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Relativistic mean field approach and the pseudospin symmetry
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Based on the relativistic mean field~RMF! approach the existence of the broken pseudospin symmetry is
investigated. Both spherical RMF and constrained deformed RMF calculations are carried out employing
realistic Lagrangian parameters for spherical and for deformed sample nuclei. The quasidegenerate pseudospin
doublets are confirmed to exist near the Fermi surface for both spherical and deformed nuclei.
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Pseudospin symmetry was discovered in nuclear phy
nearly 30 years ago@1–3#. The recent claim@4# that pseu-
dospin symmetry may arise because of the near equalit
magnitude of attractive scalar and repulsive vector fields
relativistic mean theory has revived the activity related to
understanding of the origin of this symmetry in real nucl
The concept of pseudospin symmetry@1,2# is based on the
experimental observation of the existence of quasidegene
doublets of normal parity orbitals (n,l , j 5 l 1 1

2 ) and
~n21, l 12, j 5 l 1 3

2 ! such as (4s1/2,3d3/2), (3d5/2,2g7/2),
etc., in the same major shell. Since for spherical systems
quantum numbersj p are conserved, the pseudospin angu
momenta (l̃ ,s̃51/2) satisfy j̃ 5 j 5 l̃ 6 1

2 .
In order to interpret this near degenerate pair ofj 5 l

11/2 and j 5 l 13/2 states as pseudospin doublets cor
sponding tom̃s561/2, l̃ has to bel 11. It then follows for
the major oscillator quantum number:Ñ5N21, for the ra-
dial quantum numberñ5(Ñ2 l̃ )21 and for the parity
p̃52p. For zero pseudospin orbit splitting, the pseudos
multiplet will be degenerate. Thus the pair of orbita
(4s1/2,3d3/2) and (3d5/2,2g7/2) can be viewed as the
(2p̃1/2,2p̃3/2) and (1f̃ 5/2,1f̃ 7/2) pseudospin doublets. Th
symmetry can also be investigated in deformed nuclei. In
asymptotic Nilsson scheme one finds the pseudospin q
tum numbers~Ñ5N21, ñ35n3 , L̃5L11, and Ṽ5V!.
Therefore, the Nilsson orbitals@N,n3 ,L,V5L11/2# and
@N,n3 ,L12,V5L13/2# can be viewed as the pseudosp
orbit doublets@Ñ,ñ3 ,L̃,Ṽ5L̃61/2# @5#.

Apart from the rather formal relabeling of quantum num
bers various proposals for an explicit transformation fro
the normal scheme to the pseudospin scheme have
made in the last 20 years and several nuclear properties
been investigated in this scheme@6–9#. However, the origin
of pseudospin symmetry remained unknown until the rec
observation of Ginocchio@4,10#, where for the first time the
origin of this symmetry is claimed to be revealed as due
the near equality in magnitude of the attractive scalar
repulsive vector fields in relativistic theories. Here in th
Rapid Communication we follow this idea and investigate
what extent the pseudospin symmetry is broken for reali
cases. For this purpose we concentrate on spherical as
as on deformed nuclei and we use the framework of rela
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istic mean field~RMF! theory @11#. It has been shown tha
this phenomenological approach is very successful in
scribing the ground state nuclear properties of spherical,
formed nuclei, and also for nuclei far away from the be
stability line ~see, for example,@12–14#!.

The RMF starts with a Lagrangian density describing
nucleons as Dirac spinorsc, of massm, interacting via the
meson~s-, v-, and r-! and the electromagnetic fields. Th
standard Lagrangian density used in the RMF theory is w
ten as@13#

L5c̄„g~ i ]2gvv2grrW tW2eA!2m2gss…c

1
1

2
~]s!22U~s!2

1

4
VmnVmn1

1

2
mv

2 v2

2
1

4
RW mnRW mn1

1

2
mr

2rW 22
1

4
FmnFmn. ~1!

It includes a nonlinear self-interactionU(s) of the s field

U~s!5
1

2
ms

2s21
1

3
g2s31

1

4
g3s4, ~2!

which takes into account in a phenomenological way
density dependence of the parameters of the model.ms(gs),
mv(gv), mr(gr) are the respective meson masses~coupling
constants! and g2 and g3 are the coupling strengths of th
nonlinear sigma fieldU(s).

It is straightforward to write the coupled baryon spin
and the mesons mean field equations. Starting from the D
equation for the single nucleon radial wave function with t
spherical attractive scalar (S52gss) and the repulsive vec
tor (V5gvv) potentials and following the standard proc
dure, by eliminating the small components (gi), the large
components (f i) obey the following second order differentia
equation:

H 2¹22
S81V8

2m2E2~S1V! S ]

]r
1

k i11

r D J f i

52@2m2E2~S1V!#@E2~S2V!# f i . ~3!

