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Gauge-invariant tree-level photoproduction amplitudes with form factors
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We show how the gauge-invariance formulation given by Haberzettl is implemented in practice for photo-
production amplitudes at tree level with form factors describing composite nucleons. We demonstrate that, in
contrast to Ohta’s gauge-invariance prescription, this formalism allows electric current contributions to be
multiplied by a form factor, i.e., it does not require that they be treated like bare currents. While different in
detail, this nevertheless lends support to previousad hocapproaches which multiply the Born amplitudes by an
overall form factor. Numerical results for kaon photoproduction off the nucleon are given. They show that the
gauge procedure by Haberzettl leads to much improvedx2 values compared to Ohta’s prescription.
@S0556-2813~98!51007-2#

PACS number~s!: 25.20.Lj, 13.60.Le, 11.40.2q, 11.80.Cr
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The question of gauge invariance is one of the cen
issues in dynamical descriptions of how photons inter
with hadronic systems@1–4#. While there is usually no prob
lem in finding definitive answers at the level of tree diagra
with bare, pointlike particles, the problem rapidly becom
very complicated once one attempts to incorporate the e
tromagnetic interaction consistently within the full comple
ity of a strongly interacting hadronic system@4#. As a case in
point, as is well known, even the tree-level amplitude
pion photoproduction off the nucleon is not gauge invari
if one employs hadronicpNN form factors to account for
the fact that nucleons are composite objects, and not po
like.

In order to restore gauge invariance in these situatio
one needs to construct additional current contributions
yond the usual Feynman diagrams to cancel the gau
violating terms. One of the most widely used methods to t
end is due to Ohta@2#. For pion photoproduction off the
nucleon at the level of the Born amplitude, Ohta’s prescr
tion amounts to dropping all strong-interaction form facto
for all gauge-violating electric current contributions@3#. In
other words, gauge invariance is regained by treating
offending terms exactly as in the bare case, thus losing
effect because of the compositeness of the nucleons.
undesireable situation is sometimes remedied in anad hoc
fashion by multiplying the gauge-invariant bare amplitude
an overall form factor taken to simulate the average effec
the fact that nucleons are not pointlike@5#. Within Ohta’s
scheme, however, there is no foundation for such recipes@3#.

Recently, Haberzettl@4# has put forward a comprehensiv
treatment of gauge invariance in meson photoproduct
This includes a prescription for restoring gauge invariance
situations when one cannot, for whatever reason, handle
full complexity of the problem and therefore must resort
some approximations. It is the purpose of the present pa
to provide a detailed comparison of this approach with O
ta’s. While the generalAnsatzin Ref. @4# was quite different
from Ohta’s, we will show that both approaches can be
derstood as different ways of taking the limit of the vanis
PRC 580556-2813/98/58~1!/40~5!/$15.00
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ing photon momentum. The way this limit is treated in R
@4# will introduce more flexibility in how form factors can b
retained for the terms where they are replaced by constan
Ohta’s prescription. Although different in detail, this findin
actually lends support to approaches which multiply t
Born amplitude by an overall form factor.

We will use the reactiongp→np1 with pseudoscalar
coupling for thepNN vertex as a simple example to eluc
date the main features of the present investigation, simila
the discussion of Ohta’s approach@2# in Ref. @3#. Using dif-
ferent, or more general, couplings for the vertex would n
add anything essential to the following discussion; it wou
only complicate the presentation.

For bare nucleons, the tree-level amplitude~see Fig. 1! for
gp→np1 for a pure pseudoscalar coupling is given as~see
@3#, and references therein!

e•M f i5(
j 51

4

Ajūn~emM j
m!up , ~1!

which represents an expansion based on operators

M1
m52g5gm k” , ~2a!

M2
m52g5~pm k•p82p8mk•p!, ~2b!

M3
m5g5~gm k•p2pm k” !, ~2c!

M4
m5g5~gm k•p82p8m k” !, ~2d!

with coefficient functions

A15
ge

s2m2
~11kp!1

ge

u2m2
kn , ~3a!

