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Stability of the spectator, Dirac, and Salpeter equations for mesons
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Mesons are made of quark-antiquark pairs held together by the strong force. The one channel spectator,
Dirac, and Salpeter equations can each be used to model this pairing. We look at cases where the relativistic
kernel of these equations corresponds to a timelike vector exchange, a scalar exchange, or a linear combination
of the two. Since the model used in this paper describes mesons which cannot decay physically, the equations
must describe stable states. We find that this requirement is not always satisfied, and give a complete discus-
sion of the conditions under which the various equations give unphysical, unstable solutions.
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[. INTRODUCTION when the potential is predominately scalar. Their result also

contradicted the work of another grof#p] who found that

the Salpeter equation was stable for a pure scalar confining
In the simplest models, mesons are bound states of a vaiateraction, provided the quark mass was sufficiently large.

ance quark-antiquark pair confined by the strong force. Even

for such a simple case a covariant model is needed when the B. Physical and unphysical instabilities

mesons are composed of light quarks with high momentum \ye pegin the discussion by making a distinction between
components. However, covariant models require knowledggstabilities which are physical and those which are unphysi-
of the Lorentz structure of the confining interaction, and itcal. Real mesons have a finite lifetime and can decay either
turns out that some choices of Lorentz structure for somehrough the strong interaction or the electroweak interaction.
equations will produce mesons which decay. When nd-or example, thep® can decay into a photon and &a"
mechanism for decay has been included in the moaleich ~ through the electroweak interaction shown in Fig. 1. It can
will be the situation for the cases discussed in this paper also decay into ar* and #° via the strong interaction, as
this is a sign that the solutions are unphysical. It may beshown in Fig. 2. In this paper we describe mesons which are
acceptable for an equation to produce unstéibde, unphysi-  isolated from external influencémcluding vacuum fluxua-

cal) solutions if these solutions are confined to a region oftions), and use an equation which excludes the electroweak
the spectrum which can be precisely characterized and sy#iteraction and does not include any mechanism for the pro-
tematically ignored, but if this is not possible equationsduction of quark-antiquark pairs. Hence both of these decay
which produce such unphysical solutions are unsatisfactorynechanisms are excluded from the theory and thus the me-
In this paper we study confining potentials with scalar andsons described by our equations cannot decay physically.
timelike vector exchanges, and find that the stability of suchrherefore any instability emerging from these equations will
interactions depends on the kind of relativistic equation use®€ unphysical, and a sign that the equations are describing

A. Background

for the description of the interaction. unacceptable states.
This is not the first time that the stability of covariant
models of confinement has been addressed. Several papers C. Unphysical instabilities—An example

have been written on this topic, some with contradictory con-
clusions. Two examples which illustrate this are papers titledan

An exact argument against an effec.t|ve vector“eX(.:hange fo{he kind of unphysical instabilities we are discussing. Con-
the ponfmmg quark-an't|quark pme.”“‘"‘.m and “Evidence sider the Dirac equation for the linear confining potential
against a scalar confining potential in QCD?2]. If both V(D=0 r{(1—y)+yy

papers are correct, this would indicate that, at best, the Lor-
entz structure for the potential is more complex than a simple
scalar or vector exchange.

Our research into the question of stability was motivated
by the paper of Parramore and Piekarewigk which found u
that the Salpeter equation was stable when the vector pt nt
strength exceeded the scalar strength. This seemed counter = 3
intuitive to us, since it is well known that, because of the
famous Klein paradox, the Dirac equation is stable only FIG. 1. Example of electroweak decay of thé meson.

The Dirac equation for a linear combination of a scalar
d vector confining potential provides a familiar example of
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FIG. 2. Example of strong decay of the” meson. FIG. 4. Sketch of the solution to the Dirac equation for the

0 vector case, where>0 andy=1.
Egy ¢(r)=[m+V(r)+vy-V]e(r), (1.1

where o and the vector strength are both constants. The Suling wave functions for a particle with enerdy are
solutions of this equation have both positive and negativéketched on the figures, along with the form(af) which
binding energy eigenvaluess . If the system described by Preduces it. . _

this equation could interact with the outside wotdg., ab- To understand these results, first neglect the coupling be-
sorb or emit photonsthe positive energy states could decayWeen positive and negative energy states. Then the positive
to negative energy statéanless all of the negative energy €Nergy states move under the influence of the potefitial
states were occupied as in hole theomjowever, we have and the negative energy states un-der the influend® df .
assumed that there is no coupling to the outside world, anfor the scalar casey€0), the choiceo>0 produces con-
hence this equation should describe a stable system, evenfiiément for both positive and negative energy states. Cou-
some of the binding energy eigenvalues are infinitely large?/ing the two solutions does not change this picture signifi-
and negative. However, it is well known that the Dirac equa_cantly, and the exact solution is a total wave function which
tion does not give stable solutions for all values of the vectofrops to zero at large distances. This means that both posi-

strengthy and we review this result now. tive and negative energy solutions describe particles perma-
The nature of the solutions to the Dirac equation can béently confined around the point=0. _ _
studied by looking at the expectation value G@f=m-+V. Next look at the vector caseg/€ 1), and begin again by
The form of this expectation value, which describes how thé'eglecting the coupling between the positive and negative
wave function behaves, is energy states. In this case, however, either the positive or
negative energy state is always unconfined. For the example
m+oT, positive energy, shown in Fig. 4,0>0 and the positive energy states are
(U).= (1.2 confined and the negative energy states are not. Including

—m—or(1=2y), negative energy, coupling between the positive and negative energy states

where the positive energy expectation value is a matrix ele™'<€S the two states, and the wave function for the exact

ment involving u-type positive ener spinors{U po;itive energy 50'9“.0'? acq_uires_ a component with a "tail”
- g utype p gy sp (U)+ which oscillates to infinity, signaling deconfinement. The ef-

=uUu, and the negative energy expectation value is & Magect of the coupling is to produce an effective potential com-
trix element involving v-type negative energy Spinors poseq of two regions separated by a finite potential barrier
(U)_=vUv. The result(1.2) comes from the matrix ele- through which the quark can tunnel. Once it is free of the

ments potential barrier it can propagate endlessly through space,
_ _ thus becoming a free quark. In this case, the exact coupled
uu=1=—vuv, solutions do not confine either the positive or negative en-
ergy states, and the bound state is unstable. This example,
Uyouzlzv_yov, 1.3 known as the Klein parado}5], is one of the unphysical

instabilities we are trying to avoid.
which hold when the total momentup=0. When Eq(1.2)
is sketched for pure scalay€0) or pure vector y=1)

cases, Fig. 3 and Fig. 4 are produced, respectively. The re- D. Requirements for stability
A relativisitic equation with a confining kernel with a
u given Lorentz structure will have stable, physical solutions
E only if the following four conditions are satisfiedl) the

binding energy must be redR) the energy eigenvalues must
be independent of the numerical approximations used to ob-
tain them,(3) unphysical solutions, if there are any, must be
confined to an identifiable part of the spectrum clearly sepa-
-m rated from the physical solutions, afd) the solutions must
have the correct structure in coordinate or momentum space.
We will discuss each of these conditions in turn.

Condition 1—real energie#\ny eigenstate wave function

FIG. 3. Sketch of the solution to the Dirac equation for the which describes a meson in momentum spaf@,t), can
scalar case, where>0 andy=0. be written
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¥(p.t)=p(p)e '™, (1.4 P @

R Ky
whereE = u?+P?. The discussion is simplified if the par-
ticle is chosen to be at res®=0. Then, if u is complex,
pn=puoxil'/2, the absolute square of the meson wave func-
tion is

+
lp(p.t)2=]¢(p)|?e . (1.5 ph g

. . . . . FIG. 5. Feynman diagram for the meson bound state vertex
As time increases, this goes exponentially either to zero or tQnction. The kernel, or potential, is denoted gy

infinity, showing that the state is unstable.

Condition 2—numerical stabilityThe different relativistic E. Summary and outline
equations will be solved numerically in Sec. IV using spline
functions to model the wave functions in momentum space

(A descriﬁtion of th? proplerties of the shplin? fu?ctions isvary with the spline rank(3) the positive energy states must
given in the Appendiy.So long as enough spline functions ,avs he greater than any unstable negative energy states,

arebLIJsed to moqllial the system, tL\e ene;]rgy 0];. the 'OVYfF IYiN%nd (4) the wave functions must have the appropriate struc-
stable states will not vary much as the spline rank Is in+ e for that specific state. In Sec. Il specific forms are given
creased. However, if the state is unstable it is part of a co

. dth ; btained f he “ei Yor the Dirac, Salpeter, and one channel spectd@s rela-
tinuous spectrum and the energies obtained from the “eigerysiic equations. Then in Sec. Ill these three equations are

value” equation only represent a discrete approximation G gied using an approximation technique which gives in-
this continuous spectrum. They will vary strongly with the gjont jnto the origin of the instabilities, and the estimated

number of splines,' much as the Iocgtion of tité point i_n masses of stable states are compared to the exact numerical
the interval[0,1] will vary strongly with the number of in- = gqtions presented in Sec. IV. The three equations are
tervalsN into which the the line segment is divided. This ¢y eq numerically in Sec. IV using spline functions for a

dependence of an energy level on spline rank is one of thg, asirelativistic confining potential. The actual equations
most obvious symptoms of instability. used in the computer code and the properties of spline func-

' Condition 3—_iso|ation of instat_)iliti'esn SOme Cases We tiong are given in the Appendix. Finally, conclusions are
find that, following the second criteria, the positive energygiven in Sec. V.

states are stable and the negative energy states are unstable.
This may be acceptable for a phenomenology, where the
negative energy states can be rejected as unphysical from the
start. However, in some cases these unstable negative energyin this section we define the one-channel spectator equa-
states become positive as the spline number increases, ation obtained by confining the heavier particl¢assumed to
they can become so positive that they cross the gap separ@fe the quarkto its positive energy mass shell, fixing thg
ing the negative and positive energy states, enter the positivategration. Then we show that these equations reduce to the
energy spectrum, and mix with states which would otherwiseirac equation for the lighter particl@article 2 in the limit
be stable. In this case the distinction betwéstable posi-  when the mass of the heaver partiolg—. We conclude
tive energy states an@instabl¢ negative energy states be- by finding a helicity representation for the 1CS and for the
comes blurred, and we cannot rely on the predictions of th&alpeter equation.
equation.

