 1.18 GeV, quite close to 1.20 GeV, the original positi
of the 1S states.~See Fig. 15.!

We next consider the 2S states that were at 1.49 GeV
whenGS5GV50. With reference to Table I and Fig. 15, w
see that there is a state atP051.36 GeV which gives rise to
a resonance seen inT2 . That state may be identified as th
p(2S) state. The next~mixed! state is at 1.47 GeV, indicat
ing almost no downward movement from the original po
tion at 1.49 GeV.

Finally, we consider the 3S states, which are at 1.69 Ge
whenGS5GV50. These states evolve into our states at 1
and 1.63 GeV. The latter state may be classed as ‘‘pionlik
since it appears as a resonance inT1 and has a small mixing
angle. The other~mixed! state has only moved down abo
10 MeV from the original position at 1.69 GeV. This anal
sis suggests, therefore, that thep(3S) is the state we ob-
tained at 1.63 GeV.

The information concerning states in the intermedia
energy range above 1 GeV is largely obtained through
study of three-pion final states@8,9#. For states with the
quantum numbers of the pion, we only find thep~1300! be-
low 1.7 GeV in the data tables@7#. Our analysis suggests th
presence of a total of six states with masses less than
GeV. We have found that the nodeless state at 1.18 GeV
the state at 1.36 GeV have significant widths for the dec
p8→p1s and p8→p1r. Our model gives a good fit to
the position of the peak seen in the data shown in Fig. 1

he

FIG. 20. The figure shows the number of events~taken at 40
MeV intervals! corresponding to the decayp8→p1(p1p)L51 or
p8→p1r. The solid curve represents the squaredT matrix for our
state at 1.18 GeV presented with an arbitrary normalization.
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we assume the state at 1.36 GeV is weakly excited in
reaction leading to the three-pion final state.

When we consider the decayp8→p1r, we find that the
1.18 GeV state and the 1.36 GeV have large widths, w
the other states have quite small widths. When theoret
analysis is used to extract the decays of the naturep8→p
1r from experimental data for the three-pion final state,
results are rather model dependent and the values show
Fig. 20 exhibit significant scatter. For Fig. 20 we again lim
ourselves to the state at 1.18 GeV in creating the figure.~Our
theoretical curve is given an arbitrary normalization.! We
should keep in mind that we are not fitting experimental da
but are fitting ‘‘data’’ extracted using a simple theory of th
final-state dynamics. The fact that we do not obtain a go
result for the branching ratio suggests that a study of fin
state interactions in the~coupled! p1r ands1p channels
may be necessary to obtain both the cross section
branching ratio. Such a study is beyond the scope of
work.

As a final point, we remark that thep~1800! that appears
in the data shown in Fig. 19 is unlikely to be aqq̄ state, since
qq̄ states with several nodes have very small widths in
model. ~In our analysis, a state at 1.8 GeV would have
least three nodes in its wave function.!
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APPENDIX A

In this appendix we present the equations that we h
solved to obtaing1

12 , g2
12 , etc. We have, withk5ukW u, k8

5ukW8u andx5cosu, whereu is the angle betweenkW andkW8,

g1
12~P0,k!511E d3k8

~2p!3 F S 2k82x

E2~k8!

1
k8

k

m2x2

E2~k8! D k

k8

g1
12~P0,k8!

P022E~k8!

1~12x2!
g2

12~P0,k8!

P022E~k8!
GVC~kW2kW8!

~A1!

and

g2
12~P0,k!512E d3k8

~2p!3 F 2m2

2E2~k8!
~12x2!

g1
12~P0,k8!

P022E~k8!

2S ~11x2!

2
1

kk8x

E~k!E~k8! D g2
12~P0,k8!

P022E~k8!
G

3VC~kW2kW8!. ~A2!
e

le
al

e
in

t

,

d
l-

nd
is

r
t

-
y

e

We find thatg1
215g1

12 andg2
21 satisfies the equation

g2
21~P0,k!512E d3k8

~2p!3 F m2

2E2~k8!
~12x2!

g1
12~P0,k8!

P012E~k8!

1S ~11x2!

2
1

kk8x

E~k!E~k8! D g2
21~P0,k8!

P012E~k8!
G

3VC~kW2kW8!, ~A3!

where we have insertedg1
12 for g1

21 in the first term of the
large bracket.

Once we have calculatedg1
12 , g2

12 , andg2
21 , we can

obtaing1
11 from the relation

g1
11~P0,k!512E d3k8

~2p!3 VC~kW2kW8!F 4m2

E2~k8!

3S 2xk8

k
2x2D g1

12~P0,k8!

~P0!224E2~k8!
2~12x2!

3S g2
12~P0,k8!

P022E~k8!
2

g2
21~P0,k8!

P012E~k8!
D G . ~A4!

Using Eqs.~A1!–~A4!, we obtain

a05
mk

E2~k!
@2g1

121g1
11#, ~A5!

a152
m2

E2~k! Fg1
121

k2

m2 g1
11G , ~A6!

a25
1

2
@g2

121g2
21#, ~A7!

and

a35
E~k!

2k
@g2

212g2
12#. ~A8!

We see that we need not calculateg2
11 , g1

22 , or g2
22 to

obtain theai ( i 50,1,2,3). We record the relation betwee
the g i and G’s: g1

125(2k/m)G1
12 , g2

125G2
12 , g1

21

5g1
12 , g2

215G2
21 , g1

115(m/k)G1
11 , g2

115G2
11 ,

g1
225(m/k)G1

22 , andg2
225G2

22 .
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