A25
2ge

~s2m2!~ t2m2!
, ~3b!
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FIG. 1. Tree-level photoproduction diagrams. Time proceeds from right to left. The form factorsF1, F2, andF3 in the text describe the
vertices labeled by 1, 2, and 3, respectively, with appropriate momenta and masses shown for their legs. The rightmost diagram co
to the contact termM c

m required to restore gauge invariance@Eq. ~9!#; it is absent for pure pseudoscalar couplings with bare vertices.
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A35
ge

s2m2

kp

m
, ~3c!

A45
ge

u2m2

kn

m
, ~3d!

wherem andm are the masses of the nucleon and the pi
respectively,g is the pseudoscalarpNN coupling constant,
and e the elementary charge. The anomalous magnetic
ments of the neutron and the proton are denoted here bykn
and kp . The Mandelstam variabless, u, and t are given as
~cf. Fig. 1!

s5~p1k!25~p81q!2, ~4a!

u5~p82k!25~p2q!2, ~4b!

t5~p2p8!25~q2k!2, ~4c!

i.e., s1u1t52m21m2 since all external particles are on
shell. ~For the present case,m85m in Fig. 1.!

Obviously, since each of the operatorsMi
m is gauge in-

variant by itself, i.e.,km•Mi
m50, the total photoproduction

current is also gauge invariant. This result is obtained onl
the vertices are bare, without any form factors. Since
terms proportional toM1

m , M3
m , and M4

m arise from purely
magnetic contributions—and therefore are always gauge
variant by themselves, irrespective of whether one uses f
factors or not—the problematic term, as pointed out alrea
in Ref. @3#, clearly isA2 which arises here from the sum o
the electric contributions of thes and t channels.

If one now considers the nucleons as composite obje
and introduces form factors for the hadronic vertices,
result for the first three diagrams of Fig. 1 is

e•M̃ f i5(
j 51

4

Âj ūn~emM j
m!up1e•M̃ viol , ~5!

with gauge-invariant contributions

Â15
ge

s2m2
~11kp!F11

ge

u2m2
knF2 , ~6a!

Â25
2ge

~s2m2!~ t2m2!
F̂, ~6b!

Â35
ge

s2m2

kp

m
F1 , ~6c!
,

o-

if
e

n-
m
y

ts
e

Â45
ge

u2m2

kn

m
F2 , ~6d!

and a gauge-violating term

e•M̃ viol52geūng5emF 2p8m

s2m2
~ F̂2F1!

1
2qm

t2m2
~ F̂2F3!Gup . ~7!

The momentum dependence of the form factors appea
here can be read off Fig. 1, i.e.,

F15F1~s!5 f @~p1k!2,m82,m2#, ~8a!

F25F2~u!5 f @m2,~p82k!2,m2#, ~8b!

F35F3~ t !5 f @m2,m82,~p2p8!2#, ~8c!

~here,m85m) where use is made of the fact that the for
factor may always be written as a function of the squares
the four momenta of its three legs@cf. Eq. ~18!# ~which does
not mean, however, that it may be taken as a funct
f (s,u,t) of the Mandelstam variables, as it is sometim
stated@3#!. At this stage,F̂ appearing in Eqs.~6b! and~7! is
undefined; it was introduced here to be able to isolate
gauge-violating current contribution in a form that makes
comparison with Eq.~1! easy. Clearly, the full amplitude
e•M̃ f i does not depend on it since the sum of theF̂ contri-
butions from Eq.~7! exactly cancels theÂ2 term.

Now, without a detailed dynamical treatment of the co
positeness of the nucleons@4#, any prescription for restoring
gauge invariance amounts to introducing an additional c
tact currentM c

m ~generically depicted by the fourth diagra
in Fig. 1!, with on-shell matrix elements cancelling exact
the gauge-violating term~7!, i.e.,

ūn~emM c
m!up52e•M̃ viol . ~9!

Apart from purely transverse components or terms prop
tional to km, for the present example this contact current
essentially given by the term in the square brackets of Eq.~7!
@2–4#. Adding this contact contribution to Eq.~5!, one then
obtains a gauge-invariant amplitude in analogy to Eq.~1!,

e•M̂ f i5(
j 51

4

Âj ūn~emM j
m!up , ~10!

which doesdepend onF̂ now via Â2 of Eq. ~6b!.
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Using the analytic continuation and minimal substitutio
Ohta @2# finds that the requiredF̂ factor is constant,

Ohta: F̂5 f ~m2,m82,m2!51, ~11!

determined by the normalization condition for the form fa
tor in the nonphysical region where all three legs are on-s
@see Eq.~18!#. Â2 thus reduces toA2 of Eq. ~3b!, effectively
freezing all degrees of freedom arising from the compos
ness of thepNN vertex and treating it like a bare one fo
electric current contributions.