Condition 4—correct structureEven if the mass is real, A. Dirac form for the one-channel spectator equation
the state might not be confined in a finite region of coordi-
nate spaceas in the Dirac example outlined abgvé the
state is confined, its coordinate space wave function will ap
proach zero ag— faster than an exponentialt can be

shown that the momentum space wave function resultin ,
from such a state will also fall off gp—c faster than an P€ & scalat or the time component of a four-vectgf. The

exponential, and that the number of nodes will correspond t§€MelV contains the momentum dependent structure of the

the level of the state. It is easy to distinguish such behaviofNfining potential. The equations are derived in the center

from that of an unconfined state, which is neither localized in®f Mmass rest fram@=(x,0). Later, the quark will be placed

coordinate nor momentum space, and which has many nod
not related to the level of the state. We can use the Dira
wave functions for comparison, since we know that they are pi=p+1iP, p,=p—1iP
stable for scalar confinement and unstable for vector confine- ! 2 2 2

ment. Examples of both types of states will be given in Sec. ki=k+1P, kp,=k—31P. (2.1)

IV. In the following sections, these stability conditions will

sometimes be referred to by number, as we will see that &he vectork is the average internal momentum and vegtor
successful phenomenology requires that all of them be satiss the average external momentum of the quark-antiquark
fied. pair

kA,

In summary, the stability conditions af#) the eigenval-
ues of the system must be re@) the eigenvalues cannot

Il. THE RELATIVISTIC EQUATIONS

The Feynman diagram for the bound state meson vertex is
shown in Fig. 5. Particle 1 is the quark, particle 2 the anti-
quark, andd is a matrix in Dirac space which describes how

he confining force couples to the quark or antiquark. It can

shell, thus producing the single channel equation. The
ur momenta used in the diagram are
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Next, we recall that the projection operator can be written
[7] as a sum over on-shall spinors(to be defined beloy

my+ k=, u(k,\ )u(k,\").

N

(2.7)

Therefore, if we define the relativistic meson wave function
by

FIG. 6. This figure shows the position of the four poles associ-

ated with the four propagato@/ in the bound state equations. W (k\) = \/Zl?i(k,)\)r(k) m§+ E; 2.9
k 27 R
p=3(p1+tpP2), P=p1—p2. (2.2 '
With this notation, the Bethe-Salpeter equat{@j for the  then Eq.(2.6) becomes
bound state vertex function for the meson is
] Vo) py = [ . VPK)
r :uf V(p,k)® I'(k 0. (2m)” JAE, E¢
(p) (277)4 (p ) mi—ki ( )mg—kg P =Ky
(2-3) ++ ’
X2 0,5 (p.W(kA)O,
The two fermion propagators have poles in the complex N
ko plane; these four poles are shown Fig. 6. Factoring the (2.9
denominators of the propagators
where
- =G'G~ 2.4 _
e o © 4 0/ (p=UpNBUKL). (210
the poles are at Equation(2.9) is the Dirac form of the one-channel spec-
_ P . ) tator equation. Later we will reduce this equation further, but
polel: (Gy) "=Ey~(kotzu)—ie=0, as written in Eq(2.9) it looks very similar to a Dirac equa-
tion for the lightantiparticle (particle 2 moving under the
Ko=Ex,— s u—ie, influence of an effective potential which depends on the spin
of the heavy quark. To make this comparison more familiar,
i —\-1_ 1oy we convert the equation into the usual form by taking the
pole 3: (Gy) Ekl+(k°+ 2 ) ~1€=0, transpose and multiplying by the Dirac charge conjugation
matrix C (see Ref[7]). This gives
kO:_Ekl_ %,LL‘i‘if,
(2.5 - - * -
(My+ o) W (p,N)=—02 SV (k)
pole 2: (G§) 1=Ey,~(ko— 3 u)—i€=0, v (2m)
V(ip,k) .,
= 1 X————0..,(p,k), (2.1)
Ko Ek2+ 5 M—IE, m AN (p
pole 4: (Gz’)‘leszr(ko— T u)—ie=0, where
=_ 1 i - R
ko= —EBy,t zutie. T(p,)=C¥T(p\), @=COTC™L (212

To place particle 1 on the positive energy mass shellkthe

integration is closed in the lower half plane and only the

residue from pole 1 is kept. This gives the following equa-

tion:

3k m,+k
2

2

2
k3
2.6

V(p,k)®(m;+ k)T (k)

- 0,
2Ek1(277)3

where nowk; = (Ey k) and k,=(E, —uk). This is one
form of the one channel spectator equation.

With the exceptions of the spin dependence of the source,
expressed through the factr,’, (p,k), and the fact that the
effective potential does not depend solely @i p—k, the
difference of the three momenta, Eg.11) looks similar to
the familiar Dirac equation for a particle with four momen-
tum equal to—p, (as expected from the charge conjugate
stateg.

We will now calculate the matrix elemeft™ ™ and show
that Eq.(2.11) does indeed reduce to a Dirac equation in the
limit m;—<. In spin space the spinor, as defined in Ref.
[7], is
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TABLE |. Helicity spinors.

External quarks Internal quarks

6
, COS=
STRY
i— 2 0 i~ 2 .0
sin3
- (0) - —sin3
i 2 1 i 2 0
COSE
1
u(p,s)=(Ep+m)? op | X5 (2.13
E,+m

which contains the operater- p. It is convenient to work in
helicity space, where - p x*=2\|p|x*. Theu spinor in he-
licity space is therefore

1
u”(p.Aj)=u(p.\))=Np, xM,

(2.14

where we have introduced the notatiof with p spin=
+1 for the positive energy solutioris) andp spin=—1 for
the negative energy solutions,(described beloyy and

_ 12 Lo
ij_(Epj+mj) ) pj__

(2.19

The indexj denotes a quarkj & 1) or antiquark {=2). The

values ofp range from 0 to 1. The helicity spinors are de-
fined in Table | for cases when the momentum is alongzthe

axis (external quarks and when the momentum is in the

plane at an anglé with respect to the axis. We will use a
prime to distinguish the latter from the former. Thespinor,

or negativep-spin state, used in this paper is

B _2)\Jp] N
um(PA)=v(=pA)=Np, X,
1

(2.16

and is consistent with that used in RES]. It is convenient to

use the helicity representation because helicity is invariant

under rotations, and because the vector operatqr is re-
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time being, that the polar angle of the external quarkd'is
instead of O(as it will be latej. Then

Ay (0'60)= 8y, COS(0—0')—2\ S\ _ )+ SiNz(6—8').
(2.18

Therefore, forming the two independent linear combinations
®*(p)="(p,})cost o'~ W(p,— })sin ',
®~(p)=W(p,})sint 6’ +W(p,—})cost ', (2.19

Eqg. (2.11) becomes

. ~ d3k NplNk1
(Mp+ o) <p>=—®f

—— ———V(pk
(277)3\/4EplEle(p )
x{®* (K)[ 17 psky cog 6— 6')]
+ & (K)piky sin(6— 6')},

d3k NplNkl V( K
—_— p'
(2m)° \JAE, Ey,

X {® "~ (K)[1F pykycoq 6—6')]

<mz+pz><b—<p>=—f

+dT(K)p.k, Sin(0— 6. (2.20

Hence the interaction depends only on the differeficed’
and we may sed’ =0 without loss of generality.

