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T matrices and current correlation functions for a relativistic quark model with confinement
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We describe some properties of a relativistic model of confinement and show how that model may be used
to construcfT matrices for quark-antiquark systerig the absence of the confinement model, our Lagrangian
reduces to that of the §B)-flavor Nambu—Jona-Lasinio modElf we have absolute confinement, olir
matrix is expressed in terms of bound stateisresonanceswithout the presence of quark scattering states.

We find that is a straightforward matter to describe singlet-octet and pseudoscalar-axial-vector mixing in this
formalism. We also demonstrate that the construction ofTthmatrices of the model allows us to obtain
expressions for various current correlation functions, once the meson decay constants are calculated. That
calculation is readily made starting with knowledge of thenatrix. The most complex situation we consider

is that of then-7’ system, with both singlet-octet and pseudoscalar-axial-vector mixing, calculated in the
presence of dcovarianj confinement model. Values of masses, coupling constants and mixing angles are
given for them, w, ¢, 7, andn’ mesons and for some of their radial excitatigri$0556-28189)02102-0

PACS numbgs): 12.39.Ki, 12.38.Aw, 14.40.Aq, 24.85p

[. INTRODUCTION singular at those energies for which the homogeneous equa-
tion has a solution. These singularities are at the energies of
In this work we are interested in obtaining information the bound states in the confining field. Another important
concerning meson structure using a relativistic quark mOdeﬂ)roperty of the vertex is that it is equal to zero Wh|€Elh
that includes a description d¢forentz vectoy confinement. —K ith k.= P%/4—m21¥2 if P=0. That is th int
In the absence of the confinement model, our Lagrangian , °™ with Kon=[ m 175 - 1hat1s the poin
reduces to that of the §B)-flavor Nambu—-Jona-Lasinio where the quark and antiquark would go on thgsitive

. o . — mass shell$6].
(sg‘]ml_r%entl?/di?\lt[hl;. a-lt—nrs]gnt:gc:? ggé%gr\livfn:s?: n?;(t?;s_lts chiral In the study of the NJL model one needs to calculate

vacuum-polarization function¥ P?), such as those depicted

G.B in Fig. 2(@). To introduce confinement, we sum a series of
L=q(i4—m°)q+ _52 [(g\ )2+ (qi ysA'q)2] confining interactions, as in Fig(l. The inclusion of the
4 =0 vertex function(shaded triangular regignn the calculation

G of J(P?), as shown in Fig. 2, serves to define the vacuum-
b - - L : . .
+—1defq(1+ v5)q]+defq(l— vs) polarization function for the theory with confinement. That
2 tdetal1+ys)ql+deta(1-ys)al) function does not have the cut startingR=(2m)?, that
G B would be present in the absence of a model of confinement.
\VJ _ . _ .
= 2 [@"N')?+ (@y* 75\ 9) ]+ Loon.
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We havem®= diag,m},m0) as the current quark mass ma-
trix. The term proportional t&p is the 't Hooft interaction.
The \; (i=1,...,8) are theGell-Mann matrices and g (@)
=/2/3l, wherel is the unit matrix in flavor space. P/2+k Pr2+k
Since our confinement model has been described in detail mn n A
elsewherd2—6], we only provide a schematic description in = N
this work. In the generalized model, we introduce confine-
ment by calculating a vertex function for the confining inter-
actionVC. For example, for the study of vector mesons, the urTye
vertex is denoted aB*(P, k) (see Fig. 1 The vertex satis- eyt
fies the inhomogeneous equation shown in Fig. 1, where it is
represented by the shaded triangular area. As may be seen in
the second part of the figure, the vertex serves to sum a gG, 1. () The equation for the vertex operatb“(P k) is
“ladder” of confining interactions. We find that the vertex is shown. The vertex is represented by the filled triangular area and
the dashed line represents the confining interadisee Fig. 2 (b)
A perturbation expansion is shown for the equatiorian We see
*Electronic address: CASBC@CUNYVM.CUNY.EDU that the vertex sums a “ladder” of confining interactions.

-P/2+k -P/2+k -P/2+k
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P2+k ~0.18 GeV, for the case of Lorentz-scalar confinement.
P ,,H<>Y,, These comments suggest that, while we quote
=0.0575 GeV as our value ofk,, for light mesons, the cor-
(a)'P/2+k respondingxyg is about two-thirds of the string tension in
massive quark systems.
P/2+k To illustrate the relativistic effects that lead to an en-

case, we write the vertex associated with a ladder sum of

Vo, _L_Lv hanced value o¥$,,, we may consider an equation for a
(confining vertex function for pseudoscalar mesons. In this
P

M confining interactions a§5(P,k)= vsI's(P,K). It is found
(b) useful to introduce matrix elements Bg(P,k)
_ FIG. 2. (a) The diagram shpws the basi_c vacuum-pol_arization A(+)(|Z)F5(p'k)A(—)(_|Z)
diagram of the NJL model that is evaluated in the calculation of the
tensor J**(P?). (b) The diagram serves to define the tensor =F;7(P,k)A(+)(IZ) 75/\(7)(_'2) (2.2

J#¥(P?) when confinement effects are included. The shaded trian-
gular area represents the confining vertex of Fig. 1. The right-hand
side of the figure shows a perturbative expansionJfti( P?). and

Thus, J(P?) is a real function with singularities reflecting
those of the vertex function.