This determination ofF̂ is sufficient to ensure that th
additional contact-current contribution is singularity free
s5m2 and t5m2, for in this limit, bothF1 andF3 become
unity @cf. Eq. ~18!#,

F1~s5m2!5F3~ t5m2!51. ~12!

In this limit, therefore, Eq.~7! reduces to nonsingular00 ex-
pressions. Note that in the present kinematics~where all ex-
ternal particles are on-shell! one has

s2m252p•k, ~13a!

u2m82522p8•k, ~13b!

t2m2522q•k, ~13c!

and hence the limits in Eq.~12! correspond to the vanishin
of the photon momentum. Therefore,any ~reasonably be-
haved! subtraction functionF̂ that becomes the unity fork
50 is sufficient to restore gauge invariance without any
wanted singularities.

In Ref. @4#, use is made of this freedom by allowingF̂ to
be a function of the hadron momenta. The only functio
available that have anything to do with the physics of
present problem are of course the form factors themsel
Haberzettl restores gauge invariance by constructing a
tact current equivalent to choosing the subtraction funct
as

Choice A: F̂5F3~ t !5 f @m2,m82,~p2p8!2#, ~14!

which is the only function from those given in Eqs.~8a!–~8c!
that does not depend explicitly onk to begin with. This,
however, is an artifact, having taken both nucleon mome
as independent variables. Had we taken, for example,
pion momentumq as an independent variable instead of t
final nucleon momentump8, we would have

F15F1~s!5 f @~p1k!2,m82,m2#, ~15a!

F25F2~u!5 f @m2,~p2q!2,m2#, ~15b!

F35F3~ t !5 f @m2,m82,~q2k!2#, ~15c!

which, by the same reasoning, would point to choosingF2 as
the subtraction function. And if we choose (q,p8,k) as the
independent set, we would findF1. In other words, following
Ref. @4#, depending on the choice of variables, we can ta
any one of the three form factors as a subtraction function
,

-
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general, the subtraction vertex is the one whose single
shell leg is described in terms of the on-shell four mome
of the other two legs.

One may argue whether this dependence on the vari
set should be allowed. From the point of view of minim
substitution, however, perhaps one should not find this s
prising since technically speaking, one can only perform
minimal substitution in the variables which actually occ
and hence the resulting current in general will reflect
underlying variable set. Ohta circumvented this problem
considering the vertex as a general functionf (p2,p82,q2)
unconstrained by momentum conservation before perform
the minimal substitutions. The resulting subtraction functi
~11! then corresponds to the nonphysical limit for taking
three variables to their mass-shell values. This prescript
thus, amounts to performing the infrared limitk→0 explic-
itly in the construction of the contact current, whereas in R
@4# the proper value for this limit is provided by the dynam
ics of the reaction by choosing the subtraction vertex as
with proper physical variables for its legs.~In Ref. @6#, some
formal problems associated with Ohta’s nonphysical lim
have been pointed out.!

In any case, within the gauge-invariance prescription
Ref. @4#, it is possible to remove the dependence on the v
able set by introducing a more ‘‘democratic’’ choice forF̂,
using a linear combination of the three limiting case
namely,

Choice B: F̂5a1F1~s!1a2F2~u!1a3F3~ t !

5F̂~s,u,t !, ~16!

where F̂(s,u,t) is a short-hand notation for the precedin
expressions. To ensure the correct limit fork50, the coeffi-
cients need to add up to unity,a11a21a351. The most
democratic choice isa15a25a351/3, of course. The previ-
ous choice A, in Eq.~14!, is subsumed here witha15a2
50, a351. In the subsequent applications, we will use th
general form forF̂ and allow the coefficientsai to be free
parameters.

