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New technique for phase shift analysis: Multienergy solution of inverse scattering problem
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We demonstrate a new approach to the analysis of extensive multienergy data. For thedcadelef we

produce a phase shift analysis covering the energy range 3—11 MeV. The key idea is the use of a new
technique for data-to-potential inversion which yields potentials that reproduce the data simultaneously over a
range of energies. It thus effectively regularizes the extraction of phase shifts from diverse, incomplete, and
possibly somewhat contradictory data sets. In doing so, it will provide guidance to experimentalists as to what

further measurements should be made. This study is limited to vector spin observables and spin-orbit interac-
tions. We discuss alternative ways in which the theory can be implemented and which provide insight into the

ambiguity problems. We compare the extrapolation of these solutions to other energies. Majorana terms are
presented for each potential compongB0556-281®8)50807-3

PACS numbe(s): 25.45.De, 25.16ks, 24.10.Ht

A well-known problem confronting any phase shift analy- proach may be seen from R¢&] where a huge amount of
sis (PSA), both for a single energy and for multiple energies,experimental data for this reaction, including cross section
is the absence of complete sets of experimental data. And vector and tensor analyzing powers, are analyzed at
complementary problem is the occurrence of apparent incodength by elaborate forms of PSA. The methods used are
sistencies between data from different experiments. Thesdescribed by Krasnopolskst al. [7]. Although the authors
problems are particularly acute for projectiles of spii/2.  of [6] derived much important information from their PSA
For example, spin one projectiles require, at each energyg.g., exact resonance widths, vertex constant) etany re-
eight or nine independent measuremeftsoss sections sults are still on a preliminary and qualitative levelg., the
o(6), vectori(Ty4(6)), and tensoT,,) analyzing powers, complex tensor mixing parameters, odd-parity phase $hifts
etc]. Since the PSA solutions based on incomplete data willtherefore we believe that the very considerable experimental
be far from unique, we must find a way to apply constraints effort devoted to this system, sé&| and many other papers
Apart from certain smoothness requirements, it is highlycited in Ref.[6], motivates a new approach. Sinte “He is
nontrivial to findgeneralrestrictions which are convenient to a perfect theoretical test case, the rewards will be the physi-
apply within the framework of existing PSA methods. cal insight of general relevance to nuclear physics.

In this paper we present a new approach to phase shift In principle the potential searched for should incluake
analysis, PSA. In essence, the idea is to find a single multinecessary components of nuclear interactions, including cen-
component potential to describe the experimental data overal [Wigner (W) and Majorana )] terms, spin-orbit terms
the energy range in question. This is made possible by égain, both andM) and the various possible tensor terms,
recently developed1,2] direct data-to-potential inversion once more bothW and M; all terms may be complex as
technique, the generalized iterative perturbative methodiequired. In determining a suitable potential, one can impose
hereafter GIP, which we describe below. GIP is a generaliconstraints such as conformity to known behavior of higher
zation of the established iterative perturbatiif®) Smatrix-  partial wavegas in, e.g.[9]); smooth energy dependence of
to-potential inversion methd@-5]. It enables data for many underlying potentials; consistency with established theories;
energies to be fitted with great computational efficiency by aeproduction of bound- and resonant-state energies.
single energy dependent potential that is as flexible as re- In principle it is possible to find a potential fitting data at
quired. A PSA based on a potential, unlike conventionalmany energies by applying standard searching procedures to
PSAs, leads in a natural way to sets of phase shifts bearinifpe parameters of a sufficiently flexible potential model,
physically reasonable relationships between the different pawhether of standard multiparameter or model independent
tial waves. Moreover, the model itself will now reveal any form (e.g., the so-called Fourier-Bessel analysi® do this
inconsistent data and indicate where new data are requiregenerally entails computationally expensive and highly non-
and thereby be a useful source of experimental guidance. THmear multiparameter fitting, often leading to many local
GIP potential will have a small energy dependence whichminima[10]. The GIP procedure for direct data-to-potential
unlike the rapid energy dependence of the phase shifts, canversion solves many of these problems. The advantages of
be compared with the energy dependence predicted b\P over other methods f@-matrix-to-potential inversion ap-
theory. ply here too and are particularly relevant. The first advantage

