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Pseudospin symmetry in relativistic mean field theory
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Relating the pseudospin symmetry back to the Dirac equation through the framework of relativistic Hartree-
Bogoliubov(RHB) theory, the pseudospin approximation in real nuclei is discussed. From the Dirac equation,
the mechanism behind the pseudospin symmetry was studied and the pseudospin symmetry is shown to be
connected with the competition between the centrifugal baf@8) and the pseudospin orbital potential
(PSOB, which is mainly decided by the derivative of the difference between the scalar and vector potentials.
With the scalar and vector potentials derived from a self-consistent relativistic Hartree-Bogoliubov calculation,
the pseudospin symmetry and its energy dependence in real nuclei is dis¢G&&56-28188)50508-0

PACS numbgs): 21.10.Hw, 21.10.Pc, 21.60.Jz, 27.6).

The concept of pseudospin is that the single particle orBogoliubov (RHB) theory, the pseudospin symmetry ap-
bitals with j=1+1/2 andj=(1+2)—1/2 lie very close in proximation in real nuclei i$, discussed here in this paper.
energy and can therefore be labeled as pseudospin doublditte recently suggested relativistic Hartree-Bogoliubov
with quantum numbem=n—1, T=1—1, ands=s=1/2.  (RHB) theory in coordinate spa¢&5] has been used for the
Th|s Concept iS Origina”y found in Spherica' nuc[ei’Z], but present inVeStigation. As th|S theory takes intO account the
later proved to be a good approximation in deformed nucleProper isospin dependence of the spin-orbit term, it is able to
as well[3,4]. It is shown that pseudospin symmetry remainsProvide a good description of global experimental data not
an important physical concept even in the case of triaxialityonly for stable nuclei but also for exotic nuclei throughout
[5]. The origin of pseudospin is proved to be connected witdhe nuclear charf16]. Starting from the RHB, instead of
the special ratio in the strength of the spin-orbit and orbit-2ssuming the equality in the magnitude of the scalar and
orbit interactiong6,7] and the unitary operator performing a Vector potentials, we treated the equation exactly and ob-
transformation from normal spin to pseudospin space haviined a general formalism leading to the pseudospin sym-
been discussekb—8]. However, it is not explained why this Metry. We chosé®Zr and **Zr to study the energy splitting
special ratio is allowed in nuclei. The relation between theof the pseudospin partners and its energy dependence as ex-
pseudospin symmetry and the relativistic mean fi&#F) amples.

theory[9] was first noted in Ref{10], in which Bahriet al. The Dirac equation for nucleons in RMF is as follows:
found that the RMF explains approximately the strengths of L . R . R
spin-orbit and orbit-orbit interactions found by nonrelativis- [a-p+Vu(r)+BM+V(r)]g(r)=ep(r), (1)

tic calculations. More details have been given in RE14,

12, in which it was suggested that the origin of pseudospin igvhich describes a Dirac spinor with mat moving in a
related to the strength of the scalar and vector potentials. In potential decided by the scalar potenti(r) and vector
recent paper Ginocchio took a Step further and revealed th%tent|a|vv(|?) The wave functiorw(r_)) consists of the up-
pseUdO'Orbital angular momentum iS nothing but the uorbitalper Componeng and |Ower Componem’

angular momentum” of the lower component of the Dirac

wave function13]. He also built the connection between the Gl(r) |

pseudospin symmetry and the equality in the scalar and vec- — Yim(0,9)

tor potentials. Here in this paper, we will show that the qual- P(r)= ( ?) = Fli(r) 2
i

ity of pseudospin symmetry is connected with the competi-
tion between the centrifugal barri€€B) and the pseudospin
orbital potential (PSOB, which is mainly decided by the
derivative of the difference between the scalar and vectoand the Dirac matrixx and 3 are as follows:
potentials. With the scalar and vector potentials derived from R
a self-consistent relativistic Hartree-Bogoliubov calculation, R 0 ¢ I 0

a=< ) A=, _,). 3

(1Y (6, 6)

the pseudospin symmetry and its energy dependence in real > 0
nuclei is discussed. o

