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T matrices and current correlation functions for a relativistic quark model with confinement
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Department of Physics and Center for Nuclear Theory, Brooklyn College of the City University of New York,
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We describe some properties of a relativistic model of confinement and show how that model may be used
to constructT matrices for quark-antiquark systems.@In the absence of the confinement model, our Lagrangian
reduces to that of the SU~3!-flavor Nambu–Jona-Lasinio model.# If we have absolute confinement, ourT
matrix is expressed in terms of bound states~or resonances!, without the presence of quark scattering states.
We find that is a straightforward matter to describe singlet-octet and pseudoscalar-axial-vector mixing in this
formalism. We also demonstrate that the construction of theT matrices of the model allows us to obtain
expressions for various current correlation functions, once the meson decay constants are calculated. That
calculation is readily made starting with knowledge of theT matrix. The most complex situation we consider
is that of theh-h8 system, with both singlet-octet and pseudoscalar-axial-vector mixing, calculated in the
presence of a~covariant! confinement model. Values of masses, coupling constants and mixing angles are
given for thep, v, f, h, andh8 mesons and for some of their radial excitations.@S0556-2813~99!02102-0#

PACS number~s!: 12.39.Ki, 12.38.Aw, 14.40.Aq, 24.85.1p
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I. INTRODUCTION

In this work we are interested in obtaining informatio
concerning meson structure using a relativistic quark mo
that includes a description of~Lorentz vector! confinement.
In the absence of the confinement model, our Lagrang
reduces to that of the SU~3!-flavor Nambu–Jona-Lasinio
~NJL! model @1#. The Lagrangian we use exhibits chir
symmetry in the absence of a quark mass matrix:

L5q̄~ i ]”2m0!q1
GS

4 (
i 50

8

@~ q̄l iq!21~ q̄ig5l iq!2#

1
GD

2
$det@ q̄~11g5!q#1det@ q̄~12g5!q#%

2
GV

4 (
i 50

8

@~ q̄gml iq!21~ q̄gmg5l iq!2#1Lconf.

~1.1!

We havem05diag(mu
0,md

0,ms
0) as the current quark mass m

trix. The term proportional toGD is the ’t Hooft interaction.
The l i ( i 51, . . . ,8) are theGell-Mann matrices andl0

5A2/3I , whereI is the unit matrix in flavor space.
Since our confinement model has been described in d

elsewhere@2–6#, we only provide a schematic description
this work. In the generalized model, we introduce confin
ment by calculating a vertex function for the confining inte
actionVC. For example, for the study of vector mesons, t
vertex is denoted asGm(P, k) ~see Fig. 1!. The vertex satis-
fies the inhomogeneous equation shown in Fig. 1, where
represented by the shaded triangular area. As may be se
the second part of the figure, the vertex serves to su
‘‘ladder’’ of confining interactions. We find that the vertex
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singular at those energies for which the homogeneous e
tion has a solution. These singularities are at the energie
the bound states in the confining field. Another importa

property of the vertex is that it is equal to zero whenukW u
5kon , with kon5@P2/42m2#1/2, if PW 50. That is the point
where the quark and antiquark would go on their~positive!
mass shells@6#.

In the study of the NJL model one needs to calcul
vacuum-polarization functionsJ(P2), such as those depicte
in Fig. 2~a!. To introduce confinement, we sum a series
confining interactions, as in Fig. 2~b!. The inclusion of the
vertex function~shaded triangular region! in the calculation
of J(P2), as shown in Fig. 2, serves to define the vacuu
polarization function for the theory with confinement. Th
function does not have the cut starting atP25(2mq)2, that
would be present in the absence of a model of confinem

FIG. 1. ~a! The equation for the vertex operatorGm(P,k) is
shown. The vertex is represented by the filled triangular area
the dashed line represents the confining interaction~see Fig. 2!. ~b!
A perturbation expansion is shown for the equation in~a!. We see
that the vertex sums a ‘‘ladder’’ of confining interactions.
1030 ©1999 The American Physical Society
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PRC 59 1031T MATRICES AND CURRENT CORRELATION . . .
Thus, J(P2) is a real function with singularities reflectin
those of the vertex function.

In Sec. II we describe various aspects of our relativis
confinement model and give some equations for the ve
function for pseudoscalar excitations. In Sec. III we disc
radial excitations of the pion and present the form taken
the quarkT matrix in this case. In Sec. IV we extend th
considerations of Sec. III to the case ofp2a1 mixing. In
Sec. V we describe theT matrix that exhibits resonance
describing thev and f mesons and some of their radi
excitations. In Sec. VI we take up the topic of singlet-oc
mixing for theh andh8 mesons, while in Sec. VII we exten
that analysis to include pseudoscalar-axial-vector mixing.
nally, Sec. VIII contains some further discussion and conc
sions.

II. RELATIVISTIC CONFINEMENT MODEL

To construct a momentum-space confinement model,
start with the formVC5kVr exp@2mr#. Here m is a small
parameter introduced to soften the momentum-space si
larities of the Fourier transform ofVC(r ):

VC~kW2kW8!528pkF 1

@~kW2kW8!21m2#2
2

4m2

@~kW2kW8!21m2#3G .