We demonstrate our approach by applying the method t@s the power to control the exactness of the inversion so that
d+ *He and will show that an integrated picturef *He  noisy, incomplete, or even partly erroneous data can be fitted
scattering can be obtained from a diverse range of data cowith (one-channel or multichannebotentials which do not
ering a substantial energy range. The need for such an apave spurious oscillatory features. The second advantage is

0556-2813/98/58)/31(5)/$15.00 PRC 58 R31 © 1998 The American Physical Society



RAPID COMMUNICATIONS

R32 COOPER, KUKULIN, MACKINTOSH, AND KUZNETSOVA PRC 58

its virtually unlimited generalizability. Here we illustrate this ~ We must now expang? in terms ofC(*. To do this we
feature by including in our analysis the four Majorana com-first linearize the theoretical cross sections and analyzing
ponents, normally omitted in optical model fits. A further powers by expanding, (andPy,) about some current point
feature of PSA using the GIP method is its speed and sim{c(k)(p)}:
.. . . . . J
plicity of application enabling a thorough exploration of am-
biguities. These ambiguities an®t a matter of shallow val-
ley floors in parameter hypgrgpace, but appear in the form of o= Uk(clgk)(p))Jr z
apparently disconnected minima. ]
In the present case we apply the procedur&+ol pro-

doy &SI(EK) AC(k)
IS(E)  gC¥ b
I e

jectiles, although for clarity we suppress spin-related sub- ®)
scripts. The method involves the following three key ele- ) ) )
ments: which applies at each iterative stgp=0,1,2 ... and the

(i) The expansion of components of the poterfii@intral  correction(to be determinedfor the jth amplitude isA C{¥
(c), spin-orbit -0), tensor (), etc] in a suitable basis. For =C{¥—C{(p). Equivalent relations are applied f&%p.
potential componerit=c, s-o, t ... Linear equations result from demanding tlyatbe locally
stationary with respect to variations in the potential coeffi-
cients C{, i.e., the derivatives of? with respect to the
potential component@fk) must vanish. Solving these linear
equations is straightforward for any reasonable number of
WhereCJ(k) are coefficients to be determinaﬂ%k)(r) are the them and yields corrected valué}“")(p) [8,10|. We then
basis functions, an(si/gk) is the starting potential. Note that iterate the whole procedure, with wave functiafisin Eq.
this expansion applies to both real and imaginary compo¢3) calculated using the corrected potentials from EQ,
nents and that the notatio;ﬁj(k)(r) embodies the possibility until convergence is reached. This algorithm almost always
that it might be appropriate for different components of theconverges very rapidly8,10], in general, diverging only
potential to be expanded in different bases. In particular, reavhen highly inconsistent or erroneous data have been used
and imaginary terms, or central and spin-orbit terms, or thér when the iterative process involves a very unsuitable start-

v<k>=vgk>+; CiMe(r), 1)

Majorana terms might well require different bases. ing point. . o _
(i) The linear response of the compl&matrix S to Multienergy inversion is thus reduced to the solution of
small changed V(r) in the potential simultaneous equations at a series of iterative steps. To show