In Sec. Il we describe various aspects of our relativistic
confinement model and give some equations for the vertex
function for pseudoscalar excitations. In Sec. Il we discuss
radial excitations of the pion and present the form taken byvhere
the quarkT matrix in this case. In Sec. IV we extend the
considerations of Sec. Ill to the case #f-a; mixing. In

A (=K)Ts(P,K)AH(K)
=I5 "(POAT(—K)ysA M (K), (23

Sec. V we describe th& matrix that exhibits resonances A<+)(IZ)= k+_m (2.9
describing thew and ¢ mesons and some of their radial 2m

excitations. In Sec. VI we take up the topic of singlet-octet

mixing for the » and»’ mesons, while in Sec. VIl we extend Tt

that analysis to include pseudoscalar-axial-vector mixing. Fi- A (—K)= _m, (2.5
nally, Sec. VIII contains some further discussion and conclu- 2m

sions.

with k*=[E(K),k] and k*=[—E(k),k]. The functions

I'Z (P,k) andT'; “(P,k) are defined in the rest frame of
To construct a momentum-space confinement model, wehe meson P=0). They appear naturally when calculating

start with the formVC= kyr ex—ur]. Here u is a small vacuum-polarization integrals in our relativistic quark model.

parameter introduced to soften the momentum-space singu- The functionl'; ~(P°,|K|) satisfies the equation

larities of the Fourier transform of (r):

II. RELATIVISTIC CONFINEMENT MODEL

i 1 A’ ] &k VE(k—K’
Vc(k_k )=~ 8 MAY 212 E_ L2 213 | ng(P0’|k|):1+J 3 ( »)
[(k=k")"+u 1" [(k=K")"+ u’] (2m)” PO—2E(K")
(2.2
. " 2
As u is reduced in value, the potential approximates a linear > 2E(K)E(K) —m TE(PO,IK')
potential to a greater degree. We yse0.020 GeV in our E(IZ)E(IZ’) 5 ' '

calculations of the properties of light mesons. That leads to a

maximum  value V5,.=ry/(u€)=1.06GeV, when xy (2.9
=0.0575 GeV and . =0.020 GeV.(We note that relativistic

factors in our equations put theffectivevalue of Vi, at  for Lorentz-vector confinement. Hef(K) =[ K2+ m?]Y2
about 1.7 GeV.. We use Lorentz-vector confinement, so that |t js helpful to introduce the wave function

our potential iSy“(l)VC(IZ— E’)yM(Z) in momentum space.
We have seen, in a study of vector mesons, that if we use
Lorentz-scalar confinement rather than Lorentz-vector con-
finement, we need to takes= 2k, to obtain essentially the
same spectrum of states. Therefotg=0.12 Ge\t. It is the
latter value that can profitably be compared to the value used
for the string tension for massive quark systemsyz  which satisfies the equation

r's (POK)

W5(PO,|k|)= —,
PO—2E(k)

2.7
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d3 ’ 1
PO_ 2E(K) W (PO, |K :1+J VE(K—K’ %
[ (K)1Ws(P%,[K]) o VR i
2E(K)E(K')—m? . T
X : )a( 3 W5(PY[K']). (2.8 <
E(K)E(K") o ?r
+[_:n Ll
We may also introduce the solutions of the homogeneous
equation 4
<5 1 1 n 1
0.0 0.5 1.0 1.5 20

[En—2E(K)]W5(E,,

. d3k’ 5 o
— Cile— I’
Kl) f(zw)?»v (K—K")

2E(K)E(K')—m?
E(KE(K")

X

Ws(En,[K']). 2.9

The energieg, form a discrete set, if the potential is abso- )
lutely confining. In that case, we need not supplement the T';*(P%|k|)=1—

denominator in Eq(2.7) with ani € factor.[This feature may

be traced to the infrared behavior of the confining potential

VE(k—k").]

Note that if the quark mass is very large, we can replace

the bracketed quantity in E¢2.9) by unity. Equation(2.9)

then represents a momentum-space version of an equation

for bound states in confining potentiad“(r)=«r exp

[—ur]. We may define a vertex function for a bound state

T2 (En k) =[E,—2E(K)]¥5(En, kD). (2.10

There is a zero in the vertex function whéﬁ= Kon When

E,=2E(k,,). When making calculations in momentum
space, it is that zero of the vertex function that eliminates
any long-rangédscatteringg component of the wave function.