~2.1!

As m is reduced in value, the potential approximates a lin
potential to a greater degree. We usem50.020 GeV in our
calculations of the properties of light mesons. That leads
maximum value Vmax

C 5kV /(me)51.06 GeV, when kV

50.0575 GeV2 andm50.020 GeV.~We note that relativistic
factors in our equations put theeffectivevalue of Vmax

C at
about 1.7 GeV.! We use Lorentz-vector confinement, so th
our potential isgm(1)VC(kW2kW8)gm(2) in momentum space
We have seen, in a study of vector mesons, that if we
Lorentz-scalar confinement rather than Lorentz-vector c
finement, we need to takekS.2kV to obtain essentially the
same spectrum of states. Therefore,kS50.12 GeV2. It is the
latter value that can profitably be compared to the value u
for the string tension for massive quark systems,kNR

FIG. 2. ~a! The diagram shows the basic vacuum-polarizat
diagram of the NJL model that is evaluated in the calculation of
tensor Jmn(P2). ~b! The diagram serves to define the tens
Jmn(P2) when confinement effects are included. The shaded tr
gular area represents the confining vertex of Fig. 1. The right-h
side of the figure shows a perturbative expansion forJmn(P2).
c
x
s
y

t
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;0.18 GeV2, for the case of Lorentz-scalar confineme
These comments suggest that, while we quotekV
50.0575 GeV2 as our value ofkV for light mesons, the cor-
respondingkNR is about two-thirds of the string tension i
massive quark systems.

To illustrate the relativistic effects that lead to an e
hanced value ofVmax

C , we may consider an equation for
~confining! vertex function for pseudoscalar mesons. In th
case, we write the vertex associated with a ladder sum

confining interactions asḠ5(P,k)5g5G5(P,k). It is found

useful to introduce matrix elements ofḠ5(P,k)

L~1 !~kW !Ḡ5~P,k!L~2 !~2kW !

5G5
12~P,k!L~1 !~kW !g5L~2 !~2kW ! ~2.2!

and

L~2 !~2kW !Ḡ5~P,k!L~1 !~kW !

5G5
21~P,k!L~2 !~2kW !g5L~1 !~kW !, ~2.3!

where

L~1 !~kW !5
k”1m

2m
, ~2.4!

L~2 !~2kW !5
k”̃1m

2m
, ~2.5!

with km5@E(kW ),kW # and k̃m5@2E(kW ),kW #. The functions
G5

12(P,k) and G5
21(P,k) are defined in the rest frame o

the meson (PW 50). They appear naturally when calculatin
vacuum-polarization integrals in our relativistic quark mod

The functionG5
12(P0,ukW u) satisfies the equation

G5
12~P0,ukW u!511E d3k8

~2p!3

VC~kW2kW8!

P022E~kW8!

3F 2E~kW !E~kW8!2m2

E~kW !E~kW8!
GG5

12~P0,ukW8u!,

~2.6!

for Lorentz-vector confinement. HereE(kW )5@kW21m2#1/2.
It is helpful to introduce the wave function

C5~P0,ukW u!5
G5

12~P0,ukW u!

P022E~kW !
, ~2.7!

which satisfies the equation

e
r
-
d
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1032 PRC 59L. S. CELENZA, BO HUANG, AND C. M. SHAKIN
@P022E~kW !#C5~P0,ukW u!511E d3k8

~2p!3
VC~kW2kW8!

3F 2E~kW !E~kW8!2m2

E~kW !E~kW8!
GC5~P0,ukW8u!. ~2.8!

We may also introduce the solutions of the homogene
equation

@En22E~kW !#C5~En ,ukW u!5E d3k8

~2p!3
VC~kW2kW8!

3F 2E~kW !E~kW8!2m2

E~kW !E~kW8!
GC5~En ,ukW8u!. ~2.9!

The energiesEn form a discrete set, if the potential is abs
lutely confining. In that case, we need not supplement
denominator in Eq.~2.7! with an i e factor.@This feature may
be traced to the infrared behavior of the confining poten
VC(kW2kW8).]

Note that if the quark mass is very large, we can repl
the bracketed quantity in Eq.~2.9! by unity. Equation~2.9!
then represents a momentum-space version of an equ
for bound states in confining potentialVC(r )5kr exp
@2mr#. We may define a vertex function for a bound stat

G5
12~En ,ukW u!5@En22E~kW !#C5~En ,ukW u!. ~2.10!

There is a zero in the vertex function whenukW u5kon when
En52E(kon). When making calculations in momentu
space, it is that zero of the vertex function that elimina
any long-range~scattering! component of the wave function

We may return to the inhomogeneous equation@Eq. ~2.8!#
and note that for largeukW u, such that 2E(kW )@P0,

C5~P0,ukW u!.2
1

2ukW u
, ~2.11!

sinceG5
12(P0,ukW u)→1 for largeukW u. Once we solve the in-

homogeneous equation forC5(P0,ukW u), we obtain
G5

12(P0,ukW u) from Eq. ~2.7!. The factorP022E(kW ) induces

a zero inG5
12(P0,ukW u) at ukW u5kon , if P0 is large enough for

the equation

kon5@~P0/2!22mq
2#1/2 ~2.12!

to have a solution forkon real. That feature may be seen
Fig. 3, where we showG5

12(P0,ukW u) for several values of
P0.

