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Relativistic mean field approach and the pseudospin symmetry
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Based on the relativistic mean fie(®@MF) approach the existence of the broken pseudospin symmetry is
investigated. Both spherical RMF and constrained deformed RMF calculations are carried out employing
realistic Lagrangian parameters for spherical and for deformed sample nuclei. The quasidegenerate pseudospin
doublets are confirmed to exist near the Fermi surface for both spherical and deformed nuclei.
[S0556-28188)51107-1

PACS numbsgs): 21.60.Cs, 21.16-k, 24.10.Jv

Pseudospin symmetry was discovered in nuclear physidstic mean field RMF) theory[11]. It has been shown that
nearly 30 years agpl—3|. The recent claimi4] that pseu- this phenomenological approach is very successful in de-
dospin symmetry may arise because of the near equality iacribing the ground state nuclear properties of spherical, de-
magnitude of attractive scalar and repulsive vector fields ifformed nuclei, and also for nuclei far away from the beta
relativistic mean theory has revived the activity related to thestability line (see, for example12-14).
understanding of the origin of this symmetry in real nuclei. The RMF starts with a Lagrangian density describing the
The concept of pseudospin symmefy2] is based on the nucleons as Dirac spinoig of massm, interac_ting_ via the
experimental observation of the existence of quasidegeneraf@eson(o-, w-, andp-) and the electromagnetic fields. The
doublets of normal parity orbitals n(l,j=I+3) and standard Lagrangian density used in the RMF theory is writ-
(=1, 142, j=1+%) such as (41,3059, (3d5p207), o a1
etc., in the same major shell. Since for spherical systems the
guantum number§™ are conserved, the pseudospin angular
momenta {,3= 1/2) satisfyj=j =1+ 3.

In order to interpret this near degenerate pairjefl
+1/2 and j=1+3/2 states as pseudospin doublets corre- L

sponding toms=+1/2, T has to bd + 1. It then follows for _ZR By Emzﬁz— 1 E g )
the major oscillator quantum numbed:=N—1, for the ra- 4" 2°° 4"

dial quantum numbef=(N—1)—1 and for the parity |t includes a nonlinear self-interactidi(o) of the o field
7= —1r. For zero pseudospin orbit splitting, the pseudospin
multiplet will be degenerate. Thus the pair of orbitals
(4s42,3d3) and (35,2975 can be viewed as the

(2P12.2p3) and (ifs,,1f,,) pseudospin doublets. The _ _ _

symmetry can also be investigated in deformed nuclei. In th&hich takes into account in a phenomenological way the
asymptotic Nilsson scheme one finds the pseudospin quafensity dependence of the parameters of the madgig,,),

tum numbers(NzN—l, ﬁ3=n3, A=A+1, andD=0Q). m,(d,), M,(g,) are the respective meson maséasupling
Therefore, the Nilsson orbitaliN,ns,A,Q=A +1/2] and constants and g, and g; are the coupling strengths of the

_ - . _nonlinear sigma fieldJ (o).
[N.ng,A+20=A+3/2] can be viewed as the pseudospin It is straightforward to write the coupled baryon spinor

orbit doublety N,ng, A, Q2 =Ax1/2] [5]. and the mesons mean field equations. Starting from the Dirac
Apart from the rather formal relabeling of quantum num- ¢q,ation for the single nucleon radial wave function with the
bers various proposals for an epr|C|t.transformat|on fromgpherical attractive scalaBE —g, o) and the repulsive vec-
the no_rmal scheme to the pseudospin scheme haye be (V=g,®) potentials and following the standard proce-
made in the last 20 years and several nuclear properties ha}ﬂ%re, by eliminating the small componentg,), the large

been investigated in this scherf-9]. However, the origin componentsf) obey the following second order differential

»’::E(V(iﬁ_gww_gpﬁj;_ eA)_m_go'O-)lp

+1(ﬂU)Z—U(a)—EQ Q’”+1m2w2
2 47 "r 2 e

1 1 1
U(U):Emiaz“l‘ §gztfa+ 2930'4, (2)

of pseudospin symmetry remained unknown until the recen&quation'

observation of Ginocchif4,10], where for the first time the '

origin of this symmetry is claimed to be revealed as due to S +V’ K+l
the near equality in magnitude of the attractive scalar and [—VZ— 2m—E—(S+V) 3_r+ 5 f;

repulsive vector fields in relativistic theories. Here in this
Rapid Communication we follow this idea and investigate to =—[2m—E—(S+V)][E-(S—V)]f;. 3)
what extent the pseudospin symmetry is broken for realistic

cases. For this purpose we concentrate on spherical as well Here the eigenvalues denoted fy, of the operator
as on deformed nuclei and we use the framework of relativ— 8(2-L+1), are given by
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respect to the nucleon mabs in natural unitsi =c=1. thy, ~——

andS' (V') are the derivatives of the potentigds(V) with
respect tor. The binding energye=0 is measured with

s.p. energy (MeV)