We may return to the inhomogeneous equatlien. (2.8)]
and note that for larggk|, such that E(k)> P°,

0 1
Ws(PY k)~ ——, (2.11
2|k

sincel's ~(P%,|k|)—1 for large|k|. Once we solve the in-
homogeneous equation for¥s(P°|k|), we obtain

I'2~(PO,|K|) from Eq.(2.7). The factorP®—2E(k) induces

a zero inl'; ~ (PY,|K|) at|K|=kop, if P is large enough for
the equation

kon=[(P°/2)2—m;]"? (2.12

to have a solution fok,,, real. That feature may be seen in

Fig. 3, where we show's ~(P%,|k|) for several values of
PO.
The equation fol'; *(P?,|K|) is

k (GeV)

FIG. 3. The figure shows the valuesiof ~(P°,|k|) for various
PO, Starting with uppermost curve we haw’=0.0GeV, P°
=0.5GeV,P°=0.75GeV,P°=1.0GeV. Note thal'; ~(P°k,,)
=0, whereko,=[(P%2)?~m;]"% Here my=0.364 GeV andx
=0.0575 GeV.

f dk’ VC(k—k)
(2m)°% PO+ 2E(K")
2E(K)E(K’) —m?

|
E(K)E(K')

Iy (POIK']).

(2.13

It is worth noting that if we were to use Lorentz-scalar
confinement, we would have

dk’ VE(k—k’)
(2m)° pPO—2E(K")

F;;ca(P01|R|):1+f

i

><E(R)E(E')+m2—|2.k
2E(K)E(K")

Ts oal POIK]).

(2.19

We see that asm is made large,I'} ~(PC|k|) and
I oo P |K|) satisfy the same simple equation

3kr

. d . TE(POK
Fe-,+*(l="),|k|)=1+f 3Vc(k—k’)LU)-
(2m) PO—2E(K")

(2.1

Thus, the value of« for Lorentz-scalar or Lorentz-vector
confinement would be the same, when studying pseudoscalar
mesons of large mass.

For the sake of completeness, we present the equation for

I'5, scal PO [KI):
dk’ VE(k—K’)
(2m)° pO4 2E(K")

F;;ca(PO,|E|):1—J

XE(E)E(E’)+m2—IZ-IZ’

—— T'5 2ol POIK']).
2E(K)E(K")

(2.16



PRC 59 T MATRICES AND CURRENT CORRELATION . .. 1033

For largem, Egs.(2.13 and(2.16) take on the same form lll. RADIAL EXCITATIONS OF THE PION

For the moment, we will negleet-a; mixing and return

’ - 0|’
o+ (P° |E|):1_j d°k VE(K— K’ s "(PIK']) to that aspect of the problem in Sec. V. In this case we have
s ’ (2m)3 PO+ 2E(K') a T matrix of the form

@17 TA(P?)=iysTPP(P?)i s, (3.3
As a final point, we note that when we study the upsilonWith
system of states, we use=0.176 Ge\? in our model, which
is quite consistent with general expectations concerning the Gs
value of the string tension for a nonrelativistic system, as TPP(P?)=— 16" (Y (3.2

noted above.
It is possible to make our relativistic confinement model

We suppress reference to isospin in these expressidres.
covariant[3]. That is done by introducing the vectors ( PP P press

define the function

=i KPP d*k
c _T (218) —iJPP(PZ)z—nCnfTrf W
and X[1S(P/2+Kk)i y5iS(—P/2+K)i ys],
(k' -P)PH (3.3
kt=k'#— ———, 21
¢ P 219 in the a_bsence of confinement. If we introduce a confinement
and replacing Eq(2.1) by vertexI's(P,k), we define
d*k
1 —iJPP(P?)=—n nTrJ—
VC(k,—k')=—8mk , ' N 2m)?
(keke) [(ke—k)?— w7 (2m
a2 X[S(P/2+K)T5(P,k)S(— P/2+K) ys].
+ 3| - (2.20
[(Ke—ke)*—u7] (3.9
Since, in the meson rest fram®€0), k“=(0K), andk’* " general, we would have
=(0Kk’'), VC of Eq. (2.20 reduces tov® of Eq. (2.1). We I's(P,k)=bgo(P,k)+ Pby(P,k)+Kb,(P,k)
may use the covariant nature of the model to construct cova- o
riant vertex functions for the confining interaction. That fea- +io*"P k,bs(P.k). (3.9

ture of the model will be discussed in Sec. Ill. . .
There are some similarities of our model to the g|0ba|However, for our model of Lorentz-vector confinement, in

color model[7—9]. There, in some applications, the gluon Which there is no energy transfer in the frame vt 0, we
propagator is written as find that we need only two terms:

G (k) ==T,,(KG(K?) (2.21)

in the Landau gauge, wit,,(k)=g,,—k,k,/k? [10,11].
Further,G(k?) =Gy(k?) + Gr(k?). The lowk? behavior is

T'5(P,k)=bo(\VP% V=K + Pby(VPZ,V—K2). (3.6

Recall thatk, was defined in Eq(2.18. Note that in the
frame whereP=0, Eq.(3.6) may be written as

given by
T5(PY,[K|)=bo(P% k) + ¥oP°b1 (PO, |K)). (3.7
We may obtain the scalar invariants appearing in 6
by identifying Eqgs.(3.6) an_d (3.7 in the meson rest frame.
in Euclidean momentum space. In REf1], it is remarked Using the definition off's(P,k), we have the following
that this form ofG z(k?) provides what is effectively a linear rejations betweely, by, I'*~, andl~*:

potential forr <1.0fm. [The form of Eq.(2.22) is chosen to

avoid the singular nature of Eq2.1) at small u, for ex- P°m

1672

GlR: 3 akze_’u'k2

(2.22

ample] Since we use Lorentz-vector confinement, our poten- I's ~(PO[K|)=bo(PC,|K|)— E(k) by(P°[K) (3.8
tial y*(1)VE(k—k')y,(2), plays a role similar to that
played byG,r(k?) in implementing confinement, since the and
gluons are vector fields. However, our calculations are made o
in Minkowski momentum space, while those global color _ - - P"m -
g . I's " (P%,[K)) =bo(P%, k) + =~ by(PO k). (3.9

model are made in Euclidean momentum space and an ana-
lytic continuation is required to obtain meson masses and
other propertie$10,11. Also, when the quarks go on mass shefl=2E(k), so that

E(k)
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1.0 - TABLE Il. Values of the mixing angle for the pion and its radial
08| excitations when all resonances are expressed in the form used for
06l T, given in Eqg.(4.9) (see Fig. 5.
04
< 02 Energy(GeV) 6 (deg Nature of state
fo] “r
O .
=~ oot 0.138 -3.39° pionlike-47(1S)
& ozf 1.18 126° mixed state
S o4f 1.36 2.20° pionlike-m(2S)
06| 1.47 122° mixed state
08+ 1.63 2.68° pionlike-w(3S)
1.0 L L ! L ! L L 1.68 118° mixed state
0.0 0.4 0.8 1.2 1.6 2.0 24 28
P? (GeV?)

The corresponding calculation is more complicated if
pseudoscalar-axial-vector coupling is included for the pion.
In that case we deal with & matrix of dimension 2, as
described in some detail in Sec. IV. We find six states in the
region P2<3 Ge\? (see Tables | and Il and Fig).5

In the absence ofr-a; mixing, we may write
g~ (P°Kon) =bo(P° kon) —2mby (P kop), (3.10 Gs 0%

=0, (3.11 1-GJI™P(PD) ~  PP—m2, (3.14

FIG. 4. Values ofl°P(P?) are shown. The horizontal line rep-
resentsGg*=0.08134 Ge¥. The intersection of that line with
JPP(P?) provides the solution of Eq3.13. The mass values are
those for thew(1S), m(2S), and 7(3S) states in the absence of
m-a,; coupling.

o

which is a characteristic of our model of confineméste  With
Fig. 3. Itis this feature that serves to eliminate th@physi-

7 . X . PP/ p2
cal) gq cut from the vacuum-polarization functions. 1 :‘9‘] (P )‘ (3.15
Now we consider the solution of TP '

_ PP/ p2) _
1=GsJ7 (P =0 (312 near a bound state or resonance. As a final step, we include

to obtain the mass values of the pion and its radially exciteahe confinement vertex for the external lines and write

states. It is instructive to present a graphical solution of Eq. 1+ p |/ k)= P K')+ P K’
(3.12, which we rewrite in the form #(P.K",K)=[bo(P, k') + Pby(P.K")]

L2
_ 1Y591qq.
Gg - JPP(P?)=0. (3.13 xr’;n‘ngs[bom,kn Pby(P.K)]
w
In Fig. 4 we showJPP(P?) calculated for Lorentz-vector (3.16
confinement, withx=0.0575 Ge¥ and m,=0.364 GeV. It _
is seen from the figure that”®(P?) has singularitiegindi-  (see Fig. 6.
cated by the vertical lineésThese appear at the valuesR#
where the homogeneous equation, E2}9), has solutions. 20
These are the energies of the bound states in the confining
field. The states are moved to lower energy when the attrac- 1.60 —rer— 1.68
tive NJL interaction is included via the solution of Eqg. T — 163
(3.13. In Fig. 4 we have showGs*=0.08134 GeV as a 1o 149 —— 147
horizontal line. The points where the horizontal line inter- 136
PP(p2 i i S 20 e —
sectsJPP(P?) determine the energies of thg1S), 7(2S), s 120 — 118
and 7(3S) states. € 10t ‘
o
[
TABLE I. Values of the mixing angle for the pion and its radial =
excitations(see Table ).
05t
Energy(GeV) Channel 0 (rad 0 (deg '
0.138 T ~0.059 ~3.39° ‘— 0138
1.18 T, 2.20 126° 0
1.36 T, —1.52 —87.8° FIG. 5. On the left-hand side of the figure are the doublets found
1.47 T, 0.55 31.8° in the confining field. When the NJL interaction is included, the
1.63 T, 0.047 2.68° spectrum on the right side is obtainéske Table)l The states at
1.68 T, 2.06 118° P°=0.138 GeV,P°=1.36 GeV, and®°=1.63 GeV are ther(1S),