For later use we will record here the othesspin matrix
elements of®

0,,,(p.K)=70,,(pk),
05,/ (p.K)=—Ny Ny Ay, /(8 0)(2N"Ky+2\py)

=%0,,(p.k). (2.21)

B. Limits of the one-channel spectator equation

Now we can observe that taking the linnit; — oo gives a
Dirac equation for the light particle. The fixed source for the
Dirac equation is a heavy quark, so the equation will model

a Qq system, such as @ meson. Asm;—x, Bl—>0, and

V(p,k)—V(p—k) (see belowy, giving

V(p—k)@(k),
(2.22

d3k
)3

(mz—péw(p):—éf(z

placed by scalar eigenvalues, thus simplifying the algebra. where the helicity of the heavy particle was dropped because

The matrix elemen®,’’ (p,k) is then

0,7 (P.K) =Ny N Ay (6" 6)(15 4N Apsky),
(2.17)

the equation is independent of it and we introduced the

physical momentump,=—p,=(x—Ep ,—p)—(Eg.p’),

with Eg=u—m;. In position space Eq2.22) is

(My—Egy°+iyd)®(N=—0V(Hd(r). (2.23

where the upper sign is for the scalar vertex and the lower
sign for the timelike vector case. We will assume, for theWe will return to this equation in the next subsection.
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The confining potentiaV/(r) which appears in Dirac Eq. 3 3
(2.23 is taken to be a simple linear potential in position <¢|Vc|lﬂ>:f d°p d°k ¥(p)

spacd 9]
d3k’ 870
d2 e e X Epl&3(p—k)f—,4 (k)
V(r)=or=lim ore”=1lim o — . (2.29 Ei (p—k’)
e—0 e—0 dEZ r
. L — d3rd3 d3 ip-(r'—r)
In momentum space this potential is R ATEE pu(ri)e
V(@)= — 8ol 1 4¢? 2.29 . J' d*k’ 87 -
g)=—8mwclim . (2. X —V(r
ol (P+ed)? (g2t ed)? ") Eg(p—k)* v
This form of the potential is inconvenient because the limit 5 d3k’ 8wo
e—0 must be taken numerically. For the Dirac equation, we j d>ry(r) fm W(r),
use an alternative form which has the same physics k(P

(2.29
\% 8 ! 53(q) f da’ (2.26
(@ 7 q* (a q?]’ ' where, in the last linep=\/p?— /= V2. Hence the subtrac-
tion term becomes an operator which is a functiorpbf-
whereq=p—k andq’=p—Kk’. It is instructive to note that —V? but independent of. It can be evaluated by standard
the position space form of each of the terms in E326) is  means

- 8o = lim — 877—0 J‘ d’k’ 8mo
4 2, 2\2 = L4
q e—0 (q +€9) Py Eki(p_kr)4
—€r o
—lim—o =~——+4or+---, . d3k’ 8wo
0 € € =lim E f 2. 212
o ) Egl(p—k)?+e’]
87wo o 3
O\G’(Q)fdgq—ﬁlm 8%a) | &°q'——5— . _9_ ZU[EJF m Ep, TP
+ € = log
e—~0 (q € ) € Wmll Ep pE2 mq
(2.27 ! P1

Hence the role of the delta function subtraction is to remove -7 C(p?). (2.30

the infinite constant from the first term, leaving a pure linear €

potential.

In relativistic two-body equations, the potenti@.26 is  This new subtraction term contains the same singular part we
generalized t49] found before[see Eq.(2.27] plus a new finite partC(p?).
The finite part arises from the relativistic energy factor in Eq.
1 (2.30, which produces an infinitesimal modification of the
V(p,k)=—-87o 4—Epl &3(p— )f _— singular part, and it vanishes in time,—oo limit. It has an
(p—k) By (p—K’ )* interesting effect which will be discussed in the next subsec-
(2.28 tion.

The confining potential has the property that it is very
The insertion of the energy factors is necessary to make thsingular wherg— 0. This suggests using a peaking approxi-
kernel(2.28 covariant, and is associated with the restrictionmation in which=#6’, so that the coupling betweeh*
of the heavy quark to its mass shidl]. The full 1CS also and ®~ can be neglected. No further approximations are
includes the covariant replacemem{k)°—(E, —E,)®>  needed, because we may reduce all factosofandEy to
—(p—k)?2, but in both the theoretical and numerical studiesderivative operators, and replace
in this paper we have neglected retardation and use the sim-
plest replacementp(— k)?>— — (p—k)?. We will refer to this

k-p
as the quasirelativistic approximation, and it should be em- k1p1 cog6—6')=
phasized that we use this approximation in this paper only to (B, + ml)(Ep1+ my)
simplify the discussion. We also neglect the regularization -
factor and form factor introduced in previous studigk (k—p)? k2 p3
The energy factor in the subtraction term in Eg.28 - Z(Ekl+ml)(Ep1+m1) + §+ o

gives rise to a relativistic effect of some importance. To see
this, evaluate the diagonal matrix element (2.3
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because the operatdk$ (which operates on the initial wave (my—[Eg+m;—E;]y°+iy'd,)®(r)
functiong and p? (which operates on the final wave func-

tions) will eventually give indentical results. Furthermore, ~ ) ~,
the operaton? can be reduced to ==0| [or—C(p)][1-p1(1-2y)]
8moq?® 4mo o 1-2
-2 (2.32 _o A7) v, (2.37
2q q r (E;+my)2

Combining all of these effects, Eq2.20 becomes a Agsuming a ground state solution of the fofi
single Dirac-like equation with a momentum-dependent po-

tential f(r)
d(r)= ~x, (2.38
(Mo + B2)®(p) ( (—ig(r)a-r)x
~ - d3k E . .
—a 4 g. (2.37 reduces to the following set of coupled equations
OC(p)(p) J (277)3V(p'k)N¢)(k) for the radial wave function§(r) andg(r):
1~ ~ q? dg 2
) 2y 4 T _ _ _ 4
X 1+2(k1+p1)i2 (Ek1+m1)(Epl+m1)j|, (EB m2 [El ml])f+dr+ rg
(2.33 ~ 1-2
=(<or—C>[1—pi<1—2y>]—f(—y)2
where N'=N, Ny /\/4E, E, . Recalling thatpo=M —E, r(E;+my)

=Egtm—Ep, the coordinate space form of this equation df
IS (Eg+ mz_[El_ml])g_a
(My—[Eg+m;— ymi=V?]y +iy'd)®(r)

=—(< r—O)(1-2 >—~2]—3;)N
o Y)—P1 [ (Ep+my)? g.

(2.39

We will return to this coupled set of equations in the next

where we have anticipated the applicatiordtagonalmatrix ~ S€ction.
elements wheré?®=p*——V?, and all functionsE, =E;

o 1
r(Ex+my)?

XN®D(r), (2.39

= -0 [or—C(p)](1Fp) T

are replaced by/m?— V2. Using Eq.(2.34 we can study the D. Spectator equation in helicity space
single-channel spectator equation when the masss close The equations we have obtained so far are convenient for
to m,, and also see how it approaches the Dirac limit. Weapproximate analysis, but an exact helicity decomposition is
will study these issues approximately in Sec. Ill. better for numerical solutions. To obtain this form of the
one-channel spectator equation, return to &9 and ex-
C. Equations with mixed scalar and vector confinement pand the wave function and the projection operator in terms

of the helicity spinors given in Eq$2.14 and (2.16). The
wave function can be expanded using the decomposition of
the propagator int@ spin contributiong 7],

Note that the operat@® depends on its Dirac structure; it
is 1 for a scalar confinement ang for vector confinement.
Hence Eq(2.12 gives

~ (1, scalar, (my+Ky) _ 1 u(k,Ax)u(k,\y)
©=1- ¥°,  vector. (2.39 ms—ki 2Bk, %, | Ex,~Keo—ie
In the nonrelativistic limit, the Dirac equation reduces to a v(—K,A)v(—K,\p)
Schralinger equation for the upper component, and we will - Ey +Koo—ie€ (2.40
2

choose the sign of our potential so that it confines the posi-
tive energy solution in the nonrelativistic limit. Hence, in Using this in Eq.(2.8) shows that the wave function has the
order to obtain a nonrelativistic confining potential equal ¢ 0rm A

or, independent of the mixing parametgr the operator

form O of a mixed kernel must be

V(P A= UL, (PIUP(P,\). 2.4
O=(1-y)lel-y,° . (2,36 (PA)=2, TR (PIU(P2) (2.49

Using this definition and the result E.34) gives the fol-  Furthermore, the most general form of the pseudoscalar ver-
lowing equation for a mixed confining potential: tex function with particle 1 on shell is
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In Eq. (2.49 the upper sign holds for scalar confinement and
the lower for vector confinement and in BE@.50 |’ #].

For the mixed scalar/vector confinement defined in Eq.
and these Dirac operators are built only from the 2 ma-  (2.36 the values ofA; andB; are
trices1 and o- p=2\p. Therefore in helicity space the he-

U*(p,mr(p):U*(p,x){rly5+r2y5<m2—pz>}(,2

licity is conserved and an explicit calculation shows that A1=Q, B;=—-R(1-2y),
U™ (P, V)T (PIUP(P,N2) =85, (2M) 2+ TP(p), (2.43 A=T,, By=S,(1-2y),

(2.5)
where thel'?(p) are independent of the helicity. Hence the As=S,, Bz=T,(1-2y),

expansion2.41) can be written
As=R, B4=-Q(1-2y).

When the masses are equal this equation reduces to the equa-
tion previously introduced in Refl10].

