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Covariant confinement model for the calculation of radial excitations of the pion
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We describe the mixing afq pseudoscalar states with longitudirg] axial-vector states, making use of a
relativistic quark model that includes a model of confineméntthe absence of the confinement model, our
model reduces to the Nambu—Jona-Lasinio modieladdition to the pion, we find°=0" states at 1.18, 1.36,

1.47, 1.63, and 1.68 GeV. The first two of these states are in the region {1860 that is assigned a mass

of 1300+ 100 MeV and a width of 200—600 MeV in the data tables. We provide values of the coupled-channel
gq T matrix, as well as the mixing angle, which is energy-dependent in our analysis. In addition, we describe
a model of confinement for longitudinal axial-vectqq states that is used in the calculation of vacuum
polarization diagramgThat analysis supplements our previous study of confinement in the case of pseudo-
scalar mesonsWe show that our confinement model may be made covariant. We use the covariant model to
calculate the decay of the various states, to thew+p and 7+ o channels at one-loop order. At one-loop
order, it is found that only the nodeless state at 1.18 GeV and the state at 1.36 GeV have significant widths for
7' —a+ . These states have somewhat larger widths for the de¢ay =+ p, leading tol',,;=0.368 GeV

for the state at 1.18 GeV and 0.150 GeV for the state at 1.36 GeV. We note that the state 1.18 GeV is a mixed
pseudoscalar—axial-vector state, while the state at 1.36 GeV is(t®) state to a good approximation, since

it has a very small admixture of axial-vector components. There is information concerning the wecay

— o+ (7+ ) - that is extracted from experimental data for three-body final states(r@delesy state at

1.18 GeV has the correct energy and width to fit that data. However, our widths ferm+ (7+ ) -, are

larger than those forr'— 7+ (7+ 7). That suggests that final-state interactions are probably quite im-
portant in understanding the branching ratios 4drdecays to states of three pions. Our results also suggest
that, if we were to study ther(1300, and include final-state interactions, it is necessary to include both the
1.18 GeV and the 1.36 GeV states in the analy€ the other hand, since the 1.36 GeV state iSatate,

it may be only weakly excited in the reactions used to generate final states of three) pions.
[S0556-28189)05802-1

PACS numbds): 24.85+p, 12.39-x, 14.40.Aq

[. INTRODUCTION very sensitive to violation of chiral symmetry, and while our

. . Lagrangian respects chiral symmetry in the absence of cur-
In a series of papers, we have been developing an eﬁe(fént uark masses, our approximations, in the case of
tive field theory for quarks based upon the Nambu-Jona; d ' PP '

. . -~ “Minkowski-space calculations, violate chiral symmetry to
Lasino (NJL) _model [1], supplemgnted with a relativistic some degreg(A Euclidean-space analysis was presented in
model of confinemer{2—6]. In previous work we have stud-

: ) A , Ref. [6], where we showed that chiral symmetry may be
led singlet-octet mixing for scalar-isoscalar mesdS§,  aintained in the calculation, and that the Goldstone theo-
n-7n' mixing and ¢-» mixing [4]. We have also studied the (o is satisfied.

spectrum of light and heavy mesons, including charmonium | sec. |1 of this work we review our treatment of the
and bottomoniun{5]. In the present work we extend our yacuum polarization diagrams that play an important role in
considerations to the mixing between pseudoscalar states agfgk NJL model. We also show how the calculation of the
longitudinal axial-vector states, a phenomenon that is usuallgolarization diagrams is modified when we include our con-
called “m-a; mixing.” A novel feature of the present study finement model. The confinement model eliminates cuts in
is that we are able to study this mixing in the energy regiorthe P? plane, that would appear when the quark and anti-
0<P2<3.0Ge\,. (The usual discussion is limited to low quark both go on mass shell. Therefore, the vacuum polar-
energies, in the absence of a model of confinem&we are ization integralsJ(P?), are real, if we do not take into ac-
particularly interested in the region where one finds thecount decay into open channels, suchmasy, p+ m, etc.
(1300, since little is known concerning that resonang@s. In Sec. lll, we study theyq T matrix that describes the
the data tables one finds that the energy is 130@oupling of theqq pseudoscalar channel to the longitudinal
=100 MeV, while the width is given as 200—600 M¢V].)  component of theyq axial-vector channel. Singularities of
We find it useful to divide our analysis in two parts. For the T matrix correspond to resonant states of the system.
the low-energy domainP?<0.1 Ge\?, we neglect confine- In Sec. IV, we present the results of our analysis R3r
ment, while for 0.1 Ge¥<P?<3.0GeV* we include our <0.10Ge\?, while in Sec. V, we present results for the
confinement model. That is done, since pion properties areegion 0.10 Ge¥< P?<3.0 Ge\~. It is the ability to treat the
intermediate-energy region that is a novel feature of our ap-
proach. The low-energy region, described in Sec. IV, may be
*Electronic address: CASBC@CUNYVM.CUNY.EDU treated by standard methods. However, we include a discus-
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sion of that region for the sake of completeness. In Sec. V we P/2+k

present our results for the spectrum of the mixed; states p “HQY,,
and in Sec. VI we begin a discussion of@variantmodel of

confinement, which is needed for the calculation of the decay (a)'*’/2+k

of the mixedw-a, states to the channets+p and7+o. In

Sec. VI we describe a vertex function of the confining inter- P2k

action for pseudoscalar states, while Sec. VII contains a cor n v n

responding discussion for scalar states. The more compli PO <>

cated confinement vertex function for vector states is taker -P/2+k

up in Sec. VIl and in the Appendix. N ”HY“ LB
In Sec. IX we describe a covariant calculation of the de-

cay amplituden’ —7+p where 7' is any of the states (b)

found in this work, other than the(138). Section X contains ) . o

a similar discussion of the decay amplitude #er— 7+ 0. di FIG. 1. (8 The d|agram. shows the basic vacuum polarization

In Sec. Xl we describe the calculation of the decay widths 'agram (.’f the NJL model in t.he absence of a gonfmement model.

. . (b) The diagram serves to define the tend6f(P) in the presence

for each of the states considered here. Finally, Sec. XIlI de: ' !
. . . of a confinement vertex, represented by the shaded triangular area

scribes some aspects of the experimental data obtained frowee Fig. 2 The right-hand side of the figure shows a perturbation

the stl_de of_the three-pion final states, as well as some furéxpansion fod#*(P).
ther discussion.

R d*k
_i1PP —(_ -
Il. VACUUM-POLARIZATION FUNCTIONS AND A NT(P)=( DnCnfTrJ (271')4

MODEL OF CONFINEMENT o o
X[1ys1S(P/2+ k)i y5iS(— P/2+ k)],
For the purposes of this work, we consider the Lagrangian
with SU(2)-flavor symmetry[ 1] 2.4

—iJPAP)=(—1)ncn Trf Lﬂ(
L=qlio—m’)g+ %S'[(Eq)zﬂﬁys?q)z] g ) en?
X [1S(P/2+K)i ¥5iS(— P/2+K) v, ¥s],

Gy _ _
— S L@"70) 2+ @y ys7) 2]+ Loonts (2.1 259

A d*k
—i32P(P)=(—-1 nnTrf—
wherem®= diag(m_,n). We use Lorentz-vector confinement w (P)=(=1)Neny (2m)*

with X [1S(P12+K) ¥, y5iS(— P12+ K)i ys],
(2.6)
L0 = [ EYTOVAOOVCY T VA0
(2.2)
2 AA d*k
Here,VC(r) = kr exp(— ur), wherex is the “string tension” ~HP)=(= 1)ncnfTrJ (2m)*

and u is a small parameter introduced to soften the singu- . .
larities of the Fourier transform of(r). (If the parameter X[IS(P/2+K) v, v5iS(= P12+ K) v, 5].
w is small enough, the potential is essentially linear over the (2.7
range of interaction considerg¢dVe find
(See Fig. 1. Here S(P)=[P—m-+ie] 1, with m being the
constituent quark mass. Further, the number of flavors is