7(2S), and(3S) states with small mixing anglgsee Table I).
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(@) P

-Pr2+k -P/2+k
3 HOK OO G
(b)

M MO OO g Pt
P
{0

. N b
FIG. 6. (a) A Born term and a series of vacuum-polarization (0)
diagrams for the NJL model without confinement is shoftan.The FIG. 7. (@ A T matrix, including the vertex of the confining
vacuum-polarization diagrams ¢&) are modified by inclusion of interaction for the external lines, is showh) A resonant contribu-
the vertex of the confining interactiofc) The vertex for the con-  ion to a current correlator is obtained from the diagrantanby
fining interaction is added for the external lines, definingatrices  jntroducing currents that excite and deexcite ¢figpairs. Here we
of the formT(P,k’ k) (see Fig. 7. consider the correlator of two axial-vector currents of the form
- : _ _ q(x) y*ys(7'12)a(x).

It is useful to include the propagators associated with the

external lines. We define

P/2+k

ip
— TAR(P?)= S TAR(P?), 4.3
G(P,K' K)=[S(— P2+ k") T5(P,k")i ysS(P/2+k')] P2
gi,qq and
52 2
P M aa o2y PuPyan oo
— T, (P ):?TL (P9). (4.9
X[S(P/2+K)i ys['s(P,k)S(— P/2+K)],
(3.17 We then consider the matrix

(4.5

where we have again suppressed reference to isospin in the TPP(P?) iTPA(P?)
vertex functions for simplicity. T(P?)= ( iTAP(P2) TAAP2) )
The manipulations of this section may be understood with L
reference to Fig. 6. In Fig.(6) we show the diagrams that
are summed in the absence of confinement to yieldnaa-
trix. In Fig. 6(b), we include confinement in the calculation
of the vacuum-polarization functiond(P?). Finally, we in- TPP(P?) iTPAP?)\/ i
troduce the confinement vertex functions associated with the 1'=(i75,7075)(- AP, 2 AA 2 )( '075 )
external lines. Therefore, Fig(® is in correspondence with iIToR(PY) TP S\ Y s
T,.(P,k',k) of Eq. (3.16. This correspondence is more (4.6)
clearly seen in Fig. (&), where we have introduced the . ) . . .
propagator for the pion or one of its radially excited statesThe various elements of this matrix are given in R
(As remarked earlier, it is best to neglect confinement for thé?ather than repeat that material here, we will present the
w(138), since the properties of that meson are extremely ser{_esults _Of our CaIGUIat'Oh' )
sitive to small violations of chiral symmetylf we intro- In this case thd matrix may be brought to diagonal form
duce the propagators for the external lines, Fig) 7s in Py @ matrix
correspondence witls (P ,k’ k) of Eq. (3.17.

which acts in the space spanned iby and y,ys when P
=0, so that we write

cosf ising
M(O)=|. . , 4.7
IV. CALCULATION OF -a; MIXING Isinf coso
For the study of pseudoscalar-axial-vector mixing wesuch that
generalize Eq(3.1) to read
2y i TPP(P2)i i TPA B2 M(OT (PP)M (9= Tu(P%) 4.8
TA(P?)=iysTPP(P?)iys+iysThAP) Y ys (OTAPOMHO=\ o 1 (pyy| ©“I

. TAP D2y: wn TAA D2\ v
Ty s (PO ys T v ys T, (P9 ¥ ys. If we assume there is a resonancdifP?), we would have,
(4. whenP=0,

We define g2
2\ s ; 0 'dq
T,(P?)=i[cosfys+sindy ys]P2—2
iP W
TPA(P?) = = TPAP?), (4.2)

JP?