While the equations given above for pion photoprodu
tion apply only at the tree level~in the spirit of Ref.@3#!,
recent models have gone much further@7–9# and have in-
cluded the pion final-state interaction by iterating the f
scattering equation. Such a treatment would go beyond
scope of the present paper. However, for kaon photoprod
ton, most recent computations@10–12# use tree-level dia-
grams only and adjust the coupling constants to reprod
the data. None of these calculations have included a hadr
form factor until now, even though preliminary results@13#
indicate that the presence of such a form factor greatly in
ences the range of the extracted coupling constants.
therefore test here this particular implementation of gau
invariance by considering the two kaon photoproduction
actionsgp→LK1 andgp→S0K1.

For both reactions, one can simply take over Eq.~6! and
replace the pion byK1 and the neutron by the respectiv
hyperon. Forgp→LK1 one has
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ÂL15
gKLNe

s2m2
~11kp!FL1~s!1

gKLNe

u2mL
2

kLFL2~u!,

~17a!

ÂL25
2gKLNe

~s2m2!~ t2m2!
F̂L~s,u,t !, ~17b!

ÂL35
gKLNe

s2m2

kp

m
FL1~s!, ~17c!

ÂL45
gKLNe

u2mL
2

kL

mL
FL2~u!, ~17d!

whereFL is the LKp form factor, with coupling constan
gKLN , and mL is the L mass; kL is the corresponding
anomalous magnetic moment. For the second reaction,gp
→S0K1, one replacesL by S.

Clearly, a phenomenological description of the (g,K)
processes has to include resonance terms. However, the
ity of the data has not yet permitted a clear identification
the relevant resonances in the reaction mechanism and,
sequently, models with different resonances can all achie
satisfactory description of the data@10–12#. These resonanc
terms are all gauge invariant independently and, theref
do not depend on different prescriptions for restoring ga
invariance. For our empirical studies below we choose
same set of resonances as in Refs.@10,13#, namely, theK* in
the t channel, and theS11(1650) and theP11(1710) states in
thes channel. ForS production, we also allow theS31(1900)
and theP31(1910) state to contribute. We do not make a
claims that this selection is unique or correct at the pres
time, but rather that it leads to a reasonable description of
(g,K) processes and allows us to draw qualitative conc
sions about the magnitude of the Born coupling constants
the case ofp(g,K1)L, separate coupled-channels analys
@14,15# found theS11(1650) and theP11(1710) states to play
important roles. For simplicity, all resonances are multipl
here with the same hadronic form factor.

For the numerical evaluation of Eqs.~17!, we choose co-
variant vertex parametrizations without any singularities
the real axis. For a baryon with massm and four-momentum
p decaying~virtually! into a baryon with massm8 and four-
momentump8 and a meson with massm and momentump
2p8, the general vertex may be written as

F5 f @p2,p82,~p2p8!2#, ~18!

with the normalizationf (m2,m82,m2)51. When applied to
gp→LK1 andgp→S0K1, the massesm andm appearing
in Eq. ~8! are always the nucleon and kaon masses, res
tively, whereasm85mL for the first andm85mS for the
second reaction. The vertex parametrization we employ h
is of the form

f @p82,p2,~p2p8!2#5 L4/~L41h4! , ~19!

whereL is some cutoff parameter, and

h45~p22m2!21~p822m82!21@~p2p8!22m2#2.
~20!
al-
f
on-

a

e,
e
e
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e
-
In
s

n

c-

re

In the nonrelativistic limit, this form reduces to the usu
monopole form, depending on the squared three-momen
of the exchanged particle. For the three cases of Eq.~8!,
since two of the three vertex legs are always on-shell in
present applications, this translates into

F15L4/@L41~s2m2!2# , ~21a!

F25L4/@L41~u2m82!2# , ~21b!

F35L4/@L41~ t2m2!2# , ~21c!

which is, therefore, effectively the same as the form fact
used in Ref.@16#.

