
PHYSICAL REVIEW C FEBRUARY 1999VOLUME 59, NUMBER 2
Stability of the spectator, Dirac, and Salpeter equations for mesons
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Mesons are made of quark-antiquark pairs held together by the strong force. The one channel spectator,
Dirac, and Salpeter equations can each be used to model this pairing. We look at cases where the relativistic
kernel of these equations corresponds to a timelike vector exchange, a scalar exchange, or a linear combination
of the two. Since the model used in this paper describes mesons which cannot decay physically, the equations
must describe stable states. We find that this requirement is not always satisfied, and give a complete discus-
sion of the conditions under which the various equations give unphysical, unstable solutions.
@S0556-2813~99!05902-6#

PACS number~s!: 11.10.St, 12.39.2x, 14.40.2n, 21.45.1v
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I. INTRODUCTION

A. Background

In the simplest models, mesons are bound states of a
ance quark-antiquark pair confined by the strong force. E
for such a simple case a covariant model is needed when
mesons are composed of light quarks with high momen
components. However, covariant models require knowle
of the Lorentz structure of the confining interaction, and
turns out that some choices of Lorentz structure for so
equations will produce mesons which decay. When
mechanism for decay has been included in the model~which
will be the situation for the cases discussed in this pap!,
this is a sign that the solutions are unphysical. It may
acceptable for an equation to produce unstable~i.e., unphysi-
cal! solutions if these solutions are confined to a region
the spectrum which can be precisely characterized and
tematically ignored, but if this is not possible equatio
which produce such unphysical solutions are unsatisfact
In this paper we study confining potentials with scalar a
timelike vector exchanges, and find that the stability of su
interactions depends on the kind of relativistic equation u
for the description of the interaction.

This is not the first time that the stability of covaria
models of confinement has been addressed. Several p
have been written on this topic, some with contradictory c
clusions. Two examples which illustrate this are papers tit
‘‘An exact argument against an effective vector exchange
the confining quark-antiquark potential’’@1#, and ‘‘Evidence
against a scalar confining potential in QCD’’@2#. If both
papers are correct, this would indicate that, at best, the L
entz structure for the potential is more complex than a sim
scalar or vector exchange.

Our research into the question of stability was motiva
by the paper of Parramore and Piekarewicz@3#, which found
that the Salpeter equation was stable when the ve
strength exceeded the scalar strength. This seemed co
intuitive to us, since it is well known that, because of t
famous Klein paradox, the Dirac equation is stable o
PRC 590556-2813/99/59~2!/1009~21!/$15.00
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when the potential is predominately scalar. Their result a
contradicted the work of another group@4# who found that
the Salpeter equation was stable for a pure scalar confi
interaction, provided the quark mass was sufficiently larg

B. Physical and unphysical instabilities

We begin the discussion by making a distinction betwe
instabilities which are physical and those which are unphy
cal. Real mesons have a finite lifetime and can decay ei
through the strong interaction or the electroweak interacti
For example, ther1 can decay into a photon and ap1

through the electroweak interaction shown in Fig. 1. It c
also decay into ap1 and p0 via the strong interaction, a
shown in Fig. 2. In this paper we describe mesons which
isolated from external influences~including vacuum fluxua-
tions!, and use an equation which excludes the electrow
interaction and does not include any mechanism for the p
duction of quark-antiquark pairs. Hence both of these de
mechanisms are excluded from the theory and thus the
sons described by our equations cannot decay physic
Therefore any instability emerging from these equations w
be unphysical, and a sign that the equations are descri
unacceptable states.

C. Unphysical instabilities—An example

The Dirac equation for a linear combination of a sca
and vector confining potential provides a familiar example
the kind of unphysical instabilities we are discussing. Co
sider the Dirac equation for the linear confining potent
V(r )5s r $(12y)1yg0%

FIG. 1. Example of electroweak decay of ther1 meson.
1009 ©1999 The American Physical Society
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1010 PRC 59MICHAEL UZZO AND FRANZ GROSS
EBg0f~r !5@m1V~r !1g•“#f~r !, ~1.1!

wheres and the vector strengthy are both constants. Th
solutions of this equation have both positive and nega
binding energy eigenvaluesEB . If the system described b
this equation could interact with the outside world~e.g., ab-
sorb or emit photons!, the positive energy states could dec
to negative energy states~unless all of the negative energ
states were occupied as in hole theory!. However, we have
assumed that there is no coupling to the outside world,
hence this equation should describe a stable system, ev
some of the binding energy eigenvalues are infinitely la
and negative. However, it is well known that the Dirac equ
tion does not give stable solutions for all values of the vec
strengthy and we review this result now.

The nature of the solutions to the Dirac equation can
studied by looking at the expectation value ofU5m1V.
The form of this expectation value, which describes how
wave function behaves, is

^U&65H m1sr , positive energy,

2m2sr ~122y!, negative energy,
~1.2!

where the positive energy expectation value is a matrix
ment involving u-type positive energy spinors,̂ U&1

5ūUu, and the negative energy expectation value is a m
trix element involving v-type negative energy spinor

^U&25 v̄Uv. The result~1.2! comes from the matrix ele
ments

ūu5152 v̄v,

ūg0u515 v̄g0v, ~1.3!

which hold when the total momentump50. When Eq.~1.2!
is sketched for pure scalar (y50) or pure vector (y51)
cases, Fig. 3 and Fig. 4 are produced, respectively. The

FIG. 2. Example of strong decay of ther1 meson.

FIG. 3. Sketch of the solution to the Dirac equation for t
scalar case, wheres.0 andy50.
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sulting wave functions for a particle with energyE are
sketched on the figures, along with the form of^U& which
produces it.

To understand these results, first neglect the coupling
tween positive and negative energy states. Then the pos
energy states move under the influence of the potential^U&1

and the negative energy states under the influence of^U&2 .
For the scalar case (y50), the choices.0 produces con-
finement for both positive and negative energy states. C
pling the two solutions does not change this picture sign
cantly, and the exact solution is a total wave function wh
drops to zero at large distances. This means that both p
tive and negative energy solutions describe particles per
nently confined around the pointr 50.

Next look at the vector case (y51), and begin again by
neglecting the coupling between the positive and nega
energy states. In this case, however, either the positive
negative energy state is always unconfined. For the exam
shown in Fig. 4,s.0 and the positive energy states a
confined and the negative energy states are not. Includ
coupling between the positive and negative energy st
mixes the two states, and the wave function for the ex
positive energy solution acquires a component with a ‘‘ta
which oscillates to infinity, signaling deconfinement. The
fect of the coupling is to produce an effective potential co
posed of two regions separated by a finite potential bar
through which the quark can tunnel. Once it is free of t
potential barrier it can propagate endlessly through spa
thus becoming a free quark. In this case, the exact cou
solutions do not confine either the positive or negative
ergy states, and the bound state is unstable. This exam
known as the Klein paradox@5#, is one of the unphysica
instabilities we are trying to avoid.

D. Requirements for stability

A relativisitic equation with a confining kernel with
given Lorentz structure will have stable, physical solutio
only if the following four conditions are satisfied:~1! the
binding energy must be real,~2! the energy eigenvalues mu
be independent of the numerical approximations used to
tain them,~3! unphysical solutions, if there are any, must
confined to an identifiable part of the spectrum clearly se
rated from the physical solutions, and~4! the solutions must
have the correct structure in coordinate or momentum sp
We will discuss each of these conditions in turn.

Condition 1—real energies. Any eigenstate wave function
which describes a meson in momentum space,c(p,t), can
be written

FIG. 4. Sketch of the solution to the Dirac equation for t
vector case, wheres.0 andy51.
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c~p,t !5f~p!e2 iEt, ~1.4!

whereE5Am21P2. The discussion is simplified if the par
ticle is chosen to be at rest,P50. Then, if m is complex,
m5m06 iG/2, the absolute square of the meson wave fu
tion is

uc~p,t !u25uf~p!u2e6Gt. ~1.5!

As time increases, this goes exponentially either to zero o
infinity, showing that the state is unstable.

Condition 2—numerical stability. The different relativistic
equations will be solved numerically in Sec. IV using spli
functions to model the wave functions in momentum spa
~A description of the properties of the spline functions
given in the Appendix.! So long as enough spline function
are used to model the system, the energy of the lower ly
stable states will not vary much as the spline rank is
creased. However, if the state is unstable it is part of a c
tinuous spectrum and the energies obtained from the ‘‘eig
value’’ equation only represent a discrete approximation
this continuous spectrum. They will vary strongly with th
number of splines, much as the location of thenth point in
the interval@0,1# will vary strongly with the number of in-
tervals N into which the the line segment is divided. Th
dependence of an energy level on spline rank is one of
most obvious symptoms of instability.

Condition 3—isolation of instabilities. In some cases we
find that, following the second criteria, the positive ener
states are stable and the negative energy states are uns
This may be acceptable for a phenomenology, where
negative energy states can be rejected as unphysical from
start. However, in some cases these unstable negative en
states become positive as the spline number increases
they can become so positive that they cross the gap sep
ing the negative and positive energy states, enter the pos
energy spectrum, and mix with states which would otherw
be stable. In this case the distinction between~stable! posi-
tive energy states and~unstable! negative energy states be
comes blurred, and we cannot rely on the predictions of
equation.