V2B, ¥ (pN)= m{%a(p)ﬁ-(p,x)

P2=P1

2N P(PUT (PN}, (2.4

h E. Dirac equation in helicity space
where
The helicity form of the Dirac equation is obtained from

r- r+ Eq. (2.46 by taking them;—o limit

V=== Y= =
Ek2+ Ekl m Ek2 Ekl+,LL (2 43 (EB D2 l/fla( p) f‘( d2> ( ¢la(k))
(Eg+Ep,) #1n(P) da/ \ 1p(K) )’

Bringing all of these elements together, using E521), and (2.52
choosing the sign of the vector interaction in accordance '

with Eq. (2.36 gives the helicity form of the single channel —
spectator equation where nowV=VNp2Nk2/(2‘/Ep2Ek2) andd;=a;+b; cosf

with
(EB_EpZ_[Epl_ml])¢la(p) s

(EB+Ep2_[Epl_ml])‘//1b(p) a;=1, bl:_p2k2(1_2y)’

D, Dz)(lﬂla(k)) _T T
=(V 2.4 a=ky, by=po(1-2y),

fj Ds Du) | gak))” (249 e (253
whereEg=pu—my, a;=ps, bs=ky(1-2y),
d3k ~ o~
= —— as=pok,, by=—-(1-2y).
j f(zﬂ_)s, (2.47 4= P2Kz 4

We conclude this section with a derivation of the helicity

the rescaled potential kernel is form of the Salpeter equation.

— NpleszlNk2 . . -
V= —————— (2.48 F. Salpeter equation in helicity space
AVEp,Ep B Er, The Salpeter equatiofil1] uses the approximation that

the potential, or kernel, of the Bethe-Salpeter equation is

andD;=A; +B; cosf with independent ok, andp,. Therefore, in coordinate space the

A;=Q, B;=FR, potentials and the wave functions are instantaneoustj.e.,
=t,. The Salpeter equation has two undesirable features.
A,=T,, B,==*S,, First, neglecting the energy dependence of the kernel is un-

(2.49 physical. Second, there is no Dirac limit for this equation.
When the mass of one of the patrticles is taken to infinity, the

A3=S;, Bz==T,, resulting equations do not reduce to a Dirac equation for the
_ light quark moving in the field created by the heavy quark.
As=R, B;=%Q, Hence, it is most appropriate to use this equation for equal

masses, far away from the one body limit.
The direct derivation of the Salpeter equation utilizes the
~ o~~~ ~~ o~ same steps as those used for the 1CS equation with a few
Q=1+pip2kika, R=paiki+paks, modifications. In this case pole 2, as defined in &%) and
L o Fig. 6, must be included. For brevity we will only give the
S= p Kikopjr,  Tj= k P1P2K; . (2.50 final result. The general equation is

and
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3 Note that the wave functions become less confinedy as
r42(p)= J —3 Vi > E ®p1"1FP1p2G”2®"2”2 —1/2. Fory>1/2 the solutions are oscillatory and escape to
(2m) pipy NiAg large r. In this case the most general solution is a linear

(2.59 combination of the following two independent solutions:

wherep,# p, and p; # p,. The second channel wave func- _ 1
tion, denotedy,,, corresponds to propagation of the two fl(r)=Nf15|n< v2y—1lzor )
guarks in their negative energy state, and is equal to
‘1[/ :-L (255) (r) N COS( 2y 1-0’[’ ),
2a Ek2+ Ek1+ M ' '
The two wave functionsy,, and ¢, satisfy the coupled fo(r)=N; cos( 2y — 13(” )
equations 2 2
(w—=Ep,—Ep)¢1a(P) - : 1
P2 p,/ Yla :‘[QV(D:L D5)(¢1a(k)), gz(r):NgZS'n 2y— 1501,2 (3.5
(M+Ep2+Epl)l//2a(p) —D1/\ ¥2a(K)
(2.56 where
with
o o Nfl=— \/2y—1Ngl,
Ds=p1p2tkiko+(1—=2y)(piko+ poki)coseo.
(2.57 Nt,=V2y—1Ng,. (3.6
All other terms have the same definitions as before. This is the simple mathematical explanation behind the re-

sults shown in Figs. 3 and 4.
ll. APPROXIMATE THEORETICAL RESULTS

In this section we develop approximations which help us ~ B- Estimates for the one-channel spectator equation
understand the Stablllw issues which will arise when the Study of the solutions of the approximate one channel
equations are solved numerically. spectator equation, Eq2.39, is complicated by the pres-

ence of the operatorgm?— V2 andf)f. We will therefore
develop a variational-like method which can give us insight
We begin by studying the stability of Eq2.39 in the into the confining behavior of the equation.

A. Dirac solutions for large r

Dirac limit whenm;— First, if =0 theexactsolution of the equations is
2 f(r)y="fojo(vyr),
EBf=(m2+0r)f—d—?——g, (r)=fojo(yr)
g(r)=9goj1(yr), (3.7
df
Egg=(—my—or(1-2y))g+ ar (8.)  wherej, is the spherical Bessel function of orderand the

energy is a function of the parametgr

This is the exact Dirac equation for a potential which is a
superposition of scalar and vector linear confining forces. At Es(y)=[Vmi+y?—my]= ym3+ 2. (3.9

larger the equations become approximately ) ) ) N
The spectrum is continuous with a gap between the positive

dg and negative energy states. It is amusing to see that the en-
orf— a=0, ergies of both the positive and negative energy states are
alwaysgreaterthan the corresponding Dirac state energies,
df and that the negative energy spectrum is now bounded be-
—or(1-2y)g+ azo. (3.2  tween—m, and —mg, instead of running from—m, to
—o, This already illustrates one of the new features of the

The solution to these equations depends on the valyelbf ~1CS equation.

y<1/2, then the solution which approaches zera-asc is When o#0 we cannot solve the equation analytically,
and will limit our study to the behavior of the expectation
f(r)=Nse~ T=2yor?12 g(r)=N,e" T=2yor?2 value of the energies as estimated by taking matrix elements
1 g 1

(3.3 of the equation. To compute these matrix elements we will

use wave functions of the type shown in Fig. 7, which are

where constructed from spherical Bessel functions of order zero and
one. This choice makes the evaluation of functions of the

—J1-2yN,. (3.4  operatorV? easy.
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1.0 1.0
0.8 0.8
FIG. 7. The trial wave func-
P P tions f(x) andg(x) as a function
e > . .
= " % of x=vr. The different tails are
0.4 . 0.4 fo.r the casesk/y=0.1 (biggest
\o tail), 0.5, and 2.@smallest tail, as
~ ~ N . .
0.2 So T~ 0.2 N discussed in the text.
™~ \\\~\\§ :“~
0.0 1.0 2.0 3.0 7.0 0.0 1.0 2 3.0 4.0 -

Ideally, the functions used should consist of a region
where —V?2 is positive, and a “tail” region where—V?
< 0. The functions shown in Fig. 7 were constructed from
ji(yr) and h;(kr) joined so that the function and its first
derivative are continuous. However, we found that the con-

(Eg—[Vmi+ y*—m;]+my)go— ybfy

Cc - Car
:_((%—C(yz))(l—Zy—rﬁ)—%PE]NQO

tributions from the tails did not change the qualitative behav- =-—5400, (3.1
ior of the matrix elements, and hence we present here only
the simplest results for wave functions without tdighere  where
k/y—o, the heavy solid lines in the figureThese results
are easy to evaluate. LD TR
Hence the “trial” wave functions we choose are fo x> dx jo(x) . X dx j1(x)
C1=—————=1.571, c3=nl—=2.659,
)= folo(yr), yr<m, j X2 dx j3(x) f x? dx j2(x)
B 0, yr>mm, 0 0
Qoia(y), yr<n [ Txaxigoo | Mxaxizoo
, , x dx j5(x x dx ji(x
g(r)=[ o ! 3.9 o (9o 0 I
0, yr>nyg, Cp=—————=0776, c;=— ————=0412,
N | | | | Peaxigoo [ e ax iz
wherej, is the spherical Bessel function of ordery is a 0 0
variational parameter, and the constant4.493 is the lo- 312
cation of the zero of ;. These wave functions are eigenfunc-
tions of the operato¥ 2: and
1 "2 dx i2
V2H(r)= = —5rf(n)=—f(r), J e axiico
ror b=—————=0.734. (3.13

&2

2 1 2 2
Vign)=| o 5]90="y9(n).

(3.10

Hence the operator$m21—V2 andaf can be readily calcu-
lated.

Substitutingf and g into Eq. (2.39, multiplying the first
equation byjq(yr) and the second bj,(vyr), and integrat-
ing over d® gives the following coupled equations fdg
andgg:

(Eg—[Vmi+ y*—m;]—m,)fo+ ygo

|| Z2-com Ja-Faa-2nn

oC
—725i<1—2y>]f\/fozsffo,

Moo 2
X2dx ()
0

Solving Eq.(3.11) gives an estimate for the eigenvalues
as a function ofy, related to the size of the state

1
Eg=Vmi+y’—mi+ > (S—Sy)

1
+ \/Z(2m2+sf+sg)2+ ¥°b, (3.14

where S; and S; were defined in Eq(3.11). These energy
surfaces for a variety of cases are shown in Figs. 8—12. In all
of these cases we chose=0.2 GeV¥ andm,=0.325 GeV.
We will now discuss some of the interesting features of these
solutions.

Note that the solution§3.14) are always real, and that as
y—0
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2.0 20}

E oopb——r—= E 00
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.