Jp— 10} . ) -
On the other hand eliminating the large comporknwe e , T 0 5 10 15
have for the small componeqt the following second order r(m
differential equation: 10F y —— 10F ; —
Neutron Wavefunctions = Pb Proton Wavefunctions = Pb
_v2_ S-V J ki—1 esr N 1 all SN 1
E—(S—V) \ar r 9i E 3 oo \\"' >
Ve
— b, \ //
=[2m—E—=(S+V)][E=(S=V)]gi. (5 e
—-=- g2,
1.0 |
For the case of equal strengtl&sV, Eq. (5) reduces to 0 5 10 15
r {fm) r (fm)

—_— 2 . .= _ .
Veg+E(S+V)gi=E(2m—E)g;. ©®) FIG. 1. Pseudospin splitting in the spherical nuclé¥®b: (a)

Isingle particle spectra in the vicinity of the Fermi surface for neu-
tronsv and protong ) and large { ) and small ) components of

the Dirac wave functions for the pseudospin doubtetd (b), v2f

Clearly Eg. (6) has an energy dependent potentia

(E(V+9)) and has the eigenvall&2m—E). After scaling

the radial variabler =x/(\E), the potential has a compli- -

cated (/E) dependence, i.eS(x/E)+V(x/\E). Insucha (©:andm2g (d).

situation Eq.(6) is no longer a normal Schdinger eigen- _ ~

value equation. Further, it is obvious that in this equation all(1h;1/2,1hg,), respectively, are quasidegenerate, indicating

solutions with “bound” states in the Fermi sea wiie=0  only a small breaking of pseudospin symmetry. The same is

are shifted to one degenerate eigenvalue \EithO, which, more or less true for the pairs of neutron hole

in fact, is not bound. The corresponding wave functions ard(2 fs,3p31),(1hg2,2 7)), proton valence (particle

not normalizable. This indeed is a nonphysical situation(1hg;,2f7;), and proton hole((2dz/;,31/5),(17/2,2d52)),

This equation is the same as E®) of Ref.[4] in the scaled orbitals forming the pseudospin doublets, but here the energy

variable x when written in terms of the partial waves and separation between the partners of the respective doublets is

using the relationl (I+1)=«x(x—1). Herel, the angular relatively larger. The larger the binding energy is, the larger

momentum of the lower componegt is identified with the  the s_eparation is. This indicates that the concept of the pseu-

pseudospin angular momentuff) ( This is the pseudospin dospln.symmet'ry becomes better and better for the orbitals
try limit of Ref.[4], where the doublet$=T = 1/2 as their energies approach_ closer and closer to the con-

SYmme y iimt Rl ) $. T tinuum. This is consistent with the results found in Rdf

with the same are degenerate. However, in this limit only for the square well potentials. In addition, the energy sepa-

the Dirac sea states exist, and no Dirac valence bound statggtion becomes larger, if the pseudoorbital angular momen-

and therefore it contradicts reality. According to these €ON%m (1) increases. The dependence of the energy splitting of
siderations in all realistic situations the pseudospin symmetr

must be broken. Therefore the question arises, to which e}l—he pseudospin partners on the enekgyand on the pseu-

tent is it broken in real nuclei? So far only the spherical caséloorbital angular momentunh can easily be understood
has been investigated for square well potentidlsand for ~ from Eq.(5). For a given pseudoorbital angular momentum

spherical solutions of the RMF equatiofis,16. the term in Eq.5) which splits the pseudospin partners is
In the present Rapid Communication we investigate the

broken pseudospin symmetry both for the spherical and de- S' =V g

formed nuclei within the relativistic mean field approach. For (S~V)-Er° (7)

our study, we choosé®®b as a representative of spherical
nuclei and'®Dy as a representative of deformed nuclei. We . .
use in our calculations the Lagrangian parameter set NL?E) ral\sj(;:ve(gefi/?)ilsd:b%ﬂ%%dﬁg V(SB_o\u/r)1 Zjlgtg:gsdiﬁrlg(reng];-mi
[17] which successfully reproduces the ground state proper-_’ )

ties of nuclei, spread over the entire periodic table. The other o2 have a binding ener@y<50 MeV. For increasing bind-

parameter sets like NL1 and NLSidee[14]) are expected to Ing engrgyE, l.e., going to more deeply bqund states, the
give almost identical results for these nuclei. denominator decreases. This then results in a larger energy