Condition 4—correct structure. Even if the mass is real
the state might not be confined in a finite region of coor
nate space~as in the Dirac example outlined above!. If the
state is confined, its coordinate space wave function will
proach zero asr→` faster than an exponential. It can be
shown that the momentum space wave function resul
from such a state will also fall off atp→` faster than an
exponential, and that the number of nodes will correspon
the level of the state. It is easy to distinguish such beha
from that of an unconfined state, which is neither localized
coordinate nor momentum space, and which has many n
not related to the level of the state. We can use the D
wave functions for comparison, since we know that they
stable for scalar confinement and unstable for vector confi
ment. Examples of both types of states will be given in S
IV. In the following sections, these stability conditions w
sometimes be referred to by number, as we will see th
successful phenomenology requires that all of them be s
fied.
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E. Summary and outline

In summary, the stability conditions are~1! the eigenval-
ues of the system must be real,~2! the eigenvalues canno
vary with the spline rank,~3! the positive energy states mu
always be greater than any unstable negative energy st
and ~4! the wave functions must have the appropriate str
ture for that specific state. In Sec. II specific forms are giv
for the Dirac, Salpeter, and one channel spectator~1CS! rela-
tivistic equations. Then in Sec. III these three equations
studied using an approximation technique which gives
sight into the origin of the instabilities, and the estimat
masses of stable states are compared to the exact num
solutions presented in Sec. IV. The three equations
solved numerically in Sec. IV using spline functions for
quasirelativistic confining potential. The actual equatio
used in the computer code and the properties of spline fu
tions are given in the Appendix. Finally, conclusions a
given in Sec. V.

II. THE RELATIVISTIC EQUATIONS

In this section we define the one-channel spectator eq
tion obtained by confining the heavier particle 1~assumed to
be the quark! to its positive energy mass shell, fixing thek0
integration. Then we show that these equations reduce to
Dirac equation for the lighter particle~particle 2! in the limit
when the mass of the heaver particlem1→`. We conclude
by finding a helicity representation for the 1CS and for t
Salpeter equation.

A. Dirac form for the one-channel spectator equation

The Feynman diagram for the bound state meson verte
shown in Fig. 5. Particle 1 is the quark, particle 2 the an
quark, andQ is a matrix in Dirac space which describes ho
the confining force couples to the quark or antiquark. It c
be a scalar1 or the time component of a four-vectorg0. The
kernelV contains the momentum dependent structure of
confining potential. The equations are derived in the cen
of mass rest frameP5(m,0). Later, the quark will be placed
on shell, thus producing the single channel equation. T
four momenta used in the diagram are

p15p1 1
2 P, p25p2 1

2 P,

k15k1 1
2 P, k25k2 1

2 P. ~2.1!

The vectork is the average internal momentum and vectop
is the average external momentum of the quark-antiqu
pair

FIG. 5. Feynman diagram for the meson bound state ve
function. The kernel, or potential, is denoted byV.
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p5 1
2 ~p11p2!, P5p12p2 . ~2.2!

With this notation, the Bethe-Salpeter equation@6# for the
bound state vertex function for the meson is

G~p!5 i E d4k

~2p!4
V~p,k!Q

m11k” 1

m1
22k1

2
G~k!

m21k” 2

m2
22k2

2
Q.

~2.3!

The two fermion propagators have poles in the comp
k0 plane; these four poles are shown Fig. 6. Factoring
denominators of the propagators

1

mi
22ki

2
5Gi

1Gi
2 ~2.4!

the poles are at

pole 1: ~G1
1!215Ek1

2~k01 1
2 m!2 i e50,

k05Ek1
2 1

2 m2 i e,

pole 3: ~G1
2!215Ek1

1~k01 1
2 m!2 i e50,

k052Ek1
2 1

2 m1 i e,

~2.5!

pole 2: ~G2
1!215Ek2

2~k02 1
2 m!2 i e50,

k05Ek2
1 1

2 m2 i e,

pole 4: ~G2
2!215Ek2

1~k02 1
2 m!2 i e50,

k052Ek2
1 1

2 m1 i e.

To place particle 1 on the positive energy mass shell, thek0
integration is closed in the lower half plane and only t
residue from pole 1 is kept. This gives the following equ
tion:

G~p!52E d3k

2Ek1
~2p!3

V~p,k!Q~m11k”̂ 1!G~k!
m21k” 2

m2
22k2

2
Q,

~2.6!

where nowk̂15(Ek1
,k) and k25(Ek1

2m,k). This is one
form of the one channel spectator equation.

FIG. 6. This figure shows the position of the four poles asso
ated with the four propagatorsGi

r in the bound state equations.
x
e

-

Next, we recall that the projection operator can be writt
@7# as a sum over on-shellu spinors~to be defined below!

m11k”̂ 15(
l8

u~k,l8!ū~k,l8!. ~2.7!

Therefore, if we define the relativistic meson wave functi
by

C~k,l!5
1

A2Ek1

ū~k,l!G~k!
m21k” 2

m2
22k2

2
~2.8!

then Eq.~2.6! becomes

C~p,l!~m22p” 2!52E d3k

~2p!3

V~p,k!

A4Ep1
Ek1

3(
l8

Qll8
11

~p,k!C~k,l8!Q,

~2.9!

where

Qll8
11

~p,k!5ū~p,l!Qu~k,l8!. ~2.10!

Equation~2.9! is the Dirac form of the one-channel spe
tator equation. Later we will reduce this equation further, b
as written in Eq.~2.9! it looks very similar to a Dirac equa
tion for the light antiparticle ~particle 2! moving under the
influence of an effective potential which depends on the s
of the heavy quark. To make this comparison more famil
we convert the equation into the usual form by taking t
transpose and multiplying by the Dirac charge conjugat
matrix C ~see Ref.@7#!. This gives

~m21p” 2!Ĉ~p,l!52Q̂(
l8

E d3k

~2p!3
Ĉ~k,l8!

3
V~p,k!

A4Ep1
Ek1

Qll8
11

~p,k!, ~2.11!

where

Ĉ~p,l!5C CT~p,l!, Q̂5CQTC21. ~2.12!

With the exceptions of the spin dependence of the sou
expressed through the factorQll8

11(p,k), and the fact that the
effective potential does not depend solely onq5p2k, the
difference of the three momenta, Eq.~2.11! looks similar to
the familiar Dirac equation for a particle with four mome
tum equal to2p2 ~as expected from the charge conjuga
state!.

We will now calculate the matrix elementQ11 and show
that Eq.~2.11! does indeed reduce to a Dirac equation in t
limit m1→`. In spin space theu spinor, as defined in Ref
@7#, is

i-
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u~p,s!5~Ep1m!1/2S 1

s•p

Ep1m
D xs, ~2.13!

which contains the operators•p. It is convenient to work in
helicity space, wheres•p xl52lupuxl. Theu spinor in he-
licity space is therefore

u1~p,l j ![u~p,l j !5NpjS 1

2l j p̃ j

D xl j , ~2.14!

where we have introduced the notationur with r spin5
11 for the positive energy solutions~u! andr spin521 for
the negative energy solutions (v, described below!, and

Npj
5~Epj

1mj !
1/2, p̃ j5

upu

Npj

2
. ~2.15!

The indexj denotes a quark (j 51) or antiquark (j 52). The

values ofp̃ range from 0 to 1. The helicity spinors are d
fined in Table I for cases when the momentum is along thz
axis ~external quarks!, and when the momentum is in thexz
plane at an angleu with respect to thez axis. We will use a
prime to distinguish the latter from the former. Thev spinor,
or negativer-spin state, used in this paper is

u2~p,l j ![v~2p,l j !5NpjS 22l j p̃ j

1
D xl j , ~2.16!

and is consistent with that used in Ref.@8#. It is convenient to
use the helicity representation because helicity is invar
under rotations, and because the vector operators•p is re-
placed by scalar eigenvalues, thus simplifying the algebr

The matrix elementQll8
11(p,k) is then

Qll8
11

~p,k!5Np1
Nk1

Dll8~u8u!~174l8l p̃1k̃1!,
~2.17!

where the upper sign is for the scalar vertex and the lo
sign for the timelike vector case. We will assume, for t

TABLE I. Helicity spinors.

External quarks Internal quarks

li5
1
2 S10D li85

1
2 Scos

u

2

sin
u

2

D
li52

1
2 S01D li852

1
2 S2sin

u

2

cos
u

2

D

nt

r

time being, that the polar angle of the external quark isu8
instead of 0~as it will be later!. Then

Dll8~u8u!5dll8 cos1
2 ~u2u8!22ldl,2l8 sin1

2 ~u2u8!.
~2.18!

Therefore, forming the two independent linear combinatio

F1~p!5Ĉ~p, 1
2 !cos1

2 u82Ĉ~p,2 1
2 !sin1

2 u8,

F2~p!5Ĉ~p, 1
2 !sin1

2 u81Ĉ~p,2 1
2 !cos1

2 u8, ~2.19!

Eq. ~2.11! becomes

~m21p” 2!F1~p!52Q̂E d3k

~2p!3

Np1
Nk1

A4Ep1
Ek1

V~p,k!

3$F1~k!@17 p̃1k̃1 cos~u2u8!#

7F2~k! p̃1k̃1 sin~u2u8!%,

~m21p” 2!F2~p!52Q̂E d3k

~2p!3

Np1
Nk1

A4Ep1
Ek1

V~p,k!

3$F2~k!@17 p̃1k̃1cos~u2u8!#

6F1~k! p̃1k̃1 sin~u2u8!%. ~2.20!

Hence the interaction depends only on the differenceu2u8
and we may setu850 without loss of generality.