how effective this is, we present the results of a multienergy
im (e PSA for thed+ “He system. For this initial study, we have
AS=— TJ ((r)?AV(r)dr, (2 selected a small subset of the experimental data tabulated in
hokJo [6], in particular the data of Jenngt al. [8] and that of
_ i ) ) [12,13. At this stage, we have fitted only the cross sections
W|th S defined |n.terms of the asymptotic form of the regular gnq vector analyzing powers and correspondingly limited
radial wave function ag(r)—1,(r) —SO,(r) wherel, and  gyrselves to the following potential components: Wigner
O, are incoming and outgoing Coulomb wave functions ofcentral, Majorana central, Wigner spin-orbit, Majorana spin-
Ref. [11]. The formulation[1,4] in terms of 5, whereK,  orpjt. All terms are complex so that there are eight compo-
=tang, is exactly equivalent. Note that the enerBy is  nents to be determined. The neglect of the various complex
implicit in these equations and, for simplicity, we have la-tensor components is justified because their primary effect is
beled the channels only by the orbital angular momentum gn the tensor analyzing powers. It is well knojrt, 15 that
although we do include spin in our calculations. Equat®n  tensor interactions in the+ *He system play a moderate
can be recast 43,5] role, mainly influencing the’S;- ®D; and 3P,- 3F, mixing
parameters which are not significant here. The generalization
9§ im j” 2 q 3 of GIP to yield tensor interactions is under development and
aC, = nando (h(r))*¢;(rydr, 3 we expect a full PSA, including all off-diagonal terms, to be
presented in due course. Data renormalization was not con-
where any required superscripk)( labeling the potential sidered here since its effect is small compared to the neglect

component, is implicit. of the tensor force, particularly for the data sets fitted here
(iii ) The x? function is defined from [1.7]. ) L

In order to get some understanding of the ambiguity prob-

o — ol 2 M P,,— PN 2 lems, we co_nsider here two extreme approa_ches to the fitting

x2= 2 L +2 E _kn " kn , (4) process which we label A and B. The question of the mean-

=1\ Agy n k=1 AP ingfulness of the potentials that are found we leave to later

. . publications.
whereoy' and Py, are the input experimental values of cross ~ Approach Abegins the iterative procedure with a starting
sections and analyzing powers of typerespectively. Since potential reflecting very littlea priori information concern-
we are fitting data for many energies at once, the inklex ing the potential and consists of two components only:
indicates the energy as well as angle. The data normalizingimple real and imaginary central Wigner terms of Gaussian
factors can be introduced as an additional contribution to Egform. The data is fitted in stages, adding a further potential
(4). component at each step with basis dimensions restricted to
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FIG. 1. For deuterons scattering frofile, fits to differential is the fit for potential A, the dashed line for potential B.

cross sections of Senhouse and Tombrello at selected energies. The
solid line is the fit for potential A, the dashed line for potential B. the results are insensitive to this energy dependence. Both
the detailed form of the imaginary potentials and the imagi-

two or three Gaussian functions. Generally convergence repary phase shifts are less well determined than the corre-
sults from two or three inversion iterations at each stage. Bygponding real quantities and qualitative features of the data
applying a criterion of visual smoothness, an optimum solu<an be reproduced with a real potential alone.
tion was found, “potential A,” corresponding to’/F In Fig. 1 we display, for representative energies over the
=18.7. Fits giving a lowe?/F are possible with a larger complete energy range 3-11.5 MeV, typical fits to cross sec-
basis, but the corresponding| also shows a significant uni- tions[13] and in Fig. 2, analyzing powefd.2]. Both o( )
tarity breaking for certairl,j. This case involves about 20 andi(T;,(6)) are very well fitted over the entire energy
independent parameters. range. Closely compatible fits to the data of R&] were

Approach Bstarts the iterative procedure with a potential found, both visually and in the values gf. All the quoted
derived by inversiori16] of S; from the multiconfiguration ~ x*/F values apply to the fit over the full energy range, but
resonating group modéRGM) calculations of Kanadat al. ~ are only relative since the tabulated data did not include all
[17] which includeS-wave deuteron breakup. This approachthe sources of error discussed in the original papers. We have
gave “potential B” with y?/F =5.84 but is accompanied by found that although the contribution of the mixing param-
a significant breaking of unitarity in th®wave.(The results  eters to the cross section is almost negligible, there is a more
are described in detail in Ref18].) noticeable effect on the fit to(T14(6)).