X i[cosfys+sin 6y ys], (4.9
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4

so that for co$=1 we go over to Eq(3.1). For a resonance _
in T,, we have —|J{j“(P)=—nCJ WTV
P =l Sin Bt cosgn? giqu X[iSy(PI2+K)I'*(P,k)iS(—P/2+k)¥"],
2(P9)=[—sinfys+cos6y ys] PTme, 53
X[ —sinfys+cosfy’ys]. (410 whereI'*(P,k) implements our confinement model.
We also put
Now we include confinement in the numerator of thena-
trix (see Fig. 3 We define I (P)= —g“”(P)JL’(PZ), (5.4)
F-(P,k)=i cosfys[by(P,k)+Pby(P,k)] .
o JL(P)=—g"(P)JS(P?), (5.5
+i sin @ — ys[ do(P,k)+ Pd,(P,k)],
VP2 3,(P1)=23Y(P?), (5.6
(4.11
J,(P?)=2JY(P?), (5.7

whereby(P,k) andb;(P,k) have been defined previously.

axial-vector verteXsee the Appendjx Thus, Eq.(3.4 may

be generalized to read 1-GyJ,(P2)=0 (5.9
VYo - .

2

92,
THPK K =Fo(~PK) 55" 1 Fo(P k), (412 and

1-GyJ,(P?)=0. (5.9
with a similar equation foff 7 (P,k’,k) based upon the form
of Eq. (4.10. We also have

It is often useful to use theameform for the T matrix,

when a resonance appears in eitfigror T,. That may be 1 O’wa(Pz)|
accomplished by adding 90° to the mixing angle when the 2 2y T p2 |
resonance is ifm,, and then using Eq4.9 or Eqg. (4.1 Jogq(M)
(see Tables | and )l From Table I, we see that the states of
the 7r-a, system fall into two groups. There are three stategnd
with small mixing angles, which may be identified as the
w(1S), w(2S), and 7(3S) states. The other states are 1 93 (pz)‘
strongly mixed and have similar angles. -2

(5.10

P2=m?
w

Ogaa(My)  P° |P2=m§,
V. VECTOR MESONS
o ) ) for the w and ¢ and their radial excitations.
We will discuss thew and ¢ mesons and their radial ex- In the absence of a confinement model we have, with
citations. In this case we have ideal mixing, which simplifies@w(P) —grr— pupY/p2
the discussion. It is useful to define a vacuum-polarization
function for the up(and down quark 2 2
9ugq(M,)

TP == P2 77

Y. G4 (P)y,, 51
o 4K Y.9*"(P)y, (5.12
—IJU (P)——ncf WTI‘

while the introduction of confinement leads to
X[iS,(P/2+ k) y*iS,(— P/2+ k) "],

2 2
(5.1) , Jigq(M;,) o )
Tw(P,k ,k):—rrnir#(—lj,k )g‘u,/(P)F (P,k)
where (5.13
A PP (5.2 for each isolated resonance. Note that we need not write an
Y= p2 - ' i€ in the denominator of E¢(5.13.

In general I'*(P,k) will contain eight terms. Our model,
Here S,(k)=[k—m,+ie] ! is the propagator for the up Which makes use of Lorentz-vector confinement, and which
quark. There is a similar definition d&"(P) for the strange has no energy transfer in tte=0 frame yields a form of
quark. With confinement, we define I'*(P,k) that has only four termg3]
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r“(p,k)=

with

and
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TABLE lIl. Experimental values for the masses and decay consfaBtsare compared to our theoretical
values. Here my=my=0.364 GeV, m,=0.565GeV, «,=0.0575GeV, A;=0.622GeV, and G,
=12.50GeV?2

Decay constantf(, ,f ;)

(MeV)
Mass(expd Mass(theory Juwgq OF
Meson (MeV) (MeV) 94qq expt theory
(782 781+0.12 782 3.93 45.9:0.7 47.3
$(1020 1019.413-0.008 1018 4.78 782 62.5
(1420 1419+31 1402 1.26 8.4
(1600 1649+24 1650 0.861 4.9
$(1680 1680+20 1717 0.731 5.8
8Fit by the choice ofGy andms.
fem " v iP- v
|k2|1/2 |k2|1/2 (5'21)
75y, P K, — _gee(p?
Tyt @y(P )+ 2T (P k) grreP), (.22
’ |P2|1/2|R2|1/2
we can relate the contribution of each resonand@(te?) to
(519 the T matrix of Eq.(5.13, using the relation
3
. g (P)=— 2, (P)e(P) (523
A ki A=1
VSV — (5.19
k and including the electromagnetic charge operator at each
vertex (see Fig. 7.
Results of our study of the and ¢ mesons and their
(k-P)P# radial excitations are given in Table Ill. We have uskg

k4(P)=kH— —pr (5.1 =0.622GeV as a momentum cutdf| <A, in our calcu-
lation of the polarization integrals.