In the discussion of our numerical results, we focus o
attention on the magnitude of the leading Born coupling c
stantsgKLN andgKSN . In contrast to the well-knownpNN
coupling constant, there are serious discrepancies betw
values for theKYN coupling constants extracted from ele
tromagnetic reactions@12,13# and those from hadronic pro
cesses@17,18# which tend to be closer to accepted SU~3!
values. If the leading coupling constantsgKLN /A4p and
gKSN /A4p are not allowed to vary freely and are fixe
~close to what is obtained from hadronic reactions@18#! at
reasonable SU~3! values of23.8 and 1.2, respectively, th
x2 per data point obtained in our modelwithout hadronic
form factors for the (g,K) reactions comes out to be 55.8. I
on the other hand, the two couplings are allowed to v
freely, one obtains a much improved value ofx2/N53.33
for gKLN /A4p521.89 and gKSN /A4p520.37. This
clearly indicates that either there is a very large amoun
SU~3! symmetry breaking or that important physics has be
left out in the extraction of coupling constants from th
(g,K) processes. In this study, we advocate the second
sition and demonstrate that the inclusion of structure at

FIG. 2. Values ofx2/N ~whereN is the number of data points!
and cutoff parameterL for coupling constant values of2gKLN /
A4p53.4, 3.8, and 4.2. The solid lines connect results obtai
with Haberzettl’s gauge formalism@4# and the dashed lines pertai
to Ohta’s@2# prescription.
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hadronic vertex permits an adequate description of kaon p
toproduction with couplings close to the SU~3! values, pro-
vided one uses the gauge procedure of Ref.@4#.

The main numerical results of our investigation are su
marized in Fig. 2. The upper panel showsx2 per data point
as a function ofgKLN /A4p for the two different gauge pre
scriptions by Ohta and Haberzettl. At a value
gKLN /A4p523.4, thex2 obtained with Ohta’s method i
almost a factor of 2 larger, compared to the method by H
erzettl. With an increasing coupling constant the Ohta re
rises sharply, leading to an unacceptably largex2 of 32.2 for
gKLN /A4p524.2. On the other hand, using the procedu
of Ref. @4# keeps thex2 more or less constant. This dramat
difference between the two gauge prescriptions can easil
understood from Eq.~11! and the discussion following tha
equation. Ohta’s method provides no possibility to suppr
electric contributions since the form factor for this term
unity @cf. Eqs. ~6b! and ~11!#. In contrast, the method b
Haberzettl allows for a hadronic form factor in this term
well.

The lower panel of Fig. 2 sheds additional light on t
suppression mechanism. In the fits we performed the cu
L of the form factor, cf. Eq.~19!, was allowed to vary freely
In the case of Haberzettl’s method, the cutoff decreases
increasingKLN coupling constants, leaving the magnitu
of the effectivecoupling, i.e., the coupling constant time
form factor, roughly constant. Again, since Ohta’s meth
does not involve form factors for electric contributions
such compensation is possible there, and as a consequ
the cutoff remains insensitive to the coupling constant.

In obtaining Fig. 2 we have keptgKSN fixed at the value
gKSN /A4p51.2. We have checked that varying theKSN
coupling between 1.0 and 1.4 leads only to very sm
changes. Furthermore, we allowed the coefficientsai of Eq.
ev

T
.

o-

-

-
lt

e

be

s

ff

th

d

nce

ll

~16! to be free fit parameters. As it turns out, the fit on
allows nonzeros- and t-channel contributions~i.e., a2 is es-
sentially zero!, with a somewhat largera3 value~correspond-
ing to an enhancement of thet channel!, which of course is
entirely consistent with the fact that Eq.~17b! contains only
s and t channels.

We do not show the fitted resonance couplings here s
we do not regard them as very realistic at this point. W
emphasize again the qualitative nature of our findings,
clearly a more sophisticated calculation is required in or
to obtain a quantitative description of the (g,K) processes.

In summary, we have applied here the general gau
invariance restoration method proposed by Haberzettl to
specific example of pseudoscalar photoproduction at
level. Using a phenomenological Born plus resonance mo
we have compared the procedures by Ohta@2# and Haberzettl
@4# for kaon photoproduction. We found the latter to be s
perior since it can provide a reasonable description of
data using values for the leading couplings constants clos
the SU~3! values. Such couplings cannot be accommoda
in Ohta’s method because of the absence of a hadronic f
factor in the electric current contribution. The main purpo
for measuring the meson photoproduction in the 1–2 G
region is the study of resonances. In order to unambiguou
separate the resonance from background contributions,
imperative that background terms be able to account for h
ronic structure while properly maintaining gauge invarian
As the present findings indicate, Ohta’s prescription seem
be too restrictive in this respect, whereas the method
forward in Ref. @4# seems well capable of providing thi
facility. This favorable conclusion regarding Haberzett
method is corroborated also by the findings of Ref.@19#.
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