I 1 442 _ . )
VO(K—K')= — 8k —— S M 7 2 and the number of colors is,=3. We also define
[(k=K)?+ P [(K=K)2+p?P? 5
2.3 IPAP)=13PA(P?) —_F‘:z , 2.8

in the case that we neglect energy transfer via the confining

field. In this work we have takemu=0.020 GeV. [This AP on AP a2y i
model may be made covariant by expressifgin terms of 3 (P)=1375(P%) /P2’ (2.9

the square of the difference of two four-vectork, € k)2,

that reduces to—(IZ— IZ’)2 in the meson rest frame, so that and
Eq. (2.3 is obtained}
We begin our analysis by defining the polarization inte-

P.P,
grals INN(P)==T,,(P)IPAPY) — —£230A(P?), (2.10

N2
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Pr2+k Pi2+k Pr2ek A(=K)T5(P,k)A()(K) appear. Therefore, wheR=0,
P“p< _p u< N u<o it is useful to defind’z ~(P,k),
-P/2+k (a) -P/2+k -P/2+k A(Jr)(lZ)FS(P’k)A(*)(_ E):l“;*(p,k)A(+)(E
P24k P24k XysAT(—k), (213
. Hye
= o v andT'z *(P,k)
-Pr2+k -P/2+k
AC(=K)Ts(PK)AM(K)=T5 " (P,K)A)(—kK)
v Mdive L
' X ysA ) (K), (2.149

+— —+ ; ; ;
FIG. 2. (a) The equation for the vertex operatoi&“(P,k) is Wher?F5 (P’_k) andl's " (P.k) are ordinary functions with

shown. The vertex is represented by the filled triangular area anl® Dirac matrix §tructure.. Yo .

the dashed line represents the confining interactionA perturba- We may obtain equations fdf5 ~(P.k) andI's " (P,k)

tive expansion is shown for the equation (®. We see that the starting with the equation for the matrlx(P,k),

vertex serves to sum a “ladder” of confining interactions.

_ d*k’ L
with 9,,=9,,—P,P,/P% Note also thatJ*?(P?)= Ts(P.k)=ys—i f Saly"S(PI2+K)Ts(PK")
— JPACPY) andP g+ =g"P, =0, (2m)
The sAipara_tlon of trar]sversg and longitudinal parts of the X S(— P/2+k’)ypVC(IZ— IZ’)]. (2.15
tensorJ),;(P) is appropriate, since the transverse part may

be treated separately. Thus, onl"P(P?), JPA(P?), A
JAP(P2) and J(P2) will appear in the coupled equations We proceed by muiltiplying this equation bysA*)(k) on
that describer-a,; mixing. (We use the designations-a, the left, and byA(™)(—k) on the right, and then taking the
mixing” as a simple phrase describing the phenomenon contrace. We find that if we neglect coupling betwdeh~ and
§|dered here.W[thout a model qf conflnemeqt, the polariza- rg* , we have(for |5:0)
tion integrals will have unphysical cuts startingRft=4m?
that correspond to the quark and antiquark going on their
(positive mass shells. That feature is eliminated by our con- 0 12
finement model. I's (P ,|k|)=1—f
For this calculation, the confining interactiMF(IZ— K')
is used to define two vertex functionéSee Fig. 2. Our

m2—2E(K)E(K’)
E(K)E(K")

d3k’
(2m)®

I's (PO|k')VE(k—K")
X .

treatment of these functions has its origin in the method used (2.16
to calculate the vacuum polarization integrals. These are cal- PO—2E(K")
culated by using the relation
A similar analysis leads to
m AP A(-P
S(P)=— E L (» ) 3 | 2 N
E(P)| P°—E(P)+ie PP°+E(P)—ie o0 d°k’ | m*—2E(K)E(k’)
(2.11) I's "(PPJkD=1+ 3 —
(2m) E(k)E(k")
for each propagator in Eq§2.4)—(2.7) and then performing rg+(p0,|E'|)VC(|Z_|Z')
the integral in the complek® plane. X S - : (2.17
Let us first consided”"(P?), modified to include the P +2E(K")
confining vertexiI'5(P,k), which has a Dirac matrix struc-
ture, For example, Eq(2.16) is obtained if we complete the inte-
gral in the lower complex/, plane and pick upnly the pole
d*k where the quark is on its positive mass sli8ll The other
—iJPP(P)=(—1)ncn; Tr j W[i v5i S(P/2+ k) po!e in thg Iower—h_alk(’) plane corresponds to the antiquark
being on its negative mass shdllt plays a role when we
XiT5(P,K)iS(— P2+ K)]. (2.12  obtain Eq. (2.17.] Note that when P°—2E(k)=0,

I'*~(P%|k|)=0. This aspect of the confinement model re-
) L moves the unphysicajq cuts that would otherwise appear in
Use of Eq.(2.1D in Eq. (2.12, with P=0, shows that the vacuum polarization integral¥{P?). Using these results
only the elements A)(K)Ts(P,K)A(T)(—=k) and  we find
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3 +— D0 ||
JPP(P2)=_2ncan ax [FS (PLIK)

(2m)%| PO—2E(K)
T "(POJKD)

- (2.18
PO+ 2E(k)

Since the second term is small, except at low energy, and
= T(PY,|K|) is fairly close to unity, we will use the approxi-

mation

d3k
(2m)®

2 (PO[K]) 1
PO—2E(K)

JPP(P?)=—2n.n -
ff PO+ 2E(K)
(2.19

in the intermediate energy region. In the absence of confine-

ment (k=0) we putl'y ~(P%|k|)=1 in Eq.(2.19.
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Completing the integral in the lowé® plane and picking
up the contribution of both poles of the propagators found
there, we obtain

3 I (P|k
JﬁA(Pz):chnff d k3 m» L ( |»|)
(2m)° E(k) | P°—2E(K)
__mEM | (2.23
PO+ 2E(k)

[See Eq(2.27).] Here we have neglected confinement in the
second term of Eq(2.23. In the absence of a confinement

model («=0), ')~ (P |k|])=m/E(k), so that

d3k 2

(2m)*

m

E(K)

4E(K)

(PO)2—[2E(K)]2’
(2.249

IPA(P?)=2n.n; f

We also need to introduce a longitudinal axial-vector ver-

tex, T{*, in the calculation 0B%%(P). We write, forP=0,

9 . P~
AP ROTEP KA (—k) = EFE’(P.k)
X A(K) ysA T (—K).
(2.20
Now note that from Eq(2.10
P2IMA(P?) = — PLINA(P)PY, (2.21)

so that, includingﬂ‘ at one vertex, we have

P2JAA(P2)=—n.n ifLﬂ(Tr[S(P/ZJr K)P“T (P,K)
L cllf (277)4 M ’
X S(—P/2+K)P ys]. (2.22

o

|P”J’

X
E(k’)

for P°<2m. Note that in the low-energy regimep?
<0.10GeV, we will use Eq. (2.24 and for the
intermediate-energy regime, we will use E8.23 when cal-
culating polarization integrals. As noted above, an important
feature of our confinement vertex functions is that they are
zero when the quark and antiquark both go on th@isitive
mass  shells.  Therefore, expressions such as
I~ (PO,|K|)/[P°—2E(k)] and T}~ (PO, |K|)/[ P°— 2E(K)]
are finite. Thus, we need not include a term sucheas the
denominators of these expressions.

An equation for the longitudinal axial-vector vertex is ob-
tained by starting with

P . _ P~ . .
\/—ZA(”(k) ysA (KT (P.k)= ;A“)(k)? YsA (= K)
P

= PR ) k’ = ,
FL(P,k):F’)/s—IJWypS(P/Z-Fk )FL(P,k )
X S(—PI2+k')y,VE(k—K"), (2.29
and using Eq(2.20. Thus
d*k’ A(+ (K) Y AR ) ysA (=K )y, AT (= K)
(2m)* o PO
+k" —E(k")+ie —?+k° +E(k')—ie
VE(k—Kk)I| ~(P,k"), (2.2
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where, for simplicity we have neglected the couplind gf- ll. RESONANCES AND MIXING ANGLES
to [ . If we multiply Eq.(2.26 by ys and take the trace,

: The resonant states of the coupled pseudoscalar and lon-
we find

gitudinal axial-vector fields may be found by studying the
matrix for gqq scattering, including channel coupling terms.
In the absence of such couplifg®*(P?)=0] the T matrix

in the pion channel is

d3k’ | 2E(K")E(k) —m?