Procedures for obtaining the Lorentz-scalags a, , a,, and
ag are described in Ref3]. We do not repeat that discussion VI. SINGLET-OCTET MIXING FOR THE #
here, since our goal is to exhibit the form of thenatrix and AND " MESONS

current correlators for ouicovarian} model of confinement.
The o and ¢ decay constantd,, andf, given by

In this section we are interested in exhibiting thenatrix
for the mixing of the S3) singlet %° with the (octed 7.
We will then go on to discuss pseudoscalar-axial-vector mix-

(vadJg ) =m,f,el(P) (5.17) ing in addition to singlet-octet mixing in the next section. It
and is useful to write thel matrix in the form
R - 2 _ g T 2
(vaddgn) .\ )=myf 4el(P). (5.18 Tp(P)=® Tp(P)® (6.1)
Heree’;(ls) is the polarization four vector for the or ¢. We with
see that
= ( )‘8) (6.2
Joga(M2) , , (2 1 Mo '
w:T‘]u(mw) §_§ f (519
and
where the last factor arises from the charges of the up and 5 5
down quarks. Also, To(P?)= Ap(P?)  Bp(P?) 6.3
i Bp(P?)  Cp(P?)/’ '

F o= 90aa(M)I5 (M5)(3). (5.20
The expressions fohp(P?), Bp(P?), andCp(P?) given in

If we define a correlator Ref.[2]. We then introduce a matrik (6), such that



1038 L. S. CELENZA, BO HUANG, AND C. M. SHAKIN PRC 59

TABLE IV. Mass spectrum and mixing angles for states of the;’ system. For the first three columns
Gp=—200GeV > Gg=11.38GeV?, and only singlet-octet mixing is included. For the last column,
pseudoscalar-axial-vector mixing is taken into accouBf is reduced to—64.0 GeV?> and Gg
=12.2 GeV? is used. Herem,=0.364 GeV andm,=0.565 GeV. For a resonance iy, we havey
=cosdp7r’—sin 67°, while for a resonance ifi,, we haves' =sin 6p7°+cosbp7’.

Mass(theory) Fraction ofss Mass(GeV)
(GeV) 0p(P?) (deg Channel configuration Gp=—64.0GeV?®
0.512 —-11.5 T, 0.468 0.531
0.977 -36.3 T, 0.897 0.972
1.37 —-62.5 T, 0.018 1.36
1.64 415 T, 0.012 1.63
1.69 35.3 T, 0.99¢ 1.69

&Calculated on the assumption that the resonance appears ohjy in
®Calculated on the assumption that the resonance appears entifely in

8 o , N ) |
(7],)=M(9)(Zo) 6g  CHPKK [S(P/22+k)1“7](p,k)|y53( P24 K0)]
with S
X[S(PI2+K)i v ,(P,K)S(— PI2+K)].
cosf —siné
i (6.1
M) (sina cos@)' (6.5

Our results for a study of singlet-octet mixing are given in
Table IV [2]. The value ofd=—11.5° for the »(547) is
typical for calculations of this typglL2]. Mass values for the
case that pseudoscalar-axial-vector coupling is considered, in
addition to singlet-octet mixing, are given in the last column
of Table IV. (A much smaller value oG is needed to fit
the 7(547) and %’ (958) masses values in that case.

The matrixM(6) brings Tp(P?) to diagonal form

T1(P?)

0 TAP5> (60

M(e)Tp(PZ)M1(0)=<

For example, for they, which appears as a resonance in
Tl(Pz) VIl. ROLE OF PSEUDOSCALAR-AXIAL-VECTOR MIXING

FOR THE » AND ' MESONS

_ _ giqq ' In this case theél matrix acts in the space with compo-
T,](P,k’,k)=1“,](P,k’)|3/5F)2_m2 iysl',(P,k), nentsiyshg, i ys\g, vo¥shg, andygyshg. Itis desirable to
n 6.7 use some of the notation of Rdfl2] and consider thd
' matrix in the space ofiys\g, 1ys\g, ivoyshg, and
i Y0YsMo, SO as to deal entirely with matrices with real ma-
trix elements. The structure of thematrix and the associ-
ated equations are given in the Appendix to R&2] and we
I',,(P,K)=[bo(P,k)+Pb;(P,k)][cosONg—sin O\ o]. do not reproduce them here, since we are mainly interested
(6.8 in seeing how confinement modifies the structure of The
matrix.
For the ', which appear as a resonanceTisP2), we have For each state, we write thE matrix in thesame form
rather than use different forms, as in E(&7) and(6.9). We
) now assume that th€ matrix has been brought to diagonal
~ , N 9,49 . form. In general, we may write for a resonant diagonal com-
Ty (PKLIO=T (PR s 55— a-iysly (PK), ponent of theT matrix
n

with

6.9 .
S G 2L

2_m2
with PZ—m?