For later use we will record here the otherr-spin matrix
elements ofQ

Qll8
22

~p,k!57Qll8
11

~p,k!,

Qll8
12

~p,k!52Np1
Nk1

Dll8~u8u!~2l8k̃162l p̃1!

56Qll8
21

~p,k!. ~2.21!

B. Limits of the one-channel spectator equation

Now we can observe that taking the limitm1→` gives a
Dirac equation for the light particle. The fixed source for t
Dirac equation is a heavy quark, so the equation will mo

a Qq̄ system, such as aD meson. Asm1→`, p̃1→0, and
V(p,k)→V(p2k) ~see below!, giving

~m22p” 28!F~p!52Q̂E d3k

~2p!3
V~p2k!F~k!,

~2.22!

where the helicity of the heavy particle was dropped beca
the equation is independent of it and we introduced
physical momentump2852p25(m2Ep1

,2p)→(EB ,p8),

with EB5m2m1 . In position space Eq.~2.22! is

~m22EBg01 ig i] i !F~r !52Q̂V~r !F~r !. ~2.23!

We will return to this equation in the next subsection.
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The confining potentialV(r ) which appears in Dirac Eq
~2.23! is taken to be a simple linear potential in positio
space@9#

V~r !5sr 5 lim
e→0

sre2er5 lim
e→0

s
d2

de2

e2er

r
. ~2.24!

In momentum space this potential is

V~q!528ps lim
e→0

H 1

~q21e2!2
2

4e2

~q21e2!3J . ~2.25!

This form of the potential is inconvenient because the lim
e→0 must be taken numerically. For the Dirac equation,
use an alternative form which has the same physics

V~q!528psH 1

q4
2d3~q!E d3q8

q84 J , ~2.26!

whereq5p2k andq85p2k8. It is instructive to note that
the position space form of each of the terms in Eq.~2.26! is

2
8ps

q4
5 lim

e→0
2

8ps

~q21e2!2

→ lim
e→0

2s
e2er

e
.2

s

e
1sr 1•••,

d3~q!E d3q8
8ps

q84
5 lim

e→0
d3~q!E d3q8

8ps

~q21e2!2
→

s

e
.

~2.27!

Hence the role of the delta function subtraction is to remo
the infinite constant from the first term, leaving a pure line
potential.

In relativistic two-body equations, the potential~2.26! is
generalized to@9#

V~p,k!528psH 1

~p2k!4
2Ep1

d3~p2k!E d3k8

Ek
18
~p2k8!4J .

~2.28!

The insertion of the energy factors is necessary to make
kernel~2.28! covariant, and is associated with the restricti
of the heavy quark to its mass shell@9#. The full 1CS also
includes the covariant replacement (p2k)2→(Ep1

2Ek1
)2

2(p2k)2, but in both the theoretical and numerical stud
in this paper we have neglected retardation and use the
plest replacement (p2k)2→2(p2k)2. We will refer to this
as the quasirelativistic approximation, and it should be e
phasized that we use this approximation in this paper onl
simplify the discussion. We also neglect the regularizat
factor and form factor introduced in previous studies@9#.

The energy factor in the subtraction term in Eq.~2.28!
gives rise to a relativistic effect of some importance. To s
this, evaluate the diagonal matrix element
t
e

e
r

he

s
m-

-
to
n

e

^cuVCuc&5E d3p d3k c~p!

3H Ep1
d3~p2k!E d3k8 8ps

Ek
18
~p2k8!4J c~k!

5E d3rd3r 8

~2p!3
d3p c~r 8!eip•~r82r !

3H Ep1
E d3k8 8ps

Ek
18
~p2k8!4J c~r !

5E d3 rc~r !H Ep1
E d3k8 8ps

Ek
18
~p2k8!4J c~r !,

~2.29!

where, in the last line,p5Ap2→A2¹2. Hence the subtrac
tion term becomes an operator which is a function ofp2→
2¹2 but independent ofr. It can be evaluated by standar
means

Ep1
E d3k8 8ps

Ek
18
~p2k8!4

5 lim
e→0

Ep1
E d3k8 8ps

Ek
18
@~p2k8!21e2#2

5
s

e
2

2s

pm1
H m1

Ep1

1
m1

3

pEp1

2
logS Ep1

1p

m1
D J

5
s

e
2C~p2!. ~2.30!

This new subtraction term contains the same singular par
found before@see Eq.~2.27!# plus a new finite partC(p2).
The finite part arises from the relativistic energy factor in E
~2.30!, which produces an infinitesimal modification of th
singular part, and it vanishes in them1→` limit. It has an
interesting effect which will be discussed in the next subs
tion.

The confining potential has the property that it is ve
singular whenq→0. This suggests using a peaking appro
mation in whichu.u8, so that the coupling betweenF1

and F2 can be neglected. No further approximations a
needed, because we may reduce all factors ofEp1

andEk1
to

derivative operators, and replace

k̃1p̃1 cos~u2u8!5
k•p

~Ek1
1m1!~Ep1

1m1!

→2
~k2p!2

2~Ek1
1m1!~Ep1

1m1!
1

k̃1
2

2
1

p̃1
2

2
,

~2.31!



e
c-
e,

po

on

it

a
i

os
in
to

ns

xt

t for
is

e

ms

of

e

ver-

PRC 59 1015STABILITY OF THE SPECTATOR, DIRAC, AND . . .
because the operatorsk2 ~which operates on the initial wav
functions! and p2 ~which operates on the final wave fun
tions! will eventually give indentical results. Furthermor
the operatorq2 can be reduced to

8psq2

2q4
5

4ps

q2
→

s

r
. ~2.32!

Combining all of these effects, Eq.~2.20! becomes a
single Dirac-like equation with a momentum-dependent
tential

~m21p” 2!F~p!

5Q̂C~p!F~p!2Q̂E d3k

~2p!3
V~p,k!NF~k!

3F17
1

2
~ k̃1

21 p̃1
2!6

1

2

q2

~Ek1
1m1!~Ep1

1m1!G ,

~2.33!

whereN5Np1
Nk1

/A4Ep1
Ek1

. Recalling thatp205M2Ep1

5EB1m12Ep1
, the coordinate space form of this equati

is

~m22@EB1m12Am1
22¹2#g01 ig i] i !F~r !

52Q̂S @sr 2C~p2!#~17 p̃1
2!7

s

r

1

~E11m1!2D
3NF~r !, ~2.34!

where we have anticipated the application todiagonalmatrix
elements wherek25p2→2¹2, and all functionsEp1

5E1

are replaced byAm1
22¹2. Using Eq.~2.34! we can study the

single-channel spectator equation when the massm1 is close
to m2 , and also see how it approaches the Dirac limit. W
will study these issues approximately in Sec. III.

C. Equations with mixed scalar and vector confinement

Note that the operatorQ depends on its Dirac structure;
is 1 for a scalar confinement andg0 for vector confinement.
Hence Eq.~2.12! gives

Q̂5H 1, scalar,

2g0, vector.
~2.35!

In the nonrelativistic limit, the Dirac equation reduces to
Schrödinger equation for the upper component, and we w
choose the sign of our potential so that it confines the p
tive energy solution in the nonrelativistic limit. Hence,
order to obtain a nonrelativistic confining potential equal
sr , independent of the mixing parametery, the operator
form O of a mixed kernel must be

O5~12y!1^ 12yg0
^ g0. ~2.36!

Using this definition and the result Eq.~2.34! gives the fol-
lowing equation for a mixed confining potential:
-

e

ll
i-

~m22@EB1m12E1#g01 ig i] i !F~r !

52Q̂S @sr 2C~p2!#@12 p̃1
2~122y!#

2
s

r

~122y!

~E11m1!2DNF~r !. ~2.37!

Assuming a ground state solution of the form@7#

F~r !5S f ~r !

2 ig~r !s• r̂
D x, ~2.38!

Eq. ~2.37! reduces to the following set of coupled equatio
for the radial wave functionsf (r ) andg(r ):

~EB2m22@E12m1# ! f 1
dg

dr
1

2

r
g

5S ~sr 2C!@12 p̃1
2~122y!#2

s

r

~122y!

~E11m1!2DNf ,

~EB1m22@E12m1# !g2
d f

dr

52S ~sr 2C!@~122y!2 p̃1
2#2

s

r

1

~E11m1!2DNg.

~2.39!

We will return to this coupled set of equations in the ne
section.

D. Spectator equation in helicity space

The equations we have obtained so far are convenien
approximate analysis, but an exact helicity decomposition
better for numerical solutions. To obtain this form of th
one-channel spectator equation, return to Eq.~2.9! and ex-
pand the wave function and the projection operator in ter
of the helicity spinors given in Eqs.~2.14! and ~2.16!. The
wave function can be expanded using the decomposition
the propagator intor spin contributions@7#,

~m21k” 2!

m2
22k2

2
5

1

2Ek2

(
l2

Fu~k,l2!ū~k,l2!

Ek2
2k202 i e

2
v~2k,l2!v̄~2k,l2!

Ek2
1k202 i e G . ~2.40!

Using this in Eq.~2.8! shows that the wave function has th
form

C~p,l!5(
rl2

Cll2

r ~p!ūr~p,l2!. ~2.41!

Furthermore, the most general form of the pseudoscalar
tex function with particle 1 on shell is
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ū1~p,l!G~p!5ū1~p,l!$G1 g51G2 g5~m22p” 2!%,
~2.42!

and these Dirac operators are built only from the 232 ma-
trices 1 and s•p52lp. Therefore in helicity space the he
licity is conserved and an explicit calculation shows that

ū1~p,l!G~p!ur~p,l2!5dll2
~2l!d1r Gr~p!, ~2.43!

where theGr(p) are independent of the helicity. Hence th
expansion~2.41! can be written

A2Ep2
C~p,l!5

1

A4Ep2
Ep1

$c1a~p!ū2~p,l!

