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New technique for phase shift analysis: Multienergy solution of inverse scattering problem
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We demonstrate a new approach to the analysis of extensive multienergy data. For the case ofd1 4He, we
produce a phase shift analysis covering the energy range 3–11 MeV. The key idea is the use of a new
technique for data-to-potential inversion which yields potentials that reproduce the data simultaneously over a
range of energies. It thus effectively regularizes the extraction of phase shifts from diverse, incomplete, and
possibly somewhat contradictory data sets. In doing so, it will provide guidance to experimentalists as to what
further measurements should be made. This study is limited to vector spin observables and spin-orbit interac-
tions. We discuss alternative ways in which the theory can be implemented and which provide insight into the
ambiguity problems. We compare the extrapolation of these solutions to other energies. Majorana terms are
presented for each potential component.@S0556-2813~98!50807-2#

PACS number~s!: 25.45.De, 25.10.1s, 24.10.Ht
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A well-known problem confronting any phase shift ana
sis ~PSA!, both for a single energy and for multiple energie
is the absence of complete sets of experimental data
complementary problem is the occurrence of apparent inc
sistencies between data from different experiments. Th
problems are particularly acute for projectiles of spin.1/2.
For example, spin one projectiles require, at each ene
eight or nine independent measurements@cross sections
s(u), vector i ^T11(u)&, and tensor̂ T2q& analyzing powers,
etc.#. Since the PSA solutions based on incomplete data
be far from unique, we must find a way to apply constrain
Apart from certain smoothness requirements, it is hig
nontrivial to findgeneralrestrictions which are convenient t
apply within the framework of existing PSA methods.

In this paper we present a new approach to phase
analysis, PSA. In essence, the idea is to find a single m
component potential to describe the experimental data o
the energy range in question. This is made possible b
recently developed@1,2# direct data-to-potential inversio
technique, the generalized iterative perturbative meth
hereafter GIP, which we describe below. GIP is a gener
zation of the established iterative perturbative~IP! S-matrix-
to-potential inversion method@3–5#. It enables data for many
energies to be fitted with great computational efficiency b
single energy dependent potential that is as flexible as
quired. A PSA based on a potential, unlike conventio
PSAs, leads in a natural way to sets of phase shifts bea
physically reasonable relationships between the different
tial waves. Moreover, the model itself will now reveal an
inconsistent data and indicate where new data are requ
and thereby be a useful source of experimental guidance.
GIP potential will have a small energy dependence whi
unlike the rapid energy dependence of the phase shifts,
be compared with the energy dependence predicted
theory.

We demonstrate our approach by applying the metho
d1 4He and will show that an integrated picture ofd1 4He
scattering can be obtained from a diverse range of data
ering a substantial energy range. The need for such an
PRC 580556-2813/98/58~1!/31~5!/$15.00
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proach may be seen from Ref.@6# where a huge amount o
experimental data for this reaction, including cross sect
and vector and tensor analyzing powers, are analyze
length by elaborate forms of PSA. The methods used
described by Krasnopolskyet al. @7#. Although the authors
of @6# derived much important information from their PS
~e.g., exact resonance widths, vertex constant, etc.! many re-
sults are still on a preliminary and qualitative level~e.g., the
complex tensor mixing parameters, odd-parity phase shi!.
Therefore we believe that the very considerable experime
effort devoted to this system, see@8# and many other paper
cited in Ref.@6#, motivates a new approach. Sinced1 4He is
a perfect theoretical test case, the rewards will be the ph
cal insight of general relevance to nuclear physics.

In principle the potential searched for should includeall
necessary components of nuclear interactions, including c
tral @Wigner (W) and Majorana (M )] terms, spin-orbit terms
~again, bothW andM ) and the various possible tensor term
once more bothW and M; all terms may be complex a
required. In determining a suitable potential, one can imp
constraints such as conformity to known behavior of high
partial waves~as in, e.g.,@9#!; smooth energy dependence
underlying potentials; consistency with established theor
reproduction of bound- and resonant-state energies.