As RMF is very successful in describing various quanti- . - . o
ties in the nuclear structure, e.g14], it is interesting to  With e=M+E, the potentialV=V\(r) +Vg(r), which is
check how good the pseudospin symmetry is in RMF for reaP‘rOU”Ej —50 MeV, and the effective masM*=M
nuclei. Relating the pseudospin symmetry back to the Diract Vg(r), the relation between the upper and lower compo-
equation through the framework of relativistic Hartree- nents of the wave function can be written as

0556-2813/98/58)/628(4)/$15.00 PRC 58 R628 © 1998 The American Physical Society



RAPID COMMUNICATIONS

PRC 58 PSEUDOSPIN SYMMETRY IN RELATIVISTIC MEA . . . R629
- Y 1 x d(2M* —V)
9=g=y(oPf, @ E+2M*—Vr _ dr

f If Eq. (8) is used instead and the pseudo spin-orbital poten-

tial (PSOB term

Then the coupled equations are reduced to uncoupled ones 1 xkdV
for the upper and lower components, respectively. Effec- -
tively we get the corresponding Schinger equation for E-Vr dr
both components:

“Evamr v 7P

is neglected, then the eignevaluEsfor the samel’ will
o 1 o degenerate. This is the phenomenon of pseudospin symmetry
(0P) g5 =y (7 P)g=(E-V)g, observed ir(1,2]. It means Eq(4) is the transformation be-
(5) f[ween the normal spin formalism and the pseudospin formal-
ism.
In Eq. (8), the term that splits the pseudospin partners is
simply the PSOP. The hidden symmetry for the pseudospin
In the spherical casey depends only on the radius. We approximation is revealed akv//dr=0, which is more gen-
chose the phase convention of the vector spherical harmoniesal and included/=0 discussed in13] as a special case.
as Unfortunately, this condition is not satisfied in the nuclei and
the pseudospin symmetry is an approximation. However, if

I R
. _ . = * __
(0-P) gy (0P =(E+2M* ~V)f.

G Y= =Y, 6
(@)Y jm im © 1 « dV< k(1—k)
where E-Vr dr rZ
. I+1, j=1+1/2 the pseudospin approximation will be good. Thus, the com-
I"=2j—1= i—1, j=1—-1/2. 7) parison of the relative magnitude of the centrifugal barrier
(CB),
Herel’ is nothing but the pseudo-orbital angular momentum.
After some tedious procedures, one gets the radial equation k(11— k)
for the lower and upper components, respectively: rz
d? 1 dvd|_, and the PSOP can provide us with some information on the
W“L E—V dr dr Fi(r) pseudospin symmetry. In the following we tak&r and
12071 as examples and study how good the pseudospin sym-
k(1—«k) 1 kdV I metry is.
2 E—-Vradr Fi(r) For this purpose, the relativistic Hartree-Bogoliubov
. (RHB) theory in coordinate space has been ugEs. We
=—(E+2M* —V)(E-V)F!(r), (80  use here the nonlinear Lagrangian parameter set NJUSH
which could provide a good description of all nuclei from
d? 1 d2M*—-Vv) d ] . oxygen to lead. As we study not only the closed shell nuclei,
FTZ ATV ey ar ar G{!(r) but also the open shell nuclei, the inclusion of the pairing is

necessary. The pairing interaction is the same as [Réf.
I As shown in Ref[16], the particle levels for the bound states
i (1) in the canonical basis are the same as those by solving the
_ Dirac equation with the scalar and vector potentials from
=—(E+2M* —V)(E- V)G (r), (9) RHB. Therefore Eqs(8) and (9) remain the same in the
canonical basis even after the pairing interaction has been
where taken into account. The binding energy of 8.858eV for
87r agrees well with the experimental values of
["—1, j=1+1/2 8.666A MeV. The neutron single particle energies for all
=