The equation forG5
21(P0,ukW u) is
s

e

l

e

ion

s

G5
21~P0,ukW u!512E d3k8

~2p!3

VC~kW2kW8!

P012E~kW8!

3F 2E~kW !E~kW8!2m2

E~kW !E~kW8!
GG5

21~P0,ukW8u!.

~2.13!

It is worth noting that if we were to use Lorentz-scal
confinement, we would have

G5, scal
12 ~P0,ukW u!511E d3k8

~2p!3

VC~kW2kW8!

P022E~kW8!

3
E~kW !E~kW8!1m22kW•kW8

2E~kW !E~kW8!
G5, scal

12 ~P0,ukW8u!.

~2.14!

We see that asm is made large,G5
12(P0,ukW u) and

G5, scal
12 (P0,ukW u) satisfy the same simple equation

G5
12~P0,ukW u!511E d3k8

~2p!3
VC~kW2kW8!

G5
12~P0,ukW8u!

P022E~kW8!
.

~2.15!

Thus, the value ofk for Lorentz-scalar or Lorentz-vecto
confinement would be the same, when studying pseudosc
mesons of large mass.

For the sake of completeness, we present the equation
G5, scal

21 (P0,ukW u):

G5, scal
21 ~P0,ukW u!512E d3k8

~2p!3

VC~kW2kW8!

P012E~kW8!

3
E~kW !E~kW8!1m22kW•kW8

2E~kW !E~kW8!
G5, scal

21 ~P0,ukW8u!.

~2.16!

FIG. 3. The figure shows the values ofG5
12(P0,ukW u) for various

P0. Starting with uppermost curve we haveP050.0 GeV, P0

50.5 GeV, P050.75 GeV,P051.0 GeV. Note thatG5
12(P0,kon)

50, where kon5@(P0/2)22mq
2#1/2. Here mq50.364 GeV andk

50.0575 GeV2.
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For largem, Eqs.~2.13! and ~2.16! take on the same form

G5
21~P0,ukW u!512E d3k8

~2p!3
VC~kW2kW8!

G5
21~P0,ukW8u!

P012E~kW8!
.

~2.17!

As a final point, we note that when we study the upsil
system of states, we usek50.176 GeV2 in our model, which
is quite consistent with general expectations concerning
value of the string tension for a nonrelativistic system,
noted above.

It is possible to make our relativistic confinement mod
covariant@3#. That is done by introducing the vectors

kc
m5km2

~k•P!Pm

P2 ~2.18!

and

kc8
m5k8m2

~k8•P!Pm

P2 , ~2.19!

and replacing Eq.~2.1! by

VC~kc2kc8!528pkF 1

@~kc2kc8!22m2#2

1
4m2

@~kc2kc8!22m2#3G . ~2.20!

Since, in the meson rest frame (PW 50), kc
m5(0,kW ), andkc8

m

5(0,kW8), VC of Eq. ~2.20! reduces toVC of Eq. ~2.1!. We
may use the covariant nature of the model to construct co
riant vertex functions for the confining interaction. That fe
ture of the model will be discussed in Sec. III.

There are some similarities of our model to the glob
color model@7–9#. There, in some applications, the gluo
propagator is written as

Gmn~k!52g̃mn~k!G~k2! ~2.21!

in the Landau gauge, withg̃mn(k)5gmn2kmkn /k2 @10,11#.
Further,G(k2)5GUV(k2)1GIR(k2). The low-k2 behavior is
given by

GIR5
16p2

3
ak2e2mk2

~2.22!

in Euclidean momentum space. In Ref.@11#, it is remarked
that this form ofGIR(k2) provides what is effectively a linea
potential forr ,1.0 fm. @The form of Eq.~2.22! is chosen to
avoid the singular nature of Eq.~2.1! at small m, for ex-
ample.# Since we use Lorentz-vector confinement, our pot
tial gm(1)VC(kW2kW8)gm(2), plays a role similar to tha
played byGIR(k2) in implementing confinement, since th
gluons are vector fields. However, our calculations are m
in Minkowski momentum space, while those global co
model are made in Euclidean momentum space and an
lytic continuation is required to obtain meson masses
other properties@10,11#.
e
s

l

a-
-

l

-

e
r
a-
d

III. RADIAL EXCITATIONS OF THE PION

For the moment, we will neglectp-a1 mixing and return
to that aspect of the problem in Sec. V. In this case we h
a T matrix of the form

Tp~P2!5 ig5TPP~P2!ig5 , ~3.1!

with

TPP~P2!52
GS

12GSJPP~P2!
. ~3.2!