2.0

-4.0
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Y

FIG. 10. The 1CS enerd§=Eg as a function of the variational
FIG. 8. The Dirac energig=Eg as a function of the variational parametery for different mass ratiog=m; /m,=10 (solid line),
parametery for different mixing ratiosy=0 (solid line), y=0.4 k=5 (dot-dashej] k=2 (dasheg, andx=1 (dotted. In all cases,

(dot-dashel y= 0.6 (dashed, andy= 1.0 (dotted. y=0.
o tion tails which are more important at larg¢ we can draw
Eg— 2—y(C1— c3(1—2y)=|cy+ca(1—2y))). no firm conclusion. Asy—,

A
319 Es—y(1x1b), (3.17
Hence the positive energy solution always approaches
as y—0, but the negative energy solution goes as and becausb<1 the negative energy solutions also become
positive at largey. This feature sets in at lower values pf
as the mass ratim, /m, decreases, as is shown in Fig. 10. In

. Cit+Cs3 . ) .
o | —ca1-2y) if y<0.795= T fact we do note that the numerical solutions for the negative
Eg—— Cs 31 energy states are unstable for small valuesipfm,, but we
Y (3.16 see no sign of instability in the positive energy solutions for

cs(2y—1) if y>0.795, small values ofy and all values ofn; /m,.

Finally, a comparison between these estimates and exact
solutions for the ground state are summarized in Table II.
Note that Eq.(2.39 does a credible job of explaining the

12. This is a sign of instability. Whey>1/2 the positive yanqs all of which can be understood qualitatively from
energy states cannot be stable because they may always amination of the figures.

duce their energy by tunneling through to a negative energy pgefore leaving the discussion of the 1CS equation, we

surface and sliding down te . comment on two features of our estimates due to the pres-
A similar problem may occur at large, but because our

and becomes positive for>1/2, as shown in Figs. 11 and

estimates are less reliable hévee neglected the wave func- 40
4.0
2.0
2.0
E 00
E o0
2.0
2.0
4.0
4.0

Y

Y FIG. 11. The 1CS enerd§=Eg as a function of the variational
FIG. 9. Energie€=Eg as a function of the variational param- parametery for different mixing ratiosy=0 (solid line), y=0.4
etery for the Dirac equatiorisolid line) and the 1CS equation with (dot-dashel] y=0.6 (dashed, and y=1.0 (dotted. In all cases
m,;=10m, (dashed ling In both casesy=0. m, /m,=10.
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where

w1=[(”7“—6<72>)<[1—5212+4y52>

—Z%ZBZ(l—zw]M

vv2=2[(“7cl—cw2))252<1—y>+%%%kzy)]/v,
(3.19

and we have assumed tHatandf, are bothS states. Hence
the estimated mass is

Y
FIG. 12. As in Fig. 11 but wittm; =ms. w?=(2E+w;)2—w2. (3.20

ence of the “constant” ternC(p?) of relativistic origin[re-
call Eq.(2.30]. First, note that the positive energy 1CS so- __ pairs, and we see that they may be imaginarjvi|
lutions approach the Dirac limit am;—o from below ;|2E+\;v|

instead of from above, as would have been suggested by our First nété that ag—0

analysis of the free particle cas@Note the comparison in '
Fig. 9) Even though the energy factplE; —m; ] is positive,

We have recovered the result that the masses always occur in

the termC is negative and is just a bit larger, giving the 2_[TC1 2 (3.21)
observed behavior. Second, the teraC becomes more o v ) '
negative with decreasing mass ratio, explaining the drop in
the binding energy as, /m, decreases to unity. and asy— o,

C. Stability of the Salpeter equation ,u2=(2y)2, (3.22

Applying our technique to the Salpeter equati@rb6) for

equal massesnfy=m,=m) gives so thatu? is always large and positive at the extreme values

of v, and must have a minimum for some If this mini-
mum isnegative the masses will be imaginafye., the state
will be unstablg. This can occur only ifm andy are small
(u+2E)fo=—wq fo—w, fq, (3.18 enough to satisfy the condition

(r=2E)f1=wy fy+w;f,,

TABLE Il. Comparison of the exact and estimated solutions for the Dirac and 1CS equations. All energies
are in GeV, and blanks indicate that there is no stable solution.

Parameters Positive energy Negative energy
Exact Estimate Exact Estimate
ml /m2 y El E Y E, 1 E Y
Dirac
o 0.0 0.976 0.950 0.715 —1.249 —1.226 0.859
0.4 1.028 1.014 0.673 —0.660 —0.650 0.463

One channel spectator

10 0.0 0.964 0.946 0.635 —1.091 —1.034 0.988
0.4 1.013 1.007 0.603 —0.619 —0.598 0.505
5 0.0 0.940 0.926 0.579 —0.936 —0.828 1.272
0.4 0.992 0.992 0.552 —0.548 —0.532 0.563
2 0.0 0.857 0.857 0.471 —0.607
0.4 0.928 0.952 0.452
1 0.0 0.745 0.777 0.379 —0.330

0.4 0.853 0.928 0.367




PRC 59 STABILITY OF THE SPECTATOR, DIRAC, AND.. .. 1021
5 TABLE lll. Comparison of the exact and estimated solutions for
the Salpeter equation. All energies are in GeV and the blank indi-
cates that there is no stable solution.
Parameters Exact Estimate
m E2 E?
w0 y 1 Y
0.325 0.0 0.973 0.340
0.4 1.339 1.537 0.349
0.6 1.510 1.819 0.353
1.0 1.837 2.380 0.361
0.650 0.0 3.112 3.217 0.466
_5 0.5 1.0 0.900 0.0 5.235 5.396 0.529
i

FIG. 13. The square of the bound state ma8sas a function of mass at which the Salpeter equation becomes unstable. The
the parametey for the Salpeter equation with a pure scalar confin-exact solutions tell us that this mass is around 0.85 GeV,
ing interaction y=0). Solid curve,m=0.325; dashed curven much higher than the estimated value of 0.18.
=0.1.

IV. NUMERICAL RESULTS

2E+ Now we turn our attention to the numerical solutions for
the Dirac, 1CS, and Salpeter equations. Numerical results are
obtained by expanding the solutions in terms of splines, as
described in the Appendix. In this way the integral equations

in momentum space are turned into matrix equations and the

C ~ o~ ~
%—C<72>)<1—6p2+p4+8yp2>

0'C2~2
~4= 2p(1-2y) | N=2E-+ W~ w,<0.

(3.23 problem reduced to a generalized matrix eigenvalue prob-
. . lem. Numerical values of the eigenvectdexpansion coef-
If m=0 this condition reduces to ficients and the eigenvaluegdound state masses or binding
do > energiey are obtaingd, and th(_a wave functions are con-
2y— - Ci+Co— ;) (1-2y)<0. (3.24  structed from the spline expansion.

Hence the Salpeter equation for=0 is unstable only ify A. The Dirac equation

<1/2. Asm increases, this critical value of decreases. If The Dirac equation is reduced to the system given in Egs.
y=0, our estimatg3.23 leads to the conclusion that the (A3) and(A8) and can be solved numerically on a PC in a
scalar Salpeter equation is unstable onlynik0.18; for  reasonable length of time. The antiquark mass was set to
larger values ofn the equation has real roots for gll This  =0.325 GeV and the confinement strength-0.2 Ge\~.
behavior is illustrated in Fig. 13, which shows that the scalaie looked at four different values of the vector strength:
Salpeter equation is stable for=0.325(our standard choice =0.0 (pure scalar 0.4, 0.6, and 1.@pure vecto). The first
for the quark magsand unstable fom=0.1. four positive and negative energy levels fovalues of 0.0,
Unfortunately, our crude estimat8.23 does not repro- 0.4, and 0.6 are listed in Table IV for spline ranks of 12, 16,
duce the quantitative features of the exact Salpeter solutiorend 20. The pure vector casg=1.0) was found to be fully
as well as it did for the previous cases. The comparisomnstable, as predicted by Fig. 8, and is not listed in the table.
between exact and estimated solutions is given for a fewWwhe eigenvalues, which for the Dirac equation are the bind-
cases in Table lll. Note that the qualitative agreement isng energies, are all real and therefore pass the first stability
good, but that we are unable to “predict” the critical condition(as described in Sec. I)D

TABLE V. First four positive and negative Dirac energy levels yo¢ 0.0, 0.4, and 0.6 with spline ranks of 20, 16, and 12. The energies
are in GeV. The bold face numbers are unstable states with engrgiaterthan the stable ground state, as discussed in the text.

y=0.0 y=0.4 y=0.6
Level SN=20 SN=16 SN=12 SN=20 SN=16 SN=12 SN=20 SN=16 SN12
4 1.945 1.945 1.946 2.035 2.035 2.035 2.092 2.092 2.093
3 1.695 1.695 1.695 1.772 1.772 1.772 1.821 1.821 1.821
2 1.394 1.393 1.393 1.456 1.455 1.455 1.496 1.496 1.496
1 0.976 0.976 0.976 1.028 1.028 1.028 1.065 1.065 1.065
-1 —1.249 —1.249 —1.248 —0.660 —0.660 —0.660 2.028 1.576 1.120
-2 —1.575 —-1.575 —1.574 -0.781 -0.781 —0.780 1.190 0.861 0.525
-3 —1.839 —1.839 —1.838 —0.879 -0.878 —-0.879 0.899 0.590 0.278
-4 —2.067 —2.067 —-2.078 —0.963 —0.963 —0.964 0.692 0.396 0.090
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Wavefunctions
Wavefunctions