1~2l!c1b~p!ū1~p,l!%, ~2.44!

where

c1a52
G2

Ek2
1Ek1

2m
, c1b5

G1

Ek2
2Ek1

1m
.

~2.45!

Bringing all of these elements together, using Eq.~2.21!, and
choosing the sign of the vector interaction in accorda
with Eq. ~2.36! gives the helicity form of the single chann
spectator equation

S ~EB2Ep2
2@Ep1

2m1# !c1a~p!

~EB1Ep2
2@Ep1

2m1# !c1b~p!D
5E

k
V̄S D1 D2

D3 D4
D S c1a~k!

c1b~k!
D , ~2.46!

whereEB5m2m1 ,

E
k
5E d3k

~2p!3
, ~2.47!

the rescaled potential kernel is

V̄5
Np1

Np2
Nk1

Nk2

4AEp1
Ep2

Ek1
Ek2

V, ~2.48!

andDi5Ai1Bi cosu with

A15Q, B157R,

A25T2 , B256S2 ,
~2.49!

A35S2 , B356T2 ,

A45R, B457Q,

and

Q511 p̃1p̃2k̃1k̃2 , R5 p̃1k̃11 p̃2k̃2 ,

Sj5 p̃ j2 k̃1k̃2p̃ j 8 , Tj5 k̃ j2 p̃1p̃2k̃ j 8 . ~2.50!
e

In Eq. ~2.49! the upper sign holds for scalar confinement a
the lower for vector confinement and in Eq.~2.50! j 8Þ j .

For the mixed scalar/vector confinement defined in E
~2.36! the values ofAi andBi are

A15Q, B152R~122y!,

A25T2 , B25S2~122y!,
~2.51!

A35S2 , B35T2~122y!,

A45R, B452Q~122y!.

When the masses are equal this equation reduces to the e
tion previously introduced in Ref.@10#.

E. Dirac equation in helicity space

The helicity form of the Dirac equation is obtained fro
Eq. ~2.46! by taking them1→` limit

S ~EB2Ep2
!c1a~p!

~EB1Ep2
!c1b~p!D 5E

k
V̄S d1 d2

d3 d4
D S c1a~k!

c1b~k!
D ,

~2.52!

where nowV̄5VNp2
Nk2

/(2AEp2
Ek2

) and di5ai1bi cosu

with

a151, b152 p̃2k̃2~122y!,

a25 k̃2 , b25 p̃2~122y!,
~2.53!

a35 p̃2 , b35 k̃2~122y!,

a45 p̃2k̃2 , b452~122y!.

We conclude this section with a derivation of the helic
form of the Salpeter equation.

F. Salpeter equation in helicity space

The Salpeter equation@11# uses the approximation tha
the potential, or kernel, of the Bethe-Salpeter equation
independent ofk0 andp0 . Therefore, in coordinate space th
potentials and the wave functions are instantaneous, i.et1
5t2 . The Salpeter equation has two undesirable featu
First, neglecting the energy dependence of the kernel is
physical. Second, there is no Dirac limit for this equatio
When the mass of one of the particles is taken to infinity,
resulting equations do not reduce to a Dirac equation for
light quark moving in the field created by the heavy qua
Hence, it is most appropriate to use this equation for eq
masses, far away from the one body limit.

The direct derivation of the Salpeter equation utilizes
same steps as those used for the 1CS equation with a
modifications. In this case pole 2, as defined in Eq.~2.5! and
Fig. 6, must be included. For brevity we will only give th
final result. The general equation is
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G1
r1r2~p!5E d3k

~2p!3
V118 (

r18r28
(

l18l28
Q

1
r1r18G

1
r18r28G

2
r28Q

2
r28r2 ,

~2.54!

wherer1Þr2 andr18Þr28 . The second channel wave fun
tion, denotedc2a , corresponds to propagation of the tw
quarks in their negative energy state, and is equal to

c2a52
G1

21

Ek2
1Ek1

1m
. ~2.55!

The two wave functions,c1a and c2a satisfy the coupled
equations

S ~m2Ep2
2Ep1

!c1a~p!

~m1Ep2
1Ep1

!c2a~p!D 5E
k
W V̄S D1 2D5

D5 2D1
D S c1a~k!

c2a~k!
D ,

~2.56!

with

D55 p̃1p̃21 k̃1k̃21~122y!~ p̃1k̃21 p̃2k̃1!cosu.
~2.57!

All other terms have the same definitions as before.

III. APPROXIMATE THEORETICAL RESULTS

In this section we develop approximations which help
understand the stability issues which will arise when
equations are solved numerically.

A. Dirac solutions for large r

We begin by studying the stability of Eq.~2.39! in the
Dirac limit whenm1→`

EB f 5~m21sr ! f 2
dg

dr
2

2

r
g,

EB g5„2m22sr ~122y!…g1
d f

dr
. ~3.1!

This is the exact Dirac equation for a potential which is
superposition of scalar and vector linear confining forces.
large r the equations become approximately

sr f 2
dg

dr
50,

2sr ~122y!g1
d f

dr
50. ~3.2!

The solution to these equations depends on the value ofy. If
y,1/2, then the solution which approaches zero asr→` is

f ~r !5Nfe
2A122ysr 2/2, g~r !5Nge2A122ysr 2/2,

~3.3!

where

Nf52A122yNg . ~3.4!
s
e

t

Note that the wave functions become less confined ay
→1/2. Fory.1/2 the solutions are oscillatory and escape
large r. In this case the most general solution is a line
combination of the following two independent solutions:

f 1~r !5Nf 1
sinSA2y21

1

2
sr 2D ,

g1~r !5Ng1
cosSA2y21

1

2
sr 2D ,

f 2~r !5Nf 2
cosSA2y21

1

2
sr 2D ,

g2~r !5Ng2
sinSA2y21

1

2
sr 2D , ~3.5!

where

Nf 1
52A2y21Ng1

,

Nf 2
5A2y21Ng2

. ~3.6!

This is the simple mathematical explanation behind the
sults shown in Figs. 3 and 4.

B. Estimates for the one-channel spectator equation

Study of the solutions of the approximate one chan
spectator equation, Eq.~2.39!, is complicated by the pres

ence of the operatorsAm1
22¹2 and p̃1

2 . We will therefore
develop a variational-like method which can give us insig
into the confining behavior of the equation.

First, if s50 theexactsolution of the equations is

f ~r !5 f 0 j 0~gr !,

g~r !5g0 j 1~gr !, ~3.7!

where j l is the spherical Bessel function of orderl, and the
energy is a function of the parameterg

EB~g!5@Am1
21g22m1#6Am2

21g2. ~3.8!

The spectrum is continuous with a gap between the posi
and negative energy states. It is amusing to see that the
ergies of both the positive and negative energy states
alwaysgreater than the corresponding Dirac state energi
and that the negative energy spectrum is now bounded
tween 2m2 and 2m1 , instead of running from2m2 to
2`. This already illustrates one of the new features of
1CS equation.

When sÞ0 we cannot solve the equation analyticall
and will limit our study to the behavior of the expectatio
value of the energies as estimated by taking matrix elem
of the equation. To compute these matrix elements we
use wave functions of the type shown in Fig. 7, which a
constructed from spherical Bessel functions of order zero
one. This choice makes the evaluation of functions of
operator¹2 easy.
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FIG. 7. The trial wave func-
tions f (x) andg(x) as a function
of x5gr . The different tails are
for the casesk/g50.1 ~biggest
tail!, 0.5, and 2.0~smallest tail!, as
discussed in the text.
io
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Ideally, the functions used should consist of a reg
where 2¹2 is positive, and a ‘‘tail’’ region where2¹2

,0. The functions shown in Fig. 7 were constructed fro
j l(gr ) and hl(kr) joined so that the function and its firs
derivative are continuous. However, we found that the c
tributions from the tails did not change the qualitative beh
ior of the matrix elements, and hence we present here o
the simplest results for wave functions without tails~where
k/g→`, the heavy solid lines in the figure!. These results
are easy to evaluate.

Hence the ‘‘trial’’ wave functions we choose are

f ~r !5H f 0 j 0~gr !, gr ,p,

0, gr .p,

g~r !5H g0 j 1~gr !, gr ,n1 ,

0, gr .n1 ,
~3.9!

where j l is the spherical Bessel function of orderl, g is a
variational parameter, and the constantn154.493 is the lo-
cation of the zero ofj 1 . These wave functions are eigenfun
tions of the operator¹2:

¹2 f ~r !5
1

r

]2

]r 2
r f ~r !52g2f ~r !,

¹2 g~r !5S 1

r

]2

]r 2
r 2

2

r 2D g~r !52g2g~r !. ~3.10!

Hence the operatorsAm1
22¹2 and p̃1

2 can be readily calcu-
lated.

Substitutingf and g into Eq. ~2.39!, multiplying the first
equation byj 0(gr ) and the second byj 1(gr ), and integrat-
ing over d3r gives the following coupled equations forf 0
andg0 :

~EB2@Am1
21g22m1#2m2! f 01gg0

5H S sc1

g
2C~g2! D @12 p̃1

2~122y!#

2
sc2

g
p̃1

2~122y!JN f 0[Sf f 0 ,
n

-
-
ly

~EB2@Am1
21g22m1#1m2!g02gb f0

52H S sc3

g
2C~g2! D ~122y2 p̃1

2!2
sc4

g
p̃1

2JN g0

[2Sg g0 , ~3.11!

where

c15

E
0

p

x3 dx j0
2~x!