In principle it is possible to find a potential fitting data
many energies by applying standard searching procedure
the parameters of a sufficiently flexible potential mod
whether of standard multiparameter or model independ
form ~e.g., the so-called Fourier-Bessel analysis!. To do this
generally entails computationally expensive and highly n
linear multiparameter fitting, often leading to many loc
minima @10#. The GIP procedure for direct data-to-potent
inversion solves many of these problems. The advantage
IP over other methods forS-matrix-to-potential inversion ap
ply here too and are particularly relevant. The first advant
is the power to control the exactness of the inversion so
noisy, incomplete, or even partly erroneous data can be fi
with ~one-channel or multichannel! potentials which do not
have spurious oscillatory features. The second advantag
R31 © 1998 The American Physical Society
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its virtually unlimited generalizability. Here we illustrate th
feature by including in our analysis the four Majorana co
ponents, normally omitted in optical model fits. A furth
feature of PSA using the GIP method is its speed and s
plicity of application enabling a thorough exploration of am
biguities. These ambiguities arenot a matter of shallow val-
ley floors in parameter hyperspace, but appear in the form
apparently disconnected minima.

In the present case we apply the procedure toS51 pro-
jectiles, although for clarity we suppress spin-related s
scripts. The method involves the following three key e
ments:

~i! The expansion of components of the potential@central
(c), spin-orbit (s-o), tensor (t), etc.# in a suitable basis. Fo
potential componentk5c, s-o, t . . .

V~k!5V0
~k!1(

j
Cj

~k!f j
~k!~r !, ~1!

whereCj
(k) are coefficients to be determined,f j

(k)(r ) are the
basis functions, andV0

(k) is the starting potential. Note tha
this expansion applies to both real and imaginary com
nents and that the notationf j

(k)(r ) embodies the possibility
that it might be appropriate for different components of t
potential to be expanded in different bases. In particular,
and imaginary terms, or central and spin-orbit terms, or
Majorana terms might well require different bases.

~ii ! The linear response of the complexS-matrix Sl to
small changesDV(r ) in the potential

DSl52
im

\2k
E

0

`

„c l~r !…2DV~r !dr, ~2!

with Sl defined in terms of the asymptotic form of the regu
radial wave function asc l(r )→I l(r )2SlOl(r ) whereI l and
Ol are incoming and outgoing Coulomb wave functions
Ref. @11#. The formulation@1,4# in terms of d l , whereKl
5tand l , is exactly equivalent. Note that the energyEk is
implicit in these equations and, for simplicity, we have
beled the channels only by the orbital angular momentul
although we do include spin in our calculations. Equation~2!
can be recast as@3,5#

]Sl

]Cj
52

im

\2k
E

0

`

„c l~r !…2f j~r !dr, ~3!

where any required superscript (k), labeling the potential
component, is implicit.

~iii ! The x2 function is defined from

x25 (
k51

N S sk2sk
in

Dsk
in D 2

1(
n

(
k51

M S Pkn2Pkn
in

DPkn
in D 2

, ~4!

wheresk
in andPkn

in are the input experimental values of cro
sections and analyzing powers of typen, respectively. Since
we are fitting data for many energies at once, the indek
indicates the energy as well as angle. The data normali
factors can be introduced as an additional contribution to
~4!.
-
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We must now expandx2 in terms ofCj
(k) . To do this we

first linearize the theoretical cross sections and analyz
powers by expandingsk ~andPkn) about some current poin
$Cj

(k)(p)%:

sk5sk„Cj
~k!~p!…1(

j ,l
S ]sk

]Sl~Ek!

]Sl~Ek!

]Cj
~k! D

C
j
~k!~p!

DCj
~k! ,

~5!

which applies at each iterative stepp50,1,2, . . . and the
correction~to be determined! for the jth amplitude isDCj

(k)

5Cj
(k)2Cj

(k)(p). Equivalent relations are applied forPkn.
Linear equations result from demanding thatx2 be locally

stationary with respect to variations in the potential coe
cients Cj

(k) , i.e., the derivatives ofx2 with respect to the
potential componentsCj

(k) must vanish. Solving these linea
equations is straightforward for any reasonable numbe
them and yields corrected valuesCj

(k)(p) @8,10#. We then
iterate the whole procedure, with wave functionsc l in Eq.
~3! calculated using the corrected potentials from Eq.~1!,
until convergence is reached. This algorithm almost alw
converges very rapidly@8,10#, in general, diverging only
when highly inconsistent or erroneous data have been u
or when the iterative process involves a very unsuitable st
ing point.