(7.0

with
I',/(P,k)=[bo(P,k)+Pb;(P,k)][sinf\g+ coso,]. A A
(6.10 v, (P)=0,i ¥5(—SiN O\ o+ COSOAg)
Inclusion of the propagators for the external lines yields a + 9y iPys(—sinO\g+costrg). (7.2
Green'’s function 2mys
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TABLE V. Values of the mixing angles and coupling constants rates for »—2vy and ' —2v. In the presence of confine-
for the vertex of Eq.(7.2) are shown. Her&Gp=—-64.0GeV>®  ment, such calculations are rather complicated. We hope to
Gs=12.2GeV? Gy=12.5GeV? andm,,=0.433 GeV. report theoretical results for the and »’' decay rates in a
future publication.

Mass(GeV)  p(P?) (deg B(P?) (ded 9y 9,

0.531 ~36.7 ~42.9 550  1.90 APPENDIX

0.972 —135 —127 554 167 In this appendix we summarize some results for (tbe-
1.36 —59.6 160.3 119 0074 gijtudina) axial-vector vertex. That vertex satisfies the equa-
1.63 —135.3 —-121 0.380 0.365 tion

1.69 —-52.9 —56.4 0.500 0.460

= Pep [ d T L
FL(P,k):—PQ—’y5—IJw[’)’pS(P/2+k )FL(P,k )

It is this form that is used to parametrize thenatrix at each

resonance, with the results given in Table V. X S(—P/2+ k’)ypVC(IZ—IZ’)]. (Al)
We may now define & matrix with confinement vertices

in the numeratofsee Fig. 6. We write It is useful to defind” ~ andT'| " :

TPk = A EIOTEK (7.3 OR)TE (N Ry - +)

APK = : ACHRTEPRA (—R= 5T (PRA
with X(K)ysA (k) (A2)
f,(P.K)=g,i ys[bo(P.K)+Pby(P,k)] and
X (—sin O\ o+ cosbAg) + 9r_ip (do(P,k) T L
0 O TR AD(=K)TE(P, KA (k)= PZFE+(P,k)
+Pdy(P,k))(—SinBro+CoSOAg). 7.4 " .
1( ))( sin 0 cos 8) ( ) XA(_)(—k)y5A(+)(k).
We have usedn,=0.433 GeV. (A3)
From our previous discussion and from the Appendix, we

can see that, in the absence of confinemégtP,k)=1, We have the equations

b,(P,k)=0, do(P,k)=1, andd,(P,k) =0, so that Eq(7.3

will reduce to Eq.(7.1). Values forg,, §,, 6(P?), and I (PO [R) = +f d%k’ VCE(k—k’)
‘9(P?) are given in Table V for a calculation witlsy= t ' E(k) J (2m)® po—2g(k")
—64.0GeV>. This is a quite small value @ and leads to
what is essentially ideal mixing for thgand#’. Clearly the 2E(K)E(K')—m? R
wave functions of they and %’ with four components are X — L= (POIK'])
significantly more complicated than those usually consid- E(K)E(K")
ered. It remains to be seen whether the experimental values (A4)
for the decays of they; and ' can be obtained with such
wave functions. and
VIIl. DISCUSSION (P [ = — _j dk’ VE(k—k')
Referencg12] contains a general discussionTofnatrices : E(k) (2m)% PO+ 2E(K)
for mesons(including singlet-octet and pseudoscalar-axial-
vector mixing in the absence of a confinement model. In our 2E(K)E(K’)—m? o
work, one of our goals has been to show how the results of X — T (PEIK))
Ref.[12] are modified in the presence of confining interac- E(K)E(K')
tion. It is necessary to include such an interaction, if one (A5)

wishes to describe mesons whose masses are greater than
about 600 MeV. such as the, p, ¢, and 7’ mesons. If we that are used to calculalg’ ~ andT'[ *.
include confinement, we can also describe various radial ex- We now introduce the scalar invariaritg andd, by the
citations of thew, w, p, ¢ and  mesons, among othe(see  relation
Tables |-V). P

Further work is needed in the case of then’' system. = _ 2 12 2 [ ,2
With the inclusion of pseudoscalar-axial-vector coupling, we FL(P.k) \/3275[%(\/'3—' k2)+ Pdy(\P?,\—K2)].
saw we could fit they and »" mass values with a very small (AB)
value of the 't Hooft interaction. That leads to ideal mixing
for - n' states. This result may be tested by calculating théf P=0, the last equation reads
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T (PO, [K]) = yo 5[ do( P°,|K]) + 7oPd; (P, [K]) 1. Thus
(A7)
Therefore, we find . E(K) B N B R
do( PO, K= [T (P IKD) =T (POIKI)]
R m R .
I~ (PO.[K|) = —— do( PO, |K|) — POy (PO, [K]) (AB) (A10)
E(k)
and and
I‘E+(PO||Z|):_ m do(PO||Z|)_POdl(PO||Z|) d PO E _ 1 I‘Jr* PO |z _'_]-—**Jr PO lz
(A9) (A11)
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