k(1+ k) 1 k d(2M* —V) G
2 TEroMr-vr  dr

[ j=1-1/2. 10 four sets of pseudospin partners, i.edzd and ,,,, 1fs;,

and 3, 197, and Mg, and Hg, and 3, in Zr and
Then one can get 1207y are given in Table I. As seen in Table I, the energy
splitting between pseudospin partners decreases with the de-
k(k—1D)=l"(I"+1), «(xk+1)=I1(1+1). (11 creasing binding energy. The single particle energy splitting
between 3,,, and its partner &8s, in 2%Zr is 0.14 MeV.
It is clear that one can use either Ef) or equivalently Eq. While that between &, and 1d5, is 1.61 MeV, which is
(9) to get the eigenvalueE and the corresponding eigen- bigger than the former one by a factor of 10. Thus the pseu-
functions. Normally Eq(9) is used in the literature and the dospin symmetry becomes better near the Fermi surface,
spin-orbital splitting is discussed in connection with the cor-which is in agreement with the experimental observation.
responding spin-orbital potential The same conclusion has been obtained by solving the Dirac
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TABLE I. The binding energies of pseudospin partner§&ar
and 2%,

nlj 8871 1207y nlj 887r 1207y
A —-31.40 -31.62 P30 —16.36 —-18.81
1ds, —33.40 —-33.23 I —18.85 —20.95
3sy), —-1.53 —6.00 As), —-3.73 —-7.39
2d3/2 —1.60 -5.86 ].g7/2 —4.54 —-8.52

equation with spherical square potential wél8]. The pseu-
dospin splitting in®8Zr is similar to that of'?°Zr.

In order to see the energy dependence of the pseudospin

orbital splitting more clearly, we plot

Evj—i—12=Errj=1r41r2
AE,=— T J versus
_Eyjmr—1ptEpjoyiap
E,= 5

in 8Zr (filled squaresand*?%Zr (filled circles in Fig. 1. The
pseudospin splitting for g, and A5, is more than 10 times
smaller than that of the<2,, and 1d,,. It is seen that al-
though there is some shift in the binding energy fréizr to
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FIG. 2. The comparison of the effective centrifugal bar(ieB)
(E—V)[«(x—1)]/r? (dashed lines and dot-dashed linesd the
effective pseudospin orbital potentid@SOB («/r)(dV/dr) (solid
line) multiplied by the squares of the wave functibrof the lower
components in arbitrary scales fdg, (upped ands,,, (lower) in
1207¢. The dashed lines are fod},, and %,,,, and the dot-dashed
lines are for 25, and 3,,.

1207r the pattern is more or less the same, i.e., a monotonous
decreasing behavior with a decreasing binding energy, which

: 4 Eij—i—12~ Ejj—1+12
means that the pseudospin symmetry remains a good ap- AE,= ST 1 versus
proximation for both stable and exotic nuclei. As a reference,
the normal spin splitting
Bij=i—1otBij=1+10
E2:
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FIG. 1. The pseudospin orbit splitind\E,;=(E/j=/ -1
—Eyj=ir+12/2" +1 versus the binding enerds;=(E;/j-;'_1,
+Ejrj_1r 1212 for 8zr (filled squares and *2%Zr (filled circles.
From left to right,

(1ds2,2810), (152,231, (19712,2d51), and (Hgzp,,3syp), re-
spectively. The spin-orbit splittind E;=(E); = - 1o~ Ejj=1+12/2

+1 versus the binding energi,=(E)j- _1ptEjj=i+12)/2 in
1207r are also given for (fig,1p1/2), (1ds;,1dg), (1f72,1f5),

(19912,197;2) (inverse triangleand (203/2,2p1/), (2dsj2,2d3) (tri-

angle from left to right, respectively. ThRAE(E) in the figure is
eitherAE, or AE, (E; or E,) here.

2

in 12%Zr are also given for (fs,,1p1), (1ds,1d3y),
(1f7p0,1f50),  (1dg,1972)  (inverse triangle and
(2p32,2P112), (2dspp,2d3) (triangle from the left to the
right, respectively. Compared to the pseudospin case, the
normal spin splitting is less energy dependent, because the
energy comes in the denominator in the formef2M*
=V in Eq. (9). The smallest spin-orbital splitting is nearly
five times bigger than the smallest pseudospin splitting. It
should be noticed that the normal splitting for the case of the
guantum numben=1 increases with a decreasing binding
energy and the opposite pattern occurs for iike2, which
may connect with the diffuseness of the potential in neutron
rich nuclei[19].