E
0

p

x2 dx j0
2~x!

51.571, c35

E
0

n1
x3 dx j1

2~x!

E
0

n1
x2 dx j1

2~x!

52.659,

c25

E
0

p

x dx j0
2~x!

E
0

p

x2 dx j0
2~x!

50.776, c45

E
0

n1
x dx j1

2~x!

E
0

n1
x2 dx j1

2~x!

50.412,

~3.12!

and

b5

E
0

p

x2 dx j1
2~x!

E
0

n1
x2 dx j1

2~x!

50.734. ~3.13!

Solving Eq.~3.11! gives an estimate for the eigenvaluesEB
as a function ofg, related to the size of the state

EB5Am1
21g22m11

1

2
~Sf2Sg!

6A1

4
~2m21Sf1Sg!21g2b, ~3.14!

whereSf and Sg were defined in Eq.~3.11!. These energy
surfaces for a variety of cases are shown in Figs. 8–12. In
of these cases we choses50.2 GeV2 andm250.325 GeV.
We will now discuss some of the interesting features of th
solutions.

Note that the solutions~3.14! are always real, and that a
g→0
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EB→
s

2g
„c12c3~122y!6uc11c3~122y!u….

~3.15!

Hence the positive energy solution always approaches1`
asg→0, but the negative energy solution goes as

EB
2→

s

g H 2c2~122y! if y,0.7955
c11c3

2c3
,

c3~2y21! if y.0.795,
~3.16!

and becomes positive fory.1/2, as shown in Figs. 11 an
12. This is a sign of instability. Wheny.1/2 the positive
energy states cannot be stable because they may alway
duce their energy by tunneling through to a negative ene
surface and sliding down to2`.

A similar problem may occur at largeg, but because ou
estimates are less reliable here~we neglected the wave func

FIG. 8. The Dirac energyE5EB as a function of the variationa
parameterg for different mixing ratiosy50 ~solid line!, y50.4
~dot-dashed!, y50.6 ~dashed!, andy51.0 ~dotted!.

FIG. 9. EnergiesE5EB as a function of the variational param
eterg for the Dirac equation~solid line! and the 1CS equation with
m1510m2 ~dashed line!. In both cases,y50.
re-
y

tion tails which are more important at largeg) we can draw
no firm conclusion. Asg→`,

EB→g~16Ab!, ~3.17!

and becauseb,1 the negative energy solutions also beco
positive at largeg. This feature sets in at lower values ofg
as the mass ratiom1 /m2 decreases, as is shown in Fig. 10.
fact we do note that the numerical solutions for the nega
energy states are unstable for small values ofm1 /m2 , but we
see no sign of instability in the positive energy solutions
small values ofy and all values ofm1 /m2 .

Finally, a comparison between these estimates and e
solutions for the ground state are summarized in Table
Note that Eq.~2.39! does a credible job of explaining th
trends, all of which can be understood qualitatively fro
examination of the figures.

Before leaving the discussion of the 1CS equation,
comment on two features of our estimates due to the p

FIG. 10. The 1CS energyE5EB as a function of the variationa
parameterg for different mass ratiosk5m1 /m2510 ~solid line!,
k55 ~dot-dashed!, k52 ~dashed!, andk51 ~dotted!. In all cases,
y50.

FIG. 11. The 1CS energyE5EB as a function of the variationa
parameterg for different mixing ratiosy50 ~solid line!, y50.4
~dot-dashed!, y50.6 ~dashed!, and y51.0 ~dotted!. In all cases
m1 /m2510.
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ence of the ‘‘constant’’ termC(p2) of relativistic origin@re-
call Eq. ~2.30!#. First, note that the positive energy 1CS s
lutions approach the Dirac limit asm1→` from below
instead of from above, as would have been suggested by
analysis of the free particle case.~Note the comparison in
Fig. 9.! Even though the energy factor@E12m1# is positive,
the termC is negative and is just a bit larger, giving th
observed behavior. Second, the term2C becomes more
negative with decreasing mass ratio, explaining the drop
the binding energy asm1 /m2 decreases to unity.

C. Stability of the Salpeter equation

Applying our technique to the Salpeter equation~2.56! for
equal masses (m15m25m) gives

~m22E! f 15w1 f 11w2 f 2 ,

~m12E! f 252w1 f 22w2 f 1 , ~3.18!

FIG. 12. As in Fig. 11 but withm15m2 .
-

ur

in

where

w15H S sc1

g
2C~g2! D ~@12 p̃2#214yp̃2!

22
sc2

g
p̃2~122y!JN,

w252H S sc1

g
2C~g2! D2p̃2~12y!1

sc2

g
p̃2~122y!JN,

~3.19!

and we have assumed thatf 1 and f 2 are bothSstates. Hence
the estimated mass is

m25~2E1w1!22w2
2 . ~3.20!

We have recovered the result that the masses always occ
6 pairs, and we see that they may be imaginary ifuw2u
.u2E1w1u.

First note that asg→0,

m25S sc1

g D 2

, ~3.21!

and asg→`,

m25~2g!2, ~3.22!

so thatm2 is always large and positive at the extreme valu
of g, and must have a minimum for someg. If this mini-
mum isnegative, the masses will be imaginary~i.e., the state
will be unstable!. This can occur only ifm and y are small
enough to satisfy the condition
ergies
TABLE II. Comparison of the exact and estimated solutions for the Dirac and 1CS equations. All en
are in GeV, and blanks indicate that there is no stable solution.

Parameters Positive energy Negative energy

Exact Estimate Exact Estimate
m1 /m2 y E1 E g E21 E g

Dirac
` 0.0 0.976 0.950 0.715 21.249 21.226 0.859

0.4 1.028 1.014 0.673 20.660 20.650 0.463

One channel spectator
10 0.0 0.964 0.946 0.635 21.091 21.034 0.988

0.4 1.013 1.007 0.603 20.619 20.598 0.505
5 0.0 0.940 0.926 0.579 20.936 20.828 1.272

0.4 0.992 0.992 0.552 20.548 20.532 0.563
2 0.0 0.857 0.857 0.471 20.607

0.4 0.928 0.952 0.452
1 0.0 0.745 0.777 0.379 20.330

0.4 0.853 0.928 0.367
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2E1H S sc1

g
2C~g2! D ~126p̃21 p̃418yp̃2!

24
sc2

g
p̃2~122y!JN52E1w12w2,0.

~3.23!

If m50 this condition reduces to

2g2
4s

g S c11c22
2

p D ~122y!,0. ~3.24!

Hence the Salpeter equation form50 is unstable only ify
,1/2. As m increases, this critical value ofy decreases. If
y50, our estimate~3.23! leads to the conclusion that th
scalar Salpeter equation is unstable only ifm,0.18; for
larger values ofm the equation has real roots for ally. This
behavior is illustrated in Fig. 13, which shows that the sca
Salpeter equation is stable form50.325~our standard choice
for the quark mass! and unstable form50.1.

Unfortunately, our crude estimate~3.23! does not repro-
duce the quantitative features of the exact Salpeter solut
as well as it did for the previous cases. The compari
between exact and estimated solutions is given for a
cases in Table III. Note that the qualitative agreemen
good, but that we are unable to ‘‘predict’’ the critica

FIG. 13. The square of the bound state massm2 as a function of
the parameterg for the Salpeter equation with a pure scalar confi
ing interaction (y50). Solid curve,m50.325; dashed curve,m
50.1.
r

ns
n
w
is

mass at which the Salpeter equation becomes unstable.
exact solutions tell us that this mass is around 0.85 G
much higher than the estimated value of 0.18.

IV. NUMERICAL RESULTS

Now we turn our attention to the numerical solutions f
the Dirac, 1CS, and Salpeter equations. Numerical results
obtained by expanding the solutions in terms of splines,
described in the Appendix. In this way the integral equatio
in momentum space are turned into matrix equations and
problem reduced to a generalized matrix eigenvalue pr
lem. Numerical values of the eigenvectors~expansion coef-
ficients! and the eigenvalues~bound state masses or bindin
energies! are obtained, and the wave functions are co
structed from the spline expansion.

A. The Dirac equation

The Dirac equation is reduced to the system given in E
~A3! and ~A8! and can be solved numerically on a PC in
reasonable length of time. The antiquark mass was set tm
50.325 GeV and the confinement strengths50.2 GeV2.
We looked at four different values of the vector strengthy
50.0 ~pure scalar!, 0.4, 0.6, and 1.0~pure vector!. The first
four positive and negative energy levels fory values of 0.0,
0.4, and 0.6 are listed in Table IV for spline ranks of 12, 1
and 20. The pure vector case (y51.0) was found to be fully
unstable, as predicted by Fig. 8, and is not listed in the ta
The eigenvalues, which for the Dirac equation are the bi
ing energies, are all real and therefore pass the first stab
condition ~as described in Sec. I D!.

TABLE III. Comparison of the exact and estimated solutions
the Salpeter equation. All energies are in GeV and the blank in
cates that there is no stable solution.