Here the eigenvalues denoted byk i , of the operator
2b(S–L11), are given by
R45 © 1998 The American Physical Society
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k i57S j i1
1

2D for j i5 l i6
1

2
, ~4!

andS8 (V8) are the derivatives of the potentialsS (V) with
respect tor . The binding energyE>0 is measured with
respect to the nucleon massM in natural units\5c51.

On the other hand eliminating the large componentf i we
have for the small componentgi the following second orde
differential equation:

H 2¹22
S82V8

E2~S2V! S ]

]r
2

k i21

r D J gi

5@2m2E2~S1V!#@E2~S2V!#gi . ~5!

For the case of equal strengths,S5V, Eq. ~5! reduces to

2¹2gi1E~S1V!gi5E~2m2E!gi . ~6!

Clearly Eq. ~6! has an energy dependent potent
„E(V1S)… and has the eigenvalueE(2m2E). After scaling
the radial variabler 5x/(AE), the potential has a compli
cated (AE) dependence, i.e.,S(x/AE)1V(x/AE). In such a
situation Eq.~6! is no longer a normal Schro¨dinger eigen-
value equation. Further, it is obvious that in this equation
solutions with ‘‘bound’’ states in the Fermi sea withE>0
are shifted to one degenerate eigenvalue withE50, which,
in fact, is not bound. The corresponding wave functions
not normalizable. This indeed is a nonphysical situati
This equation is the same as Eq.~3! of Ref. @4# in the scaled
variable x when written in terms of the partial waves an
using the relationl ( l 11)5k(k21). Here l , the angular
momentum of the lower componentgi is identified with the
pseudospin angular momentum (l̃ ). This is the pseudospin
symmetry limit of Ref. @4#, where the doubletsj 5 l̃ 61/2
with the samel̃ are degenerate. However, in this limit on
the Dirac sea states exist, and no Dirac valence bound st
and therefore it contradicts reality. According to these c
siderations in all realistic situations the pseudospin symm
must be broken. Therefore the question arises, to which
tent is it broken in real nuclei? So far only the spherical c
has been investigated for square well potentials@4# and for
spherical solutions of the RMF equations@15,16#.

In the present Rapid Communication we investigate
broken pseudospin symmetry both for the spherical and
formed nuclei within the relativistic mean field approach. F
our study, we choose208Pb as a representative of spheric
nuclei and154Dy as a representative of deformed nuclei. W
use in our calculations the Lagrangian parameter set N
@17# which successfully reproduces the ground state pro
ties of nuclei, spread over the entire periodic table. The o
parameter sets like NL1 and NLSH~see@14#! are expected to
give almost identical results for these nuclei.

First, spherical RMF calculations in the coordinate spa
are carried out for208Pb. The calculated binding energy an
the charge radius agree remarkably well with the experim
The calculated single particle energies for the bound orbi
near the Fermi surface are shown in Fig. 1~a! for neutrons
and protons. It is clear from the figure that the pairs of bou
neutron valence orbitals (2g7/2,3d5/2) and (1i 11/2,2g9/2)
which correspond to pseudospin doublets (2f̃ 7/2,2 f̃ 5/2) and
l
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(1h̃11/2,1h̃9/2), respectively, are quasidegenerate, indicat
only a small breaking of pseudospin symmetry. The sam
more or less true for the pairs of neutron ho
„(2 f 5/2,3p3/2),(1h9/2,2 f 7/2)…, proton valence ~particle!
(1h9/2,2 f 7/2), and proton hole„(2d3/2,3s1/2),(17/2,2d5/2)…,
orbitals forming the pseudospin doublets, but here the ene
separation between the partners of the respective double
relatively larger. The larger the binding energy is, the larg
the separation is. This indicates that the concept of the p
dospin symmetry becomes better and better for the orb
as their energies approach closer and closer to the
tinuum. This is consistent with the results found in Ref.@4#
for the square well potentials. In addition, the energy se
ration becomes larger, if the pseudoorbital angular mom
tum (l̃ ) increases. The dependence of the energy splitting
the pseudospin partners on the energyE and on the pseu-
doorbital angular momentuml̃ can easily be understoo
from Eq.~5!. For a given pseudoorbital angular momentuml̃
the term in Eq.~5! which splits the pseudospin partners is

S82V8

~S2V!2E

k i

r
. ~7!