1.5 2 0 0.5

1 1
p (GeV) p (GeV)

FIG. 14. Dirac positive ground state solutions for three values of FIG. 16. Dirac negative ground state solutions for
the vector strengthy: y=0.0, E;=0.976 GeV (circles and =0.0, E_;=-1.249 GeV(circles and squargsfor y=0.4, E_;
squarey y=0.4, E;=1.028 GeV(solid and long-dashed lings =-0.660 GeV (solid and long-dashed lings and for y
and fory=0.6, E;=1.065 GeV(heavy short-dashed and dotted =0.6, E_;=2.028 GeV(heavy short-dashed and dotted lines

lines).
) stable. All of they= 1.0 solutiongnot shown in the figurgs

) ] have a behavior similar to the negative eneygy0.6 solu-
Of the four cases studied, only the negative energy levelgon, confirming that they are unstable.

for they>1/2 casedi.e., y=0.6 and 1.9 vary significantly The apparent stability of the=0.6 positive energy solu-
with the spline rank, as shown in Table IV. This violates thetjon differs from expectations based on the discussion in Sec.
second of the Stabl'lty conditions defined in Sec. ID. FUI’-” and examination of F|g 8. We expect all positive energy
thermore, the bold face values in Table IV highlight unstablesg|ytions fory>1/2 to be unstable, but as Fig. 8 shows, the
states whose eigenvalues are greater than the positive grouﬁﬁsitive and negative energy surfaces actuallgriapin the
state, and hence ﬂ'ﬁ> 1/2 equations also violate the third y= 1.0 case but remaidea”y Separatedor they: 0.6 case.
stability condition. These unstable states were identified angthjs suggests that the instability of tlye=0.6 positive en-
tracked with changing spline number by looking at their mo-ergy state is hard to observe numerically because the dis-
mentum space structure, as discussed below. _ tance between the positive and negative energy surfaces is
The Dirac wave functions are shown in Figs. 14—16. Fig-arge and the “leakage” from positive to negative energy is
ure 14 gives the positive energy ground states, Fig. 15 th@ery small (also suggested by Fig).4Presumably a more
first positive energy excited states, and Fig. 16 the negativgrecise numerical calculation would uncover some instability
energy ground states. By comparing the solutions for th¢, the positive energy=0.6 case, but this further calcula-
states withy<1/2 (which are known to be stablavith the  tion is not needed because the overlap of the positive and
y=0.6 solutions, we conclude théb the positive energy  negative energy spectrufsondition 3 is already a sign of
=0.6 state has a structure identical to the other positive enhe instability.
ergy states, and hence appears to be st@slelready sug-  we conclude that the fourth stability condition largely
gested by the stability of the eigenvalue shown in Tablg IV reinforces the conclusions we have already drawn, but that it
but (i) the negative energy=0.6 ground state, shown in should be used in conjunction with the other three. The sta-
Fig. 16, has a radically different structuf@milar to a mo-  pility of a singlestate cannot easily be determined solely by
mentum space delta functipshowing that it is indeed un- tracking (with changing spline numbgits behavior. A reli-
able conclusion requires the examination of the entire spec-
trum, with particular attention to condition 3.

B. The one-channel spectator equation

As in the Dirac case the antiquark mass will be set to
m,=0.325 GeV and the confinement strength t®
=0.2 Ge\f. We will present results for heavy quark masses
m; = k m, with the mass ratiac= 10, 5, 2, and 1. In order to
compare the 1CS results to those obtained from the Dirac
equation, we define an effective Dirac-like binding energy
Ep using the relation

Wavefunctions

[.L:ED+m11 (41)

1
p (GeV)

whereu is the mass eigenvalue obtained from the 1CS equa-
FIG. 15. Dirac positive first excited state solutions fgr  tion. This relation insures that the effective 1CS binding en-
=0.0, E,=1.394 GeV (circles and squargs for y=0.4, E, ergy must approach the Dirac binding energymags—«.
=1.456 GeV(solid and long-dashed lingsand fory=0.6, E,  Tables V and VI give these effective binding energis
=1.496 GeV(heavy short-dashed and dotted lines stead of the bound state magses
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TABLE V. First four positive and negative energy levels for the 1CS equation for mass katib<0 and
10.0 and vector strengi= 0.0 and 0.4. Her&, is shown in GeV and solutions for spline ranks of 20 and
12 are compared.

y=0.0 x=5.0 y=0.0 x=10.0 y=0.4 x=5.0 y=0.4 x=10.0
Level SN=20 SN=12 SN=20 SN=12 SN=20 SN=12 SN=20 SN12
4 2.109 2.113 2.073 2.078 2.225 2.227 2.165 2.168
3 1.808 1.808 1.783 1.783 1.898 1.899 1.858 1.858
2 1.443 1.443 1.435 1.435 1.509 1.509 1.495 1.494
1 0.940 0.939 0.964 0.964 0.992 0.992 1.013 1.013
-1 —0.936 —0.936 —1.091 —1.090 —0.548 —0.569 —0.619 —0.619
-2 —1.084 —1.084 —1.333 —1.332 —0.570 —0.607 —-0.715 -0.715
-3 —-1.173 —-1.170 -—1.511 —1.515 —0.600 —0.637 —0.786 —0.785
-4 —1.233 —1.259 —1.650 —1.642 —0.630 —0.675 —0.841 —0.848
Note that results for the equal mass=1.0) 1CS equa- Wave functions for the 1CS equation are shown in Figs.

tion are included only for comparison because the 1CS equd-7—23. In Figs. 17-19 the wave functions for a large mass
tion shouldnot be used for equal mass systems. If the equatatio and a pure scalar confinement are compared with the
mass particles are identicéds in NN scattering the equa-  Dirac solutions. Both the positive and negative states for
tion must be symmetrized in order to preserve the Pauli printhese systems are completely stable and very similar to the
ciple. Even if the equal mass particles are not identical, as fogorresponding Dirac solutions. We also observe how the 1CS

the qq pairs discussed in this paper, the equation must stilbinding energies approach the Dirac values as increased.
be symmetrized to insure charge conjugation invariance. Figures 20 and 21 show the wave functions for large mass
Furthermore, for bound states with a very small m@sg., ratios and a vector strength of 0.4. Re+ 10.0 the system is
the pion the symmetrizedwo channelspectator equation once again totally stable, while for=5.0 only the positive
defined in Ref[12] should be used. states are stable. In this case the instability of the negative
The eigenvalues are real for all values of the vectorenergy states isotaccompanied by violation of condition 3;
strengthy and the mass ratie (condition 1. However only  the only indication of instability is the variation of the nega-
systems with a vector strength less than (02 and 0.4 tive energy levels with spline rar(kondition 2, as shown in
have stable eigenvalugsondition 2. Cases which fail the Table V. In this case the structuteondition 4 reinforces
first two stability conditionsy=0.6 and 1.Qare not listed in  condition 2, and we have a first example of a system where
the eigenvalue tables. Table V shows the eigenvalues fahe positive energy solutions are stable and the negative en-
mass ratiosc=5.0 and 10.0. These cases are very similar tcergy ones are not.
the Dirac cases, and the table shows that in all cases the The positive and negative ground states o 1.0 and
spectra satisfy condition 8o overlap of the positive and 2.0 are shown in Figs. 22 and 23. Note that the positive
negative energy sectorsTable VI shows the eigenvalues for energy states are stable while the negative energy ones are
the equal mass cas& € 1.0). Note that condition 3 is vio- not. Here the instability of the negative energy states is only
lated fory=0.4; at a spline rank of 24 the negative energyapparent from an examination of the structure of the wave
state (shown in bold fack crosses into the positive energy functions; neither condition 2variation of the energy with
sector. In the equal mass case only the pure scalar interacti@pline rank nor condition 3(penetration of the positive en-
is stable. The binding energies fee=2.0 (not shown in the ergy sector seems to occur.
tableg exhibit the same behavior as far=1.0. In conclusion, the 1CS systelbecomes more stabés the

TABLE VI. First four positive and negative energy levels for the 1CS equation for the massratio
=1.0 and vector strength= 0.0 and 0.4. Her&, is shown in GeV and solutions for spline ranks of 24, 20,
16, and 12 are compared.

y=0.0 y=0.4
Level SN=24 SN=20 SN=16 SN=12 SN=24 SN=20 SN=16 SN=12
4 1.881 1.881 1.881 1.881 2.222 2.222 2.222 2.223
3 1.630 1.630 1.630 1.632 1.884 1.884 1.884 1.884
2 1.294 1.293 1.293 1.293 1.461 1.461 1.461 1.461
1 0.745 0.745 0.745 0.745 0.853 0.853 0.853 0.853
-1 -0329 -0.330 —-0.331 -0.334 0.933 0.724 0.508 0.284
-2 -0.331 -0.332 -0.335 -0.341 0.727 0.527 0.326 0.122
-3 -0.334 -0.337 —0.342 -0.354 0.577 0.387 0.196 0.005

-4 —-0.338 —-0.343 —-0.353 —-0.379 0.454 0.272 0.091 -—0.087
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FIG. 17. Positive ground state soutions for the quasirelativistic  FIG. 20. Positive ground state solutions of the quasirelativistic
1CS equation with a pure scalar interaction. The solid and long41CS equation with a mixed scalar and vector interactips ©.4)
dashed lines are fok=5.0, E;=0.940 GeV; the heavy short- for two mass ratiosc. The solid and long-dashed lines are for
dashed and dotted lines are fa=10.0, E;=0.964 GeV. The =5.0, E;=0.992 GeV, and the heavy short-dashed and dotted
scalar ground state Dirac solution fef=0.976 GeV is shown for lines are forx=10.0, E;=1.013 GeV. The circles and squares
comparison(circles and squargs show the solution for the Dirac equation with =1.028 GeV.