Parameters Exact Estimate
m y E1

2 E2 g

0.325 0.0 0.973 0.340
0.4 1.339 1.537 0.349
0.6 1.510 1.819 0.353
1.0 1.837 2.380 0.361

0.650 0.0 3.112 3.217 0.466
0.900 0.0 5.235 5.396 0.529

-

gies

3
1
6
5

TABLE IV. First four positive and negative Dirac energy levels fory50.0, 0.4, and 0.6 with spline ranks of 20, 16, and 12. The ener
are in GeV. The bold face numbers are unstable states with energiesgreater than the stable ground state, as discussed in the text.

y50.0 y50.4 y50.6
Level SN520 SN516 SN512 SN520 SN516 SN512 SN520 SN516 SN12

4 1.945 1.945 1.946 2.035 2.035 2.035 2.092 2.092 2.09
3 1.695 1.695 1.695 1.772 1.772 1.772 1.821 1.821 1.82
2 1.394 1.393 1.393 1.456 1.455 1.455 1.496 1.496 1.49
1 0.976 0.976 0.976 1.028 1.028 1.028 1.065 1.065 1.06

21 21.249 21.249 21.248 20.660 20.660 20.660 2.028 1.576 1.120
22 21.575 21.575 21.574 20.781 20.781 20.780 1.190 0.861 0.525
23 21.839 21.839 21.838 20.879 20.878 20.879 0.899 0.590 0.278
24 22.067 22.067 22.078 20.963 20.963 20.964 0.692 0.396 0.090
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Of the four cases studied, only the negative energy lev
for the y.1/2 cases~i.e., y50.6 and 1.0! vary significantly
with the spline rank, as shown in Table IV. This violates t
second of the stability conditions defined in Sec. I D. F
thermore, the bold face values in Table IV highlight unsta
states whose eigenvalues are greater than the positive gr
state, and hence they.1/2 equations also violate the thir
stability condition. These unstable states were identified
tracked with changing spline number by looking at their m
mentum space structure, as discussed below.

The Dirac wave functions are shown in Figs. 14–16. F
ure 14 gives the positive energy ground states, Fig. 15
first positive energy excited states, and Fig. 16 the nega
energy ground states. By comparing the solutions for
states withy,1/2 ~which are known to be stable! with the
y50.6 solutions, we conclude that~i! the positive energyy
50.6 state has a structure identical to the other positive
ergy states, and hence appears to be stable~as already sug-
gested by the stability of the eigenvalue shown in Table I!,
but ~ii ! the negative energyy50.6 ground state, shown i
Fig. 16, has a radically different structure~similar to a mo-
mentum space delta function! showing that it is indeed un

FIG. 14. Dirac positive ground state solutions for three values
the vector strengthy: y50.0, E150.976 GeV ~circles and
squares!; y50.4, E151.028 GeV ~solid and long-dashed lines!;
and for y50.6, E151.065 GeV~heavy short-dashed and dotte
lines!.

FIG. 15. Dirac positive first excited state solutions fory
50.0, E251.394 GeV ~circles and squares!, for y50.4, E2

51.456 GeV ~solid and long-dashed lines!, and for y50.6, E2

51.496 GeV~heavy short-dashed and dotted lines!.
ls
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e
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stable. All of they51.0 solutions~not shown in the figures!
have a behavior similar to the negative energyy50.6 solu-
tion, confirming that they are unstable.

The apparent stability of they50.6 positive energy solu-
tion differs from expectations based on the discussion in S
II and examination of Fig. 8. We expect all positive ener
solutions fory.1/2 to be unstable, but as Fig. 8 shows, t
positive and negative energy surfaces actuallyoverlap in the
y51.0 case but remainclearly separatedfor they50.6 case.
This suggests that the instability of they50.6 positive en-
ergy state is hard to observe numerically because the
tance between the positive and negative energy surface
large and the ‘‘leakage’’ from positive to negative energy
very small ~also suggested by Fig. 4!. Presumably a more
precise numerical calculation would uncover some instabi
in the positive energyy50.6 case, but this further calcula
tion is not needed because the overlap of the positive
negative energy spectrum~condition 3! is already a sign of
the instability.

We conclude that the fourth stability condition large
reinforces the conclusions we have already drawn, but th
should be used in conjunction with the other three. The s
bility of a singlestate cannot easily be determined solely
tracking ~with changing spline number! its behavior. A reli-
able conclusion requires the examination of the entire sp
trum, with particular attention to condition 3.

B. The one-channel spectator equation

As in the Dirac case the antiquark mass will be set
m250.325 GeV and the confinement strength tos
50.2 GeV2. We will present results for heavy quark mass
m15k m2 with the mass ratiok510, 5, 2, and 1. In order to
compare the 1CS results to those obtained from the D
equation, we define an effective Dirac-like binding ener
ED using the relation

m5ED1m1 , ~4.1!

wherem is the mass eigenvalue obtained from the 1CS eq
tion. This relation insures that the effective 1CS binding e
ergy must approach the Dirac binding energy asm1→`.
Tables V and VI give these effective binding energies~in-
stead of the bound state masses!.

f FIG. 16. Dirac negative ground state solutions fory
50.0, E21521.249 GeV~circles and squares!, for y50.4, E21

520.660 GeV ~solid and long-dashed lines!, and for y
50.6, E2152.028 GeV~heavy short-dashed and dotted lines!.
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TABLE V. First four positive and negative energy levels for the 1CS equation for mass ratiosk55.0 and
10.0 and vector strengthy50.0 and 0.4. HereED is shown in GeV and solutions for spline ranks of 20 a
12 are compared.

y50.0 k55.0 y50.0 k510.0 y50.4 k55.0 y50.4 k510.0
Level SN520 SN512 SN520 SN512 SN520 SN512 SN520 SN12

4 2.109 2.113 2.073 2.078 2.225 2.227 2.165 2.16
3 1.808 1.808 1.783 1.783 1.898 1.899 1.858 1.85
2 1.443 1.443 1.435 1.435 1.509 1.509 1.495 1.49
1 0.940 0.939 0.964 0.964 0.992 0.992 1.013 1.01

21 20.936 20.936 21.091 21.090 20.548 20.569 20.619 20.619
22 21.084 21.084 21.333 21.332 20.570 20.607 20.715 20.715
23 21.173 21.170 21.511 21.515 20.600 20.637 20.786 20.785
24 21.233 21.259 21.650 21.642 20.630 20.675 20.841 20.848
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Note that results for the equal mass (k51.0) 1CS equa-
tion are included only for comparison because the 1CS eq
tion shouldnot be used for equal mass systems. If the eq
mass particles are identical~as in NN scattering! the equa-
tion must be symmetrized in order to preserve the Pauli p
ciple. Even if the equal mass particles are not identical, as

the qq̄ pairs discussed in this paper, the equation must
be symmetrized to insure charge conjugation invarian
Furthermore, for bound states with a very small mass~e.g.,
the pion! the symmetrizedtwo channelspectator equation
defined in Ref.@12# should be used.

The eigenvalues are real for all values of the vec
strengthy and the mass ratiok ~condition 1!. However only
systems with a vector strength less than 1/2~0.0 and 0.4!
have stable eigenvalues~condition 2!. Cases which fail the
first two stability conditions (y50.6 and 1.0! are not listed in
the eigenvalue tables. Table V shows the eigenvalues
mass ratiosk55.0 and 10.0. These cases are very simila
the Dirac cases, and the table shows that in all cases
spectra satisfy condition 3~no overlap of the positive and
negative energy sectors!. Table VI shows the eigenvalues fo
the equal mass case (k51.0). Note that condition 3 is vio
lated for y50.4; at a spline rank of 24 the negative ener
state~shown in bold face! crosses into the positive energ
sector. In the equal mass case only the pure scalar intera
is stable. The binding energies fork52.0 ~not shown in the
tables! exhibit the same behavior as fork51.0.
a-
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Wave functions for the 1CS equation are shown in Fi
17–23. In Figs. 17–19 the wave functions for a large m
ratio and a pure scalar confinement are compared with
Dirac solutions. Both the positive and negative states
these systems are completely stable and very similar to
corresponding Dirac solutions. We also observe how the 1
binding energies approach the Dirac values ask is increased.

Figures 20 and 21 show the wave functions for large m
ratios and a vector strength of 0.4. Fork510.0 the system is
once again totally stable, while fork55.0 only the positive
states are stable. In this case the instability of the nega
energy states isnot accompanied by violation of condition 3
the only indication of instability is the variation of the neg
tive energy levels with spline rank~condition 2!, as shown in
Table V. In this case the structure~condition 4! reinforces
condition 2, and we have a first example of a system wh
the positive energy solutions are stable and the negative
ergy ones are not.

The positive and negative ground states fork51.0 and
2.0 are shown in Figs. 22 and 23. Note that the posit
energy states are stable while the negative energy ones
not. Here the instability of the negative energy states is o
apparent from an examination of the structure of the wa
functions; neither condition 2~variation of the energy with
spline rank! nor condition 3~penetration of the positive en
ergy sector! seems to occur.