~We suppress reference to isospin in these expressions.! We
define the function

2 iJPP~P2!52ncnfTrE d4k

~2p!4

3@ iS~P/21k!ig5iS~2P/21k!ig5#,

~3.3!

in the absence of confinement. If we introduce a confinem

vertex Ḡ5(P,k), we define

2 iJPP~P2!52ncnfTrE d4k

~2p!4

3@S~P/21k!Ḡ5~P,k!S~2P/21k!g5#.

~3.4!

In general, we would have

G5~P,k!5b0~P,k!1P” b1~P,k!1k”b2~P,k!

1 ismnPmknb3~P,k!. ~3.5!

However, for our model of Lorentz-vector confinement,
which there is no energy transfer in the frame withPW 50, we
find that we need only two terms:

G5~P,k!5b0~AP2,A2kc
2!1P” b1~AP2,A2kc

2!. ~3.6!

Recall thatkc was defined in Eq.~2.18!. Note that in the
frame wherePW 50, Eq. ~3.6! may be written as

G5~P0,ukW u!5b0~P0,ukW u!1g0P0b1~P0,ukW u!. ~3.7!

We may obtain the scalar invariants appearing in Eq.~3.6!
by identifying Eqs.~3.6! and ~3.7! in the meson rest frame.

Using the definition ofḠ5(P,k), we have the following
relations betweenb0 , b1 , G12, andG21:

G5
12~P0,ukW u!5b0~P0,ukW u!2

P0m

E~k!
b1~P0,ukW u! ~3.8!

and

G5
21~P0,ukW u!5b0~P0,ukW u!1

P0m

E~k!
b1~P0,ukW u!. ~3.9!

Also, when the quarks go on mass shell,P052E(k), so that
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1034 PRC 59L. S. CELENZA, BO HUANG, AND C. M. SHAKIN
G5
12~P0,kon!5b0~P0,kon!22mb1~P0,kon!, ~3.10!

50, ~3.11!

which is a characteristic of our model of confinement~see
Fig. 3!. It is this feature that serves to eliminate the~unphysi-
cal! qq̄ cut from the vacuum-polarization functions.

Now we consider the solution of

12GSJPP~P2!50 ~3.12!

to obtain the mass values of the pion and its radially exc
states. It is instructive to present a graphical solution of
~3.12!, which we rewrite in the form

GS
212JPP~P2!50. ~3.13!

In Fig. 4 we showJPP(P2) calculated for Lorentz-vecto
confinement, withk50.0575 GeV2 and mq50.364 GeV. It
is seen from the figure thatJPP(P2) has singularities~indi-
cated by the vertical lines!. These appear at the values ofP2

where the homogeneous equation, Eq.~2.9!, has solutions.
These are the energies of the bound states in the confi
field. The states are moved to lower energy when the att
tive NJL interaction is included via the solution of E
~3.13!. In Fig. 4 we have shownGS

2150.08134 GeV2 as a
horizontal line. The points where the horizontal line inte
sectsJPP(P2) determine the energies of thep(1S), p(2S),
andp(3S) states.

FIG. 4. Values ofJPP(P2) are shown. The horizontal line rep
resentsGS

2150.08134 GeV2. The intersection of that line with
JPP(P2) provides the solution of Eq.~3.13!. The mass values ar
those for thep(1S), p(2S), and p(3S) states in the absence o
p-a1 coupling.

TABLE I. Values of the mixing angle for the pion and its radi
excitations~see Table II!.

Energy~GeV! Channel u ~rad! u ~deg!

0.138 T1 20.059 23.39°
1.18 T1 2.20 126°
1.36 T2 21.52 287.8°
1.47 T2 0.55 31.8°
1.63 T1 0.047 2.68°
1.68 T1 2.06 118°
d
.

ng
c-

-

The corresponding calculation is more complicated
pseudoscalar-axial-vector coupling is included for the pi
In that case we deal with aT matrix of dimension 2, as
described in some detail in Sec. IV. We find six states in
regionP2<3 GeV2 ~see Tables I and II and Fig. 5!.

In the absence ofp-a1 mixing, we may write

GS

12GSJPP~P2!
.2

gp8qq
2

P22mp8
2 ~3.14!

with

1

gp8qq
2 5

]JPP~P2!

]P2 U
P25m

p8
2

~3.15!

near a bound state or resonance. As a final step, we inc
the confinement vertex for the external lines and write

Tp~P,k8,k!.@b0~P,k8!1P” b1~P,k8!#

3
ig5gp8qq

2

P22mp
2 ig5@b0~P,k!1P” b1~P,k!#

~3.16!

~see Fig. 6!.

FIG. 5. On the left-hand side of the figure are the doublets fou
in the confining field. When the NJL interaction is included, t
spectrum on the right side is obtained~see Table I!. The states at
P050.138 GeV,P051.36 GeV, andP051.63 GeV are thep(1S),
p(2S), andp(3S) states with small mixing angles~see Table II.!

TABLE II. Values of the mixing angle for the pion and its radia
excitations when all resonances are expressed in the form use
T1 given in Eq.~4.9! ~see Fig. 5!.