7]

2 S

=]

£ 2

= = 0

= =

| | |
. 0 0.5 1 1.5 2
p (GeV) p (GeV)

FIG. 18. Positive first excited state solutions labeled as in Fig. FIG. 21. Negative ground state solutions of the quasirelativistic
17. Here thex=5.0 solution has an energy B,=1.443 GeV and 1CS equation fory=0.4 labeled as in previous figure. Here
the x=10.0 solution an energy &,=1.435 GeV compared tothe =5.0, E_,=—-0.548 GeV and x=10.0, E_;=-0.619 GeV.
Dirac energy ofE,=1.394 GeV. The comparison Dirac level has energy ;=0.660 GeV.

. o g
- ¥/ N
2 | qy B, E
g 1Y o 5
[ .
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0 U% | | | -
| R
RO e 0 0.5 1 1.5 2
N TN E U R p (GeV)
0 0.5 1 1.5 2 " d luti for th irelativisti
p (GeV) FIG. 22. Positive ground state solutions for the quasirelativistic

1CS equation with a pure scalar interaction. The solid and long-
FIG. 19. Negative ground state soutions labeled as in Fig. 17dashed lines are fok=1.0, E;=0.745 GeV; the heavy short-
Here thex=5.0 solution has an energy Bf ;=—0.936 GeV and dashed and dotted lines are for-2.0, E;=0.857 GeV. The sca-
the k=10.0 solution an energy &_,=—1.091 GeV comparedto lar ground state Dirac solution fd€,;=0.976 GeV is shown for
the Dirac energy oE_,;=—1.249 GeV. comparison(circles and squargs
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A TABLE VII. Square of the massy(? in GeV?) of the first four
levels of the Salpeter equation fgr=0.0 and 0.4 with various

spline ranks.
g y=0.0 y=0.4
g Level SN=20 SN=12 SN=20 SN=16 SN=12
% 4 0.685 2.173 5.632 5.632 5.674
= 0 3 —1.074 1.538 4.383 4.383 4.385
2 —3.869 0.931 2.977 2.977 2.976
1 —-8.705 —-0.051 1.339 1.339 1.339
| | |
0 0.5 1 1.5 2
P (GeV) have solutions comparable to their Dirac counterparts. In ad-

FIG. 23. Negative ground state solutions labeled as in previougmon' Fig. 26 |Ilustrate§ that the=0.6 and 1.0 solutions are
figure. Here the k=1.0 solution has an energy OE ;= indeed stable by showing that they have the correct structure

—0.330 GeV and thek=2.0 solution an energy o ,=  With the right number of nodes for a second excited state.

—~0.607 GeV compared to the Dirac energy of_,= While it is true that thescalar Salpeter equation is un-

—1.249 GeV. stable for equal quark-antiquark masses of 0.325 GeV, in-
creasing the mass of the quarks will give stable solutions

vector strength is decreased and the mass of the heavy qudfRis was anticipated by the discussion in Seq. We find
is increased. This will be summarized further at the end ofhat the lower mass states of the:0.0 Salpeter equation are
this section. stable when the quark mass is increasednte 0.85. The

ground state wave functions for this case are shown in Fig.
27, where solutions for spline ranks of 20 and 30 are com-
pared(since the wave functions have not been normalized,
The use of pure scalar confinement with the Salpeteonly the shapeof the two solutions should be compayed
equation gives the first example of instability due to the mas$olutions obtained for somewhat lower masses-(0.65, for
eigenvalues becoming complégondition 1. Actually, the  examplé appear stable for SN20, but the spectrum shows
eigenvalues become pure imaginary because the massme instability for SN 30. In general, the number of stable
squared is real and negative. This situation is accompaniestates for the pure scalar Salpeter equation increases as the
by a very rapid variation oft? with spline rank, as shown in quark mass increases. Further study is needed to obtain a
Table VII. However, fory= 0.4 the tabulated spectra do not detailed understanding of the stability of the purely scalar
vary with the spline rank, and these states are stable, &alpeter equation.
shown in Figs. 24—26. Figure 24 also shows that the wave
functions for positive and negative energies are identical pro- V. CONCLUSIONS
vided ¢, 5, . This is a further consequence of the sym- ) ) )
metry of the Salpeter equation which produces pairs of ei- Table_VIII summarizes the resylts presented in the previ-
genvalues with the same magnitude and opposite signs. 0US sections, which are also outlined below. .
The two figures, Fig. 24ground stateand Fig. 25(sec- (i) The Dirac equation is stable if the scalar confinement

ond excited staje demonstrate that these Salpeter systeméS Stronger than the vector confinement(1/2). o
(i) The Salpeter equation is stable if the interaction is

————— mostly vector and perhaps also for pure scalar exchanges

C. The Salpeter equation

Wavefunctions

o
Wavefunctions

p (GeV)

FIG. 24. Positive and negative ground state solutions forythe P (éev)

=0.4 quasirelativistic equal mass Salpeter equatign;

=1.157 GeV (solid and Ilong-dashed linesand wu_;= FIG. 25. The positive second excited state solutions forythe
—1.157 GeV(heavy short-dashed and dotted lineshe positive  =0.4 equal mass Salpeter equatigry=2.094 GeV (solid and
ground state Dirac solutions for=0.4, E;=1.028 GeV(circles long-dashed lingsare compared to the second positive excited state
and squaresare shown for comparison. Dirac solution fory=0.4, E3=1.772 GeV(circles and squargs
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FIG. 26. Positive second excited state solutions for the Salpeter FIG. 27. Stable ground state solution for the Salpeter equation
equation for a variety of scalar and vector mixings: pure vegtor With a pure scalar confining interaction. In these cases

=1.0, u3=2.565 GeV (circles and squargs y=0.6, ug =0.85 GeV and the Salpeter bound state has mass
=2.284 GeV (solid and long-dashed lingsand y=0.4, u; =2.185 GeV. The solutions for SA20 (circles and squargsnd
=2.094 GeV(heavy short-dashed and dotted lines SN=230 (solid and long-dashed linpare comparedNote that the

solutions are not normalized—see the discussion in the) text.
with a large quark mass. The precise boundary between
stable and unstable solutions is presumably a function of theactly to the Salpeter equation, and the attempt to include it
quark massm and the vector strengti, and we have not (at least approximatelyis the principle reason for choosing
mapped it out. to use a spectator equation in the first place. Including retar-
(i) The one channel spectat¢tCS equation has the dation in our analysigplanned for a later woskmay alter
Dirac limit, as expected. This means that for large mass ragur conclusions.
tios k=my/m,, it is stable if the interaction is predomi-  (jii) Only the timelike part of a vector confinemefit.,
nately scalary<1/2). However, as the mass ratio decreases,’,% has been studied. There are preliminary indications
toward unity, the region of instability grows. As we decreasethat our results will change when the full vector interaction
x for a fixed vector strengtly<<1/2, the negative energy ¥*y,, is included.
states will first become unstable, and then the positive energy Our results for the Salpeter equation agree with R&f.
states may follow. However, if the vector strength is smallput disagree with the results obtained by Parramore and
enough(e.g.,y=0) the positive energy states appear to bepPjekarewicz 3], who found the Salpeter equation to be un-
stable for all mass ratios. stable once the vector strength dropped below one-half, re-
The usefulness of an equation where only part if the specgardless of quark mass. However, as stated above, we find
trum is stable depends on whether or not the spectrum ahat the Salpeter equation is stable for a vector strength 0.4,
unstable states is clearly separate from the spectrum of stabigd is even stable for a pure scalar interaction provided the
states(i.e., condition 3 is met The 1CS equation for scalar quark mass is sufficiently large. We looked at one of the
confinement has this feature; the unstable states are thog@ses they found to be unstable=0.29, m=0.9 GeV,
which map, in the Dirac limit, into negative energy states. Ifwith 25 basis stat@sand found it to contain stable states. A
one is content to exclude these states from consideration gsbssible explanation for this difference is that we use cubic
physical grounds then thecalar 1CS equation can be used splines for our basis functions, while nonrelativistic har-
to describe confine@q systems for all mass ratios. The Monic oscillator wave functions were used in Ref.
. — There are other equations which can be used to model the
Salpeter equation can also b? used for equal massys- uark-antiquark system. Tiemeijer and Tjph3] explored
tems unless the confinement is predominately scalar and tq o such equations, the Blankenbecler-Sugar-Logunov-
quark_ masses are not large. . _ . Tavkhelidze(BSLT) [14] equation and the equal-tim&T)
This conclusion answers one of the questions raised in th@quation of Wallace and Mandelzweiti5]. The kernels for