In conclusion, the 1CS systembecomes more stableas the
tio
0,

3
4
1
3

TABLE VI. First four positive and negative energy levels for the 1CS equation for the mass rak
51.0 and vector strengthy50.0 and 0.4. HereED is shown in GeV and solutions for spline ranks of 24, 2
16, and 12 are compared.

y50.0 y50.4
Level SN524 SN520 SN516 SN512 SN524 SN520 SN516 SN512

4 1.881 1.881 1.881 1.881 2.222 2.222 2.222 2.22
3 1.630 1.630 1.630 1.632 1.884 1.884 1.884 1.88
2 1.294 1.293 1.293 1.293 1.461 1.461 1.461 1.46
1 0.745 0.745 0.745 0.745 0.853 0.853 0.853 0.85

21 20.329 20.330 20.331 20.334 0.933 0.724 0.508 0.284
22 20.331 20.332 20.335 20.341 0.727 0.527 0.326 0.122
23 20.334 20.337 20.342 20.354 0.577 0.387 0.196 0.005
24 20.338 20.343 20.353 20.379 0.454 0.272 0.091 20.087
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FIG. 17. Positive ground state soutions for the quasirelativi
1CS equation with a pure scalar interaction. The solid and lo
dashed lines are fork55.0, E150.940 GeV; the heavy short
dashed and dotted lines are fork510.0, E150.964 GeV. The
scalar ground state Dirac solution forE150.976 GeV is shown for
comparison~circles and squares!.

FIG. 18. Positive first excited state solutions labeled as in F
17. Here thek55.0 solution has an energy ofE251.443 GeV and
thek510.0 solution an energy ofE251.435 GeV compared to the
Dirac energy ofE251.394 GeV.

FIG. 19. Negative ground state soutions labeled as in Fig.
Here thek55.0 solution has an energy ofE21520.936 GeV and
thek510.0 solution an energy ofE21521.091 GeV compared to
the Dirac energy ofE21521.249 GeV.
c
-

.

7.

FIG. 20. Positive ground state solutions of the quasirelativis
1CS equation with a mixed scalar and vector interaction (y50.4)
for two mass ratiosk. The solid and long-dashed lines are fork
55.0, E150.992 GeV, and the heavy short-dashed and do
lines are fork510.0, E151.013 GeV. The circles and square
show the solution for the Dirac equation withE151.028 GeV.

FIG. 21. Negative ground state solutions of the quasirelativi
1CS equation fory50.4 labeled as in previous figure. Herek
55.0, E21520.548 GeV and k510.0, E21520.619 GeV.
The comparison Dirac level has energyE2150.660 GeV.

FIG. 22. Positive ground state solutions for the quasirelativis
1CS equation with a pure scalar interaction. The solid and lo
dashed lines are fork51.0, E150.745 GeV; the heavy short
dashed and dotted lines are fork52.0, E150.857 GeV. The sca-
lar ground state Dirac solution forE150.976 GeV is shown for
comparison~circles and squares!.
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vector strength is decreased and the mass of the heavy q
is increased. This will be summarized further at the end
this section.

C. The Salpeter equation

The use of pure scalar confinement with the Salpe
equation gives the first example of instability due to the m
eigenvalues becoming complex~condition 1!. Actually, the
eigenvalues become pure imaginary because the m
squared is real and negative. This situation is accompa
by a very rapid variation ofm2 with spline rank, as shown in
Table VII. However, fory50.4 the tabulated spectra do n
vary with the spline rank, and these states are stable
shown in Figs. 24–26. Figure 24 also shows that the w
functions for positive and negative energies are identical p
vided c1a↔c2a . This is a further consequence of the sym
metry of the Salpeter equation which produces pairs of
genvalues with the same magnitude and opposite signs.

The two figures, Fig. 24~ground state! and Fig. 25~sec-
ond excited state!, demonstrate that these Salpeter syste

FIG. 23. Negative ground state solutions labeled as in prev
figure. Here the k51.0 solution has an energy ofE215
20.330 GeV and thek52.0 solution an energy ofE215
20.607 GeV compared to the Dirac energy ofE215
21.249 GeV.

FIG. 24. Positive and negative ground state solutions for thy
50.4 quasirelativistic equal mass Salpeter equation,m1

51.157 GeV ~solid and long-dashed lines! and m215
21.157 GeV~heavy short-dashed and dotted lines!. The positive
ground state Dirac solutions fory50.4, E151.028 GeV~circles
and squares! are shown for comparison.
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have solutions comparable to their Dirac counterparts. In
dition, Fig. 26 illustrates that they50.6 and 1.0 solutions are
indeed stable by showing that they have the correct struc
with the right number of nodes for a second excited state

While it is true that thescalar Salpeter equation is un
stable for equal quark-antiquark masses of 0.325 GeV,
creasing the mass of the quarks will give stable solutio
~this was anticipated by the discussion in Sec. III!. We find
that the lower mass states of they50.0 Salpeter equation ar
stable when the quark mass is increased tom50.85. The
ground state wave functions for this case are shown in F
27, where solutions for spline ranks of 20 and 30 are co
pared~since the wave functions have not been normaliz
only the shapeof the two solutions should be compared!.
Solutions obtained for somewhat lower masses (m50.65, for
example! appear stable for SN520, but the spectrum show
some instability for SN530. In general, the number of stab
states for the pure scalar Salpeter equation increases a
quark mass increases. Further study is needed to obta
detailed understanding of the stability of the purely sca
Salpeter equation.

V. CONCLUSIONS

Table VIII summarizes the results presented in the pre
ous sections, which are also outlined below.

~i! The Dirac equation is stable if the scalar confinem
is stronger than the vector confinement (y,1/2).

~ii ! The Salpeter equation is stable if the interaction
mostly vector, and perhaps also for pure scalar exchan

s

FIG. 25. The positive second excited state solutions for thy
50.4 equal mass Salpeter equation,m352.094 GeV ~solid and
long-dashed lines! are compared to the second positive excited st
Dirac solution fory50.4, E351.772 GeV~circles and squares!.

TABLE VII. Square of the mass (m2 in GeV2) of the first four
levels of the Salpeter equation fory50.0 and 0.4 with various
spline ranks.

y50.0 y50.4
Level SN520 SN512 SN520 SN516 SN512

4 0.685 2.173 5.632 5.632 5.674
3 21.074 1.538 4.383 4.383 4.385
2 23.869 0.931 2.977 2.977 2.976
1 28.705 20.051 1.339 1.339 1.339
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1026 PRC 59MICHAEL UZZO AND FRANZ GROSS
with a large quark mass. The precise boundary betw
stable and unstable solutions is presumably a function of
quark massm and the vector strengthy, and we have not
mapped it out.

~iii ! The one channel spectator~1CS! equation has the
Dirac limit, as expected. This means that for large mass
tios k5m1 /m2 , it is stable if the interaction is predom
nately scalar (y,1/2). However, as the mass ratio decrea
toward unity, the region of instability grows. As we decrea
k for a fixed vector strengthy,1/2, the negative energ
states will first become unstable, and then the positive ene
states may follow. However, if the vector strength is sm
enough~e.g., y50) the positive energy states appear to
stable for all mass ratios.

The usefulness of an equation where only part if the sp
trum is stable depends on whether or not the spectrum
unstable states is clearly separate from the spectrum of s
states~i.e., condition 3 is met!. The 1CS equation for scala
confinement has this feature; the unstable states are t
which map, in the Dirac limit, into negative energy states
one is content to exclude these states from consideratio
physical grounds then thescalar 1CS equation can be use

to describe confinedQq̄ systems for all mass ratios. Th

Salpeter equation can also be used for equal massqq̄ sys-
tems unless the confinement is predominately scalar and
quark masses are not large.

This conclusion answers one of the questions raised in
introduction; clearly the stability of vector or scalar confin
ment depends on the relativistic equation used. Scalar
finement is stable if the 1CS equation is used and ve
confinement is stable if the Salpeter equation is used.

We emphasize that our study of the stability of the sp
tator equation is preliminary for three reasons.

~i! Only the 1CS equation has been studied. As emp
sized before, atwo channel spectator equation must be us
if the bound state mass is small~the pion!, and any spectato
equation must be explicitly symmetrized if the quark mas
are equal.

~ii ! Our study of the 1CS equation was limited to t
quasirelativistic approximation, in which retardation is n
glected. However, neglecting retardation usually leads

FIG. 26. Positive second excited state solutions for the Salp
equation for a variety of scalar and vector mixings: pure vectoy
51.0, m352.565 GeV ~circles and squares!; y50.6, m3

52.284 GeV ~solid and long-dashed lines!; and y50.4, m3

52.094 GeV~heavy short-dashed and dotted lines!.
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rectly to the Salpeter equation, and the attempt to includ
~at least approximately! is the principle reason for choosin
to use a spectator equation in the first place. Including re
dation in our analysis~planned for a later work! may alter
our conclusions.

~iii ! Only the timelike part of a vector confinement~i.e.,
g0g0) has been studied. There are preliminary indicatio
that our results will change when the full vector interacti
gmgm is included.

Our results for the Salpeter equation agree with Ref.@4#,
but disagree with the results obtained by Parramore
Piekarewicz@3#, who found the Salpeter equation to be u
stable once the vector strength dropped below one-half,
gardless of quark mass. However, as stated above, we
that the Salpeter equation is stable for a vector strength
and is even stable for a pure scalar interaction provided
quark mass is sufficiently large. We looked at one of t
cases they found to be unstable (s50.29, m50.9 GeV,
with 25 basis states!, and found it to contain stable states.
possible explanation for this difference is that we use cu
splines for our basis functions, while nonrelativistic ha
monic oscillator wave functions were used in Ref.@3#.

There are other equations which can be used to mode
quark-antiquark system. Tiemeijer and Tjon@13# explored
two such equations, the Blankenbecler-Sugar-Logun
Tavkhelidze~BSLT! @14# equation and the equal-time~ET!
equation of Wallace and Mandelzweig@15#. The kernels for
both equations contained one-gluon-exchange~with the full

er FIG. 27. Stable ground state solution for the Salpeter equa
with a pure scalar confining interaction. In these casesm
50.85 GeV and the Salpeter bound state has massm1

52.185 GeV. The solutions for SN520 ~circles and squares! and
SN530 ~solid and long-dashed lines! are compared.~Note that the
solutions are not normalized—see the discussion in the text.!