In both approaches energy dependence is included only in The bound state energy of ttféle-d system, which can
the imaginary components. The procedure used follows Rehe identified as the ground state energy’bi in the *He-d
[21], which applies for shape invariant energy dependent poshannel, is not included in these inversions. Potential A gives
tentials. Since the inelastic threshold isEat=3.3 MeV, we  Eg=—2.26 MeV E§®=—1.472 MeV). Note that this en-
expect the imaginary components to increase rapidly as thergy is extremely sensitive to the form of the potentials and
energy rises abovE, and so we assume that all parts of theto the energy dependence of tihe*He3S,; phase shift§19].
imaginary potential increase linearly witfe ¢ Ey,). In fact, In Fig. 3 we present the real parts of potential A. Known
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FIG. 3. The real parts of potential A. From the top, the Wigner FIG. 4. The real phas_e shifts for fit (é_SOIid Iine)_ compared with
central and spin-orbit, then the Majorana central and spin-orbit. the results of a conventional phase shift analytited circles.

partial waves. This is probably due to our neglect of tensor

ambiguity problems suggest this potential is almost certainlfforces. Reliable knowledge of the odd partial wave phase
not unique. Within either approach, A or B, certain potentialshifts is crucially importanf20,22), since the nature of the
components are more reliably determined than others, thdeuteron-nucleus interaction, particularly th *He, is dif-
real central Wigner term being the best determined. Its volferent for even and odd partial waves. The even patity
ume integral is consistent with global potentials and also+ “He interaction is determined by an intermediate state in
with volume integrals of the corresponding potential derivedwhich two nucleons in the incident deuteron occupy two
by S matrix to potential inversion for the theoreticl of  (1p) orbitals beyond théHe core. However, for odd parity,
resonating group model RGM calculatiofis16,19,20. the two outer nucleons occupy nonoverlapping-24s or

The phase shifts corresponding to the solution A for 1p-2d orbits (designating orbitdNI, with N, the number of
<4 are displayed in Fig. 4 for an energy range of 0—15 MeVoscillator quanta Thus, since théN-N interaction is short
laboratory energy, i.e., extrapolating outside the range of theanged compared to the range of ithe¢'He interaction, the
data. This figure also includes the results of a previous analyeontribution of virtual breakup should be higher for odd than
sis [20]. The really difficult problem for all previousstan-  for even partial waves and the sensitivity to tie- « inter-
dard PSAs was to achieve a low energy description of oddaction should also be higher. Because of this feature of the
partial waves (i.e., 3Pj with j=0,1,2 and 3Fj with j d+ “He interaction, thg- andf-wave phase shifts have been
=2,3,4), due to the weak sensitivity of cross sections anghown[22] to give a strong test of supersymmetrical aspects
analyzing powers to the odd partial wa&. Thus, by fit-  of composite particle interactions, and the structure of tensor
ting all significant partial waves independently in the courseinteractions of deuterons. A further step now is to include in
of a standard PSA6,8], a range of solutions is possible our potential, terms which have never previously been con-
which is consistent with the data. The resulting odd-paritysidered for nucleus-nucleus interactions, namely complex
phase shifts have very large error bars. In the present methddajorana tensor forces. Preliminary resyl&3] show that
for phase shift analysis a further restriction is applied bythe Majorana tensor force is approximately as strong as the
demanding a smooth underlying potential and therefore th&Vigner tensor force.
approach should lead, in principle, to much more reliable and In conclusion, we have demonstrated a new approach to
accurate values for all phase shifts than found in previou®SA based on a linearized iterative approach to direct inver-
PSAs[6,8]. sion from multienergy data to potentials. The example pre-

The comparison in Fig. 4 of our new PSA solution with sented, approach A, involved far fewer parameters than a
previous results shows that the agreement for even partiglonventional PSAabout a hundred for this cas&he new
waves is quite close while there is less agreement for oddhethod is computationally efficient and avoids many draw-
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