T'E (PO, IK]) = —— +f
E(K)

(2m)®|  E(REK)
- TA(P?)=iysT P (P?)ivs, 3.9
KRR
PO—2E(k")
PP/ 52 Gs
We can also show that T, (P9)=— 1-GIPP (P2’ (3.2
o m d3k’ | 2E(K")E(K) —m? with 1—GgJPP(m2)=0. If we include channel coupling we
I (PO kD) =—— —J 3 — write
E(k)y 7 (2m) E(K)E(K")
- P
[ (PO, K! .. T=iysT P(P?)iys+iysiTPAP?) —= v5
x;wvc(k—k’). (2.28 JP?

PO+ 2E(K’)

P P P
) + — S TAP(P2)j g+ —oTAAP2) 25 (39
[Thus, in the absence of confinemerd,” ~(P%k|) VP2 VP? VP?
=m/E(K), as note above. Therefore, we obtain E2.24 This form serves to define TPP(P?), TPA(P?)=

from Eqg. (223), if K=o.] Note that Eq3(216) and (227) _TAP(PZ), andTAA(PZ). It is then useful to Organize these
are rather similar, with thdhomogeneougquations being quantities into a matrix

identical. ThusI'2 ~(P°,|k|) andT';" ~(PC |K|) have singu-
larities at the same values 8. These singularities corre- TPP(P?) iTPP(P?)P"/\P?
spond to bound states in the confining field considered in T(p,v)= iTAP(P)PX/ P2 TPAP?)PHPYIP?)
isolation. (If we consider only the confining interaction, (3.4
these bound states appear as doublets.

Proceeding in an analogous fashion as in our calculations In a similar fashion, we may define
of JPP(P?) andJAA(P?), we find

1B JPP(P?) iJPA(P2) PP/ \P?
@k m (B:P)=\i98%(p2)p8I B2 — 34(P2)PEPY/P2
JPA(PZ):_chnff s (3.5
(2m)° E(K)
R and also define the matrix
s (P°K]) 1
x| = o+ — —|. (229 e )_(GS 0 39
PO—2E(k) P°+2E(k) (u,v)=| g —Gygt) .
For k=0, we see that wheregf*"=P*P"/P2. Thus, we may write the equation
d®k | m 1 T(p,v)=—G(u,v)+G(u,B)I(B,p)T(p,v), (3.7
JPA(P?) = —4P°ncnff o —,
(2m)° | E(k) |(P%)2—[2E(k)]? where the repeated Lorentz indices are summed.
(2.30 The resulting equations may be usefully written in the

following matrix form:
with JPA(0)=J*P(0)=0. We will use Eq(2.30 in the low-
energy domain and E@2.29 in the intermediate-energy do- (1—GgJPP(P?) —iGgIPAP?)\[ TPP(P?) iTPAP?)
main, where the second term in Eg.29 is quite small. iGyJAP(P?) ]_—GVJ'E‘A(PZ) iTAP(P?) TfA(pZ)
As is well known, the integrals defining the vacuum po-
larization functions are divergent. Therefore, they are cut off

by inserting a theta functiord(Az—|k|). We usedAs

=0.622 GeV in our earlier work and we continue to use tha ) : :
value here(With m=0.364 GeV andA,=0.622 GeV, one t\Ne can call the first matrix on the left-hand side of E}8)

2 .
obtains satisfactory values for the vacuum condensate’s D(P%), with
anq(d_d), and for the pion decay constain} [1].) At a later detD(P?)=[1— GgJPP(P2)|[1— Gy I A(P?)]
point in our discussion, we will introduce a covariant version
of our cutoff function. +GsGy[IPAP?) 72, (3.9

Gs O
0 -Gy

: (3.8
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where we have used the fact tht"(P?) = — JPA(P?).
The solution of the matrix equation, E€.8), is 0.092 |-
Gd1-G\JM*(PY)]
PP/ p2y_ _ «~ 0090}
o
PA/p2 ~ o088l
TPAP?) = M (3.10 &
detD(P?) o
& 0086 |
G\[1-GsIPP(P?)]
AA/ D2 _
P9 detD(P?) ’ (3.12 0.084 |
with TAP(P?)=—TPA(P?), Note that boundor resonant 0 002 004 0.06 008 010
states correspond to the zeros of DIEgP?). P* (GeV?)

Now consider thd matrix of Eq.(3.3) in the frame where ) ) )
FIG. 3. The functiond”P(P?) is shown in the low-energy re-

P=0. We may write gion. Herem=0.364 GeV and\ ;=0.622 GeV.
1\_ ( 0 )(TPP(PZ) ITPA(PZ))< |'}’5 )
= 1 1 1
Y5:Y Vs ITAP(PZ) T/I’:\A(PZ) 7,0),5
(3.13

of interesting physical consequences as described in Ref.

The introduction of confinement tends to reduce the po-
larization integralsJ(P?), by about 10% at low energies.
We can make the values of d2{P?), T,(P?), and T,(P?)

which may be written a® "T(P?)®. Now we use the ma- \
continuous as we go from beloR?=0.1 Ge\ to above that

trices

value by increasingg from 11.83 GeV? to 12.80 GeV?2
cosf isind when we introduce confinement. We use the latter value to
M(6)= isingd cos@ 3.14 obtain the results reported in Sec. V. While we are not too
concerned with the dynamics in the low-energy region in this
and work, it may be of interest to consider a smooth turning on of
o the confining interaction. That may be accomplished by writ-

M-1(6)= cos§ —isin 0) (3.15 ing
—ising cosf )’ '
Kk(P?)=k(1—e ®P%). (4.1)

to bring T(P?) of Eq. (3.13 to diagonal form:

2 We see thatk(0)=0 and, if a=7.67GeV, we have
T1(P%) 0 ) ) . (319 (03 GeV) =0.9%. The use of this scheme yields the values
0 TP of JPP(P2), JPA(P?), and JAA(P2) shown in Figs. 9, 10,

and 11, respectively, for the region<®P?<0.3 Ge\. Here,
we usex=0.0575 GeV, the value used in our earlier work
2TPA(P2) on light-meson spectroscopy4,5]. (We also usem
tan 20(P?) = TPP(PZ) —TAA(PZ) " (3.17 =0.364 GeV andA;=0.622GeV, which are also values
used in our earlier work4,5].)
The vertical lines in Figs. 9—11 show the positions of the
ound states in the confining field. They represent the singu-
larities of the vertex function's ~ and ')~ . Recall that
1“5+_ and '/~ satisfy inhomogeneous equations and these
functions are singular when the homogeneous equations have
solutions.[The homogeneous equation is an equation for the
As noted in the Introduction, it is best to neglect confine-vertex function of the bound states in the field set up by the
ment at low energy in our model, where it represents only &gtentialvVC(k—k’).]
small eff\elzzct. In this W?vrpk vxée n%%lec; confine/zrllent2 =03
=<0.1GeV. We showJ""(P?), J"(P9), andJ*(P?) in
Figs. 3, 4, and 5, respectively. In Fig. 6 we show DIgR?). V. @2y MIXING AT INTERMEDIATE ENERGY
We useG,=12.50GeV?, a value that was used in our In this section we make use of the valuesJ5f(P?),
earlier work[4]. We find that the choic€s=11.83GeV?  JPA(P?), and J*(P?) shown in Figs. 9-11. WithGg
yields a pion mass of 138 Me\(See Fig. 6. =12.80GeV? andG,,=12.50 GeV?2, we find the values of
In Fig. 7, we show the value df,(P?). We do not show detD(P?) shown in Fig. 12. There are zeros of &¢P?) at
T,(P?), since that function is, more or less, constant in theP®=1.18, 1.36, 1.47, 1.63, and 1.68 GeV, in addition to the
region 0<P?<0.1Ge\%. In Fig. 8 we show the mixing zero atP°=0.138 GeV shown in Fig. 6. We recall that these
angle, 9(P?), for the low-energy region. We find that are all J’=0" states, while the data tables only list the
0(mf,)= —3.39°, which represents a small admixture of thew(1300 in the energy region considered in this section. Our
longitudinal axial-vector state. This admixture has a numbestates appear in eith@y (P?), shown in Fig. 13, off ,(P?),

M(6)T(PP)M ()=

We find aP?-dependent mixing angle,

Values forT,(P?), T,(P?), detD(P?), and 6(P?) will be
presented in Sec. IV for the low-energy region and in Sec.
for the intermediate-energy region.