Multienergy inversion is thus reduced to the solution
simultaneous equations at a series of iterative steps. To s
how effective this is, we present the results of a multiene
PSA for thed1 4He system. For this initial study, we hav
selected a small subset of the experimental data tabulate
@6#, in particular the data of Jennyet al. @8# and that of
@12,13#. At this stage, we have fitted only the cross sectio
and vector analyzing powers and correspondingly limi
ourselves to the following potential components: Wign
central, Majorana central, Wigner spin-orbit, Majorana sp
orbit. All terms are complex so that there are eight comp
nents to be determined. The neglect of the various comp
tensor components is justified because their primary effec
on the tensor analyzing powers. It is well known@14,15# that
tensor interactions in thed1 4He system play a moderat
role, mainly influencing the3S1- 3D1 and 3P2- 3F2 mixing
parameters which are not significant here. The generaliza
of GIP to yield tensor interactions is under development a
we expect a full PSA, including all off-diagonal terms, to b
presented in due course. Data renormalization was not c
sidered here since its effect is small compared to the neg
of the tensor force, particularly for the data sets fitted h
@1,7#.

In order to get some understanding of the ambiguity pr
lems, we consider here two extreme approaches to the fit
process which we label A and B. The question of the me
ingfulness of the potentials that are found we leave to la
publications.

Approach Abegins the iterative procedure with a startin
potential reflecting very littlea priori information concern-
ing the potential and consists of two components on
simple real and imaginary central Wigner terms of Gauss
form. The data is fitted in stages, adding a further poten
component at each step with basis dimensions restricte
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two or three Gaussian functions. Generally convergence
sults from two or three inversion iterations at each stage.
applying a criterion of visual smoothness, an optimum so
tion was found, ‘‘potential A,’’ corresponding tox2/F
518.7. Fits giving a lowerx2/F are possible with a large
basis, but the correspondinguSu also shows a significant uni
tarity breaking for certainl , j . This case involves about 2
independent parameters.

Approach Bstarts the iterative procedure with a potent
derived by inversion@16# of Sl j from the multiconfiguration
resonating group model~RGM! calculations of Kanadaet al.
@17# which includeS-wave deuteron breakup. This approa
gave ‘‘potential B’’ with x2/F55.84 but is accompanied b
a significant breaking of unitarity in theSwave.~The results
are described in detail in Ref.@18#.!

In both approaches energy dependence is included on
the imaginary components. The procedure used follows R
@21#, which applies for shape invariant energy dependent
tentials. Since the inelastic threshold is atEth53.3 MeV, we
expect the imaginary components to increase rapidly as
energy rises aboveEth and so we assume that all parts of t
imaginary potential increase linearly with (E2Eth). In fact,

FIG. 1. For deuterons scattering from4He, fits to differential
cross sections of Senhouse and Tombrello at selected energies
solid line is the fit for potential A, the dashed line for potential
e-
y
-

l

in
f.

o-

he

the results are insensitive to this energy dependence. B
the detailed form of the imaginary potentials and the ima
nary phase shifts are less well determined than the co
sponding real quantities and qualitative features of the d
can be reproduced with a real potential alone.

In Fig. 1 we display, for representative energies over
complete energy range 3–11.5 MeV, typical fits to cross s
tions @13# and in Fig. 2, analyzing powers@12#. Both s(u)
and i ^T11(u)& are very well fitted over the entire energ
range. Closely compatible fits to the data of Ref.@8# were
found, both visually and in the values ofx2. All the quoted
x2/F values apply to the fit over the full energy range, b
are only relative since the tabulated data did not include
the sources of error discussed in the original papers. We h
found that although the contribution of the mixing param
eters to the cross section is almost negligible, there is a m
noticeable effect on the fit toi ^T11(u)&.