It has the energy dependence„E2(S2V)… in the denomina-
tor. Now (S2V) is about 50 MeV. Bound states in the Ferm
sea have a binding energyE,50 MeV. For increasing bind-
ing energyE, i.e., going to more deeply bound states, t
denominator decreases. This then results in a larger en
splitting between the pseudospin partners. For example,
the orbit l̃ 53 the energy splitting between the pseudos
partners~1g7/2 and 2d5/2! will be relatively larger as com-
pared to that between~2g7/2 and 3d5/2!. In addition, the big-
ger the value ofl̃ is, the larger the splitting is. For instanc
the energy splitting between the pseudospin partners~1i 11/2

and 2g9/2! corresponding tol̃ 55 is relatively larger as com
pared to that between the partners~2g7/2 and 3d5/2! which

FIG. 1. Pseudospin splitting in the spherical nucleus208Pb: ~a!
single particle spectra in the vicinity of the Fermi surface for ne
tronsn and protons~p! and large (f ) and small (g) components of

the Dirac wave functions for the pseudospin doubletsn2d̃ ~b!, n2 f̃

~c!, andp2g̃ ~d!.
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correspond tol̃ 53, in the same major shell. Interestingl
the sign of the energy splittings between the partners of
neutron valence doublets is opposite to that of the neu
hole, proton particle, and proton hole doublets.

The normalized single nucleon wave functions@both large
( f ) and small (g) components# are plotted for the pseu
dospin partners corresponding to the valence neutron p
the neutron hole pairs and valence proton pairs in Figs. 1~b!,
~c!, and~d!, respectively. The phase of the lower compone
(g) of one of the partners is reversed while plotting, in ord
to exemplify the differences in the lower components of
pseudospin partners. Clearly, the lower components
much smaller in magnitude as expected and are almost e
in magnitude. In the case of exact pseudospin symmetry

FIG. 2. Energy surface of the deformed nucleus154Dy as a func-
tion of the quadrupole momentq in units of barn.

FIG. 3. Single particle energies of the deformed Dirac equa
for the neutrons in the nucleus154Dy as a function of the quadrupol
deformation parameterb2 . Asymptotic pseudospin quantum num
bers are given and the pseudospin partners are indicated by a
↑ and↓.
e
n
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lower component of the pseudospin partners should be id
tical ~except for the phase!. The very small differences be
tween theseg’s, which mainly appear around the surface a
negligible for the pseudospin partners having very sm
binding energies.

Next we consider deformed systems and impose c
straints on the quadrupole moment. Constrained relativi
Hartree calculations have been carried out for the nucl
154Dy. The coupled differential equations for the spinors a
the meson fields are given in Ref.@13#. They have been
solved by expanding the spinors and the meson fields
terms of anisotropic oscillator wave functions. Numerical d
tails are given in Refs.@13# and@18#. Pairing correlations are
treated in the constant gap approximation and the Lagran
parameter set NL3@17# is used. The calculated potential e
ergy surface is shown in Fig. 2. The value of the calcula
ground state deformation parameterb2 is 0.202 which is to
be compared with 0.237, the corresponding experime
value. The calculated ground state binding energy 1262
MeV differs from the corresponding experimental value
merely 1.2 MeV.

The energies of the bound neutron pairs of orbitals co
sponding to pseudospin doublets are plotted against the
formationb2 ranging from 0.0–0.5 in Fig. 3. The asymptot
Nilsson quantum numbers@N,n3 ,L,V# are good for large
values of the deformationb2 . The pseudospin doublet

@Ñ,ñ3 ,L̃,Ṽ5L̃61/2# @5# are indicated by@Ñ,ñ3 ,L̃# ↑ and
↓ in the figure. For zero deformation (b250) the orbitals are
indicated by the corresponding spherical states. The fig
reveals the following:

~i! The energy splitting between the pseudospin partn
is smaller for the valence orbitals and for the partners j
below the Fermi surface.

n

ws

FIG. 4. Single particle energies for protons in154Dy, for details
see Fig. 3.
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~ii ! This energy difference is relatively larger for the pa
ners having larger pseudospin angular momentum (l̃ ).

~iii ! In general, this separation stays almost constant
does not vary with deformation after reasonable value ofb2 .

~iv! The energy difference between the↓ and the↑ part-
ners always remains positive except for@40̃4#, where there is
crossing at aroundb50.3. Such a crossing is not very un
usual, it has also been observed in Ref.@5#.

These systematics are consistent with those observe
the spherical case above. A similar plot for the proton ps
dospin doublets shown in Fig. 4 reveals identical systema
as those observed for the neutron case~Fig. 3!. It is interest-
ing to note that in Ref.@5# the energy difference between th
valence neutron pseudospin partners is negative~opposite to
ours! while it has the same sign as ours for protons. This m
be because of the negative value obtained forVls , the
ys

ev
d

in
-

cs

y

strength of the pseudospin orbit interaction, from the Nilss
parametrization for 82,N,126.

Similar calculations have also been carried out for ot
spherical and deformed nuclei and they show identical s
tematics. The conclusions presented here, are therefore r
general. In conclusion, it is shown in the relativistic me
field framework that quasidegenerate pseudospin doublet
exist near the Fermi surface for both spherical and deform
nuclei. The pseudospin symmetry is restored better and
ter as one moves closer to the continuum limit. These c
clusions confirm the findings of Ginocchio@4,10#.
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