introduction; clearly the stability of vector or scalar confine- .o equations contained one-gluon-exchahgih the full
ment depends on the relativistic equation used. Scalar con-

flne][_nent IS S.tablebllf t.?ehlcss lequatlon IS. “S‘?d an% vector TABLE VIII. Stability results (the table lists the region of sta-
confinement IS.Sta e If the Salpeter equat|o_r_1 IS US€d. bility or the first of the four tests that the system fails
We emphasize that our study of the stability of the spec-

tator equation is preliminary for three reasons. y=0.0 y=0.4 y=06 y=10
(i) Only the 1CS equation has been studied. As empha
sized before, @wo channel spectator equation must be usedDirac stable stable  cond.2 cond. 2
if the bound state mass is smétle pior, and any spectator 1CS«=1.0 positive cond.3 cond.2 cond. 2
equation must be explicitly symmetrized if the quark masseslCS«=2.0 positive cond. 3 cond.2 cond. 2
are equal. 1CS«k=5.0 stable positive cond. 2 cond. 2
(ii) Our study of the 1CS equation was limited to the 1CS«=10.0 stable stable  cond. 2 cond. 2
quasirelativistic approximation, in which retardation is ne- salpeter m=0.85 GeV  stable stable stable

glected. However, neglecting retardation usually leads di
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four vector structureand a linear confining ternfwith a  These equations are then solved for the eigenvaluesd
mixed scalar-four vector structyrélhey found that increas- the eigenvectors@ajl,af}. In the following subsections we
ing the vector strength of the confining term improved thegive the forms of the matrice& andV for each case studied
phenomenology, but that some mesons became unstable fir this paper.

vector strengths of more than about 0.25, depending on the

equation and gauge used. These results reinforce the general 1. Dirac equation

conclusions of this paper: stability depends on both the Lor-

entz structure of confinement and on the type of relativistic 1he Dirac equation was given in E(.52 and (2.26.
equation used. The two independent wave functions are

We have seen that the study of the mathematical stability V=1
of relativistic equations requires the examination of both lo- 1 Pan
cal andglobal features of the eigenvalue spectrum and have Wo= 1 (A4)

introduced four conditions which must be satisfied for an
equation to give stable solutions. Using these stability criteand\ =Eg,
ria we find that the Lorentz structure of the kernel and the

equation used to model the meson both play a crucial role in N
the mathematical stability of the system. Clearly further re- A= 0 p=dpBi(P)B;(P) (A5)
search on this topic is needed.
and
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to ours. the potential matrix can be written
Vit ovi?
APPENDIX: SPLINE FUNCTIONS lj lj
AND NUMERICAL METHODS vﬁl v|2j2
To solve the equations in this paper nhumerically, we ex- 4o (= (=
pand each momentum space wave function in terms of cubic == —f f dp dk \Vo(p,K)fi(p)
. m™Jo Jo
splines
m on o
N x[f,-(k)( ' 2)—f;<p>( . 2)]
vi(P)=2, aiBi(p). (A1) 7 7 s
_ 4o (* (= 1 62
wherea} are the expansion coefficienfahich become the - 7[0 fo dp dk Vi(p,k)fi(p)f;(k) (s Ga)
eignevectors of the problemg; are the spline functions, and
SN is the number of spline functions in the expansitive (A8)

spline rank. In all of the equations studied there are only
two independent wave functions, $&=1 or 2. Since the
angular integrations are performed analytically, the wave m=a+b;, ¢=b;, (A9)
functions depend only on the magnitude of the momerpum

Once Eq.(Al) is substituted for each of the wave functions, where a; and b; were defined in EQq.(2.53, and if
both sides of the equation are operated on by the integrak 7;(p,k), then /= %;(p,p). The functionsV, andV, are
operator

The functionsn and{ are

11 p2k2 p2k2
Votpk= 5 dz _ |
fpzﬁl(p)dp. (A2) 2)-1 (p?+k?®-2pk2? (p?+k?)?—4p3k?

p%k?(z—1)

11
This reduces the integral equations to matrix equations with  V,(p,k)= —f dz———7——
1 (p?+k%—2pk2)?

dimension 2SN 2SN and of the general form 2]~
(AIj 0 ) ZH Pk L
A + -
0 A 0 B

1 1 p2+k2+2pk
2):0- 2(p2+k2+2pk) 8
J

p2+k2—2pk

11 12
vﬁl vﬁz

o)

(A10)
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2. One-channel spectator equation

The 1CS equation in helicity form was given in E8.46)
with the potential defined in Eq2.28 [with (p—k)?—(p
—k)? as discussed in Sec. I[BThe two independent wave
functions are as in EQA4) andA=u=m;+Eg. The ma-
trix A is identical to the Dirac case, but now

11

B|j =

—foocpzdlo(Epl+ Ep,)Bi1(P)Bi(p),

22

- f:pzdp(Epl—Epzwl(pw,-(p). (A11)

Introducing the notation
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where theA; andB; were defined in Eg2.51). The meaning

of the prime in7’ is the same as iy’ andV, andV, are as
before.

3. Salpeter equation

The Salpeter equation is given in E(R.56), with the
masses both equal . Now

V1= 1a,
Vo= 2a, (A15)

and\ = . The matrixA is identical, butB is two times the
Dirac B. The potential matrix is similar to EGA13) with

Np,Np,
Fl(p):\/ﬁﬁl(p)a (A12) . .
PP 72— 15, $o— s,
the potential matrix can be written _ _
73— =175, {3— s, (Al16)
i
21 22 - - - -
Vil Vi 4=~ M1, La— {1,
4o (= (=
=_ 7[ f dp dk \,(p,k)F,(p) and, from Eq.(2.57),
0oJo
mom| E P 75=p2+ K2+ 2(1-2y)pk,  {s=2(1-2y)pk.
o "M2 P M2
X[Fj(k)(— = —E—le<p><_, _)] (A7)
N3 74 Ky M3 74
- 4. Splines
4o (= (= G & The solution to the wave functions used in this paper are
_7fo fo dp dkvl(p’k)F'(p)Fj(k)(Z ol based on a set of third order polynomial functions called
3 cubic splines. Used previously in papers such as Ref|
(A13)  they have proven versatile enough to model all of the wave-
functions examined in this paper.
with The wave function expansion was given in E41). Each
spline is constructed from four separate functions. The func-
_ _ tion used depends on the argument and the spline indsx
7i=A+B;, (=B, (A14) shown:
|
/ (X_Xj72)3
T, Xe[Xj_2,X-1]s
(X—Xj-1) (Xx=Xj-1)?  _(x—%j-1)°
1+3 h] 3 hlz -3 h; . XxelXj—1.%],
4B;(x)= Xje1=X)  _(Xj41=%%  _(Xj11—%)° (A18)
1+3 ”h +3 J+h2 -3 J+h3 . xel[x; X1,
(Xj+2_x)3
T! XE[XJ'+1,XJ'+2],
0, otherwise.
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FIG. 28. Spline rank four curve®ne, solid; two, long-dashed; FIG. 29. Spline rank four curve®ne, solid; two, long-dashed;
three, short-dashed; and four, dofted three, short-dashed; and four, dojtedth momentum argument.

Each spline is defined on the interval from zero to one. This/his is an exceptional case, and all other splines are defined
range is divided into sectors whose sike: 1/(SN+1), de-  following Eqg. (A18) in a straightforward fashion.

pends on the spline rank. Each sector is bounded by nodes at 1€ SPlines defined in EGA18) are only continuous up
x, andx, , 1, with the number of nodes equal to $X2. The to their second derivative. Therefore, in order to obtain con-

. . vergence the integrals must be separately evaluated for each
first node,x, , is alwayg located at zero, a_md the last Or]e’sector, and the results from all the sectors summed up after-
Xsni2, at one. The spline curves for a spline rank of 4 ar

. ' Fig. 28. The standard choice f lculati ards. Special care must be taken in evaluating those contri-
glvenkln f '29 5 i I'e standar r? oice fr our calculation Wag, tions to the double integral of the potential which include
a rank of 20(20 splines in each wave function expansion  gjnqjarities. These are evaluated by choosing points equally

None of the nodes may lie outside of the interval from Ognaced on each side of the singularity so that a well-defined
to 1, so the first splinej,=1, is defined entirely by the third |imit is obtained.
and forth functions given in EqA18). It has a zero slope at  To use the splines to describe the wave functions, the

x=0. Thej =2 spline was defined in a special way so that itinterval [0,~) is mapped into the line segmef,1] using
too will have zero slope at=0 (insuring that all the splines the tangent mapping
have this property To accomplish this the first sector

(which lies betweerxy andx; and is hence outside the ac- Y= EarctarE P
ceptable range of supponvill be “folded over” onto the T
interval betweenx;,x,]. Hence,in the interval between

[X1,X5] the second spline is defined to be

Al

(A20)

with A=1 GeV. This mapping alters the shape of the
splines, as illustrated in Fig. 29.

When the spline rank is increased the sectors become
smaller and the range in momentum space over which the
splines are significantly different from zero increases. Thus,
the wave function is more accurately modeled as the spline
(A19) rank increases. Of course this higher precision must be bal-

(X=Xq) _(X—Xy)?
4B5(X)=1+3———+3 hzl

_3(X_X1)3 n (Xz_X)gl

h3 h3 anced by consideration of computation time.
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