The bound state energy of the4He-d system, which can
be identified as the ground state energy of6Li in the 4He-d
channel, is not included in these inversions. Potential A gi
EB522.26 MeV (EB

expt521.472 MeV). Note that this en
ergy is extremely sensitive to the form of the potentials a
to the energy dependence of thed- 4He3S1 phase shifts@19#.

In Fig. 3 we present the real parts of potential A. Know

The

FIG. 2. For deuterons scattering from4He, fits to vector analyz-
ing power data of Gruebleret al.at selected energies. The solid lin
is the fit for potential A, the dashed line for potential B.
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ambiguity problems suggest this potential is almost certa
not unique. Within either approach, A or B, certain potent
components are more reliably determined than others,
real central Wigner term being the best determined. Its v
ume integral is consistent with global potentials and a
with volume integrals of the corresponding potential deriv
by S matrix to potential inversion for the theoreticalSl of
resonating group model RGM calculations@1,16,19,20#.

The phase shifts corresponding to the solution A fol
<4 are displayed in Fig. 4 for an energy range of 0–15 M
laboratory energy, i.e., extrapolating outside the range of
data. This figure also includes the results of a previous an
sis @20#. The really difficult problem for all previous~stan-
dard! PSAs was to achieve a low energy description of o
partial waves ~i.e., 3Pj with j 50,1,2 and 3F j with j
52,3,4), due to the weak sensitivity of cross sections a
analyzing powers to the odd partial waves@6#. Thus, by fit-
ting all significant partial waves independently in the cou
of a standard PSA@6,8#, a range of solutions is possibl
which is consistent with the data. The resulting odd-pa
phase shifts have very large error bars. In the present me
for phase shift analysis a further restriction is applied
demanding a smooth underlying potential and therefore
approach should lead, in principle, to much more reliable
accurate values for all phase shifts than found in previ
PSAs@6,8#.

The comparison in Fig. 4 of our new PSA solution wi
previous results shows that the agreement for even pa
waves is quite close while there is less agreement for

FIG. 3. The real parts of potential A. From the top, the Wign
central and spin-orbit, then the Majorana central and spin-orbit
ly
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partial waves. This is probably due to our neglect of ten
forces. Reliable knowledge of the odd partial wave pha
shifts is crucially important@20,22#, since the nature of the
deuteron-nucleus interaction, particularly ford1 4He, is dif-
ferent for even and odd partial waves. The even parityd
1 4He interaction is determined by an intermediate state
which two nucleons in the incident deuteron occupy tw
(1p) orbitals beyond the4He core. However, for odd parity
the two outer nucleons occupy nonoverlapping 1p-2s or
1p-2d orbits ~designating orbitsNl, with N, the number of
oscillator quanta!. Thus, since theN-N interaction is short
ranged compared to the range of thed-4He interaction, the
contribution of virtual breakup should be higher for odd th
for even partial waves and the sensitivity to theN1a inter-
action should also be higher. Because of this feature of
d1 4He interaction, thep- andf-wave phase shifts have bee
shown@22# to give a strong test of supersymmetrical aspe
of composite particle interactions, and the structure of ten
interactions of deuterons. A further step now is to include
our potential, terms which have never previously been c
sidered for nucleus-nucleus interactions, namely comp
Majorana tensor forces. Preliminary results@23# show that
the Majorana tensor force is approximately as strong as
Wigner tensor force.

In conclusion, we have demonstrated a new approac
PSA based on a linearized iterative approach to direct inv
sion from multienergy data to potentials. The example p
sented, approach A, involved far fewer parameters tha
conventional PSA~about a hundred for this case!. The new
method is computationally efficient and avoids many dra

r FIG. 4. The real phase shifts for fit A~solid line! compared with
the results of a conventional phase shift analysis~filled circles!.
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backs and instabilities of conventional PSAs, especially
cases of the projectile of spin 1 or greater when one ge
ally has an incomplete data set with data at many relev
energies absent or having large error bars. As well as cor
phase shifts, the potential itself is of great interest since it
be used as input for other calculations and can also be c
pared with potentials found by double folding procedures
by inversion fromSl obtained from RGM and other theore
ical models.
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