IV. a-a; MIXING AT LOW ENERGY
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0.020

0.01 |
0.00
0.015
< -0.01 |
5 _
g
= QO .oo02b
e 0.010 =
= 5
= 0.03 |-
g o
=
0.005 004l
0.05 |-
0 s ) i L L ) 1 I 1 1 1 ]
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FIG. 6. The function deb(P?) is shown in the low-energy re-
gion. Note that deD(m2)=0. Here Gg=11.83GeV? and Gy
=12.50GeV2

FIG. 4. The functionJ®A(P?) is shown in the low-energy re-
gion.

shown in Fig. 14. Specifically, iff,(P?) we find resonances VI. PSEUDOSCALAR VERTEX FUNCTION FOR THE
at P°=0.138, 1.18, 1.63, and 1.68 GeV, whilg(P?) has CONFINING INTERACTION

such states aP°=1.36 and 1.47 GeV. Table | gives the
value of the mixing angl@(P?) for the pion and for the five
resonances listed abov&ee Fig. 19.Again, with reference

Vertex functions may be constructed for the calculation of
the properties of mesons of various angular momenta. The

to Table I, we see that the resonance at 1.63 GeV is in thgnhomogeneousaquation defining the vertex function is de-

2 icted in Fig. Za). (For example, for the pseudoscalar vertex
phi\n_nelTl(? ).' Therefore','we can st'ate that the resonanc#’unction, the driving term would be/s7?, where 72 is an
is “pionlike,” since the mixing angle is very small.

: isospin matrix. In Fig. 2@ V¢ represents the confining in-
In order to calculate the decay amplitudes of our Statesferaction, which, in our model, may be expressed in terms of
we will calculate the loop integrals shown in Fig. 16. If we . square of the difference of two four-vectoh&S[ (k
calculate the quark loop of Fig. (&, we find unphysical —k.)?], where e
C 1

singularities whergq pairs go on mass shell, as indicated in
Figs. 16b) and 1&c). One way to deal with this problem is (k-P)P*
to include vertex functions of a confining interaction, as in- k&=k+— —pz 6.9
dicated in Fig. 1€d). As we will see, these vertex functions
are equal to zero, when both the quark and antiquark go og,4
their (positive mass shells. This feature serves to eliminate
the singularities indicated in Figs. 8 and 16c). (k' - P)P*
In the next section we will show how the vertex functions keH=k'#— —pz (6.2
of the confining interaction are calculated, with the aim of

the making covariant calculations of the loop diagrams ofygte that the invariant kﬁ may be identified as the square

Fig. 16. . - .
9 of the relative three-momenturk?, of the quark and anti-
quark in the meson rest frame whelPe=0. (Later in this
-0.035 - 20 -
16
-0.036 |- 12 -
< L8
2 0037 | o L
5] -
=
NQ_-, -0.038 |- ~
< &
) .
-0.039 | =
-0.040 ! s 1 N 1 2 1 s | 1 ) s \ » 1 s )
0 0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10
P? (GeV?) P? (GeV?)
FIG. 5. The functionJ*A(P?) is shown in the low-energy re- FIG. 7. The functioriT,(P?) is shown in the low-energy region.

gion. The singularity atPZ=mfT is indicated by the vertical line.
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@ 010} = 04|
x L
012
014 | 081
-0.16 L . L L L ! 00 ols 1|o 1|5 ' 2I0 ‘ 2|5 3|o
0.00 0.02 0.04 0.06 0.08 0.10 ’ ’ ’ ’ ' ’ ’

2 2
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FIG. 10. The function J’A(P?) is shown for G<P?
<3.0Ge\

T'5(P,k) = ys[ bo( VP2, v/~ kZ) + P by ( \/Ez,\/—kc)]-(6

FIG. 8. The mixing anglef(P?), is shown in the low-energy
region. Note tha®(m?)= —3.39°.

work we will introduce four-vectork® and k’# that are 3
defined in the same fashion &&§ and k.*. We use the

notationkf andk:.” when we wish to stress the role of these |t is not difficult to see that, wheR =0,

vectors in providing the value df? defined above.In the

meson’s rest frame, we haue=(0k) and k.“=(0Kk’). = (VP2 =KD) =bo(VP?\=-1D)

WhenP =0, we obtain the Fourier transform vf(r) given mp°

in Eq. (2.3), which is a form we have used in earlier work. - bl(\/ﬁ,,/_kg) (6.4)
(Equation(2.3) provides the Fourier transform of the poten- E(k)

tial V()= «kr ex — ur]. While this potential is not abso-
lutely confining,u is chosen small enough so that the poten-and

tial is effectively linear over the region o¢f| relevant to the -
problem considered. Effects of barrier penetration are found I's (VP2 V=k2) =bo(VP?, V=K
to be negligible). In this work we use Lorentz-vector con-

finement, so that we need to include a Dirac matfi%, at mP° 2 [ 2
the points where the potential is coupled to a quark or an * E(K) ba \/P— ke). (6.9
antiquark.

It is convenient to work in the frame whef@=0 and We can solve these equations for the Lorentz scabarand
study the equation shown in Fig. 2. Let us consider the psels;, oncel'’™~ andI'~ " are calculated in the frame where
doscalar vertex and the scalar functiofiy ~(P.k) and ~ F=0. This procedure yields theovariantform for T's(P,k)
I's *(P,k), introduced earlier. When creating a covariantgiven in Eq.(6.3), which can be used for finite values Bf

model, it is useful to writel'{ ~(\/PZ,y—K2), etc. For the  Note that. forB=0
covariant model, we define ' '
bo(v/P2 Kon) — 2mby; (VP2 Ko =0, (6.6

0.8}
0.4 L
—
>
(D o
=~ o0l 2
'S 9]
& 2
a &
= o4l a
b}
<
08 |
" ] . 1 2 n 1 1 ]
0.0 0.5 1.0 15 20 2.5 3.0
1 2 1

P? (GeV?)

P? (GeV?)

FIG. 9. The functionJ”P(P?) is shown for 0<P?2<3.0 Ge\/.
Here k=0.0575 GeV andm=0.364 GeV. A cutoffg(A;—|K|) is FIG. 11. The function J*(P?) is shown for 0.1&P?
used, withA;=0.622 GeV. <3.0Ge.
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80 -
60 |-

40 L

20[.

det D(P?%)

-20 1 . 1 L 1 1 . )
0.0 0.5 1.0 1.5 2.0 2.5 3.0

P? (GeV?)

FIG. 12. The function ddd(P?) is shown. Here Gg
=12.80 GeV?, Gy,=12.50 GeV, andx=0.0575 GeV.

whenk?. = (P%)2/4—m?. At that point,P°=2E(k). [See Eq.
(6.4).] It is the zero value given in Eq6.6) that serves to

400

200 |-

T,(P) (GeV?)

-200 -

-400 : . 1 " ) R ) I . )
0.0 05 1.0 15 20 25 3.0

P? (GeV?)