Energy~GeV! u ~deg! Nature of state

0.138 23.39° pionlike--p(1S)
1.18 126° mixed state
1.36 2.20° pionlike--p(2S)
1.47 122° mixed state
1.63 2.68° pionlike--p(3S)
1.68 118° mixed state
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It is useful to include the propagators associated with
external lines. We define

Gp~P,k8,k!5@S~2P/21k8!Ḡ5~P,k8!ig5S~P/21k8!#

3
gp8qq

2

P22mp8
2

3@S~P/21k!ig5Ḡ5~P,k!S~2P/21k!#,

~3.17!

where we have again suppressed reference to isospin in
vertex functions for simplicity.

The manipulations of this section may be understood w
reference to Fig. 6. In Fig. 6~a! we show the diagrams tha
are summed in the absence of confinement to yield aT ma-
trix. In Fig. 6~b!, we include confinement in the calculatio
of the vacuum-polarization functions,J(P2). Finally, we in-
troduce the confinement vertex functions associated with
external lines. Therefore, Fig. 6~c! is in correspondence with
Tp(P,k8,k) of Eq. ~3.16!. This correspondence is mor
clearly seen in Fig. 7~a!, where we have introduced th
propagator for the pion or one of its radially excited stat
~As remarked earlier, it is best to neglect confinement for
p~138!, since the properties of that meson are extremely s
sitive to small violations of chiral symmetry.! If we intro-
duce the propagators for the external lines, Fig. 7~a! is in
correspondence withGp(P,k8,k) of Eq. ~3.17!.

IV. CALCULATION OF p-a1 MIXING

For the study of pseudoscalar-axial-vector mixing
generalize Eq.~3.1! to read

Tp~P2!5 ig5TPP~P2!ig51 ig5Tm
PA~P2!gmg5

1gmg5Tm
AP~P2!ig51gmg5Tmn

AA~P2!gng5 .

~4.1!

We define

Tm
PA~P2!5

iPm

AP2
TPA~P2!, ~4.2!

FIG. 6. ~a! A Born term and a series of vacuum-polarizatio
diagrams for the NJL model without confinement is shown.~b! The
vacuum-polarization diagrams of~a! are modified by inclusion of
the vertex of the confining interaction.~c! The vertex for the con-
fining interaction is added for the external lines, definingT matrices
of the formT(P,k8,k) ~see Fig. 7!.
e

the

h

e

.
e
n-

Tm
AP~P2!5

iPm

AP2
TAP~P2!, ~4.3!

and

Tmn
AA~P2!5

PmPn

P2 TL
AA~P2!. ~4.4!

We then consider the matrix

T~P2!5S TPP~P2! iTPA~P2!

iTAP~P2! TL
AA~P2!

D ~4.5!

which acts in the space spanned byig5 and g0g5 when PY
50, so that we write

T̂5~ ig5 ,g0g5!S TPP~P2! iTPA~P2!

iTAP~P2! TL
AA~P2!

D S ig5

g0g5
D .

~4.6!

The various elements of this matrix are given in Ref.@2#.
Rather than repeat that material here, we will present
results of our calculation.

In this case theT̂ matrix may be brought to diagonal form
by a matrix

M ~u!5S cosu i sinu

i sinu cosu D , ~4.7!

such that

M ~u!Tp~P2!M 21~u!5S T1~P2! 0

0 T2~P2!
D . ~4.8!

If we assume there is a resonance inT1(P2), we would have,
whenPY 50,

T1~P2!5 i @cosug51sinug0g5#
gp8qq

2

P22mp8
2

3 i @cosug51sinug0g5#, ~4.9!

FIG. 7. ~a! A T matrix, including the vertex of the confining
interaction for the external lines, is shown.~b! A resonant contribu-
tion to a current correlator is obtained from the diagram in~a! by
introducing currents that excite and deexcite theqq̄ pairs. Here we
consider the correlator of two axial-vector currents of the fo
q̄(x)gmg5(t i /2)q(x).
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so that for cosu51 we go over to Eq.~3.1!. For a resonance
in T2 , we have

T2~P2!5@2sinug51cosug0g5#
gp8qq

2

P22mp8
2

3@2sinug51cosug0g5#. ~4.10!

Now we include confinement in the numerator of theT ma-
trix ~see Fig. 3!. We define

Fp~P,k!5 i cosug5@b0~P,k!1P” b1~P,k!#

1 i sinu
P”

AP2
g5@d0~P,k!1P” d1~P,k!#,

~4.11!

whereb0(P,k) and b1(P,k) have been defined previously
Here d0(P,k) and d1(P,k) describe confinement for th
axial-vector vertex~see the Appendix!. Thus, Eq.~3.4! may
be generalized to read

T1
p~P,k8,k!5Fp~2P,k8!

gp8qq
2

P22mp8
2 Fp~P,k!, ~4.12!

with a similar equation forT2
p(P,k8,k) based upon the form

of Eq. ~4.10!.
It is often useful to use thesameform for the T matrix,

when a resonance appears in eitherT1 or T2 . That may be
accomplished by adding 90° to the mixing angle when
resonance is inT2 , and then using Eq.~4.9! or Eq. ~4.11!
~see Tables I and II!. From Table II, we see that the states
the p-a1 system fall into two groups. There are three sta
with small mixing angles, which may be identified as t
p(1S), p(2S), and p(3S) states. The other states a
strongly mixed and have similar angles.