To understand why the energy splitting of pseudospin
partner changes with different binding energies and why the

the pseudospin partners correspond tgPseudospin approximation is good in RMF, the PSOP and

CB should be examined carefully. Unfortunately, it is very
hard to compare them clearly, as the PSOP has a singularity
atE~V. As we are only interested in the relative magnitude
of the CB and the PSOP, we introduce the effective CB,
(E—V)[k(k—1)]/r?, and the effective PSOP x(r)(dV/

dr), for comparison. They correspond to the CB and the
PSOP multiplied by a common facté—V, respectively.
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The effective PSOP does not depend on the binding energgB, (E—V)[«(x—1)]/r? becomes stronger for the less
of the single particle level, but on the angular momentumbound level, so the pseudospin symmetry for the weakly
and parity. On the other hand the effective CB depends obound state is better than that for the deeply bound state,
the energy. By comparing these two effective potentials ongvhich is in agreement with the experimental observation
could see the energy dependence of the pseudospin symnid.2]. The pseudo spin symmetry is found to be a good ap-
try_ In order to examine this prob|em Carefu“y’ we CompareprOXimation even for exotic nuclei. The above conclusion
the effective CB(dashed lines or dot-dashed linemd the has been well supported by the example$®@i and **Zr.
effective PSORsolid lines multiplied by the squares of the From the S|mple Dirac equation, it has been shqwn that th_ere
lower component wave functioR(r), which are given in &ré two equivalent ways to solve the coupled Dirac equation
Fig. 2, for 2s,, (upper lefi, 3sy, (lower left), 1ds, (Upper for thg upper and lower _compongnts, i.e., the nor_mal spin
right), and 2, (lower right of 12°Zr in arbitrary scales. The formahsm and pseudospin forma!|sm. Both formahsms are
pseudospin approximation is much better for the less bounaquwalent as I(_)ng as thg energies and nge'fun.ctlons are
pseudospin partners, because the effective CB is smaller f ncerned: Their relation IS given by Hé). Wh'Ch.md'Cates

the more deeply bound states. This is in agreement with th at the unitary transformatlon frpm the convenflongl_foyfmal-
results shown in Fig. 1. The integrated values of the poten'S™ [0 the pseudospin formalism has the ‘helicity

P - : ; - 11,12,2Q. After the completion of this manuscript, we
tials in Fig. 2 withr are proportional to their contribution to (11,12, X ) '
9 brop ftound that Ginocchio and Madland had done a RMF calcu-

the energy after some proper renormalization. It is clear that _ o )
the contribution of the effective CRdashed lines or dot- aIatlon without pairing 21]. It is shown that the occurrence of

dashed linesis much bigger than that of the effective PSOPapproxima_te p_se.ud(.)_spin. symmetry |n n.ucle_i Is connected
(solid lineg with certain similarities in the relativistic single-nucleon

ave functions of the corresponding pseudospin doublets.

In conclusion, the pseudospin symmetry is examined .. -, " . . ) .
P bin sy y his is in agreement with the conclusion here, if the condi-

realistic calculation in the framework of relativistic Hartree- .
Bogoliubov theory. We have proved thatd¥/dr=0 is sat-

isfied, the pseudospin symmetry is exact. Further the new 1 xdV k(1—k)
condition ESVT E< —

r
L X d_V< k(1—x) is satisfied, the pseudospin symmetry is preserved approxi-
E-Vr dr r mately and similarities in the relativistic single-nucleon wave

_ ) . _functions of the corresponding pseudospin doublets will oc-
is found under which the symmetry is preserved approXi .

mately. We have examined under this condition how good
approximation the pseudospin symmetry is in RHB. For a We would like to express our gratitude to T. Wright for
given angular momentum and parity channel, the effectivéhis careful reading of the manuscript.
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