FIG. 14. The functionT,(P?) is shown.(See caption to Fig.
13)

FL( P0:||2|): Yosl do( PO,||Z|)+ Yopodl(POa | IZ|)]_
(6.8

remove unphysical singularities from the various amplitudes

we calculate. Equations fdra ~(P?,|k|) andT's *(P?,|k|)
were given previously[See Eqgs.(2.16 and (2.17).] Note

that ' "~ (P, |k|)/[P°—2E(Kk)] is finite, so that one does

not need to write ame in the denominatorIt is convenient
to solve Egs. (216 and (2.19 for W(PO|K|)
=T+~ (P |k|)/[P°~2E(K)] and then obtaid* ~(P?,|k|)
from ¥ (PC,|Kk|) by multiplying by P°— 2E(k).]

The coupling betweed’s ~ andI'; * gives rise to ‘Z
graphs,”

which we neglect. While such coupling may be

Therefore

— N m N N
I (P lkh= Wdo(POJkD— P, (P%|k|) (6.9
and
. . m . .
I'r (PO k) =— %do(POJkD_ PO, (P, [k]).
(6.10

taken into account for scalar, vector, and axial-vector verti-_l_ Us
ces, in the case of the pseudoscalar vertex the coupling is scp '

large as to preclude the solution of tbeupledequations for

s~ andl; *. Therefore, our analysis is based upon the do(PC,|K)) =

use of Egs(2.16 and(2.17).
We now introduce functiond, anddy:

P
7 YsLdoPE =)+ P Ay (VP KO,
(6.7

I (P.k)=

In the rest frameli’:O), the last equation reads

300 -
200

100 |-

ol il

-200 +

T,(P) (GeV?)

-300

0 0.5 1.0 1.5 2.0 2.5 3.0
P? (GeV?d)

FIG. 13. The functiorT;(P?) is shown. The vertical lines indi-
cate the positions of the singularities of this function.

E(k) ., _ o _ >
S (00 (POIKD =T (P kD],

(6.1))

. 1 . .
d1(P%,K)) == 5o [T~ (PO [KD+T( " (PO [KD].
(6.12

With these definitions, we can show how the vertex func-
tions that appear in th€ matrix are modified by the confin-
ing interaction. We recall that

TABLE I. Values of the mixing angle for various bound or
resonant states. For a resonance inTthehannel, we may use the
formalism for a resonance in the, channel, if we add 90° to the
angle given in the table. Thus the 1.36 GeV state and the 1.47 GeV
state would be assigned the valugs 2.2° and6=122°, respec-
tively.

Energy(GeV) Channel 0 (radiang 0 (degrees

0.138 T, —0.059 —3.39°
1.18 T, 2.20 126°
1.36 T, —1.52 —87.8°
1.47 T, 0.55 31.8°
1.63 T, 0.047 2.68°
1.68 T 2.06 118°
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2.0
1.69 —-=szzi-— 1.68
T 1.63
15 1.49 sg—— 1.47
T— 1.36
< 1.20 —pemree — 118
15 \
=~ 1.0}
&
3]
=
0.5}
— 0.138
0

FIG. 15. The energies of the doublets in the confining field are
shown in the left-hand side of the figure. The energies of the states
obtained when the short-range NJL interaction is added are shown

on the right-hand side of the figure.

_[icosfys+isingyys

M _( —sinfys+cosfy’ys |

5

6.1
Yye (6.13

The upper line provides the vertex for resonance$;irand

the lower line provides the vertex for resonanced jn

If we sum an infinite “ladder” of confining interactions

the right-hand side of Eq6.13 is replaced by

_ i cosfys(bo+ y°P%;) +i sin0y°ys(do+ ¥°POd,)
¢ | —sinfys(by+ y°P°b;) + cosy’ys(dy+ y°POd;)
(6.14

with a straightforward generalization to the case vit# 0,

P
i COS&’)’5(bo+ P b1)+| sin 0_’)/5(d0+ Pdl)

\/ﬁ

P
—sinfys(bg+Pby)+cosd— ys(dg+ P dy)

\/ﬁ

b .=

(6.19

VIl. SCALAR VERTEX FOR THE CONFINING
INTERACTION

L. S. CELENZA, BO HUANG, AND C. M. SHAKIN

PRC 59

(d)

FIG. 16. (a) The decay of ar’ to a7 and ap meson at one-loop
order is shown(b) Quarks or antiquarks on their positive mass shell
are denoted by crosses. In this case the decay of-the aqq pair
gives rise to a singularity of the amplitude. The dotted line indicates
the origin the singularity(c) Similar caption to(b), except thatp
decay is responsible for singularities of the amplitudi.The am-
plitude of (a) is modified by including confinement vertex functions
for the #' and thep. (See Fig. 2. Confinement is only a small
effect in thes (138 vertex and is neglected in this work.

AT(=KTP,KADK) =T5*(P,K)AT(=K)AT(K).
(7.3

The relations betweeRig ~ andT's ™ andc, andc, are

The scalar vertex for a confining interaction was dis-and

cussed in the first paper listed in REZ]. We may write, in
the case that our model has zero energy transfer in the frame

with P=0,
Tg(P.k)=co(P.k)+Kcy(P.k), (7.0
with k#=k#“— (k- P)P#/P2. We define

AP TPKAT(—K) =T (P,K)AT(KAT(—K)
(7.2

and

'S (P,k)=co(P,k)+mcy(P,k), (7.4
2
F§+(P,k)=c0(P,k)—Ecl(P,k). (7.5

The formalism is made covariant by using E@.1) and the
procedure described in Sec. VI.

Equations fol"¢ ~ andI'g * were given in the first paper
of Ref.[2]. We repeat those equations here, taking the op-
portunity to correct two misprinted signs. With=|k| and
k’=|k'|, we have
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P P

—8k'? .
Y=yt (8.2

E(k")

k/de/
(2m)°

rgf(P°,||Z|):1—4wJ

with the propertyy- P=0. In terms of that quantity, we de-

ng(k,k')+(m2/2kk')v§(k,k') fine
(P%)2—[2E(K")]? 2
XT'g (P%k’) (7.6 Y = *y"—?, (8.3

d N o
an such thatk- vy, (=0. In Eq. (8.3) we have writtenk* for

) K'2dK’ [ —8Kk’2 k*(P) for simplicity. With that simplified notation, we now
F§+(P°,|k|)=l—477f 5 - define
(2m)° | E(K")
c R
C N _ 1\y\/C ’ ) — +
y Vg (k,k") = (k/2k")Vi(k,k )I‘g’(PO,k’). ry(P.k) R ao(P,k) |R2|1/26\1(P.k)
(PO)?—[2E(K")]?
P Kk as(P.k
@7 £yt ag(P )+ gnnr 77 P Ko BAPR).
) ! |P2|1/2|k2|1/2
In these equations
(8.9
C ’ 1t Cilkb_L' >
Vi(k,k")= zfildxpl(X)V (k=k"). (7.8 In the frame wheré®=0, we have
500 1B Bl o L , N
Coupled equations fary(P,k) andc,(P,k) are F(P% |k =k[ao—»-kail+ ¥, kaz+ivs(yxK)ag .(8 5

—8k’2
E(k’)

k/de/
(2m)*

[In this case we can writay(P,|K|), etc] In Eq. (8.5), k is

a unit vector along the direction of
It is also useful to introduce eight scalar functions:

cO(P,k)=1—4wf

ng(k,k’)[co(P,k’)Jrmcl(P,k’)]
(P%)?—[2E(K")]?