V. VECTOR MESONS

We will discuss thev andf mesons and their radial ex
citations. In this case we have ideal mixing, which simplifi
the discussion. It is useful to define a vacuum-polarizat
function for the up~and down! quark

2 iJu
mn~P!52ncE d4k

~2p!4 Tr

3@ iSu~P/21k!ĝmiSu~2P/21k!ĝn#,

~5.1!

where

ĝm5gm2
P” Pm

P2 . ~5.2!

Here Su(k)5@k”2mu1 i e#21 is the propagator for the up
quark. There is a similar definition ofJs

mn(P) for the strange
quark. With confinement, we define
e

s

n

2 iJu
mn~P!52ncE d4k

~2p!4 Tr

3@ iSu~P/21k!Gm~P,k!iS~2P/21k!ĝn#,

~5.3!

whereGm(P,k) implements our confinement model.
We also put

Ju
mn~P!52ĝun~P!Ju

V~P2!, ~5.4!

Js
mn~P!52ĝun~P!Js

V~P2!, ~5.5!

Jv~P2!52Ju
V~P2!, ~5.6!

Jf~P2!52Js
V~P2!, ~5.7!

and find the masses of thev andf mesons by solving

12GVJv~P2!50 ~5.8!

and

12GVJf~P2!50. ~5.9!

We also have

1

gvqq
2 ~mv

2 !
5

]Jv~P2!

]P2 U
P25m

v
2

~5.10!

and

1

gfqq
2 ~mf

2 !
5

]Jf~P2!

]P2 U
P25m

f
2
, ~5.11!

for the v andf and their radial excitations.
In the absence of a confinement model we have, w

ḡmn(P)5gmn2PmPn/P2

Tv~P!52
gvqq

2 ~mv
2 !

P22mv
2 1 i e

ĝmg̃mn~P!ĝn , ~5.12!

while the introduction of confinement leads to

Tv~P,k8,k!52
gvqq

2 ~mv
2 !

P22mv
2 Gm~2P,k8!g̃mn~P!Gn~P,k!

~5.13!

for each isolated resonance. Note that we need not write
i e in the denominator of Eq.~5.13!.

In general,Gm(P,k) will contain eight terms. Our model
which makes use of Lorentz-vector confinement, and wh
has no energy transfer in thePY 50 frame yields a form of
Gm(P,k) that has only four terms@3#
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TABLE III. Experimental values for the masses and decay constants@13# are compared to our theoretica
values. Here mu5md50.364 GeV, ms50.565 GeV, kV50.0575 GeV2, L350.622 GeV, and GV

512.50 GeV22.

Meson
Mass~expt!

~MeV!
Mass~theory!

~MeV!
gvqq or

gfqq

Decay constant (f v , f f)
~MeV!

expt theory

v~782! 78160.12 782a 3.93 45.960.7 47.3
f~1020! 1019.41360.008 1019a 4.78 7862 62.5
v~1420! 1419631 1402 1.26 8.4
v~1600! 1649624 1650 0.861 4.9
f~1680! 1680620 1717 0.731 5.8

aFit by the choice ofGV andms .
n

a

ach

ix-
It
Gm~P,k!5
k̂m

uk̂2u1/2F a0~P,k!1
k”̂

uk̂2u1/2
a1~P,k!

1g',k
m a2~P,k!1

i emnrsg5gnPrk̂s

uP2u1/2uk̂2u1/2
a3~P,k!G

~5.14!

with

g',k
m 5ĝm2

k”̂ k̂m

k̂2
~5.15!

and

k̂m~P!5km2
~k•P!Pm

P2 . ~5.16!

Procedures for obtaining the Lorentz-scalarsa0 , a1 , a2 , and
a3 are described in Ref.@3#. We do not repeat that discussio
here, since our goal is to exhibit the form of theT matrix and
current correlators for our~covariant! model of confinement.

The v andf decay constants,f v and f f given by

^vacuJem
m uv,l&5mv f vel

m~PW ! ~5.17!

and

^vacuJem
m uf,l&5mf f fel

m~PW !. ~5.18!

Hereel
m(PW ) is the polarization four vector for thev or f. We

see that

f v5
gvqq~mv

2 !

&
Ju

V~mv
2 !S 2

3
2

1

3D , ~5.19!

where the last factor arises from the charges of the up
down quarks. Also,

f f5gfqq~mf
2 !Js

V~mf
2 !~ 1

3 !. ~5.20!

If we define a correlator
nd

Cmn~P!5E d4xeiP•x^vacuT@Jem
m ~x!Jem

n ~0!#uvac&,

~5.21!

52g̃mnC~P2!, ~5.22!

we can relate the contribution of each resonance toC(P2) to
the T matrix of Eq.~5.13!, using the relation

g̃mn~P!52 (
l51

3

el
m~PW !el

n~PW ! ~5.23!

and including the electromagnetic charge operator at e
vertex ~see Fig. 7!.