TABLE VIII. Stability results ~the table lists the region of sta
bility or the first of the four tests that the system fails!.

y50.0 y50.4 y50.6 y51.0

Dirac stable stable cond. 2 cond. 2
1CSk51.0 positive cond. 3 cond. 2 cond. 2
1CSk52.0 positive cond. 3 cond. 2 cond. 2
1CSk55.0 stable positive cond. 2 cond. 2
1CSk510.0 stable stable cond. 2 cond. 2
Salpeter m>0.85 GeV stable stable stable
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four vector structure! and a linear confining term~with a
mixed scalar-four vector structure!. They found that increas
ing the vector strength of the confining term improved t
phenomenology, but that some mesons became unstabl
vector strengths of more than about 0.25, depending on
equation and gauge used. These results reinforce the ge
conclusions of this paper: stability depends on both the L
entz structure of confinement and on the type of relativis
equation used.

We have seen that the study of the mathematical stab
of relativistic equations requires the examination of both
cal andglobal features of the eigenvalue spectrum and ha
introduced four conditions which must be satisfied for
equation to give stable solutions. Using these stability cr
ria we find that the Lorentz structure of the kernel and
equation used to model the meson both play a crucial rol
the mathematical stability of the system. Clearly further
search on this topic is needed.
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APPENDIX: SPLINE FUNCTIONS
AND NUMERICAL METHODS

To solve the equations in this paper numerically, we
pand each momentum space wave function in terms of c
splines

c i~p!5(
j 51

SN

a j
i b j~p!, ~A1!

wherea j
i are the expansion coefficients~which become the

eignevectors of the problem!, b j are the spline functions, an
SN is the number of spline functions in the expansion~the
spline rank!. In all of the equations studied there are on
two independent wave functions, soi 51 or 2. Since the
angular integrations are performed analytically, the wa
functions depend only on the magnitude of the momentump.
Once Eq.~A1! is substituted for each of the wave function
both sides of the equation are operated on by the inte
operator

E p2b l~p!dp. ~A2!

This reduces the integral equations to matrix equations w
dimension 2SN32SN and of the general form

H lS Al j 0

0 Al j
D 1S Bl j

11 0

0 Bl j
22D 2S Vl j

11 Vl j
12

Vl j
21 Vl j

22D J S a j
1

a j
2D 50.

~A3!
for
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These equations are then solved for the eigenvaluesl and
the eigenvectors$a j

1 ,a j
2%. In the following subsections we

give the forms of the matricesA andV for each case studied
in this paper.

1. Dirac equation

The Dirac equation was given in Eq.~2.52! and ~2.26!.
The two independent wave functions are

c15c1a ,

c25c1b , ~A4!

andl5EB ,

Al j 5E
0

`

p2 dp b l~p!b j~p! ~A5!

and

Bl j
1152Bl j

2252E
0

`

p2 dp Ep b l~p!b j~p!. ~A6!

Settingm25m and using the notation

f l~p!5
Np

A2Ep

b l~p!, ~A7!

the potential matrix can be written

S Vl j
11 Vl j

12

Vl j
21 Vl j

22D
52

4s

p E
0

`E
0

`

dp dk V0~p,k! f l~p!

3H f j~k!S h1 h2

h3 h4
D 2 f j~p!S h18 h28

h38 h48
D J

2
4s

p E
0

`E
0

`

dp dk V1~p,k! f l~p! f j~k!S z1 z2

z3 z4
D .

~A8!

The functionsh andz are

h i5ai1bi , z i5bi , ~A9!

where ai and bi were defined in Eq.~2.53!, and if h i

5h i(p,k), thenh i85h i(p,p). The functionsV0 andV1 are

V0~p,k!5
1

2E21

1

dz
p2k2

~p21k222pkz!2
5

p2k2

~p21k2!224p2k2
,

V1~p,k!5
1

2E21

1

dz
p2k2 ~z21!

~p21k222pkz!2

5
1

2

pk

~p21k212pk!
2

1

8
lnS p21k212pk

p21k222pk
D .

~A10!
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2. One-channel spectator equation

The 1CS equation in helicity form was given in Eq.~2.46!
with the potential defined in Eq.~2.28! @with (p2k)2→(p
2k)2 as discussed in Sec. II B#. The two independent wav
functions are as in Eq.~A4! andl5m5m11EB . The ma-
trix A is identical to the Dirac case, but now

Bl j
1152E

0

`

p2 dp~Ep1
1Ep2

!b l~p!b j~p!,

Bl j
2252E

0

`

p2 dp~Ep1
2Ep2

!b l~p!b j~p!. ~A11!

Introducing the notation

Fl~p!5
Np1

Np2

A4Ep1
Ep2

b l~p!, ~A12!

the potential matrix can be written

S Vl j
11 Vl j

12

Vl j
21 Vl j

22D
52

4s

p E
0

`E
0

`

dp dk V0~p,k!Fl~p!

3H F j~k!S h̄1 h̄2

h̄3 h̄4

D 2
Ep1

Ek1

F j~p!S h̄18 h̄28

h̄38 h̄48
D J

2
4s

p E
0

`E
0

`

dp dk V1~p,k!Fl~p!F j~k!S z̄1 z̄2

z̄3 z̄4

D ,

~A13!

with

h̄ i5Ai1Bi , z̄ i5Bi , ~A14!
where theAi andBi were defined in Eq.~2.51!. The meaning

of the prime inh̄8 is the same as inh8 andV0 andV1 are as
before.

3. Salpeter equation

The Salpeter equation is given in Eq.~2.56!, with the
masses both equal tom. Now

c15c1a ,

c25c2a , ~A15!

andl5m. The matrixA is identical, butB is two times the
Dirac B. The potential matrix is similar to Eq.~A13! with

h̄2→h5 , z̄2→z5 ,

h̄3→2h5 , z̄3→2z5 , ~A16!

h̄4→2h̄1 , z̄4→2 z̄1 ,

and, from Eq.~2.57!,

h55 p̃21 k̃212~122y! p̃k̃, z552~122y! p̃k̃.
~A17!

4. Splines

The solution to the wave functions used in this paper
based on a set of third order polynomial functions cal
cubic splines. Used previously in papers such as Ref.@10#
they have proven versatile enough to model all of the wa
functions examined in this paper.

The wave function expansion was given in Eq.~A1!. Each
spline is constructed from four separate functions. The fu
tion used depends on the argument and the spline indexj as
shown:
4b j~x!5

¦

~x2xj 22!3

h3
, xP@xj 22 ,xj 21#,

113
~x2xj 21!

h
13

~x2xj 21!2

h2
23

~x2xj 21!3

h3
, xP@xj 21 ,xj #,

113
~xj 112x!

h
13

~xj 112x!2

h2
23

~xj 112x!3

h3
, xP@xj ,xj 11#,

~xj 122x!3

h3
, xP@xj 11 ,xj 12#,

0, otherwise.

~A18!
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Each spline is defined on the interval from zero to one. T
range is divided into sectors whose size,h51/(SN11), de-
pends on the spline rank. Each sector is bounded by nod
xk andxk11 , with the number of nodes equal to SN12. The
first node,x1 , is always located at zero, and the last on
xSN12 , at one. The spline curves for a spline rank of 4 a
given in Fig. 28. The standard choice for our calculation w
a rank of 20~20 splines in each wave function expansion!.

None of the nodes may lie outside of the interval from
to 1, so the first spline,j 51, is defined entirely by the third
and forth functions given in Eq.~A18!. It has a zero slope a
x50. The j 52 spline was defined in a special way so tha
too will have zero slope atx50 ~insuring that all the splines
have this property!. To accomplish this the first secto
~which lies betweenx0 and x1 and is hence outside the a
ceptable range of support! will be ‘‘folded over’’ onto the
interval between@x1 ,x2#. Hence, in the interval between
@x1 ,x2# the second spline is defined to be

4b2~x!5113
~x2x1!

h
13

~x2x1!2

h2

23
~x2x1!3

h3
1

~x22x!3

h3
. ~A19!

FIG. 28. Spline rank four curves~one, solid; two, long-dashed
three, short-dashed; and four, dotted!.
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This is an exceptional case, and all other splines are defi
following Eq. ~A18! in a straightforward fashion.

The splines defined in Eq.~A18! are only continuous up
to their second derivative. Therefore, in order to obtain c
vergence the integrals must be separately evaluated for
sector, and the results from all the sectors summed up a
wards. Special care must be taken in evaluating those co
butions to the double integral of the potential which inclu
singularities. These are evaluated by choosing points equ
spaced on each side of the singularity so that a well-defi
limit is obtained.

To use the splines to describe the wave functions,
interval @0,̀ ) is mapped into the line segment@0,1# using
the tangent mapping

x5
2

p
arctanS p

L D , ~A20!

with L51 GeV. This mapping alters the shape of t
splines, as illustrated in Fig. 29.

When the spline rank is increased the sectors beco
smaller and the range in momentum space over which
splines are significantly different from zero increases. Th
the wave function is more accurately modeled as the sp
rank increases. Of course this higher precision must be
anced by consideration of computation time.

FIG. 29. Spline rank four curves~one, solid; two, long-dashed
three, short-dashed; and four, dotted! with momentum argument.
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