(7.9 APRFAC(=K)=TF (P, |KHKAT(K)A (k)

+T'3 (PO [KDA(K)

and .
Xy (A=), (8.6
(P,k) 4fk,2dk/ amic/k ((—RTA (K PO IKDVRA ) (—KYA (K
C JK) =41 - =T (=
“+ (PO IRNA ) (=K
VE(k k')[Co(P.K) + mey(PK')] 2 (PLKDATH=K)
X , .
(PO)Z_[ZE(IZ/)]Z X‘}/J_'k[\(-'—)(k), (87)
(710 ACIRIFA(K) =T (P, [KDRA(K) A (K)
where we have again corrected two misprinted signs that +T5 (PO KA (K) y, (A T(K),
appear in the first paper of R42]. '
(8.9
VIIl. VECTOR VERTEX FUNCTION FOR THE and
CONFINING INTERACTION
((—RKTAC (=K =T~ (P°|KDRA ) (=K
In this section we introduce a vector vertex function AT(ITAT =k =Ty (PR KDKAT (k)
I'*(P,k) that sums a ladder of confining interactions. We xA(*)(—IZ)+1“27’(P°,|IZ|)
express this function in terms of four Lorentz scalars and
again use the four-vector X A(K) v, kA(_)(_IZ)-
R (k-P)P# 8.9

Upon using Eq(8.5), we find with k= K|,

[Recall that, in the frame whe@=0, k*=(0k).] We also

~ m
introduce the Dirac matrix I'y =ap+ A (8.10
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_ 2 12\ — (PO |
M = g (8.11 a(VP? kD) =ay(P°,[K)), (8.18
for i=0,1,2,3. Thus, for finiteP, we may calculate
ryt=ry", @8.12 [—kZ]¥?and use Eq(8.18 to obtain the numerical value of
the a;(VP?,\/=k?). In the next section we show how this
. procedure leads to covariant calculations of a quark-loop dia-
I'; "=ap+ %as’ 8.13 grams describing meson decay which would have unphysical
singularities in the absence of a confinement mofiéle
K have also shown that this model provides a covariant result
1“1*+=a0— —ay, (8.19 for vacuum polarization diagrams, if we replace the cutoff
m function 6(A2-Kk?) by 6(A2+k3(P)), with kA=K~
— (k- nIp2
T}*=a,, (8.15 (k-P)P#/P=.]
K IX. COVARIANT CALCULATION OF THE AMPLITUDE
I; =ay+—ay, (8.16 FOR THE DECAY w'—a+p

With reference to Fig. 16, we assign the four-momentum
and P to thew’ andP’ to thep. Thus the momentum of the final

pion isP—P’'. (If the 7' is at restP=0, and, if thep is at
rest,P’=0.) With i,j,k denoting the isospin indices, we de-
In addition, it is useful to define a series of functions thatfine the amplitude

r; =as. (8.17)

go to 1 for large|k|. These areyf’z(—k/m)l“f’, Yy o (P-P')P'#

=Ty, oy t=(CkmIT, oy =TTyt Mﬁk(P,P’)=ncnfle”k<P“— —pz )
=(m/k)I';". We also define 'y++ r;% oy

=(m/k)I'; ", and y, =T, . The equations that are XM(P?P'2,P-P'). (9.9

solved to obtain the various; are presented in the Appen- For simplicity, we do not include a confinement model for

dix. Once they; are calculated, we obtaime(P°[K|),  the final-state pion. There is no singularity to be removed at
a,(P°, |k|) etc. The model is then made covariant by defin-the pion vertex and confinement is only a small effect in this

ing case. Thus, witlB=P?—(P-P')?/P'2, we have
M(P?,P’2 P-P')=i—fd—4kTr{[r (P’ ,k)-P]1S(k+P")ysS(k+P)Ts(P,k)S(k)} 9.2
’ ’ B (277)4 \Y ’ Ys 5 ’ .
i d% TH[TW(P’ k) PIT}
B @ I (ke p) - mA (ke P2 D) ©9
with
T=[(Mm+K+P")(M—(K+P))(by+Pby)(m+K)]. 9.9
There is another diagram, with theemitted first, that yields
’ - d*k Tr{[T'\(P',—k)-P]T'}
(PP g [ e G Py P 69

We found it convenient to serkt* into —k* in the evalua- is a constant. In evaluating the integrals in E(&3) and
tion of this term[The minus sign in E(9.5) arises fromthe  (9.5) we include a cutoff function,d(A3+k3(P))0(A3

isospin tracd.In Eq. (9.9), +k3(P")) which we do not exhibit for simplicity of nota-
tion. [Note that calculations may be made for the wave func-
T =[(m—K)(bg—Pb)(M+K+P)(m—(K+P')]. tions of Eqs.(6.14) or (6.15 by using effective values df,
(9.6)  andb, in Eq. (6.3).]
We remark that, if the finatr andp are on mass shelM is CombiningM andM’, a lengthy calculation oM =

only a function ofP? and, if thew’ is also on mass shel\ = +M' yields
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, i [ od%  SPpaik)z(P,P’ k)
M(P%P"2,P-P") =5 B ) (27)* D(k)D(k+P)D(k+P’)’
9.7

with D(k) = (k?—
notation for thea; of Eq. (9.4), with

) (k-P")P'#
ki#=kHt— —Z (9.9
P
defined at thep vertex. We also use the notation
- (k-P")P"#
k*“(P")=k*— —pz 9.9
and
N (k-P)P#

[Equation(9.10 was first introduced as E@4.1).] In terms
of these quantities we have
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and

z,=8{bg[ (k+ P')-k—m?]+mb,[m?— (k?®+2k-P")]}.

m?), etc. Here we have used a simplified In addition,

(9.15
P’ k(P .P)2
z,(k,P,P’)= pz_ ° /F; )_(k(AF’) P’
P kZ(P/)
(9.16
and
z3(k,P,P")=8{[P?P"?~(P-P')?]k*(P)
P mbl_bO
—P2(k(P)-P")? .
}[P2]1/2|R2(Pr)|1/2
(9.17

As a next step, we complete tk& integral in the complex®
plane to find

k(P)-P
zo(k,P,P") = ————TK(T+T') (9.1 1 -
2 1/2 2p2p.p/y—_ 2 ;
|K2(P")| M(P%,P'2P-P’") Zﬁfk dkfo singde
with .
TH(T+T) 2 G(kk) : (9.18
= 8{mby[m?—k?—2k-P—P-P']+bs[(k-P) 1 Dj(k,P,P)
X[m2—(k+P")-(k+P)]+P-(P—P’) where
. . — ry. . 3
+(k+P")-P(k+P)-k—(k+P")-k(k+P)-P]}. G(E,ko)z—le ai(kg)zi(Pz,P’z,P-P’,IZ,k?).
(9.12 27" =0
9.1
Also, (9.19
R(P’) P The G(IZ,k?) are the residues at the poles, with
r ) i2 ' i . R
z,(k,P,P )_—|R2(P')|1/2(k (P)zi+k(P")-Pzpy), O—E(K). ©.20
9.1 L.
. 613 =E(k+P)—P°, (9.21)
with
2,=8{bo[m?— (k+P")- (k+P)+k-(P'—P)] KS=E(k+P")—P'°. (9.22
+2mb,P-(P'—P)} (9.149  The denominators are
|
D1 (k,P,P’",P°,P"%) =2E(K)[(E(k)+ P%)2—E(k+P)I[(E(k)+ P'%)?—E2(k+P")], (9.23
D,(K,P,P’",P%, P'%)=2E(k+ P)[ (E(k+P)—P%)2—EXK) ][ (E(k+ P)+P'°—P%?—E2(k+P")], (9.24
and
D4(k,P,P’", P, P’%)=2E(k+P")[(E(k+P")—P'%)2—E3(K) J[(E(k+P")—P'°+P%2—E2(k+P)]. (9.25
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7+ o is meant to approximate three-pion decay, with two of

08| the pions in a relativéS state) The analysis of experimental
o6l data for three-pion states is usually based upon this model in
ol ! conjunction with them+p model of the last section. If the
N final pion has momenturR— P’ and thes has momentum
02r P’, we have the amplitude
o 00|
§ ool | M 25 f—d4k THT (P’,K)S(P’+k)
L L= — N nr, ;
oal I ij ij''c (277_)4 Vs
X S(P+K)T5(PS(K)], (10
08}
1ol . . . T W R wherei,j are isospin indices. In E¢10.1) we have taken the
00 02 04 06 08 10 42 44 18 18 20 final state pion to be emitted first. Also, in E¢L0.1),

Ikl (GeV) T,(P'K)=co(P' k) +R(P")cy(P' k) and  T(P,K)
= y5[bo(P,k) + P b1(P,k)]. When theo is emitted first, the

FIG. 17. The values of casand |k| that yield zeros of the : :
gamplitude is

denominatoD 5, when thep is taken at rest, are shown as a dashe
line, drawn at|K| =k{)=[m?4—m?]"2 The solid line shows the d*k
zeros ofD, that arise wperEﬁ/(ls):E(IZ+ P)+E(K). Here ¢ is M{;= _25ijncf WTF[FU(P’-k)S(k)
the angle betweek and P.