Results of our study of thev and f mesons and their
radial excitations are given in Table III. We have usedL3

50.622 GeV as a momentum cutoffukW u<L3 , in our calcu-
lation of the polarization integrals.

VI. SINGLET-OCTET MIXING FOR THE h
AND h8 MESONS

In this section we are interested in exhibiting theT matrix
for the mixing of the SU~3! singlet h0 with the ~octet! h8.
We will then go on to discuss pseudoscalar-axial-vector m
ing in addition to singlet-octet mixing in the next section.
is useful to write theT matrix in the form

T̂P~P2!5FTTP~P2!F ~6.1!

with

F5S l8

l0
D ~6.2!

and

TP~P2!5S AP~P2! BP~P2!

BP~P2! CP~P2!
D . ~6.3!

The expressions forAP(P2), BP(P2), andCP(P2) given in
Ref. @2#. We then introduce a matrixM (u), such that



s
n,

1038 PRC 59L. S. CELENZA, BO HUANG, AND C. M. SHAKIN
TABLE IV. Mass spectrum and mixing angles for states of theh-h8 system. For the first three column
GD52200 GeV25, GS511.38 GeV22, and only singlet-octet mixing is included. For the last colum
pseudoscalar-axial-vector mixing is taken into account,GD is reduced to264.0 GeV25, and GS

512.2 GeV22 is used. Heremu50.364 GeV andms50.565 GeV. For a resonance inT1 we haveh
5cosuPh82sinuPh0, while for a resonance inT2 , we haveh85sinuPh81cosuPh0.

Mass~theory!
~GeV! uP(P2) ~deg! Channel

Fraction ofs̄s
configuration

Mass~GeV!
GD5264.0 GeV25

0.512 211.5 T1 0.468a 0.531
0.977 236.3 T2 0.897b 0.972
1.37 262.5 T1 0.018a 1.36
1.64 41.5 T2 0.012b 1.63
1.69 35.3 T1 0.998a 1.69

aCalculated on the assumption that the resonance appears only inT1 .
bCalculated on the assumption that the resonance appears entirely inT2 .
in

in

d, in
n

-

a-
-

sted

al
m-
S h
h8 D5M ~u!S h8

h0D ~6.4!

with

M ~u!5S cosu 2sinu

sinu cosu D . ~6.5!

The matrixM (u) bringsTP(P2) to diagonal form

M ~u!TP~P2!M 21~u!5S T1~P2! 0

0 T2~P2!
D . ~6.6!

For example, for theh, which appears as a resonance
T1(P2),

T̃h~P,k8,k!5Gh~P,k8!ig5

ghqq
2

P22mh
2 ig5Gh~P,k!,

~6.7!

with

Gh~P,k!5@b0~P,k!1P” b1~P,k!#@cosul82sinul0#.
~6.8!

For theh8, which appear as a resonance inT2(P2), we have

T̃h8~P,k8,k!5Gh8~P,k8!ig5

gh8qq
2

P22mh8
2 ig5Gh8~P,k!,

~6.9!

with

Gh8~P,k!5@b0~P,k!1P” b1~P,k!#@sinul81cosul0#.
~6.10!

Inclusion of the propagators for the external lines yields
Green’s function
a

Gh~P,k8,k!5@S~P/21k8!Gh~P,k8!ig5S~2P/21k8!#

3
ghqq

2

P22mh
2

3@S~P/21k!ig5Gh~P,k!S~2P/21k!#.

~6.11!

Our results for a study of singlet-octet mixing are given
Table IV @2#. The value ofu5211.5° for theh ~547! is
typical for calculations of this type@12#. Mass values for the
case that pseudoscalar-axial-vector coupling is considere
addition to singlet-octet mixing, are given in the last colum
of Table IV. „A much smaller value ofGD is needed to fit
the h ~547! andh8(958) masses values in that case.…

VII. ROLE OF PSEUDOSCALAR-AXIAL-VECTOR MIXING
FOR THE h AND h8 MESONS

In this case theT matrix acts in the space with compo
nentsig5l8 , ig5l0 , g0g5l8 , andg0g5l0 . It is desirable to
use some of the notation of Ref.@12# and consider theT
matrix in the space ofig5l8 , ig5l0 , ig0g5l8 , and
ig0g5l0 , so as to deal entirely with matrices with real m
trix elements. The structure of theT matrix and the associ
ated equations are given in the Appendix to Ref.@12# and we
do not reproduce them here, since we are mainly intere
in seeing how confinement modifies the structure of theT
matrix.

For each state, we write theT matrix in thesame form
rather than use different forms, as in Eqs.~6.7! and~6.9!. We
now assume that theT matrix has been brought to diagon
form. In general, we may write for a resonant diagonal co
ponent of theT matrix

Th~P2!5
nh~2P!nh~P!

P22mh
2 ~7.1!

with

nh~P!5ghig5~2sinûl01cosûl8!

1
g̃h

2mus
iP” g5~2sinũl01cosũl8!. ~7.2!
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It is this form that is used to parametrize theT matrix at each
resonance, with the results given in Table V.

We may now define aT matrix with confinement vertices
in the numerator~see Fig. 6!. We write

Th~P,k8,k!5
f h~2P,k8! f h~P,k!