First, spherical RMF calculations in the coordinate spaceSp"tting_ Eetween the pseudo_s;_)in partners. For example, for
are carried out for%Pb. The calculated binding energy and the orbit] =3 the energy splitting between the pseudospin
the charge radius agree remarkably well with the experimenfartners(lgs, and As;) will be relatively larger as com-
The calculated single particle energies for the bound orbitalfared to that betweef2g;, and 3s,). In addition, the big-
near the Fermi surface are shown in Figa)lfor neutrons ger the value of is, the larger the splitting is. For instance,
and protons. It is clear from the figure that the pairs of boundhe energy splitting between the pseudospin part(irs,
neutron valence orbitals (%,,3ds2) and (l112,2902)  and 2y, corresponding td =5 is relatively larger as com-
which correspond to pseudospin doublets{2,2 fs,) and  pared to that between the partnégg,, and 3s,,) which
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FIG. 2. Energy surface of the deformed nuclétf®y as a func- a
tion of the quadrupole momentin units of barn. o ]
correspond td =3, in the same major shell. Interestingly,
the sign of the energy splittings between the partners of the
neutron valence doublets is opposite to that of the neutron
hole, proton particle, and proton hole doublets. RMF/NL3
The normalized single nucleon wave functigbsth large 25 . . . . .
(f) and small ¢) componentk are plotted for the pseu- 0.0 01 02 03 04 05

dospin partners corresponding to the valence neutron pairs, B

the neutron hole pairs and valence proton pairs in Figs, 1 FIG. 4. Single particle energies for protons'#Dy, for details
(c), and(d), respectively. The phase of the lower componentssee Fig. 3.

(g) of one of the partners is reversed while plotting, in order
to exemplily the differences in the lower components of theIower component of the pseudospin partners should be iden-

pseudospin partners. Clearly, the lower components arﬁtl:al (except for the phageThe very small differences be-

much smaller in magnitude as expected and are almost equglaen thesgy's, which mainly appear around the surface are

in magnitude. In the case of exact pseudospin symmetry, thﬁegligible for the pseudospin partners having very small

binding energies.
Next we consider deformed systems and impose con-
straints on the quadrupole moment. Constrained relativistic

5 T T T T T

Neutron: pseudo-spin

Hartree calculations have been carried out for the nucleus

partners [402] ~ 15Dy. The coupled differential equations for the spinors and
L—— [404] the meson fields are given in Rdfl3]. They have been
[:,"1‘,1] solved by expanding the spinors and the meson fields in

terms of anisotropic oscillator wave functions. Numerical de-
tails are given in Ref4.13] and[18]. Pairing correlations are
treated in the constant gap approximation and the Lagrangian

S

?‘i F - - e parameter set NLE17] is used. The calculated potential en-
> 1 """ ergy surface is shown in Fig. 2. The value of the calculated
‘g = __=¢ [303] ground state deformation paramef®y is 0.202 which is to

o s, [431] be compared with 0.237, the corresponding experimental
pr 7d, value. The calculated ground state binding energy 1262.95

MeV differs from the corresponding experimental value by
merely 1.2 MeV.
The energies of the bound neutron pairs of orbitals corre-

1g,, 321 sponding to pseudospin doublets are plotted against the de-
formation 8, ranging from 0.0-0.5 in Fig. 3. The asymptotic
RMF/NL3 Nilsson quantum numbefdN,n;,A,Q] are good for large
5 . . . . . values of the deformatiorB,. The pseudospin doublets
0.0 0.1 0.2 0.3 0.4 0.5

B

[N,ns3,A,Q0=A+1/2] [5] are indicated byN,ns,A] 1 and
1 in the figure. For zero deformatioB¢=0) the orbitals are

FIG. 3. Single particle energies of the deformed Dirac equatiorindicated by the corresponding spherical states. The figure

for the neutrons in the nucled®Dy as a function of the quadrupole reveals the following:

deformation parameteB,. Asymptotic pseudospin quantum num- (i) The energy splitting between the pseudospin partners
bers are given and the pseudospin partners are indicated by arrowg smaller for the valence orbitals and for the partners just
T and|. below the Fermi surface.
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(ii) This energy difference is relatively larger for the part- strength of the pseudospin orbit interaction, from the Nilsson

ners having larger pseudospin angular momentln ( parametrization for 82 N<126.
(iii) In general, this separation stays almost constant and Similar calculations have also been carried out for other
does not vary with deformation after reasonable valugof  spherical and deformed nuclei and they show identical sys-
(iv) The energy difference between theand thel part-  tematics. The conclusions presented here, are therefore rather

ners always remains positive except fdf4], where there is general. In conclusion, it is shown in the relativistic mean
crossing at aroung=0.3. Such a crossing is not very un- field framework that quasidegenerate pseudospin doublets do
usual, it has also been observed in R&i. exist near the Fermi surface for both spherical and deformed
These systematics are consistent with those observed uclei. The pseudospin symmetry is restored better and bet-
the spherical case above. A similar plot for the proton pseuter as one moves closer to the continuum limit. These con-
dospin doublets shown in Fig. 4 reveals identical systematicslusions confirm the findings of Ginocchid,10].
as those observed for the neutron césg. 3. It is interest-
ing to note that in Ref[5] the energy difference between the ~ One of the author$G.A.L) acknowledges support from
valence neutron pseudospin partners is negdtipposite to  the DAAD. The work is also supported in part by the
ours while it has the same sign as ours for protons. This mayundesministerium fu Bildung und Forschung under the
be because of the negative value obtained Wy, the project 06 TM 875.
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