A XT'5(P,k)S(k—P)ysS(k—P')]. (10.2

Consider the evaluation of EQ.18). If we putP=0, dis

the angle betweek andP’, while, if P'=0, ¢ is the angle
betweerk andP. For example, ifP’ =0, the value ofP| is d*k _ —
fixed by energy conservation. We exhibit the positions of the ~ Mij(P.P")=—2¢; ncf WTV[FU( P’ k)S(k)
zeros ofD, and D for this case in Fig. 18. Note thét; is
zero whenlk| =k{) = (m%/4—m?)'2, if the p is at rest(See XT'5(P,k)S(— (k+ P))S(k+P")],
the dash:ad line in Fig. 1)7Further,D, is zero when values (10.3
of #and|k| lie on the curve in Fig. 18solid line). (The zeros o
of D5 correspond tg decay into agq pair, while the zeros where we have introduced the notatiod'5(P,k)
of D, correspond to ther’ decay into ajq pair.) = ysI's(P,k). We proceed to calculate

It is useful to writeM;; as

X. CALCULATION OF THE AMPLITUDE FOR THE Mij, o P.P")=M;;(P,P)+Mj(P.P") (104

DECAY n'—m+ o and defineM;; o P,P")=6;M ,,(P,P"). We find
The analysis is similar to that of the last section, except d*k T(k,P,P’)
that the final state is replaced by a-. (Here the decay to M __(P,P’)=—n.n; 2 D(k)D(k+, P,)D(k+ )’
w

- (10.5
- p with D(k)=(k?®—m?+i€), etc. The functionT(k,P,P’) is
given by the following expressions:
P T(k,P,P")=4[Co(P' K)zo(k,P,P")

+c.(P’,k)zy(k,P,P")], (10.9

_ with
" ‘:):;C)P 2o(k,P,P")=bo(PK)B(k,P,P")+bs(P,k)B{” (k,P,P")
(10.7)
p
(b) and

FIG. 18. (g) A contrlbutlon_ to the self-energy o_f aq pseudo- z,(k,P,P")= bo(P,k)Bgl)(k, P,P")+ bl(P,k)B(ll)(k,P,P’).
scalar excitation due to coupling to thet p channel is shown. The
shaded areas denote the confinement vefi#e neglect confine- (10.9
ment for thew(138).] This diagram serves to define the function
—iK ,,(P?. (b) The imaginary part oK ,,(P? may be obtained Further,
from the discontinuity oK,,p(PZ) across ther+ p cut, when ther
andp are on their(positive mass shells. Note that we neglestp B (k,P,P)=2m[m?— (k+P)2+P-(P—P")],
rescattering in the calculation &f,,,(P?). (10.9
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TABLE Il. Meson-quark coupling constants used in this work,qq, 9444 9pqq-

g f, (MeV) Source
m(138) 3.93 92.6 Calculation witm®=0 in the NJL model
without confinement
(600 3.000 Ref.[3]
p(770 3.93 Ref.[4]

aSee the discussion in Sec. XI.

Ok, P,P")=2[(k>+m?)P-(P'—
—2(k-P)(k-P")—P?%k-P'],

k?)P-k
(10.10

P)+(m?—
BSY(k,P,P")=2[k3(P")(m?— (k+ P)2+P-(P—P"))
+k(P")-P(K2+k-P'—=m?)],  (10.11

and

P)+k(P')-P(m?-
(10.12

2m[2K3(P")P- (P’ —
—2k-P")].

B{"(k,P,P")=

We now complete the integral in the complexplane to
obtain

( dk [Tyk.P,P)
M’ITU'(P’P,):nCnf(_I)f (277)3{ 1( Dl
T,(k,P,P") Ts(k,P,P")
5t |

(10.13

where T.(k,P,P’') is T(k,P,P") evaluated with k(l)
=E(|§), aTZ(k,P,P) is T(k,P,P’) evaluated withkp,
=E(k+P")—P'° andTg(k P,P’) is T(k,P,P") evaluated
with kfy)= E(k+P)—P° (Note that P'°=[P’'2+m?2]¥?

andP°=[P?+m?2,]"2) In Eq.(10.13, the various denomi-
nators are

D1 =2E(K)[(E(K)+ P%)?~E*(k+P)]J[(E(K) +P'°)?

—E3(k+P")], (10.19

D,=2E(k+P")[(E(k+P’)—P'%)2—E2(k)]

PO~ P%2—EX(k+P)],
(10.15

X[(E(K+P")—

and

Ds=2E(K)[(E(k+P)—P%2—E2(Kk)]
PO+ P'%2—E2(k+P")].

(10.16

X[(E(k+P)—

XI. CALCULATION OF THE WIDTHS

In this section we introduce the contribution to the self-
energy ofqq isovector pseudoscalar states due to the cou-
pling to the w+p or the o+ 7 channel.(See Fig. 18. We
define a scalar function corresponding to the diagram shown
in Fig. 18:
d4P!

(2m)*
MZ(P2,P'2,P.P")[P?—(P-P")%P'?]
[(P—P')?—mZ+ie][P'?~m’+ie]
(111

We may obtain IrTKWp(PZ) by calculating the discontinuity
across ther+p cut,

2\ 2 2 2,2;
Kﬂ-p(P )_gwqquqqznfncl

1
ImK,,(P%)= EdiS(KWP(PZ), (11.2

and find, withs=P?, P’2=m’, and (P—P')?=m? that
nfng

_ - 2
ImK,(s)= 64 97qq9paq m’Z)S

M(s){[s—(m,—m,)?]

(11.3

If our states,w’, are given a nonrelativistic normalization,

(m' P'|7' P)y=(2m)35(P—P’), the relation between the
width and ImK_,is T, ;=2 ImK_,,

Our result is obwously sensitive to the choicegof,, and
Opqq- We usem,=0.364 GeV and obtain a value fgr,,q by
working in the chiral limit. We findg,qq=3.93 andf .
=0.0926 GeV, so that the Goldberger-Treiman relatiog,
=0nqqf =, IS exactly satisfied(For the final state pion, we
use the physical mass of 138 MeV in the various kinematical
relations) Since, in our analy3|s,gpqq is momentum-
dependent, we may ertgpqq(P ), with the relevant value
for on-mass-shelp mesons belngpqq(m ). In this work we
usegpqq(m )=3.93 which is the value we have calculated
for Lorentz-vector confinement witk=0.0575 GeV. (See
Table 11,

A low-energyo is often used in nuclear physics to repre-
sent correlated two-pion exchange. Also, three-pion final
states are often represented By p and 7+ o configura-
tions (Fig. 10. If we accept ther+ o model for the three-
pion final state with one pion pair coupledlte=0, we need
to calculateK,,(P?), which is the analog ofK,(P?)
shown in Fig. 18.