P22mh
2 ~7.3!

with

f h~P,k!5ghig5@b0~P,k!1P” b1~P,k!#

3~2sinûl01cosûl8!1
g̃h

2mus
iP” g5„d0~P,k!

1P” d1~P,k!…~2sinũl01cosũl8!. ~7.4!

We have usedmus50.433 GeV.
From our previous discussion and from the Appendix,

can see that, in the absence of confinement,b0(P,k)51,
b1(P,k)50, d0(P,k)51, andd1(P,k)50, so that Eq.~7.3!
will reduce to Eq.~7.1!. Values for gh , g̃h , û(P2), and
ũ(P2) are given in Table V for a calculation withGD5
264.0 GeV25. This is a quite small value ofGD and leads to
what is essentially ideal mixing for theh andh8. Clearly the
wave functions of theh and h8 with four components are
significantly more complicated than those usually cons
ered. It remains to be seen whether the experimental va
for the decays of theh and h8 can be obtained with suc
wave functions.

VIII. DISCUSSION

Reference@12# contains a general discussion ofT matrices
for mesons~including singlet-octet and pseudoscalar-axi
vector mixing! in the absence of a confinement model. In o
work, one of our goals has been to show how the result
Ref. @12# are modified in the presence of confining intera
tion. It is necessary to include such an interaction, if o
wishes to describe mesons whose masses are greater
about 600 MeV. such as thev, r, f, andh8 mesons. If we
include confinement, we can also describe various radial
citations of thep, v, r, f andh mesons, among others~see
Tables I–V!.

Further work is needed in the case of theh-h8 system.
With the inclusion of pseudoscalar-axial-vector coupling,
saw we could fit theh andh8 mass values with a very sma
value of the ’t Hooft interaction. That leads to ideal mixin
for h-h8 states. This result may be tested by calculating

TABLE V. Values of the mixing angles and coupling constan
for the vertex of Eq.~7.2! are shown. HereGD5264.0 GeV25,
GS512.2 GeV22, GV512.5 GeV22, andmus50.433 GeV.

Mass~GeV! û(P2) ~deg! ũ(P2) ~deg! gh g̃h

0.531 236.7 242.9 5.50 1.90
0.972 2135 2127 5.54 1.67
1.36 259.6 160.3 1.19 0.074
1.63 2135.3 2121 0.380 0.365
1.69 252.9 256.4 0.500 0.460
e

-
es

-
r
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han

x-

e

e

rates forh→2g and h8→2g. In the presence of confine
ment, such calculations are rather complicated. We hop
report theoretical results for theh and h8 decay rates in a
future publication.

APPENDIX

In this appendix we summarize some results for the~lon-
gitudinal! axial-vector vertex. That vertex satisfies the equ
tion

ḠL
m~P,k!5

PmP”

P2 g52 i E d4k8

~2p!4 @grS~P/21k8!ḠL
m~P,k8!

3S~2P/21k8!grVc~kW2kW8!#. ~A1!

It is useful to defineGL
12 andGL

21 :

L~1 !~kW !ḠL
m~P,k!L~2 !~2kW !5

Pm

AP2
GL

12~P,k!L~1 !

3~kW !g5L~2 !~2kW ! ~A2!

and

L~2 !~2kW !ḠL
m~P,k!L~1 !~kW !5

Pm

AP2
GL

21~P,k!

3L~2 !~2kW !g5L~1 !~kW !.

~A3!

We have the equations

GL
12~P0,ukW u!5

m

E~k!
1E d3k8

~2p!3

VC~kW2kW8!

P022E~kW8!

3
2E~kW !E~kW8!2m2

E~kW !E~kW8!
GL

12~P0,ukW8u!

~A4!

and

GL
21~P0,ukW u!52

m

E~k!
2E d3k8

~2p!3

VC~kW2kW8!

P012E~kW8!

3
2E~kW !E~kW8!2m2

E~kW !E~kW8!
GL

21~P0,ukW8u!

~A5!

that are used to calculateGL
12 andGL

21 .
We now introduce the scalar invariantsd0 andd1 by the

relation

ḠL~P,k!5
P”

AP2
g5@d0~AP2,A2kc

2!1P” d1~AP2,A2kc
2!#.

~A6!

If PW 50, the last equation reads
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ḠL~P0,ukW u!5g0g5@d0~P0,ukW u!1g0P0d1~P0,ukW u!#.
~A7!

Therefore, we find

GL
12~P0.ukW u!5

m

E~kW !
d0~P0,ukW u!2P0d1~P0,ukW u! ~A8!

and

GL
21~P0,ukW u!52

m

E~kW !
d0~P0,ukW u!2P0d1~P0,ukW u!.

~A9!
ni

C

/

. C

. C
Thus

d0~P0,ukW u!5
E~kW !

2m
@GL

12~P0,ukW u!2GL
21~P0,ukW u!#

~A10!

and

d1~P0,ukW u!52
1

2P0 @GL
12~P0,ukW u!1GL

21~P0,ukW u!#.

~A11!
nd
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