For thew+ o intermediate state in Fig. 18, we find

X[s—(m,+m,)?]}¥2



1056 L. S. CELENZA, BO HUANG, AND C. M. SHAKIN PRC 59

TABLE lll. Calculated widths of pseudoscalar states for decay
into the m+ ¢ and w+p channels are given. The states at 1.47, -
1.63, and 1.68 GeV have very small widths and are not listed. %’ 400 |
< 300
Energy(GeV) I'., (MeV) r,, (Mev) It (MeV) B 3
g 200
1.18 58 310 368 > r
W 100
1.36 31 119 150 L
2 2
| K _ quqgwqq
MKo(8)= 167s FIG. 20. The figure shows the number of evefieken at 40
MeV interval9 corresponding to the decay — 7+ (7 + 7) -4 Or
X \(s—(m,—m_)?)(s—(m,+m,)?) w' — 7+ p. The solid curve represents the squafenatrix for our
» state at 1.18 GeV presented with an arbitrary normalization.
XM gq(s)] (11.4

Here we have assumed that the state at 1.36 GeV is only
with T',,./2=Im K,,,(m.), if the =’ state is given a nonrel- Weakly excited in the reaction that creates the three-pion fi-

S o = = S o nal state.
ativistic normalization{=',P'|7’,P)=(27)36®)(P—-P").
Here we need to make a choice fgr,qq(mf,). We have
made an extensive study of scalar-isoscglastates in Ref. XlI. DISCUSSION AND CONCLUSIONS

[3], where we also included s_inglet-o_ctet mixing. In I:{eﬂ:’ We may consider the following interpretation of our re-
a study of the guark-quark interaction qu fo the eSt.'mateSUIts. We start with the observation that3t= G, =0, the
J,qq(0)=3.32. That value was generally in accord with a otential VC(IZ— IZ’) acts and orovides doublets &°
quark model we developed for the description of scalarP P

isoscalar exchange in the one-boson exchange model of thigl-20; 1.49, and 1.69 GeV. These states give rise to the
nucleon-nucleon forcéSee the first item in Ref2] and Ref. sg}:}ulg\rltles OTASA %ndFL seen in the values af*(P?),

[3].) Since we expect some variation as we go frggg,(0) J7(P%), and J™(P?). (See Figs. 9-11.0ne member of

to goqq(mi)- we takeggqq(m§)=3.00. There is, at least, a the'double't is a pseudoscalar state and the othe(lmg-
10% theoretical uncertainty in this value, beyond WhateveFUd.InaD axial-vector stat_e. When we turn on the NJL inter-
limitation exists for ther+ o description of the final three- action, the degeneracy is I|ftgd. In Iarge part, tiseudo-
pion state. scalar %tate becomes thg pion, moving down over 1 GeV

The widths calculated with the parameters mentioned©™ P =1.20GeV toP"=0.138GeV. The axial-vector
above are given in Table Ill. The results given there are usegtate Is mixed W'th. the pseudoscalar state and_the mlxeq state
to generate the solid curves in Figs. 19 and 20. To construdg at 1.18 GeV, quite cl_ose 10 1.20 GeV, the original position
Figs. 19 and 20, we have used only the state at 1.18 Ge\P the 1S states(See Fig. 13.

We next consider the  states that were at 1.49 GeV,
whenGg= Gy =0. With reference to Table | and Fig. 15, we
see that there is a state R1=1.36 GeV which gives rise to
a resonance seen ,. That state may be identified as the
w(2S) state. The nextmixed) state is at 1.47 GeV, indicat-
ing almost no downward movement from the original posi-
tion at 1.49 GeV.

Finally, we consider the 8 states, which are at 1.69 GeV
whenGg=Gy=0. These states evolve into our states at 1.68
and 1.63 GeV. The latter state may be classed as “pionlike,”
since it appears as a resonancd jnand has a small mixing
angle. The othefmixed) state has only moved down about
10 MeV from the original position at 1.69 GeV. This analy-
sis suggests, therefore, that th€3S) is the state we ob-
tained at 1.63 GeV.

The information concerning states in the intermediate-
energy range above 1 GeV is largely obtained through the
study of three-pion final statel8,9]. For states with the
quantum numbers of the pion, we only find th€1300 be-

FIG. 19. Data taken from Refg] are shown. The figure shows |0W 1.7 GeV in the data tabldg]. Our analysis suggests the
the member of eventgaken in 40 MeV intervalscorresponding to ~ Presence of a total of six states with masses less than 1.7
the decayﬂ-’*)ﬂ-_k(ﬂ-_p ﬂ-)L:O_ The various data sets shown cor- GeV We have found that the nOde|eSS state at 118 GeV and
respond to the different theoretical schemes used to analyze ttB€ state at 1.36 GeV have significant widths for the decays
data. The solid line shows the squafBdhatrix of our state at 1.18 7' —a+o and w'—m+ p. Our model gives a good fit to
GeV (in arbitrary units. the position of the peak seen in the data shown in Fig. 19 if

1000 -

800

600

Events/40 MeV

200

o Uy b e by e bl
1.0 12 14 1.6 1.8 2.0
M (GeV)
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we assume the state at 1.36 GeV is weakly excited in the We find thaty; "=y, ~ andy, * satisfies the equation
reaction leading to the three-pion final state.
When we consider the decay — 7+ p, we find that the

1.18 GeV state and the 1.36 GeV have large widths, while d3k’ m2 POk
the other states have quite small widths. When theoreticalyg*(PO,k)zl—f 3[ s (1— ) 0
analysis is used to extract the decays of the naitires 7 (2m)”| 2E5(k") P+ 2E(K’)
+ p from experimental data for the three-pion final state, the 5 o
results are rather model dependent and the values shown in (1+x%) N kk'x | v2 (P7K)
Fig. 20 exhibit significant scatter. For Fig. 20 we again limit 2 E(K)E(k’)/ PO+ 2E(k")

ourselves to the state at 1.18 GeV in creating the fig@ar
theoretical curve is given an arbitrary normalizatjoWe X VC(K—K") (A3)
should keep in mind that we are not fitting experimental data, '
but are fitting “data” extracted using a simple theory of the
final-state dynamics. The fact that we do not obtain a good . !
result for the branching ratio suggests that a study of finalhere we have inserteg ~ for y; " in the first term of the
state interactions in théoupled 7+ p ando+ 7 channels ~ 1arge bracket. L .
may be necessary to obtain both the cross section and Once we have calculategy ~, y, , andy, *, we can
branching ratio. Such a study is beyond the scope of thigbtainy; * from the relation
work.

As a final point, we remark that th&(1800 that appears
in the data shown in Fig. 19 is unlikely to bayqg state, since 0
qq states with several nodes have very small widths in our 71 (P°k)=1- J 2 )3V (k—K") B2k
model. (In our analysis, a state at 1.8 GeV would have at

2

least three nodes in its wave functipn.

2xk’ 1 (POK")
X( - 2) oo~ (1)
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APPENDIX A Using Egs.(A1)—(A4), we obtain
In this appendix we present the equations that we have
solved to obtainy; ~, y4 ~, etc. We have, wittk= k|, k’ _mk . A5
=|k’| andx=cos6, whereg is the angle betweek andk’, ao_Ez(k)[ notrl (AS)
1 (P° k)—1+Jﬁd3k, [(—Z—ZK,ZX 2 2
e (2m)* [\ BA(K') P L P (A6)
1 E2(k) 1 m2 1 ’
k" m?x2\ k y; (P°k’)
K EAK) K PP 2E(K) .
At —+
( 0 k ) co a2_2[’)/2 +72 ’ (A7)
+(1- )W V=(k—=k")
(Al) and
and E(K)
_ as=——[7v. =7 1 (A8)
2 + 0/ 2k
— m '}’1 (P rk )
v, (P° k)=1—f— ——(1-X®) =
2 (2m)%| 2E*(K") PO—2E(k’)
_ We see that we need not calculgtg™, y; ~, ory, ~ to
2 ’ + 0 1 2
_ (1+x )+ Kk'x ) v2 (PTK )} obtain thea; (i=0,1,2,3). We record the relation between
2 E(K)E(k’)) P°—2E(k’) the y; and I's: yf =(—kim)['; ~, vy3 =37, y;*

o =i . v =TT oy =TT,y =TT
X VCE(k—k"). (A2) y; =(m/K)T; ,andy, =T, .
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